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 to show that bifurcating domain walls lie on an 8-dimensional invariant submanifold of the center manifold. Consequently, the heteroclinic connections were found as solutions of an 8-dimensional, instead of a 12-dimensional, dynamical system.
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Introduction

The classical Bénard-Rayleigh convection problem is concerned with the flow of a viscous fluid filling the region between two horizontal planes and heated from below. We consider the Boussinesq approximation in which the dependency of the fluid density ρ on the temperature T is given by the relationship

ρ = ρ 0 (1 -γ(T -T 0 )) ,
where γ is the (constant) volume expansion coefficient, T 0 and ρ 0 are the temperature and the density, respectively, at the lower plane. In Cartesian coordinates (x, y, z) ∈ R 3 , the fluid occupies the domain R 2 ×(0, d) between the lower horizontal plane z = 0 and the upper horizontal plane z = d. The mathematical problem consists in solving the Navier-Stokes equations coupled with an equation for energy conservation, for the particle velocity V = (V x , V y , V z ), the pressure p, and the deviation of the temperature from the conduction profile θ. In dimensionless variables, the system reads

∂ t V = R -1/2 ∆V + θe z -P -1 (V • ∇)V -∇p, (1.1) 
0 = ∇ • V , (1.2) 
∂ t θ = R -1/2 ∆θ + V z -(V • ∇)θ, (1.3) 
in which e z = (0, 0, 1) is the unit vertical vector. The dimensionless constants R and P are the Rayleigh and the Prandtl numbers, respectively, defined as

R = γgd 3 (T 0 -T 1 ) νκ , P = ν κ ,
where ν is the kinematic viscosity, κ the thermal diffusivity, g the gravitational constant, and T 1 the temperature at the upper plane.

The equations (1.1)-(1.3) are completed by boundary conditions. Each of the two horizontal planar boundaries may be a rigid plane or a free boundary, hence leading to different possible types of boundary conditions: "rigid-rigid", "free-free" , "rigid-free", or "free-rigid". We consider here the case of a "rigid" boundary at z = 0 and a "free" boundary at z = 1,

V x | z=0 = V y | z=0 = 0, ∂ z V x | z=1 = ∂ z V y | z=1 = 0, V z | z=0,1 = θ| z=0,1 = 0.
(1.4)

Together with these boundary conditions, the equations (1.1)-(1.3) are invariant under horizontal translations, rotations, and reflections in both x and y. While in the cases of "rigid-rigid" and "free-free" boundary conditions the system is also invariant under the vertical reflection z → 1 -z, this reflection changes the "rigid-free" boundary conditions above into "free-rigid" boundary conditions, with a "free" boundary at z = 0 and a "rigid" boundary at z = 1.

In the hydrodynamic problem, there is a critical value R c of the Rayleigh number, below which the simple "conduction regime" is stable, the fluid is at rest and the temperature depends linearly on the vertical coordinate. Above this critical value, the "conduction regime" looses its stability and a "convective regime" appears. Steady patterns bifurcating in this "convective regime" have been extensively studied over the years. Mathematically, they are found as steady solutions of the Navier-Stokes-Boussinesq system (1.1)- (1.3). Already in the forties, Pellew and Southwell [START_REF] Pellew | On maintained convection motion in a fluid heated from below[END_REF] computed the numerical value of R c in the three cases of "rigid-rigid", "free-free", and "rigid-free" boundary conditions. The first existence results for regular patterns, such as rolls, hexagons, or squares, appeared in the sixties in the works by Yudovich et al [START_REF] Ukhovskii | On the equations of steady state convection[END_REF][START_REF] Yudovich | On the origin of convection[END_REF][START_REF] Yudovich | Free convection and bifurcation[END_REF][START_REF] Yudovich | Stability of convection flows[END_REF], Rabinowitz [START_REF] Rabinowitz | Existence and nonuniqueness of rectangular solutions of the Bénard problem[END_REF], Görtler et al [START_REF] Görtler | Branching solutions of the Bénard problem. Problems of hydrodynamics and continuum mechanics[END_REF]. We refer to [START_REF] Koschmieder | Bénard cells and Taylor vortices[END_REF] for further references on these types of patterns, and also to the recent work [START_REF] Braaksma | Existence of bifurcating quasipatterns in steady Bénard-Rayleigh convection[END_REF] on quasipatterns. Besides regular convection patterns, different types of defects are regularly observed in experiments [START_REF] Bodenschatz | Recent development in Rayleigh-Bénard convection[END_REF][START_REF] Manneville | Rayleigh-Bénard convection, thirty years of experimental, theoretical, and modeling work. In "Dynamics of Spatio-Temporal Cellular Structures. Henri Bénard Cen[END_REF]. Domain walls, or grain boundaries, are line defects which may occur between rolls with different orientations (see Figure 1.1), and are steady solutions of the system (1.1)-(1.3). In our previous work [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF], we showed that symmetric domain walls bifurcate for the Navier-Stokes-Boussinesq system (1.1)-(1.3) with either "rigid-rigid" or "free-free" boundary conditions for Rayleigh numbers R > R c close to the critical value R c . These domain walls are solutions of the steady system which are periodic in y, symmetric in x and their limits as x → ∓∞ are rolls rotated by opposite angles ±α with α ∈ (0, π/3). Here, we prove that a similar result holds in the case of "rigid-free" boundary conditions. We point out that larger angles α ∈ [π/3, π/2) have been treated in the simpler case of the Swift-Hohenberg equation in [START_REF] Scheel | Small-amplitude grain boundaries of arbitrary angle in the Swift-Hohenberg equation[END_REF] (see also [START_REF] Lloyd | Continuation and Bifurcation of Grain Boundaries in the Swift-Hohenberg Equation[END_REF]).

For the analysis of the bifurcation problem we use the spatial dynamics approach developed for the Swift-Hohenberg equation in [START_REF] Haragus | Grain boundaries in the Swift-Hohenberg equation[END_REF] and adapted to the Navier-Stokes-Boussinesq system (1.1)-(1.3) in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF]. The steady system (1.1)-(1.3) is written as a dynamical system in which the evolutionary variable is the spatial variable x and a center manifold theorem is used to reduce this infinite dimensional dynamical system to a 12-dimensional system. The reduction holds for Rayleigh numbers R close to the critical value R c and any fixed Prandtl number P and rotation angle α ∈ (0, π/3). Domain walls are constructed as heteroclinic solutions of this 12dimensional system which connect suitably chosen periodic orbits. In [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF], the vertical reflection symmetry has been used to further reduce this system to an 8-dimensional system. The loss of this symmetry in the case of "rigid-free" boundary conditions does not allow for this second reduction of dimension, here we have to analyze the full 12-dimensional system.

