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ABSTRACT
The current work is intended to give an overview of issues 
related to the numerical simulation of adhesive spreading for 
liquid to semi-liquid adhesives. The advantages and limitations 
are presented in order to guide the choice of the suitable 
approach depending on the case under consideration. It is 
shown that methods are of two categories, whether they are 
grid-based or meshless. In the first, the movement of the matter 
is directly dependent on the mesh size and distribution. 
Contrariwise, in the meshfree methods, the particles are free 
to move and each carries its properties. Besides, cases of appli-
cation are presented to provide a database for calculating 
adhesive spreading with the particulate SPH method. It is 
shown that it is possible to use simple behaviour laws to win 
this case.
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1. INTRODUCTION

The increasing use of structural bonding raises the question of the quality of 
the assembly for structural strength (strength requirement) and disassembly at 
end of life (structural life cycle analysis). In parallel, taking environmental 
protection into account, or even basing the design of new structures on it, is 
a growing concern in all fields of industries and in particular in aeronautics. As 
an example of direct constraint, the REACH procedure1 standing for 
“Registration, Evaluation and Authorisation of Chemicals” is a European 
initiative to regulate the use of dangerous materials to enhance the protection 
of the environment while maintaining the competitiveness of the industry. In 
the field of aerospace engineering, the European Space Agency (ESA) pro-
motes Design for Demise.2 Indeed, when they reach the end of their service 
life, satellites are no longer controlled and powered. They are then expected to 
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begin their slow descent into the Earth atmosphere and either completely burn 
up or are controlled to come down into the oceans. It is up to the company to 
ensure that the satellite is completely burned up and disintegrated during re- 
entry if this option is selected.3 But some accidents have occurred, such as fuel 
tank re-entry4 or debris falling on people.5 This situation is no longer accep-
table, so designing satellites for controlled disassembly is the approach recom-
mended by ESA. Furthermore, growing concerns about environmental issues 
have led industries to focus on technologies for mass reduction and meeting 
requirements for durability, performance, and production costs for structures. 
In these circumstances, adhesive joints have begun to gain in visibility and 
investments.

Structural bonding is an extensively used technique for joining substrates of 
different mechanical characteristics. In short, an adhesive joint consists of two 
or more adherents held together by adhesion and it allows the transfer of 
mechanical forces through the interface. Adhesive bonding is known to offer 
an elevated strength-to-mass ratio, which is a critical stake for the automotive 
and aeronautical industries, for example[1]. The strength of the structural 
bonding itself is likely to be affected by the quality of the adhesive mechanical 
properties playing a role of a solid layer between the substrates. These are the 
results of the adhesive slip/stick capability in its liquid or viscoplastic state 
during the bonding process[2]. In particular, bubbles and pores created during 
deposition on the substrates or during the approach of the substrates and 
squeezing of the adhesive between the substrates affect the strength of the 
system’s assembly [3,4]. In addition to the mechanical characteristics, the 
adhesive joints provide electrical isolation for electrical components and 
increase damping properties, possibly due to their viscoelastic behaviour. 
Another concern in eco-design is the consideration of debonding on demand. 
As there may be a need to separate or recycle the primitive materials of 
substrates, the joint can be asked to have a dual role of strengthening the 
assembly structure during the product life and to separate it after life in a clean 
way. This separation is often described in the literature as using techniques 
that depend on the addition of components in the joint. For example, disas-
sembly based on thermal debonding [5] depends on the expandable particles or 
on chemical mechanisms with additives that can change viscosity [6,7]. In all of 
these cases it is important to optimize the deposition and interaction between 
the adhesive and the substrates, besides the recovering area. Depending on the 
adherent configuration to be joined, adhesive spreading is performed under 
constraints and this process also generates remaining constraints. 
Furthermore, the adhesive joint can also suffer from premature ruptures due 
to imperfections in adhesive layer deposition, uncovered surfaces or non- 

3http://www.astrosurf.com/luxorion/Images/mir-reentry-dwg.png
4https://aerospace.org/space-debris
5https://aerospace.org/article/satellite-reentry-manipulating-plunge
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uniform thickness. Figure 1 shows examples of adhesive joint configurations 
currently used in industrial applications. A bonding strategy is then necessary 
to improve the adhesive deposition, which is a factor of primary importance 
on durability.

It is then of primary concern to be able to control adhesive spreading during 
the bonding process. Model-based engineering and computational mechanics 
are commonly considered as the best and cheapest forms, if compared with 
experimental tests, to evaluate the different scenarios and can be useful in 
reducing the experimental tests necessaries. This multi-physical problem is 
addressed by various numerical strategies in the literature, depending on the 
hypothesis adopted. This paper presents a general description of the physical 
phenomena involved in adhesive squeeze in section 2 ‘Phenomenology’ and 
also gives a synthesis of the numerical methods and models that can be applied 
to simulate and predict adhesive squeeze during the bonding in section 3 
‘Discretization and approximation’. The last section is dedicated to an appli-
cation case using the Smooth Particle Method (SPH) and its comparison with 
experimental observations of adhesive squeeze between two plane plates.

2. PHENOMENOLOGY OF ADHESIVE SPREADING

Understanding adhesive behaviour and its rheology is the first step toward 
building a numerical model capable of representing the adhesive during the 
bonding process and this identification is, in general, made through experi-
mental tests [1]. The manufacturing process of bonded joints is a multi- 
physical subject composed of several steps that drive the properties of the 
resulting joint. Assuming the nature of adherents is prescribed, the first step is 

Figure 1. Squeeze flow with a constant mass in different configurations (a) Joint in T format, (b) 
Joint between plane plates, (c) Joint between curve plates, (d) Joint in a sandwich structure.
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the choice of the adhesive, which includes the definition of the surface 
preparation, deposition, spreading and curing process. In adhesion theories, 
many factors influence the final behaviour of joints, among which wetting and 
spreading are the most important factors [1].