The first step in the construction of the heteroclinic connection for the reduced system consists in a normal form transformation. We prove a normal form theorem which is valid for general reversible and O(2)-equivariant 12-dimensional vector fields under a certain nonresonance condition. For our reduced system these symmetries are obtained from the invariance of the Navier-Stokes-Boussinesq system under reflections in the horizontal variables x and y and under translations in y, and the non-resonance condition is satisfied for angles α = π/6. Next, similarly to [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF], we scale variables in the normal form and identify a leading order system for which we construct a heteroclinic connection. Finally, using the implicit function theorem we prove the persistence of this leading order heteroclinic connection for the full 12-dimensional system. We obtain a heteroclinic solution connecting two periodic solutions of the 12-dimensional system. The two periodic solutions correspond to the same roll of the Navier-Stokes-Boussinesq system but rotated by opposite angles ±α and the heteroclinic connection corresponds to a symmetric domain wall. The result holds under suitable conditions on two quotients g 1 and g 3 involving four coefficients of the normal form. While the conditions on the quotient g 3 are the same as the ones used in the persistence proof in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF], the conditions on the quotient g 1 are specific to the present case of "rigid-free" boundary conditions. Both g 1 and g 3 depend on the rotation angle α and the Prandtl number P through complicated analytical formulas. The validity of the required conditions is checked symbolically (Maple computations; see Figure 4.1). Our main result is summarized in the following theorem.

Theorem 1. Consider the Navier-Stokes-Boussinesq system (1.1)-(1.3) with "rigid-free" boundary conditions (1.4). Denote by R c the critical Rayleigh number at which convective rolls with wavenumbers k c bifurcate from the conduction state. Then for any angle α ∈ (0, π/3), α = π/6, there exists P * (α) 0 such that, up to a finite set, for any Prandtl number P > P * (α), a symmetric domain wall bifurcates for Rayleigh numbers R = R c + , with > 0 sufficiently small. The domain wall connects two rotated rolls which are the rotations by opposite angles ±(α + O( )) of a roll with wavenumber k c + O( ), continuously linked to the amplitude which is of order O( 1/2 ).

In contrast to the cases of "rigid-rigid" and "free-free" boundary conditions in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF], here we exclude the angle α = π/6, because of the non-resonance condition in the normal form theorem, and for each angle α ∈ (0, π/3), α = π/6, we exclude a finite number of values of the Prandtl number P, at most, because of the presence of the additional four dimensions in the reduced system.

The analysis being similar to the one in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF], we focus in our presentation on the main differences, namely, the normal form analysis and the persistence proof. In Section 2 we recall the first steps of the approach which up to some computations are the same as in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF]. We give the formulation of the steady Navier-Stokes-Boussinesq system as a dynamical system in Section 2.1, briefly discuss the existence of rolls and rotated rolls in Section 2.2, and obtain the 12-dimensional reduced system in Section 2.3. In Section 3 we prove the general normal forms result for reversible and O(2)-equivariant 12-dimensional vector fields. The proof of Theorem 1 is completed in Section 4. In Section 4.1 we recall the connection between rotated rolls and periodic solutions of the normal form system. The leading order system is found in Section 4.2 and we construct the heteroclinic connection in Section 4.3. Finally, in Appendix A we compute the coefficients of the normal form and the quotients g 1 and g 3 .

Spatial dynamics approach

Following [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF], we start in Section 2.1 by formulating the steady system (1.1)-(1.3) as a dynamical system. In Section 2.2 we recall the existence of rolls and rotated rolls, and in Section 2.3 we obtain the 12-dimensional reduced system by using the center manifold theorem. All these steps being similar to the ones in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF], we only recall the results and refer to [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF] for further details.

As in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF], we replace the Rayleigh number R in the system (1.1)-(1.3) by its square root

µ = R 1/2 ,
and denote by k y the wavenumber in y of the solutions.

Formulation as a dynamical system

We introduce the new variables

W = µ -1 ∂ x V -pe x , φ = ∂ x θ,
and set

V ⊥ = (V y , V z ), W ⊥ = (W y , W z ), U = (V x , V ⊥ , W x , W ⊥ , θ, φ).
Then the steady system (1.1)-(1.3) is equivalent to the system

∂ x U = L µ U + B µ (U , U ), (2.1) 
in which the operators L µ and B µ are linear and quadratic, respectively, defined by

L µ U =            -∇ ⊥ • V ⊥ µW ⊥ -µ -1 ∆ ⊥ V x -µ -1 ∆ ⊥ V ⊥ -θe z -µ -1 ∇ ⊥ (∇ ⊥ • V ⊥ ) -∇ ⊥ W x φ -∆ ⊥ θ -µV z            , B µ (U, U ) =           0 0 P -1 (V ⊥ • ∇ ⊥ )V x -V x (∇ ⊥ • V ⊥ ) P -1 (V ⊥ • ∇ ⊥ )V ⊥ + µV x W ⊥ 0 µ (V ⊥ • ∇ ⊥ )θ + V x φ           .
The choice of the phase space takes into account the boundary conditions (1.4), the periodicity in y of solutions, and the property that the flux F(x) = Ωper V x dy dz, Ω per = (0, 2π/k y ) × (0, 1), is constant. Fixing the constant flux to 0 we take the phase space

X = U ∈ (H 1 per (Ω)) 3 × (L 2 per (Ω)) 3 × H 1 per (Ω) × L 2 per (Ω) ; V z = θ = 0 on z = 0, 1, V x = V y = 0 on z = 0, and Ωper V x dy dz = 0 ,
where Ω = R × (0, 1) and the subscript per means that the functions are 2π/k y -periodic in y.

The remaining boundary conditions are included in the domain of definition of L µ ,

Z = U ∈ X ∩ (H 2 per (Ω)) 3 × (H 1 per (Ω)) 3 × H 2 per (Ω) × H 1 per (Ω) ; W z = φ = 0 on z = 0, 1, ∇ ⊥ • V ⊥ = W y = 0 on z = 0, and ∂ z V x = ∂ z V y = 0 on z = 1 .
The phase space X is a closed subspace of the Hilbert space

X = (H 1 per (Ω)) 3 × (L 2 per (Ω)) 3 × H 1 per (Ω) × L 2 per (Ω),
so that it is a Hilbert space endowed with the usual scalar product of X and with the choice above, the linear operator L µ is closed in X with dense and compactly embedded domain Z. The latter property implies that L µ has purely point spectrum consisting of isolated eigenvalues with finite algebraic multiplicities.

The dynamical system (2.1) is reversible and O(2)-equivariant. The reflection x → -x gives the reversibility symmetry

S 1 U (y, z) = (-V x , V ⊥ , W x , -W ⊥ , θ, -φ)(y, z), U ∈ X ,
which anti-commutes with L µ and B µ , the reflection y → -y gives the symmetry

S 2 U (y, z) = (V x , -V y , V z , W x , -W y , W z , θ, φ)(-y, z), U ∈ X ,
which commutes with L µ and B µ , and the horizontal translations y → y + a/k y along the y direction give a one-parameter family of linear maps (τ a ) a∈ R/2πZ , τ a U (y, z) = U (y + a/k y , z), U ∈ X , which commute with L µ and B µ and satisfy

τ a S 2 = S 2 τ -a , τ 0 = τ 2π = I.
In addition, the pressure p in the system (1.1)-(1.4) being only defined up to a constant, the dynamical system is invariant upon adding any constant to the new variable W x , i.e., it is invariant under the action of the one-parameter family of maps (T b ) b∈R defined by

T b U = U + bϕ 0 , ϕ 0 = (0, 0, 0, 1, 0, 0, 0, 0) t , U ∈ X .
(2.2)

Rolls, rotated rolls and domain walls

The existence of convection rolls for the steady system (1.1)-(1.3) with any combination of "rigid"/"free" boundary conditions is well-known (e.g., see [5, Section 2.2]). We consider here rolls which are constant in x and periodic in y with wavenumber k (see Figure 1.1a). According to classical theory, convection rolls bifurcate supercritically at the instability threshold µ = µ c of the conduction state, for wavenumbers k close to a critical value k c and µ > µ 0 (k) such that µ 0 (k c ) = µ c . The value µ 0 (k) is the smallest value µ for which the boundary value problem

(D 2 -k 2 ) 2 V = µk 2 θ, V = DV = 0 in z = 0, V = D 2 V = 0 in z = 1, (2.3) 
(D 2 -k 2 )θ = -µV, θ = 0 in z = 0, 1, (2.4) 
where D = d/dz denotes the derivative with respect to z, possesses nontrivial real-valued so-

lutions (V, θ) = (V k (z), θ k (z)). The map k → µ 0 (k) is analytical in k and has a strict global minimum at k = k c . 1
These solutions being independent of x, they are equilibria of the dynamical system (2.1). For any k y = k > 0 fixed close enough to k c , we obtain a circle of equilibria τ a (U * k,µ ), for a ∈ R/2πZ, which bifurcate for µ > µ 0 (k) sufficiently close to µ 0 (k), belong to Z, and satisfy

S 1 U * k,µ = S 2 U * k,µ = U * k,µ .
Furthermore, we have the expansions (see [5, Sections 2.2 and 4.1])

U * k,µ (y, z) = δe ikyy U k (z) + δe -ikyy U k (z) + O(δ 2 ), µ = µ 0 (k) + µ 2 δ 2 + O(δ 3 ), (2.5) 
in which δ > 0 is sufficiently small, µ 2 > 0, and

U k (z) = 0, i k DV k (z), V k (z), -p k (z), 0, 0, θ k (z), 0 T ,
where (V k , θ k ) is a solution of the boundary value problem (2.3)-(2.4) for µ = µ 0 (k) and the pressure p k is determined up to a constant from the stationary part of the equation (1.1).

The system (1.1)-(1.4) is invariant under horizontal rotations acting through

R α (V x , V y , V z , θ)(x, y, z) = (R α (V x , V y ), V z , θ)(R -α (x, y), z), (2.6) 
where R α (x, y) = (x cos α -y sin α, x sin α + y cos α), and α ∈ R/2πZ is the rotation angle, and this rotation invariance is inherited by the dynamical system (2.1). 2 Consequently, the rotated rolls R α U * k,µ are solutions of both systems. As solutions of the dynamical system (2.1), they are 2π/k sin α-periodic solutions in x which belong to the phase space X for k y = k cos α. For the particular angles α ∈ {0, π} the rotated rolls are 1 Pellew and Southwell [START_REF] Pellew | On maintained convection motion in a fluid heated from below[END_REF] computed the numerical values of kc and µc = µ0(kc) and found in the case of "rigid-free" boundary conditions that kc ≈ 2.682 and µc ≈ 33.176. 2 We do not need here the more complicated representation formula for the 8-components vector U in (2.1).

equilibria in the phase-space X with k y = k, whereas for α ∈ {π/2, 3π/2} they are 2π/k-periodic solutions in x, for any k y > 0. Notice that rolls rotated by angles α and π + α coincide,

R α U * k,µ = R π+α U * k,µ ,
and that the actions of S 1 and S 2 on a roll rotated by an angle α / ∈ {0, π} gives the same roll but rotated by the opposite angle,

S 1 (R α U * k,µ (x)) = R -α U * k,µ (-x), S 2 R α U * k,µ = R -α U * k,µ . (2.7) 
In particular, rotated rolls keep a reversibility symmetry,

S 1 S 2 (R α U * k,µ (x)) = R α U * k,µ (-x). (2.8)
Heteroclinic solutions of the dynamical system (2.1) connecting two rolls rotated by different angles are domain walls. We construct our symmetric domain walls as S 1 -reversible heteroclinic solutions of the dynamical system (2.1) which connect the rotated rolls R α U * k,µ at x = -∞ and R -α U * k,µ at x = ∞, for rotation angles α ∈ (0, π/3).

Reduced bifurcation problem

Following the bifurcation analysis in [5, Section 4], we consider the dynamical system (2.1) in the phase X with

k y = k c cos α, α ∈ (0, π/3),
fix the Prandtl number P and take µ = µ c + ε close to µ c as bifurcation parameter. We apply a center manifold theorem to construct a 12-dimensional invariant manifold which contains the small bounded solutions of the dynamical system (2.1). We write the dynamical system (2.1) in the form

∂ x U = L µc U + R( U , ε), (2.9) 
where

R(U , ε) = (L µ -L µc )U + B µ (U , U ) is a smooth map from Z × I c , I c = (-µ c , ∞), into X , and
R(0, ε) = 0, D U R(0, 0) = 0.
The hypotheses of the center manifold theorem are checked in the same way as in [5, Section 5.1]. The only differences are the explicit formulas of the eigenvectors and generalized eigenvectors which are slightly changed because the boundary conditions are different, and the absence of a symmetry due to the loss of the vertical reflection symmetry z → 1 -z for the "rigid-free" boundary conditions. As shown in [5, Lemma 4.2], the center spectrum σ c (L µc ) of the linear operator L µc consists of five eigenvalues,

σ c (L µc ) = {0, ±ik c , ±ik x }, k x = k c sin α, (2.10) 
with the following properties.

(i) The eigenvalue 0 is simple with associated eigenvector ϕ 0 given by (2.2), which is invariant under the actions of S 1 , S 2 , and τ a .