2.1. Adhesive deposition, wettability and spreading

Deposition of the adhesive on the substrates is the first step of the bonding 
process. The deposition depends on the wetting capability of the adhesive 
itself, and on the wettability of the substrates, leading to the question of fluid- 
structure interaction .[8] Wetting is the ability of a liquid to enter into contact 
with a solid and results from intermolecular interactions. For an adhesive, 
wettability is mainly related to viscosity and density. For adherents, it is related 
to roughness.

The contact angle provides a measure of the interaction between the liquid 
and the surface. It is possible to establish that good wettability is achieved 
when Classification of fluids in rheology behaviours (see Figure 2a). On the 
other hand, the larger is the contact angle, e.g. close to 180°, the worse the 
wettability, as shown in Figure 2b. In the extreme case (Classification of fluids 
in rheology behaviours), the liquid becomes a thin film and this phenomenon 
is called spreading, as shown in Figure 2c [1]. If this angle is considered as 
a descriptive parameter of the interaction between the adhesive and the 
substrates, it is not a parameter that is used in numerical models or in 
behaviour laws to control the final spreading or the final thickness of the joint.

Spreading is the action of covering a surface and can occur naturally or in 
a forced way. The forced way implies the application of some force until the 
equilibrium state of forces and/or the fully covered. This process has direct 
influence on the final thickness of the adhesive layer in the joint. Furthermore, 
the joint’s mechanical performances are highly dependent on the adhesive 
layer’s properties and its thickness[9,10]. The role of the adhesive in several 
applications therefore began to change with joint functionalization. The 
objective is to use components that are already there for structural motives, 
giving them a second function. For example, the adhesive joint can be used as 
a resource to create weakness zones, if disassembly is necessary.

Figure 2. Schematic representation static contact angles (Classification of fluids in rheology 
behaviours); (a) “good” wet; (b) “poor” wet; (c) spreading.
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Spreading squeeze is, in the simplest case, when a fluid is deformed 
between two parallel or nearly parallel boundaries approaching each other 
and pressing it. A description of the physical problem and the associated 
hypotheses can be consulted in [11,12], where the authors show the influence 
of the chosen behaviour law to describe the fluid and the effect of boundary 
conditions on the adhesive distribution. Besides the configuration of two 
plane plates, adhesive squeeze along with other configurations represents 
a challenge, for example, for the squeeze between annular plates, where the 
conditions for correct adhesive distribution depends on geometrical para-
meters [13], as well the adhesive properties and surface properties .[14] 

Another case is when one of the surfaces presents obstacles, which can 
improve adhesion in cases with low viscosity or, on the contrary, with 
a highly viscous adhesive [15]. Another very interesting case of the influence 
of adhesive squeeze concerns the assembly of sandwich structures. 
Distribution of the adhesive is an issue because air or gas trapped in the 
cells can flow through the adhesion line during curing, and some non- 
uniform distribution could occur between adjacent cells, both leading to 
poor quality of the bonding[16,17]. In conclusion, spreading depends on the 
adhesive behaviour, adherents’ configuration composition and curing pro-
cess. Its simulation is necessary to help design the bonding process, and thus 
to be able to reduce the risk of adhesive spillage and to control the joint’s 
final properties.

2.2. Behaviour laws

The rheology of solids and fluids are in many respects similar. Nevertheless, if 
both are displaced and deformed under applied forces, displaced fluid materi-
als adapt their external boundary to the solid external frame or container, 
while solid materials offer a their own external shape. One exception is 
a viscous or gelatine fluid that can exhibit fluid or solid behaviour, depending 
on its viscosity. Viscosity of adhesives is driven by the polymerisation level and 
can exhibit both behaviours. Before the curing process, the adhesive is in 
a liquid state and is submitted to a flow during the bonding process. Once 
the curing process is finished, it becomes a solid.

The behaviour of a solid material is usually described by two relationships 
between fluxes of internal forces (stresses) and deformations (strains): the first 
is the deviatoric resistance to shear deformation; the second is the spherical 
pressure resistance to volume change. Pure fluids do not offer deviatoric 
resistance. As a consequence, at rest they suffer from creep deformation. 
Only pressure or mean compressive stress can resist the external forces or 
prescribed deformations [18]. The rheological properties depend on the mate-
rial characteristics and mechanical load [19].
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Fluids can be classified into two main categories, Newtonian and Non- 
Newtonian fluids. In simple terms, the viscosity of Newtonian fluids is not 
dependent on the shear rate and these fluids present a linear correlation 
between the shear rate and the shear stress. While the Non-Newtonian fluids 
have non-linear relationship between the shear rate and the shear stress and 
their viscosity is dependent on the shear rate, their viscosity can also be time- 
dependent. The fluids classification is shown in Figure 3.

The rheology of structural adhesives can be confused sometimes; the varia-
bility in viscosity is caused by chemical reactions between the components, so 
it is not classified as a rheopectic fluid. The rheopectic fluid changes viscosity 
due to shear stress and the fluid can recover its initial behaviour. In order to 
determine the rheological behaviour of an adhesive, rheological tests are 
necessary to measure viscosity during the application of shear stress. 
Commonly referenced rheologically significant behaviours obtained from 
experimental squeeze tests are listed in Table 1. Improvements to these models 
may could be necessary to represent some specific fluid flows in the case of 
viscoelastic behaviour, for example .[8,26]

2.3. Interest in simulating the adhesive squeeze

Interest in the study of the squeeze flow is common in various application 
domains. One recent example is in the field of disassembly on demand (DoD), 
in which the interest is to study and optimize the spreading of an adhesive with 
encapsulated agents or nanoparticles. In this case, studies of the squeeze in 

Figure 3. Classification of fluids in rheology behaviours.
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a particulate flow[22,40–42] can be a good starting point. Another solution is to 
consider similar problems in other scientific fields, such as the displacement of 
marine specimens overtime knowing the initial position [43,44], the movement 
of fresh concrete [45–47], or volcanic lava flow [48,49]. Besides applications in the 
assembly domain, the squeeze flow theory can be applied to study soft solid 
behaviour, with the hypothesis that movement can be compared to a viscous 
fluid [8,23,26]. Squeeze is also applied in classical problems, such as the simula-
tion of lubrication films and their behaviour under different external condi-
tions and geometries [32,50,51]. Furthermore, among applications outside of this 
engineering domain, the food sector uses the squeeze flow theory extensively 
[52,53].