(ii) The complex conjugated eigenvalues ±ik c are algebraically double and geometrically simple with associated generalized eigenvectors of the form

ζ 0 (y, z) = U 0 (z), Ψ 0 (y, z) = Ψ 0 (z),
for the eigenvalue ik c , and the complex conjugated vectors for the eigenvalue

-ik c , such that (L µc -ik c )ζ 0 = 0, (L µc -ik c )Ψ 0 = ζ 0 ,
and

S 1 ζ 0 = ζ 0 , S 2 ζ 0 = ζ 0 , τ a ζ 0 = ζ 0 , S 1 Ψ 0 = -Ψ 0 , S 2 Ψ 0 = Ψ 0 , τ a Ψ 0 = Ψ 0 .
(iii) The complex conjugated eigenvalues ±ik x are algebraically quadruple and geometrically double with associated generalized eigenvectors of the form

ζ ± (y, z) = e ±ikyy U ± (z), Ψ ± (y, z) = e ±ikyy Ψ ± (z),
for the eigenvalue ik x , and the complex conjugated vectors for the eigenvalue

-ik x , such that (L µc -ik x )ζ ± = 0, (L µc -ik x )Ψ ± = ζ ± , and 
S 1 ζ + = ζ -, S 2 ζ + = ζ -, τ a ζ + = e ia ζ + , S 1 ζ -= ζ + , S 2 ζ -= ζ + , τ a ζ -= e -ia ζ -, S 1 Ψ + = -Ψ -, S 2 Ψ + = Ψ -, τ a Ψ + = e ia Ψ + , S 1 Ψ -= -Ψ + , S 2 Ψ -= Ψ + , τ a Ψ -= e -ia Ψ -.
The explicit formulas of the eigenvectors ζ 0 and ζ ± needed for our computations are given in Appendix A.

As a consequence of the center manifold theorem, the small bounded solutions of the dynamical system (2.9), and in particular the heteroclinic solutions, belong to a center manifold

M c (ε) = {U c + Φ(U c , ε) ; U c ∈ X c }, (2.11) 
where X c is the spectral subspace associated with the center spectrum (2.10) of L µc and Φ ∈ C k (X c × I c , Z h ), for any arbitrary, but fixed, k 4, with Z h = (I -P c )Z and P c the spectral projection onto X c . The invariant dynamics on the center manifold is determined by the reduced system

dU c dx = L µc Xc U c + P c R(U c + Φ(U c , ε), ε) def = f (U c , ε), (2.12) 
where

f (0, ε) = 0, D Uc f (0, 0) = L µc Xc ,
and this reduced system inherits the symmetries of (2.9), i.e., the reduced vector field f (•, ε) anti-commutes with S 1 , commutes with S 2 and τ a , and is invariant under the action of T b . Writing

U c = wϕ 0 + A 0 ζ 0 + B 0 Ψ 0 + A + ζ + + B + Ψ + + A -ζ -+ B -Ψ - (2.13) + A 0 ζ 0 + B 0 Ψ 0 + A + ζ + + B + Ψ + + A -ζ -+ B -Ψ -,
with w ∈ R and X = (A 0 , B 0 , A + , B + , A -, B -) ∈ C 6 , the reduced system (2.12) leads to the system

dw dx = h(w, X, X, ε), (2.14 
)

dX dx = F (w, X, X, ε), (2.15) 
together with the complex conjugated equation of (2.15) for X, in which h is real-valued and F = (f 0 , g 0 , f + , g + , f -, g -) has six complex-valued components. The invariance of the reduced system under the action of T b ,

T b (w, A 0 , B 0 , A + , B + , A -, B -) = (w + b, A 0 , B 0 , A + , B + , A -, B -),
implies that the reduced vector field (h, F ) does not depend on w, so that we can first solve (2.15) for X, and then determine w by integrating (2.14). Consequently, we can restrict to solving the equation dX dx = F (X, X, ε), (2.16)

which together with the complex conjugate equation for X form a 12-dimensional system. Notice that the symmetries of the reduced system act on these variables through

S 1 (A 0 , B 0 , A + , B + , A -, B -) = (A 0 , -B 0 , A -, -B -, A + , -B + ), (2.17) 
S 2 (A 0 , B 0 , A + , B + , A -, B -) = (A 0 , B 0 , A -, B -, A + , B + ), (2.18) τ a (A 0 , B 0 , A + , B + , A -, B -) = (A 0 , B 0 , e ia A + , e ia B + , e -ia A -, e -ia B -). ( 2 

.19)

3 A cubic normal form for 12-dimensional vector fields

In this section we prove a normal form theorem for reversible and O(2)-equivariant 12-dimensional vector fields having the same linear part and symmetries as the one in (2.16).

Theorem 2. Consider a system of ordinary differential equations

dX dx = G(X, X, ε), (3.1) 
in which X = (A 0 , B 0 , A + , B + , A -, B -) ∈ C 6 and the vector field G is of class C k , for some k 4, in a neighborhood

U 1 × U 1 × U 2 ⊂ C 6 × C 6 × R of the origin. Assume that G(0, 0, ε) = 0, D X G(0, 0, 0) = L 0 , D X G(0, 0, 0) = 0,
where L 0 is a Jordan matrix acting on X through

L 0 =    B 1 0 0 0 B 2 0 0 0 B 2    , B 1 = ik c 1 0 ik c , B 2 = ik x 1 0 ik x , with 1 < k c /k x = 2
, and that G(•, •, ε) anti-commutes with S 1 given by (2.17) and commutes with S 2 and τ a given by (2.18) and (2.19), respectively. There exist neighborhoods V 1 and V 2 of 0 in C 6 and R, respectively, such that for any ε ∈ V 2 , there is a polynomial P (•, •, ε) :

C 6 × C 6 → C 6 of degree 3 in the variables (Z, Z), such that for Z ∈ V 1 , the change of variable X = Z + P (Z, Z, ε),
transforms the equation (3.1) into the normal form

dZ dx = L 0 Z + N (Z, Z, ε) + ρ(Z, Z, ε), (3.2) 
with the following properties:

(i) the map ρ belongs to C k (V 1 × V 1 × V 2 , C 6 ), and 
ρ(Z, Z, ε) = O(|ε| 2 Z + ε Z 3 + Z 4 );
(ii) both N (•, •, ε) and ρ(•, •, ε) anti-commute with S 1 and commute with S 2 and τ a , for any ε ∈ V 2 ;