Specifically in this work, the interest is to describe the numerical models that 
can be applied to study adhesive squeeze during the assembly process. As shown 
in [28], the cover surface and overflowing adhesive are important variables in 
cases where thickness is fixed. In[28,54] the authors took an interest in validating 
the final form after the assembly process, including the surface covered and 
overflowing adhesive using Computational Fluid Dynamics (CFD). In the case 
presented in, [55] the authors study the adhesive flow, but here to study the 
impact of the deposition process with the application of two adhesive cords.

For the simulation of the adhesive squeeze, another important aspect is the 
discretization schemes, in terms of time and space, because of the impact on 
the numerical method to be applied. Among the methods presented in the 
literature, the grid-based numerical methods are widely used for fluid simula-
tions, either using the Lagrangian or Eulerian reference frame, including the 
finite difference method (FDM), finite volume method (FVM), or the finite 

Table 1. Synthesis of the rheological behaviour and it is responses under squeeze mode.
Rheological 
behaviour Main characteristic[19–21] References Examples[20]

Newtonian fluid Its viscosity is not dependent on shear rate [22–25] Water, alcohol, 
blood plasma

Rheopectic The viscosity increases with time that it remains under shear 
stress and it can be called time-dependent dilatants

- Printer inks, 
gypsum pastes

Thixotropic In this case, the viscosity decreases with the time that it 
remains under shear stress and it can be called time- 
dependent pseudoplastics

[26,27] Yoghurt, gelatine 
gels

Bingham Presents a linear relationship between shear stress and shear 
rate and needs initial yield stress before it begins to flow

[23,28–31] Toothpaste, 
mayonnaise,

Herschel- 
Bulkley

Behaviour similar to a pseudoplastic fluid, but with an initial 
yield stress

[8,32–35] Ordinary paints

Dilatant (Shear- 
thinning)

Increase in apparent viscosity as the shear rate increases and 
do not needs minimum shear stress to start to flow

[36–38] Quicksand, 
cornflour in

Pseudoplastic 
(Shear- 
thinning)

The viscosity decreases with increasing stress and does not 
needs minimum shear stress to start to flow

[37] Ketchup, blood, 
nail polish

Viscoelastic Fluids that exhibit both viscous and elastic characteristics 
when submitted a some load

[39] Blend of a solvent 
and some 
polymer
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element method (FEM) [56]. In this study, the Smooth Particle Hydrodynamics 
(SPH) method will also be considered. This is a meshfree method associated 
with particulate discretization of the matter and the movement [57].

3. DISCRETIZATION AND APPROXIMATION METHODS

The numerical solution of time-dependent conservation equations, in 
a Lagrangian or an Eulerian description, requires their discretization in time 
and space. There are different approaches to each of these components, the 
fundamentals of which will be described here. The objective of this section is to 
analyse the relevance of discretization methods and the set of conservation 
equations related to its application for squeeze flow simulation. It is important 
to note that most of the simulations are time-dependent. The time discretiza-
tion method is implicitly related to the choice of the numerical method used to 
describe the deformation of the adhesives.

3.1. Conservation equations

In order to understand and describe the behaviour of the adhesive’s highly 
deformable dynamics in its non-polymerized state, it is necessary to take into 
account three conditions: conservation of mass, conservation of momentum, 
and conservation of energy. The development of the conservation equations 
for both forms can be consulted in [58] and the final expressions for the 
Lagrangian description are presented in Table 2 and Table 3 for the Eulerian 
description.

The continuity equation represents the mass conservation of the system. 
The ρ is the density of the fluid and it can be depend on direction and time and 
V represents the velocity vector field in Cartesian space given by 

Table 2. Conservation equations for the Lagrangian description.
Continuity Dρ

Dt þ ρÑ � V ¼ 0
Momentum

ρ
Du
Dt
¼ �

@p
@x
þ
@τxx

@x
þ
@τyx

@y
þ
@τzx

@z
þ ρfx

ρ
Dv
Dt
¼ �

@p
@y
þ
@τxy

@x
þ
@τyy

@y
þ
@τzy

@z
þ ρfy

ρ
Dw
Dt
¼ �

@p
@z
þ
@τxz

@x
þ
@τyz

@y
þ
@τzz

@z
þ ρfz

Energy

ρ
D
Dt

eþ
V2

2

� �

¼ ρ _qþ
@

@x
k
@T
@x

� �

þ
@

@y
k
@T
@y

� �

þ
@

@z
k
@T
@z

� �

�
@ upð Þ
@x

�
@ vpð Þ
@y
�
@ wpð Þ

@z
þ
@ uτxxð Þ

@x
þ
@ uτyx
� �

@y
þ
@ uτzxð Þ

@z
þ
@ vτxy
� �

@x
þ
@ vτyy
� �

@y

þ
@ vτzy
� �

@z
þ
@ wτxzð Þ

@x
þ
@ wτyz
� �

@y
þ
@ wτzzð Þ

@z
þ ρf:V
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V ¼ uiþ vjþ wk (1) 

Meanwhile, the momentum conservation equation applies the physical prin-
ciple of Newton’s second law to the system. The forces responsible for the fluid 
movements have two sources: surface forces (first term on the right side) and 
body forces (second term on the right side). The surface forces act on the 
surface of the fluid element and are represented by the contribution of 
pressure (p) and shear stress (τ) exercised. Secondly, the body forces act on 
the volumetric mass of the fluid element and f is this force per unit mass in 
each direction.

The last equation represents energy conservation in terms of total energy 
eþ V2=2, where _q represents the heat flux, T is the temperature, k the thermal 
conductivity and the term ρf :V is the rate of work done by the body force 
acting on the fluid element moving at a velocity V.

3.2. Space discretization

The differential equations are applied in several domains and consequently 
there are many numerical methods to the resolution described in the litera-
ture. These methods differ according to the discretization of the spatial 
derivatives of the differential equations. They are traditionally classified in 
Eulerian methods, Lagrangian methods, alongside the Arbitrary Lagrangian 
Eulerian methods [58].

In short, the differences between the discretization methods are related to 
the mesh characteristics. The first and most used, the Eulerian description (see 
Figure 4a), is represented by a grid fixed in the space and the material moves 
inside the grid. As a result, the material deformation depends on the disposi-
tion and size of this fixed grid. These methods, in general, are more stable and 
can represent material deformations without change to the grid. But the major 
disadvantages are (i) the difficulty of representing domains with a complex 

Table 3. Conservation equations for the Eulerian description.
Continuity @ρ

@t þ Ñ: ρVð Þ ¼ 0
Momentum @ ρuð Þ

@t
þ Ñ: ρuVð Þ ¼ �

@p
@x
þ
@τxx

@x
þ
@τyx

@y
þ
@τzx

@z
þ ρfx

@ ρvð Þ
@t
þ Ñ: ρvVð Þ ¼ �

@p
@y
þ
@τxy

@x
þ
@τyy

@y
þ
@τzy

@z
þ ρfy

@ ρwð Þ

@t
þ Ñ: ρwVð Þ ¼ �

@p
@z
þ
@τxz

@x
þ
@τyz

@y
þ
@τzz

@z
þ ρf

Energy
@

@t
ρ eþ

V2

2

� �� �

þ Ñ ρ eþ
V2

2

� �

V
� �

¼ ρ _qþ
@

@x
k
@T
@x

� �

þ
@

@y
k
@T
@y

� �

þ
@

@z
k
@T
@z

� �

�
@ upð Þ
@x
�
@ vpð Þ
@y
�
@ wpð Þ

@z
þ
@ uτxxð Þ

@x
þ
@ uτyx
� �

@y
þ
@ uτzxð Þ

@z

þ
@ vτxy
� �

@x
þ
@ vτyy
� �

@y
þ
@ vτzy
� �

@z
þ
@ wτxzð Þ

@x
þ
@ wτyz
� �

@y
þ
@ wτzzð Þ

@z
þ ρf:V

THE JOURNAL OF ADHESION 9



geometry in a regular grid, (ii) the capture of the fluid-free surface having 
a defined relevant interface and (iii) high memory storage [59]. In this situation, 
the slip/stick condition of the material on the substrate is represented through 
its ability to resist shear in a thin layer at the vicinity of the wall [2,15].

The Lagrangian description (see Figure 4b) is a method with the grid placed 
inside the material and the deformation of this is caused by the mesh deforma-
tion. Consequently, accuracy depends on the grid size and distribution. 
A particular class among the methods with Lagrangian descriptions is the 
meshfree method, which uses a finite number of particles for the discrete 
state and dynamics of a material [59]. The main advantages of grid-based 
Lagrangian methods include no extra computational effort to calculate the 
convective (or advective) terms. The convective term is zero because the 
boundary control volume is coincident with the boundary of a control mass 
[60]. Since the mesh is not fixed in space, the complex geometries are easily 
discretized and the mesh involves only the computational domain where 
material exists. Nevertheless, these methods present some difficulties in repre-
senting materials with large deformations. On the other hand, the meshfree 
Lagrangian methods have as advantages, compared to the grid-based methods, 

Figure 4. Representation of space discretization. (a) Eulerian description, (b) Lagrangian descrip-
tion, (c) Arbitrary Lagrangian Eulerian description.
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their facility to represent the material by a system of particles without fixed 
node connectivity. This approach is therefore better suited to representing large 
deformations [59].

The arbitrary Lagrangian–Eulerian (ALE) description was developed in an 
attempt to combine the advantages of the above classic kinematical descrip-
tions while minimizing their respective drawbacks insofar as possible. In the 
ALE description, the nodes of the computational mesh may be moved with the 
continuum in normal Lagrangian fashion, or be held fixed in an Eulerian 
manner (see Figure 4c), or be moved in some arbitrarily specified way to give 
continuous rezoning capability [61].

In general, the governing equations for representing the fluid can be 
separated into two categories: conservative form, when the infinitesimal fluid 
element is fixed in space and only the fluid moves (see Figure 5a), and the non- 
conservative form, when the infinitesimal fluid element moves in the same 
fluid velocity (see Figure 5b).

The choice of the description used and space description is based on the 
objective to be achieved and the limitations. In general terms, Lagrangian 
discretization is used to observe fluid movement through space and time, for 
example, in order to study wave propagation. The Eulerian description is very 
useful for observing a specific point in space.

4. NUMERICAL MODELLING METHODS

Grid-based methods, like finite elements of finite volumes, are traditionally the 
most common in the literature for fluid and solid simulations. Despite their 
popularity and wide usage, they still present limitations in some cases, for 
example for large deformations or crack generation and propagation model-
ling. In such cases, meshfree methods are good alternatives. Advantages and 
limitations, as well general aspects of each method, are presented in the next 
sections, keeping in mind the application case for predicting adhesive distri-
bution during and after bonding.

Figure 5. Representation of an infinitesimal fluid element fixed in space (a) and moving along 
a streamline (b).
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4.1. Grid-based methods

So called grid-based methods are tessellation methods for discretizing the 
medium. Tessellation is composed of elements which are plain parts of matter 
and nodes which are the connections between the elements. The behaviour of 
the matter is described by kinematic data at nodes (displacement, velocity, 
acceleration), and by internal state variables usually in a tensor form (stresses, 
strains, energy, pressure, etc.). The tessellation, or mesh, can be structured 
(composed of rectangular zoning) or unstructured (free arrangement of ele-
ments), composed on rectangular (or parallelepipeds) or triangular (or prisms, 
pyramids) elements.

4.1.1. Finite Difference Method (FDM)
Figure 6 presents the adhesive in a structured grid in its initial position before 
spreading. The grid is structured and boundaries of each element are straight 
lines that are aligned. Each grid node may be considered as the origin of a local 
coordinate system whose axes coincide with the grid lines (see Figure 6).