(iii) the six components (N 0 , M 0 , N + , M + , N -, M -) of N are of the form

N 0 = iA 0 P 0 + α 5 (A + u 7 + A -u 8 ), M 0 = iB 0 P 0 + A 0 Q 0 + α 5 (B + u 7 + B -u 8 ) + ia 5 (A + u 7 + A -u 8 ), N + = iA + P + + β 7 A 0 u 7 + β 8 A -u 9 , M + = iB + P + + A + Q + + β 7 B 0 u 7 + ib 7 A 0 u 7 + β 8 B -u 9 + ib 8 A -u 9 , N -= iA -P -+ β 7 A 0 u 8 -β 8 A + u 9 , M -= iB -P -+ A -Q -+ β 7 B 0 u 8 + ib 7 A 0 u 8 -β 8 B + u 9 -ib 8 A + u 9 , with P 0 = α 0 ε + α 1 u 1 + α 2 u 2 + α 3 (u 3 + u 5 ) + α 4 (u 4 + u 6 ), Q 0 = a 0 ε + a 1 u 1 + a 2 u 2 + a 3 (u 3 + u 5 ) + a 4 (u 4 + u 6 ), P + = β 0 ε + β 1 u 1 + β 2 u 2 + β 3 u 3 + β 4 u 4 + β 5 u 5 + β 6 u 6 , Q + = b 0 ε + b 1 u 1 + b 2 u 2 + b 3 u 3 + b 4 u 4 + b 5 u 5 + b 6 u 6 , P -= β 0 ε + β 1 u 1 + β 2 u 2 + β 5 u 3 + β 6 u 4 + β 3 u 5 + β 4 u 6 , Q -= b 0 ε + b 1 u 1 + b 2 u 2 + b 5 u 3 + b 6 u 4 + b 3 u 5 + b 4 u 6 ,
where (A 0 , B 0 , A + , B + , A -, B -) are the six components of Z, the coefficients α j , a j , β j , b j are all real, and

u 1 = A 0 A 0 , u 2 = i(A 0 B 0 -A 0 B 0 ), u 3 = A + A + , u 4 = i(A + B + -A + B + ), u 5 = A -A -, u 6 = i(A -B --A -B -), u 7 = (A 0 B + -A + B 0 ), u 8 = (A 0 B --A -B 0 ), u 9 = (A + B --A -B + ).
Proof. From general normal form theorems (e.g., see [4, Sections 3.2.1, 3.3.1, and 3.3.2]), we obtain the existence of two polynomials P (•, •, ε) and N (•, •, ε) of degree 3 in the variables (Z, Z) such that the properties (i) and (ii) hold, the polynomial N is of the form

N (Z, Z, ε) = N 1 (Z, Z)ε + N 2 (Z, Z) + N 2 (Z, Z)ε + N 3 (Z, Z), (3.3) 
with N p and N p homogeneous polynomials of degree p in (Z, Z), and satisfies the identity

D Z N (Z, Z, ε)L * 0 Z + D Z N (Z, Z, ε)L * 0 Z = L * 0 N (Z, Z, ε), ∀ (Z, ε) ∈ C 6 × V 2 , (3.4) 
in which L * 0 is the adjoint of L 0 . Due to the equivariance of the normal form under the action of the symmetry S 2 , it is enough to determine the first four components (N 0 , M 0 , N + , M + ) of N , the result for (N -, M -) being obtained by exchanging the indices + and -in the expressions of (N + , M + ).

Monomials in N 0 are M 0 are of the form

A p 0 0 A 0 q 0 B r 0 0 B 0 s 0 A p + + A + q + B r + + B + s + A p - -A - q -B r - -B - s -, (3.5) 
with nonnegative exponents such that

p 0 + q 0 + r 0 + s 0 + p + + q + + r + + s + + p -+ q -+ r -+ s -= m, m ∈ {1, 2, 3}. (3.6)
From the commutativity of N and τ a , we obtain that their exponents also satisfy the equality

(p + -q + + r + -s + ) -(p --q -+ r --s -) = 0, (3.7) 
and we claim that we also have the equalities

p 0 -q 0 + r 0 -s 0 = 1, (p + -q + + r + -s + ) + (p --q -+ r --s -) = 0, (3.8) 
when k c /k x = 2. Indeed, the identity (3.4) implies that N 0 and M 0 satisfy the equalities

(D * + ik c )N 0 = 0, (D * + ik c )M 0 = N 0 ,
in which

D * = -ik c A 0 ∂ ∂A 0 + (A 0 -ik c B 0 ) ∂ ∂B 0 + ik c A 0 ∂ ∂A 0 + (A 0 + ik c B 0 ) ∂ ∂B 0 -ik x A + ∂ ∂A + + (A + -ik x B + ) ∂ ∂B + + ik x A + ∂ ∂A + + (A + + ik x B + ) ∂ ∂B + -ik x A - ∂ ∂A - + (A --ik x B -) ∂ ∂B - + ik x A - ∂ ∂A - + (A -+ ik x B -) ∂ ∂B - ,
is a linear map which preserves the degree of homogeneous polynomials. For a fixed degree m, taking a basis of monomials ordered by decreasing exponents p 0 , q 0 , r 0 , s 0 , p + , q + , r + , s + , p -, q -, r -, and s -, the action of D * is represented by a lower triangular matrix with equal elements on the diagonal given by

-ik c (p 0 -q 0 + r 0 -s 0 ) -ik x (p + -q + + r + -s + ) -ik x (p --q -+ r --s -) .
Consequently, the polynomials N 0 and M 0 , which belong to the kernel and generalized kernel of D * + ik c , respectively, belong to the subspace spanned by monomials for which the quantity above is equal to -ik c . Taking into account that k c /k x > 1 and the properties (3.6)-(3.7), we conclude that (3.8) holds when k c /k x = 2. This proves the claim. Next, taking m = 1 in (3.6) and using (3.6)-(3.8) it is straightforward to check that the first two components of N 1 in (3.3) have the form given in (iii). For even integers m, and in particular for m = 2, from the equalities (3.6) and (3.7) we obtain that p 0 -q 0 + r 0 -s 0 must be an even integer. This contradicts the first equality in (3.7). Consequently, there are no monomials of even degree in the first two components of N . It remains to consider the cubic monomials, m = 3. Collecting all cubic monomials satisfying (3.6)-(3.8), we directly compute the action of (D * + ik c ) on all these monomials. Then we identify a basis for the kernel of (D * + ik c ) which gives the result for N 0 , and a basis for the generalized kernel of (D * + ik c ) which gives the result for M 0 .

For the components N + and M + of N the result is obtained in the same way. We only point out that for these polynomials the exponents of the monomials (3.5) satisfy (3.6), the equality

(p + -q + + r + -s + ) -(p --q -+ r --s -) = 1,
replacing (3.7), and

p 0 -q 0 + r 0 -s 0 = 0, (p + -q + + r + -s + ) + (p --q -+ r --s -) = 1, instead of (3.8).
Finally, taking into account the action of the reversibility S 1 , it is straightforward to check that the coefficients α j , a j , β j and b j are real. This completes the proof of the theorem. Remark 3.1. In the resonant case k c /k x = 2, the two polynomials N 0 and M 0 contain the additional quadratic terms α 6 A + A -and iα 6 (B + A -+ A + B -) + a 6 A + A -, respectively, with real coefficients α 6 and c 6 .