Each node is uniquely identified by a set of indices that are the indices of the 
grid lines that intersect at it, i; jð Þ in 2D and i; j; kð Þ in 3D. In general terms, 
this method uses the Taylor expansion series to solve the problem at a discrete 
point with precision related directly to the order of the Taylor series.

Using this expansions method, it is possible to obtain approximate expres-
sions for the first and higher derivatives at point xi in terms of the function 
values at neighbouring points using central, forward and backward schemes. 
Figure 7 shows the graphical representation of each approximation method.

In this case, the error is due to the truncation of the Taylor series, which is 
called the truncation error, as well as with the discretization applied for the 
approximation or with the scheme chosen for the finite difference 

Figure 6. 2D Cartesian grid for finite differences methods.
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approximations [60]. Because of its formulation, the FDM is a very precise 
method, which means that the results from this type of approximation can be 
very close to the exact solution, providing the size of the mesh discretization is 
convenient (small enough, but not too small to avoid non-useful computa-
tions) [62].

One important application of the finite difference method in the fields of 
fluid simulations is the simulation of film lubrication [50]. The partially filled 
gaps (PFG) method is particularly interesting to observe the interaction 
between the interfaces and the flow. This method can also be used in the 
adhesion domain to study the compression effect in the adhesive .[63] Another 
advantage of the FDM is the possibility to represent slippage; in [33], the author 
presents an approximation of the shape of the yield surface, the velocity and 
stress fields between two circular plates.

4.1.2. Finite Volume Method (FVM)
The finite volume method is a discretization method that is well suited to 
various types of numerical simulation (elliptic, parabolic or hyperbolic, for 
instance) of conservation laws. This method has been extensively used in 
several engineering fields, such as fluid mechanics, and heat and mass 
transfer [64] in the petroleum, aerospace, automotive industry. Consider the 
generic conservation equation for a scalar quantity ϕ and assume that the 
velocity field and all fluid properties are known. Consider also an arbitrary 
control volume (CV) in the space through which the fluid flows with 
a geometrical contour called the control surface (S).

The FVM begins with the integral form of an equation divided into two 
parts: one related to the calculation on the surface S, and another related to the 
control volume CV, represented by integration in the control volume. 

Figure 7. Geometric interpretation of the approximation of first-order derivatives.
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ð

S
ρϕ u!
� �

� n!dS ¼
ð

S
Γgradϕð Þ � n!dSþ

ð

CV
qϕdV (2) 

where ρ is the flow density, u! the velocity vector and n! the normal vector to 
the surface control.

It is possible to find the solution to this equation by using approximations of 
the domain’s subdivision into a finite number of small control volumes with 
defining boundaries. The most common and simplest method to solve the 
integral in the control volume is to use the middle point P and its Cartesian 
representation as shown in Figure 8. 

ð

CV
qϕdV � qPVolðCVÞ (3) 

where qP the value of q at the CV centre. This approximation is exact if q is 
either constant or varies linearly within the CV.

To solve the integrals for the surface; the net flux through the CV boundary 
is the sum of integrals over the faces: 

ð

S
f �~ndS ¼

X

k

ð

Sk

fdS (4) 

where f can assume the term of convective flux f conv ¼ ρϕ u!
� �

� n!
� �

or 
diffusive flux f diff ¼ Γgradϕð Þ � n!

� �
.

In the approximation of this integral calculated using the points of the 
control volume, the accuracy and order of error depend directly on the 
interpolation chosen. For example, for the midpoint rule, the only point 
used is the central point of the surface, e on the east face (see Figure 8) and 
it will generate an error of order 2. If the Simpson’s rule is used, however, three 

Figure 8. 2D Cartesian grid for finite volumes methods.
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points of the surface will be necessary, ne, e and se on the east face, and in this 
case, the error is of order 4 [60]. Another error source is related to the 
approximations used to calculate ϕ to obtain flux values, f conv and f diff .

In general, the FVM is the most widely used in the field of fluid analysis, the 
principal of which was presented in this section. Among the examples of 
application, some are more interesting for use as an example for the adhesive’s 
squeeze flow.

First, there are the models used to represent injection and moulding, over-
all, these studies look into the final form after the demoulding and into the 
internal stress generated during the injection process. In this type of applica-
tion, the velocity of injection plays an important role in the process, so the 
transient regime is also studied [65–67].

Another aspect discussed by many authors is the fluid behaviour repre-
sentation that can be exploited with two approaches: Newtonian and non- 
Newtonian behaviour, which can be done with an analytical method or 
numerical simulations. The choice between these two methods depends on 
the hypothesis considered; the accuracy level and the geometry of the study, 
for example. The analytical method is used for simple geometries (flat plates, 
for example) and non-complex fluid behaviour (without dependency on 
other parameters, for example) [11,23,29,32,34]. In the majority of cases, an 
analytic method cannot solve the question and the numerical simulation is 
applied [28,45,46,54,63,68].

4.1.3. Finite Element Methods (FEM)
The finite element method, like the finite volume method, cuts a structure into 
small elements connected by common nodes. The distinguishing feature 
between the finite element method and the finite volume method is that 
with the finite element method, equations are multiplied by a weight function 
before being integrated over the entire domain. The formulation and particu-
larities can be consulted in [18]. The conditions applied to the nodes shared by 
two or more elements guarantee the continuity of the displacement solution 
across finite element boundaries. The general idea is to solve the Navier-Stokes 
equations for each element using an approximation by shape function. The 
formulation and implementation of this methodology for Navier-Stokes equa-
tions can be found in classical works [18,69–71].

The main inconvenience of the finite element method with an Eulerian 
approach is to solve problems with extreme deformations. As shown in section 
2.2, fluid movement in this type of discretization is extremely dependent on 
the size of the elements chosen. In cases where the displacement is large, one of 
the most common errors is stretching the elements until element failure. The 
solution is a combination of both discretization, Lagrangian and Eulerian, with 
a mesh with automatic and continuous rezoning of the fluid mesh [72–74]. The 
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finite element is not the method most commonly used for fluid analysis, but it 
can be an interesting method for studying cases with an incompressible 
viscous fluid flow [75–79].

Lagrangian Finite Element models can also be found in the literature to 
analyse the behaviour of other solid-like fluids such as shear-thickening fluids 
(STF) [80,81]. A reason why Lagrangian Finite Element models can be prefer-
able is because the fluid’s viscous resistance becomes very high and significant, 
compared to the compressible one. This paper is not concerned with this case 
of materials, but it seems important to point out that there may be some 
similarities in the material behaviour descriptions, such as the use of the solid- 
like Johnson-Cook material model [36].

4.2. Meshfree methods for fluid simulations

A meshfree particle method (MPM) in general refers to the class of meshfree 
methods that employ a set of a finite number of discrete particles to 
represent the matter (fluid in this case) and its movement. Each particle 
can either be directly associated with one discrete physical object or be 
generated to represent a part of the continuum problem domain [82]. The 
analysis is focused on the Smoothed Hydrodynamic Particles (SPH) method.

Among the meshfree methods that exist in the literature, Smoothed 
Particles Hydrodynamics (SPH) is the most commonly used in fluid applica-
tions. Proposed in 1977 by Gingold and Monaghan [83] and Lucy [84], initially 
for solid applications, it was adapted for fluid mechanics a few years later, also 
by Gingold and Monaghan [85]. This method is of particular interest in fluid- 
structure interaction simulation (FSI), even in situations where surface ten-
sions and wetting effects are to be taken into account [57].

The SPH is an explicit Lagrangian particle method based on an interpola-
tion theory. The conservation laws of fluid dynamics (Table 2) are converted 
into integral equations. The value of a specific particle i is approximated from 
the function values for surrounding particles in the influence domain of 
particle i [86]. In simple terms, all the particles inside the influence area have 
a contribution to the particle of interest and the importance of this contribu-
tion depends on their distance in relation to this particle (see Figure 9).

Approximation of a function f xð Þ used in the SPH method is based on the 
smoothing function, also called the kernel function. The method starts with an 
integral based on the Dirac delta function, which cannot be used for establish-
ing discrete numerical models. To solve this, the Delta function must be 
replaced with the kernel function. 

f xð Þh i ¼

ð

Ω
f x0ð ÞW x � x0; hð Þdx0 (5) 
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where f xð Þ is defined and continuous in the integration domainΩ. The h is the 
smoothing length defining the influence or support area of smoothing func-
tion W and x is the particle distance.

Succinctly, the kernel function must satisfy three conditions: the normal-
ization condition, the delta function property that is observed when the 
smoothing length approaches zero, and the compact condition. These condi-
tions are described in Table 4, where κis a constant related to the smoothing 
function for a particle at x.

After the discretization process applied to the continuous domain in 
N particles, each having its mass and physical properties, the continuous 
form of kernel approximation expressed in Eq. (5) can be written in the 
discretized form of a summation of the neighbouring particles as follows: 

f xð Þh i ¼
XN

j¼1

mj

ρj
f xj
� �

W x � xj; h
� �

(6) 

where ρj is the density of particle j.
As shown in Figure 10, each particle inside the influence ratio influences 

particle j of interest and that level of influence depends on the distance at 
particle j. Each particle of the domain has its influence area and it moves with 
the particle movement. In conclusion, the same particle can be part of many 
influence areas.

Figure 9. Graphic representation of the kernel function.

Table 4. Conditions for the kernel function.
Normalization condition

ð

Ω
W x � x0; hð Þdx0 ¼ 1

Delta function property lim
x!0

W x � x0; hð Þ ¼ δ x � x0ð Þ

Compact condition W x � x0; hð Þ ¼ 0when x � x0j j > κh
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A particularity of this method is the difficulty in dealing with borders 
because the influence areas exceed the principal shape and there are no 
particles in this place. One solution for this problem is the creation of ghost 
particles without physical properties and with null influence.

This method’s Lagrangian formulation and its discretization form 
makes the SPH the most commonly used method for applications with 
solids in fast dynamics, explosions, high-speed impacts, etc. Examples of 
the application of this method and formulation with details can be con-
sulted in [56,87,88].

Even though the SPH was not specifically developed specifically for fluid 
simulations, there are many studies on this field in the literature. The first class 
of studies is dedicated to improving border conditions, which means propos-
ing other solutions for representing and calculating the fluid’s free surface [89– 

92]. In the category of fluid behaviour, the SPH is used to simulate 
incompressible [93] and compressible fluids [94], besides that the method offers 
the capability of calculating multi-fluid interactions [95,96] or fluid-structure 
interaction [97]. Another highly interesting application for this methodology in 
the computational graphics field is the possibility to predict the fluid’s move-
ment and final form [98,99].

4.3. Comparison between numerical methods

The objective of this section is to present a comparison between the previously 
described methods based on parameters that are important for simulating the 
spreading process.

Figure 10. Graphic representation of influence areas.
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First, the FDM is a very interesting method for studying simple aspects of flow, 
as shown in the examples presented previously in this paper. Besides that, the error 
of approximation can be minimized by reducing the size of the discretization to 
infinitesimal elements though increasing the time calculation and computational 
effort. While the FVM is an improvement on the previous method, the main 
characteristic is the subdivision of the domain into a finite number of control 
volumes. As with the FDM, the FVM does not generally presents instabilities or 
convergence problems for ensuring the law of conservation within each control 
volume. On the other hand, to ensure a good representation of the fluid move-
ment and minimum error, discretization must be very thin and the problem is the 
same as with the FDM.

The FEM is considered a boundary conditions method. Contrary to FVM, 
elements in the FEM are composed of many nodes (dependent on the element 
chosen) and the error can be reduced using a high-degree approximation. 
However, as presented in section 4 “Discretization and approximation meth-
ods”, the classical FEM used for structural applications is not adapted to fluid 
analysis and the method needs to be updated for approximation, space dis-
cretization, etc. Even if this update method is already capable of simulating 
incompressible flows and injections, the updates made in order to represent 
these behaviours increase the computation resources necessary.