Applying the result in Theorem 2 to our reduced system (2.16) we obtain its normal form (3.2) for k c /k x = 2, i.e., for any angle α ∈ (0, π/3), α = π/6.

Existence of domain walls

In this section, we prove the existence of a heteroclinic connection for the normal form system (3.2). Following the analysis from [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF], we focus on the main differences and refer to [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF] for the technical details which remain the same.

We restrict to ε > 0, which corresponds to values µ > µ c for which rolls exist and exclude the resonant angle α = π/6 which requires a different analysis.

Rotated rolls and coefficients of the normal form

The rotated rolls R -β U * k,µ with rotation angle β ∈ (0, π/2) are 2π/k sin β-periodic solutions of the dynamical system (2.1) and belong to the phase X when their wavenumber in y is equal to k y ,

k cos β = k y = k c cos α.
For (k, µ) close enough to (k c , µ c ) they are small bounded solutions which belong to the center manifold (2.11) of (2.9). Projected on the center space X c they become 2π/k sin β-periodic solutions of the reduced system (3.1) and also of the normal form system (3.2). Comparing the formulas (2.5) and (2.6) for R -β U * k,µ with the formulas (2.11) and (2.13) for the solutions on the center manifold, we obtain a family Z ε,θ of 2π/k sin β-periodic solutions of the normal form system, where the parameters (ε, θ) are related to (k, µ) through the equalities

ε = µ -µ c , θ = k sin β -k x = k sin β -k c sin α = 1 sin α (k -k c ) + O(|k -k c | 2 ).
These solutions have the expansion

Z ε,θ (x) = 0, 0, δe i(kx+θ)x , 0, 0, 0 + O(|δ||θ| + |δ| 2 ),
with δ > 0 as in (2.5), and satisfying

δ 2 = 1 µ 2 ε - µ 0 (k c ) sin 2 α 2µ 2 θ 2 + O(|ε| 3/2 + |ε| 1/2 |θ| 2 + |θ| 3 ).
As shown in [5, Section 6.2], we can use this family of solutions to determine two coefficients of the normal form system

b 0 = - 2 µ 0 (k c ) sin 2 α < 0, b 3 = 2µ 2 µ 0 (k c ) sin 2 α > 0, (4.1) 
where µ 0 (k) > 0 is the second order derivative of µ 0 (k) with respect to k and µ 2 > 0 is determined by the second equality in (2.5). The symmetry properties (2.7) and (2.8) of rotated rolls are preserved so that Z ε,θ is S 1 S 2 -reversible and the rolls R β U * k,µ rotated by the opposite angle β give the periodic solutions S 2 Z ε,θ . We refer to [5, Section 6.2] for more details.

Similarly, by taking the rotation angle β = π/2, from the rotated rolls R π/2 U * k,µ , which are constant in y and therefore 2π/k-periodic solutions of the dynamical system (2.1), we obtain a second family of periodic solutions for the normal form system. With the help of these solutions we can compute two other coefficients of the normal form system,

a 0 = - 2 µ 0 (k c ) < 0, a 1 = 2µ 2 µ 0 (k c ) > 0.
Notice that we have the following relationship between coefficients:

a 0 = b 0 sin 2 α < 0, a 1 = b 3 sin 2 α > 0. (4.2)

Leading order dynamics

We consider the new variables

x = |b 0 ε| 1/2 x, A 0 (x) = b 0 ε b 3 1/2 e ikcx C 0 ( x), B 0 (x) = |b 0 ε| |b 3 | 1/2 e ikcx D 0 ( x), (4.3) 
A ± (x) = b 0 ε b 3 1/2 e ikxx C ± ( x), B ± (x) = |b 0 ε| |b 3 | 1/2 e ikxx D ± ( x). (4.4) 
Replacing these variables into the normal form system (3.2) and taking into account the signs of b 0 and b 3 in (4.1) and the relationship (4.2), we obtain the new system

C 0 = D 0 + O(ε 1/2 ), (4.5) 
D 0 = sin 2 α -1 + |C 0 | 2 + g 1 (|C + | 2 + |C -| 2 ) C 0 + O(ε 1/2 ), (4.6) 
C + = D + + O(ε 1/2 ), (4.7) 
D + = -1 + g 2 |C 0 | 2 + |C + | 2 + g 3 |C -| 2 C + + O(ε 1/2 ), (4.8) 
C -= D -+ O(ε 1/2 ), (4.9) 
D -= -1 + g 2 |C 0 | 2 + g 3 |C + | 2 + |C -| 2 C -+ O(ε 1/2 ), (4.10) 
in which

g 1 = a 3 a 1 , g 2 = b 1 b 3 , g 3 = b 5 b 3 .
Solving the equations (4.5), (4.7) and (4.9) for D 0 , D + and D -, respectively, we rewrite the first order system (4.5)-(4.10) as a second order system,

C 0 = sin 2 α -1 + |C 0 | 2 + g 1 (|C + | 2 + |C -| 2 ) C 0 + O(ε 1/2 ), (4.11) 
C + = -1 + g 2 |C 0 | 2 + |C + | 2 + g 3 |C -| 2 C + + O(ε 1/2 ), (4.12) 
C -= -1 + g 2 |C 0 | 2 + g 3 |C + | 2 + |C -| 2 C -+ O(ε 1/2 ), (4.13) 
in which the O(ε 1/2 )-terms are continuous in (C 0 , C ± , 1/2 ) and continuously differentiable in (C 0 , C ± ). 3From the periodic solutions Z ε,θ and S 2 Z ε,θ of the normal form system we obtain the S 1 S 2reversible solutions P ε,θ and Q ε,θ = S 2 P ε,θ , respectively, for the system (4.11)-(4.13) with expansions

P ε,θ (x) = 0, (1 -θ 2 ) 1/2 e iθx , 0 + O(ε 1/2 ), Q ε,θ (x) = 0, 0, (1 -θ 2 ) 1/2 e iθx + O(ε 1/2 );
(see also [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF]Lemma 6.3]). Notice that these solutions represent the rotated rolls R -β U * k,µ and R β U * k,µ . While they are periodic at leading order, the terms O(ε 1/2 ) are quasiperiodic in x due to the presence of the exponentials e ikcx and e ikxx in the change of variables (4.3)- (4.4).

An important property of the leading order system obtained by setting ε = 0 in (4.11)-(4.13) is that it leaves the four-dimensional subspace {(C 0 , C + , C -) ; C 0 = 0} invariant. Restricting to this subspace we recover the leading order system from [5, Section 7.1],

C + = -1 + |C + | 2 + g 3 |C -| 2 C + , (4.14) 
C -= -1 + g 3 |C + | 2 + |C -| 2 C -. (4.15) 
The existence of a heteroclinic solution for this system has been proved in [START_REF] Van Den Berg | A domain-wall between single-mode and bimodal states[END_REF]. According to [14, Theorem 5], for any g 3 > 1, the system (4.14)-(4.15) possesses a heteroclinic solution (C * + , C * -), with C * ± smooth real-valued functions defined on R, which is S 1 -reversible and connects the equilibrium (0, 1) as x → -∞ with the equilibrium (1, 0) as x → ∞. This heteroclinic solution represents the leading order part of the domain walls constructed in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF].

The invariance of the subspace {(C 0 , C + , C -) ; C 0 = 0} implies that the leading order system from (4.11)-(4.13) possesses the S 1 -reversible heteroclinic solution (0, C * + , C * -), with C * ± as above, which connects the equilibrium (0, 0, 1) as x → -∞ with the equilibrium (0, 1, 0) as x → ∞. Notice that the equilibria (0, 0, 1) and (0, 1, 0) are equal to Q 0,0 and P 0,0 and therefore represent the rotated rolls with wavenumber k c , R α U * kc,µ and R -α U * kc,µ , respectively.

Existence of heteroclinic solutions

The existence of domain walls is obtained by proving that the S 1 -reversible heteroclinic solution (0, C * + , C * -) found for ε = 0 persists for ε > 0. More precisely, we have the following result.

Theorem 3. Assume that g 1 > 1 and g 3 ∈ (1, 4 + √ 13). Except for at most a sequence of values g 1 converging to 1, for any ε > 0 sufficiently small, there exists θ = O(ε 1/2 ), continuously depending on ε 1/2 , such that the system (4.12)-(4.13) possesses a reversible heteroclinic solution

C ε = (C 0,ε , C +,ε , C -,ε ) connecting the solutions Q ε,θ , as x → -∞, to P ε,θ , as x → ∞.
The quotients g 1 and g 3 depend on the angle α and the Prandtl number P through the complicated analytical formulas (A.1) and (A.2) computed in Appendix A. Taking α = 0 in (A.2) we obtain that the limit as α → 0 of g 3 is equal to 2, just as in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF]. Consequently, the condition g 3 ∈ (1, 4 + √ 13) holds at least for small angles α ∈ (0, α * (P)), for some positive α * (P). For g 1 , we have the same property when α = π/2, but these angles are excluded from our analysis and it seems difficult to check analytically the inequality g 1 > 1 for angles α ∈ (0, π/3). Instead, we compute g 3 symbolically, using Maple, and obtain that g 3 > 1.3, for any positive Prandtl number P and any angle α ∈ (0, π/2), hence the inequality g 3 > 1 is always satisfied. By comparing the formulas (A.1) and (A.2) we then obtain that the inequality g 1 > 1.3 always holds, as well. This implies that we only have to exclude a finite number of values g 1 in Theorem 3. The same Maple computation also allows to determine the values (α, P) for which the second condition on g 3 is satisfied, i.e., g 3 < 4 + √ 13. We summarize these properties in The solutions Q ε,θ and P ε,θ in Theorem 3 representing the rotated rolls R β U * k,µ and R -β U * k,µ , respectively, the result in Theorem 1 is an immediate consequence of Theorem 3 and the properties of g 1 and g 3 in Figure 4.1.

The proof of Theorem 3 is based on the implicit function theorem applied in the space of S 1 -reversible exponentially decaying functions,

X r η = {(C 0 , C + , C -, C 0 , C + , C -) ∈ X η ; C 0 (x) = C 0 (-x), C + (x) = C -(-x), x ∈ R},
where, for η > 0,

X η = (C 0 , C + , C -, C 0 , C + , C -) ∈ (L 2 η ) 4 , L 2 η = f : R → C ; R e 2η|x| |f (x)| 2 < ∞ .
It turns out that the linear operator needed in the implicit function theorem has exactly the same properties as the one in [5, Lemma 7.3]. Therefore, the implicit function theorem can be applied in the same way as done in [5, Theorem 2] and we omit these details of proof here. We focus on the properties of this linear operator, which is obtained by linearizing the system (4.11)-(4.13) with ε = 0, together with the complex conjugated equations, at (0, C * + , C * -), i.e., the linear operator L * acting on (C 0 , C + , C -) through

L *    C 0 C + C -    =    C 0 -sin 2 α -1 + g 1 (C * 2 + + C * 2 -) C 0 C + --1 + 2C * 2 + + g 3 C * 2 -C + -C * 2 + C + -g 3 C * + C * -(C -+ C -) C ---1 + g 3 C * 2 + + 2C * 2 -C --C * 2 -C --g 3 C * + C * -(C + + C + )    .
We prove that this operator has the same properties as in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF]Lemma 7.3], which completes the proof of Theorem 3.

Lemma 4.1. Assume that g 1 > 1 and g 3 ∈ (1, 4 + √ 13). Except for at most a sequence of values g 1 converging to 1, for any η > 0 sufficiently small, the operator L * acting in X r η is Fredholm with index -1. The kernel of L * is trivial and the one-dimensional kernel of its L 2 -adjoint is spanned by (0, iC * + , -iC * -, 0, -iC * + , iC * -).

Proof. The action of the operator L * on the C 0 -component being decoupled from the action on the (C + , C -)-components, we may write

L * = L 0 0 0 L ± , with L 0 C 0 = C 0 -sin 2 α -1 + g 1 (C * 2 + + C * 2 -) C 0 , L ± C + C - = C + --1 + 2C * 2 + + g 3 C * 2 -C + -C * 2 + C + -g 3 C * + C * -(C -+ C -) C ---1 + g 3 C * 2 + + 2C * 2 -C --C * 2 -C --g 3 C * + C * -(C + + C + )
, and we have the complex conjugated actions on the components C 0 and (C + , C -). The operator L ± is precisely the one from [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF]Lemma 7.3]. For any g 3 > 1, it is a Fredholm operator with index -1, has a trivial kernel, and the one-dimensional kernel of its L 2 -adjoint is spanned by (iC * + , -iC * -, -iC * + , iC * -). To complete the proof it remains to show that the operator L 0 is invertible.