In the end, the SPH can be a powerful resource for fluid simulations, especially 
for adhesive squeeze, once displacement is not coupled with mesh size. The 
advantage of this method lies in representing large deformations. This method’s 
application is still in its infancy, however, so many updates are still needed, for 
example, in the implementation of the behaviour laws for non-Newtonian fluids, 
and improvements on the methods used to represent the free surface.

After studying the main characteristics, advantages and limitations of these 
numerical methods, it is possible to compare these methods based on the 
maturity of the method in describing certain major parameters for the adhe-
sive squeeze. This comparison is presented in Table 5, where the parameters 
are separated into two categories: adhesives and substrates, and each para-
meter received a score between a one and three plus symbol. One represents 
low maturity, i.e. it needs several updates, and three means that the method is 
already well consolidated.

Table 5. Comparison of the maturity of numerical methods.
Capabilities FDM FVM FEM SPH

ADHESIVE Thickness +++ +++ +++ ++
Adhesive behaviour +++ +++ ++ ++
Final form +++ +++ ++ +
Initial distribution +++ +++ +++ +++

SUBSTRATE Deformability - - +++ +++
Curvature + - +++ +++
Slid +++ +++ ++ ++
Roughness + + +++ +++
Approach condition ++ ++ +++ +++
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One strategy that can be applied when a method is not able to simulate 
certain characteristics to couple two methods, for example, is the deformability 
of the substrate or roughness [100,101].

5. APPLICATION

As discussed in the previous sections, adhesive squeeze can follow various 
approaches depending on desired final results. In this specific case, the interest 
lies in studying feasibility to represent the adhesive as a smooth solid, i.e. 
representing the adhesive using a soft solid behaviour law with weak proper-
ties, with SPH. For this preliminary study of parameter influences, the output 
is the size and shape of the adhesive’s recovery area on the substrate, which will 
be compared with preliminaries experimental results.

5.1. Experimental testing

The experimental testing was carried out in the interest of observing the 
adhesive distribution during and after spreading imitating the bonding pro-
cess. Due to the difficulty of visualization, the tests were realized outside of 
standard tensile machines with a home develop weight system. 
A representation of the experimental setup is shown in Figure 11a. The 
spreading system is composed of a flat 150 × 100 mm2 aluminium fix plate 
(bottom) with a non-controlled surface roughness on which two 34 × 17 mm2 

Figure 11. Experimental set up for spreading tests (a); top view of adhesive distribution before (b) 
and after (c) testing.
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aluminium flanges of 1.2 mm thickness each are fixed symmetrically to ensure 
the final thickness of the bonded joint. The adhesive is deposited at the middle 
of the bottom plate upper face and its initial geometry is shaped like 
a parallelepiped (Figure 11b).The loading consists of two metallic blocks of 
250 g each placed at the extremities of a 150x30x20mm3 Plexiglas beam and 
submitted to gravity. The Plexiglas beam is covered by a transparent non- 
sticking film of 0.1 mm thickness (Figure 11c) to allow both the video record-
ing of the adhesive spreading during squeezing through it, and separation with 
the adhesive after curing (7 days at room temperature).

An Ultra High-Speed Camera Photron 5A5 is placed above the complete 
system and takes pictures at 125fps. It is possible then to measure the spread-
ing of the adhesive during bonding from top view (Figure 12), and to observe 
the qualitative 3D shape during and after the bonding process. If a squeeze out 
pudding with a cylindrical shape has been observed during bonding as can be 
found in the literature [54], the final shape of the adhesive at the Plexiglas 
boundary is a meniscus. This is due to the high deformability of the non-cured 
EC2216 which does not keep its round shape, immediately obtained during 
bonding because of its incompressibility. For comparison with numerical 
results, the two characteristic lengths were considered, Lx being the length 
along the length of the upper substrate and Ly the length in the direction of the 
width of the upper substrate (see Figure 12), along with the general shape 
including the corner format.

5.2. Numerical model using SPH

Fluid simulation is usually done using CFD codes, but as discussed in the 
previous sections, setting models is not easy. Fluid characterisation for deter-
mining behaviour law coefficients requires an extensive experimental 

Figure 12. Experimental parameters used as reference for sensitivity study.
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campaign. Among the principal tests, measuring viscosity is particularly 
problematic because it is directly dependent on fluid behaviour. In this con-
text, the objective is to simplify the numerical simulation of the adhesive 
squeeze and to obtain a model that takes a minimum of experimental tests 
and provides the final form of the adhesive. For that purpose we have decided 
to use a solid mechanics solver, LS-DYNA®, and model the adhesive using the 
Lagrangian Smooth Particle Hydrodynamics (SPH) method with stress-strain 
behaviour laws that allow taking in consideration both shear and bulk resis-
tances. The model is developed to reproduce the experimental set-up. To 
reduce the computational cost, the problem was considered symmetrical, 
and the model considers only a quarter of the structure (Figure 13). All 
components except the adhesive are modelled using non-deformable finite 
elements. The bottom plate is fixed in space as well as the flanges. The Plexiglas 
beam is allowed to move vertically. A penalty contact method without friction 
is chosen to manage the contact between the all components with the adhesive. 
The adhesive is modelled using 20,000 SPH particles with a uniform distance 
between particle of 0.3 mm.

The adhesive was described as a smooth solid represented by Johnson-Cook 
behaviour law (Eq. (7)) [102] coupled with Murnaghan equation of state (Eq. 
(8)) [102]. 

σy ¼ Aþ B�εpn� �
1þ c ln _ε�ð Þ 1 �

T � Troom

Tmelt � Troom

� �m� �

(7) 

p ¼ k0
ρ
ρ0

� �γ

� 1
� �

(8) 

In Eq. (7), A, B, c, n, and m are input constants to be determined, �εp is the 
effective plastic strain, _ε� is the normalized effective plastic strain rate and 
Troom and Tmeltrepresent the room and melt temperature, respectively, while in 
Eq. (8), k0 and γ are input constants to be determined, and ρ is the adhesive 
density.