Taking as new variables

y = (sin α)x, U 0 = 1 2 (C 0 + C 0 ), V 0 = 1 2i (C 0 -C 0 ), C * ± (y) = C * ± (x),
we obtain the matrix operator

M 0 U 0 V 0 = U 0 + U 0 -g 1 ( C * 2 + + C * 2 -)U 0 V 0 + V 0 -g 1 ( C * 2 + + C * 2 -)V 0 , acting in X 0 η = (U 0 , V 0 ) ∈ (L 2 η ) 2 ; U 0 (y) = U 0 (-y), V 0 (y) = -V 0 (-y), y ∈ R .
The invertibility of L 0 is equivalent to the invertibility of the matrix operator M 0 . The action of M 0 on the two components U 0 and V 0 being the same its invertibility in X 0 η is equivalent to that of the scalar operator L 0 [g 1 ] = ∂ yy + 1 -g 1 ( C * 2 + + C * 2 -) acting in L 2 η . We show the invertibility of this operator in L 2 , except for at most a sequence of values g 1 converging to 1, which by a standard perturbation argument implies its invertibility L 2 η for sufficiently small η.

The function C * 2 + + C * 2 -converging towards 1 as x → ±∞, the operator L 0 [g 1 ] is a relatively compact perturbation of the asymptotic selfadjoint operator ∂ yy + 1 -g 1 . Consequently, they have the same essential spectrum, σ ess (L 0 [g 1 ]) = σ ess (∂ yy + 1 -g 1 ) = σ(∂ yy + 1 -g 1 ) = (-∞, 1 -g 1 ].

This implies that for any g 1 > 1 the operator L 0 [g 1 ] is Fredholm with index 0, so that its invertibility is equivalent to the property that its kernel is trivial.

We claim that if L 0 [g * 1 ] has a nontrivial kernel for some g * 1 > 1, then L 0 [g 1 ] is invertible for any g 1 = g * 1 + γ = g * 1 with sufficiently small γ. Indeed, consider an orthogonal basis {ξ * 1 , . . . , ξ * n } of the finite dimensional kernel of L 0 [g * 1 ], which is the spectral subspace associated with the eigenvalue 0, because 0 is an isolated eigenvalue and the operator is selfadjoint. For sufficiently small γ, the operator L 0 [g 1 ] has at most n eigenvalues close to 0, which are the continuation of the eigenvalue 0 of L 0 [g * 1 ], and the spectral subspace associated to these eigenvalues has a basis {ξ 1 (γ), . . . , ξ n (γ)} which is the smooth continuation of the basis above. These eigenvalues of L 0 [g 1 ] are the eigenvalues of the n × n-matrix M [γ] representing the action of L 0 [g 1 ] on the basis {ξ 1 (γ), . . . , ξ n (γ)}. A direct computation of this matrix shows that

M [γ] = M 1 γ + O(γ 2 ), M 1 = Bξ * i , ξ * j 1 i,j n , where B = d dg 1 L 0 [g 1 ] g 1 =g * 1 = -( C * 2 + + C * 2 -).
The function C * 2 + + C * 2 -being continuous and positive with limits equal to 1 at x = ±∞, it is bounded from below by a positive constant c * . This implies that B is a negative selfadjoint operator, so that the eigenvalues of M 1 are all negative. Consequently, 0 is not an eigenvalue of M [γ] for γ = 0 sufficiently small, which implies that L[g 1 ] is invertible, for g 1 close enough to g * 1 , g 1 = g * 1 , and proves the claim. As a consequence of this property, the set of values g 1 > 1 for which the operator L 0 [g 1 ] is not invertible is countable and has no accumulation point in (1, ∞). In addition, the function C * 2 + + C * 2 -being bounded from below by c * > 0, it is straightforward to check that the operator L 0 [g 1 ] is negative, and in particular invertible, for any g 1 > 1/c * . We conclude that the set of values g 1 > 1 for which L 0 [g 1 ] is not invertible is at most a sequence converging to 1, which completes the proof of the lemma.

In these formulas, V is a real-valued solution of the boundary value problem 

(D 2 -k 2 c ) 3 V + µ 2 c k 2 c V = 0, V = DV = (D 2 -k 2 c ) 2 V = 0 in z = 0, V = D 2 V = D 4 V = 0 in z = 1,
A 51 (Θ) = 2µ 3 c (D 2 -4k 2 c Θ) 2 V 1 , R 1 , B 51 (Θ) = 4µ 3 c Θ ( V 1 , R 2 + V 2 , R 1 ) , C 51 (Θ) = - 2µ c Θ k 2
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 11 Figure 1.1: Projection in the (x, y)-horizontal plane of a (a) two-dimensional roll (periodic in y and constant in x); (b) rotated roll; (c) symmetric domain wall.
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 41 Figure 4.1:In the (Θ, P)-plane, with Θ = sin 2 α, Maple plot of the curve along which g 3 = 4 + √ 13, for Θ ∈ (0, 1). The inequality g 3 < 4 + √ 13 holds in the shaded region, whereas g 3 > 1.3 and g 1 > 1.3, for any positive Prandtl number P and any angle α ∈ (0, π/2). Domain walls are constructed in the shaded region situated to the left of the vertical line Θ = sin 2 (π/3) = 0.75, except for the values on the vertical line Θ = sin 2 (π/6) = 0.25 which correspond to the resonant case k c /k x = 2, and perhaps a finite number of curves corresponding to the finite number of (unknown) values g 1 excluded by Theorem 3.

φD 3 V 1 2 1 2

 311 is the unique solution of the boundary value problem(D 2 -k 2 c )φ = V, φ = 0 in z = 0, 1,andD 3 V = Ωper (z) dy dz.After very long computations we obtain thatg 1 = a 3 a 1 = b 51 ( 1 2 (1 + sin α)) + b 51 ( 1 2 (1 -sin α)) + b 51(0) b 51 (1) + b 51 (0) , (A.1) g 3 = b 5 b 3 = b 51 (sin 2 α) + b 51 (cos 2 α) + b 51 (0) b 51 (1) + b 51 (0) , (A.2) in which b 51 (Θ) = A 51 (Θ) + B 51 (Θ)P -1 + C 51 (Θ)P -2 , with

This property of the O(ε 1/2 )-terms is less precise than the one from [5, Section 6.3] but it is enough for our purposes. It is used when applying the implicit function theorem in the proof of Theorem 3. We point out that the O(ε 1/2 )-terms which are only continuous in 1/2 could be excluded by considering a normal form to order 5, the remaining terms being then continuously differentiable in (C0, C±, 1/2 ).
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A Coefficients of the cubic normal form

The formulas for the coefficients b 3 and b 5 found in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF] remain the same, and we compute in the same way the coefficients a 1 and a 3 . We obtain

where ζ 0 and ζ ± are the eigenvectors of L µc from Section 2.3, Ψ * 0 and Ψ * + are eigenvectors of the adjoint operator L * µc associated to the eigenvalues -ik c and -ik x , respectively, and the vectors