Figure 13. Schematisation of the numerical model.
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The Johnson-Cook law can be used to separate the evolution of the 
yield stress as a function of three behaviours, plastic hardening, the effect 
of strain rate and the temperature effect. As these effects are uncoupled, 
their combination provides the adhesive representation. First, the tem-
perature effect is also studied, but its impact is less important than the 
other two behaviours in the final adhesive form, considering the melt 
temperature as high enough not to melt the material during the process. 
The Murnaghan equation of state is a relationship between the volume of 
a body and the pressure to which it is subjected, considering an incom-
pressible behaviour. So after disregarding the temperature effect, the 
elastic-plastic behaviour and the effect of the strain rate remain to be 
studied. The next section focuses on a sensitivity analysis of the para-
meters related to these behaviours.

5.3. Sensitivity analysis

The sensitivity analysis consists here in varying each parameter of the 
Johnson-Cook behaviour law and of the Murnaghan equation of state 
(EOS), considering a reference case. The reference values presented in Table 
6 were chosen as the mean values of data extracted from a preliminary 
bibliographic analysis. The bibliographic analysis was also used to define the 
variation range for each parameter or property. The following sections present 
the results of the variation study.

5.3.1. Influence of compressibility
It can be concluded that the equation of state has considerable influence on 
both lengths of reference (Lx and Ly). As shown in Figure 14 and Figure 15, 
both parameters have similar influence. The variation of these parameters 
changes the lengths in x and y, but the modification in the corner is the only 
result of these changes, with no direct modification related to these para-
meters. Another interesting aspect is the evolution of the reference values with 
the parameters of the EOS. In both cases, the lengths present a maximum value 
that then starts to decrease. Moreover, small values in both cases can induce 
numerical instabilities. This error is related to the maximum pressure sup-
ported by the SPH elements.

Table 6. Reference parameters for the sensitivity analysis.
Parameters γ k0 A MPa½ � B MPa½ � n c

Reference value 5.6 15,100 0.0001 695 0.35 0.05
Variation range Min 2 5000 0.0001 0.0001 0.1 0.01

Max 10 30,000 10,000 10,000 1 0.2
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5.3.2. Influence of plastic hardening
The A and B parameters are related to elastic-plastic behaviour, in particular 
to plastic hardening. The influence of the value of A parameter is shown in 
Figure 16. As for the γ parameter of the EOS, the relation between the 
lengths and A is not linear. But contrary to the γ parameter, small values 
of A stabilize the adhesive’s extension in the longitudinal direction. Indeed, 
for large A values, plasticity arises later, and at the end of the simulation, 
elastic strains are relaxed leading to lower precision in the final geometry. 
For B the situation changes (see Figure 17). As B increases, the length in “y” 
decreases and the length in “x” increases, both slightly. This shows a lower 
influence of B on the final adhesive distribution. Besides that, B influences 
the corner shape and final form global contour.

5.3.3. Influence of the strain rate
The last two parameters, n (see Figure 18) and c (see Figure 19), are related to 
the strain rate influence. Compared with the previously-studied parameters, 
these two parameters show less influence. In short, the variations in the two 
parameters represent a linear variation for both lengths, the same behaviour as 

Figure 14. Sensitivity of the parameter k0 (contour of the final form on left and evolution of the 
lengths of reference on right) .[103].

Figure 15. Sensitivity of the parameter Classification of fluids in rheology behaviours (contour of 
the final form on left and evolution of the lengths of reference on right) .[103].
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observed for B variation but exhibiting an opposite effect. The difference is 
that these parameters do not change the slope of the outline curves and 
consequently do not change the corner format.

5.3.4. Self-stabilization of the squeeze process
The sensitivity analyses presented show that the SPH can be used to represent 
adhesive compression and final distribution, but it is important to set the 
parameters based on the characteristics of the adhesive. Another important 

Figure 16. Sensitivity of the parameter A (contour of the final form on left and evolution of the 
lengths of reference on right) .[103].

Figure 17. Sensitivity of the parameter B (contour of the final form on left and evolution of the 
lengths of reference on right) .[103].

Figure 18. Sensitivity of the parameter n (contour of the final form on left and evolution of the 
lengths of reference on right) .[103].
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aspect is the capability to naturally stop the deformation suffered by the 
adhesive due to the pressure applied. This phenomenon was proven to be 
well simulated by observing the energy evolution during the berthing process. 
As shown in Figure 20, after the contact between the adhesive and the moving 
substrate, energy begins to decrease to zero, the point at which the deforma-
tion naturally stops.

6. CONCLUSION

The idea of representing an adhesive using a solid behaviour law in 
a Lagrangian frame to simulate spreading during bonding can, at first glance, 
appear to be unconventional regarding the literature. This hypothesis is never-
theless a good approximation for quick and precise modelling as shown in this 
paper. The proposed numerical model using the Johnson-Cook behaviour law 
with the Murnaghan equation of state presents highly satisfactory results in 
predicting the final shape and covering area after stabilization of the bonding 
process using Lagrangian codes and SPH space discretization. The proposed 

Figure 19. Sensitivity of the parameter c (contour of the final form on left and evolution of the 
lengths of reference on right) .[103].

Figure 20. Total energy in the system during the bonding process.
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model is then an alternative solution to simulate the 3D distribution of the 
adhesive in the frame of generalized continuous solid mechanics. To improve 
the results, for instance for compressive resistance during bonding, 
a sensitivity analysis is necessary and could be used to optimize the mechanical 
properties of the adhesive based on experimental tests and for substrates of 
different materials or shapes (honeycomb for example). Furthermore, the 
model needs to be improved to predict the stress distribution during the 
bonding process and the residual stress or resistance force, in particular if it 
is intended to predict the formation of squeeze-out pudding or squeeze-out 
meniscus for industrial application.
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