
HAL Id: hal-03360041
https://hal.science/hal-03360041v1

Submitted on 30 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian Optimisation of Large-scale Photonic Reservoir
Computers

Piotr Antonik, Nicolas Marsal, Daniel Brunner, Damien Rontani

To cite this version:
Piotr Antonik, Nicolas Marsal, Daniel Brunner, Damien Rontani. Bayesian Optimisation of Large-
scale Photonic Reservoir Computers. Cognitive Computation, 2021, pp.1-9. �10.1007/s12559-020-
09732-6�. �hal-03360041�

https://hal.science/hal-03360041v1
https://hal.archives-ouvertes.fr


Cognitive Computation manuscript No.
(will be inserted by the editor)

Bayesian optimisation of large-scale photonic reservoir
computers

Piotr Antonik · Nicolas Marsal · Daniel Brunner · Damien Rontani

Received: date / Accepted: date

Abstract Introduction. Reservoir computing is a grow-

ing paradigm for simplified training of recurrent neural

networks, with a high potential for hardware implemen-

tations. Numerous experiments in optics and electronics

yield comparable performance to digital state-of-the-

art algorithms. Many of the most recent works in the

field focus on large-scale photonic systems, with tens

of thousands of physical nodes and arbitrary intercon-

nections. While this trend significantly expands the po-

tential applications of photonic reservoir computing, it

also complicates the optimisation of the high number

of hyper-parameters of the system.

Methods. In this work, we propose the use of Bayesian

optimisation for efficient exploration of the hyper-pa-

rameter space in a minimum number of iteration.

Results. We test this approach on a previously reported
large-scale experimental system, compare it to the com-

monly used grid search, and report notable improve-

ments in performance and the number of experimental

iterations required to optimise the hyper-parameters.

Conclusion. Bayesian optimisation thus has the poten-

This work was supported by AFOSR (grants No. FA-9550-15-
1-0279 and FA-9550-17-1-0072), the Région Grand-Est, and
the Volkswagen Foundation via the NeuroQNet Project.

P. Antonik, N. Marsal, D. Rontani
LMOPS EA 4423 Laboratory
CentraleSupélec & Université de Lorraine
2 rue Edouard Belin
F-57070 Metz, France
Corresponding author: P. Antonik (E-mail: pi-
otr.antonik@centralesupelec.fr)

D. Brunner
FEMTO-ST Institute/Optics Department
CNRS & Université Bourgogne Franche-Comté
15B Avenue des Montboucons
F-25030 Besançon, France

tial to become the standard method for tuning the hy-

per-parameters in photonic reservoir computing.

Keywords Bayesian optimisation · Photonic reservoir

computing · Large-scale networks · Hyper-parameter

optimisation

1 Introduction

Reservoir Computing (RC) is a set of machine learning

methods for designing and training artificial neural net-

works [1,2]. The simple idea behind this concept is to

exploit the dynamics of a random recurrent neural net-

work to process time series and only train the linear out-

put layer by solving a (relatively simple) system of lin-

ear equations [3]. The reservoir computing paradigm is
particularly well-suited for hardware implementations,

which has attracted much interest from the community

in the past ten years. The performance of the numerous

experimental implementations in electronics [4], opto-

electronics [5,6,7,8,9], optics [10,11,12,13], and inte-

grated on chip [14] is comparable to other digital algo-

rithms on a series of benchmark tasks, such as wireless

channel equalisation [1], phoneme recognition [15], and

prediction of future evolution of financial time series

[16].

While the idea of reservoir computing greatly sim-

plifies the training of a recurrent neural network, the

optimisation of the hyper-parameters of the network re-

mains a full-size problem. In order to maximise perfor-

mance, one has to carefully design the topology of the

network, place it in the right dynamical regime (usually,

task-dependent), and make sure that the scaling of the

input signals is well chosen. These considerations yield a

list of multiple hyper-parameters that need to be tuned

simultaneously for each benchmark task.

ar
X

iv
:2

00
4.

02
53

5v
1 

 [
cs

.N
E

] 
 6

 A
pr

 2
02

0



2 Piotr Antonik et al.

Most experimental implementations of reservoir com-

puting so far share two core characteristics. First, the

topology of the network, i.e. the interconnections be-

tween the different neurons, is fixed by the hardware

design – either ring-like topology for time-delay sys-

tems [4,5,6,7,8,10,11,12,13], or square mesh topology

for integrated systems [14,17]. The size of the network

is only fixed per se in integrated realisations of RC, but

can be modified in time-delay setups. In practice, how-

ever, it is also commonly fixed to a constant value, to

avoid multiple and non-trivial re-adjustments of the ex-

perimental setup. Since the network topology and size

should no longer be optimised, the list of the hyper-pa-

rameters to tune is reduced to, typically, two variables:

the input scaling, and the feedback strength. Second,

most benchmark tasks used by the RC community so

far typically consist of training sets of several thousands

of inputs. Such (relatively) short datasets can be pro-

cessed by most time-delay and integrated experiments

in a matter of seconds. That is, numerous evaluations of

the system performance with different values of the hy-

per-parameters do not present any inconvenience. For

this reason, the simple grid search has been the stan-

dard hyper-parameter optimisation method in experi-

mental reservoir computers so far.

A recent trend in photonic reservoir computing is

the design of parallel systems to facilitate the scalabil-

ity of the network and increase the processing speed.

This idea has been demonstrated through frequency-

multiplexing of the reservoir nodes [13], and with free-

space optics [18,19,20,21]. As a result, reservoir com-

puters of unprecedented sizes – up to tens of thousands

of physical nodes – have been reported, and could be

applied to complex tasks in computer vision, such as

hand-written digit recognition [19] and human action

recognition in video streams [20]. While these advances

expand the potential applications of reservoir comput-

ing, they also make the optimisation of the hyper-pa-

rameters more challenging. Similarly to the two factors

above, (1) the topology of the network has to be opti-

mised in parallel photonic experiments, which increases

the number of hyper-parameters to tune, and (2) com-

puter vision datasets (e.g. MNIST set of handwritten

digits or KTH video database of human motions) typi-

cally consist of 50,000− 60,000 inputs. Considering the

typically low speed of certain free-space optical compo-

nents, one evaluation of the experimental performance

with a set of hyper-parameters could easily take from

several hours to a day. In other words, the grid search

is no longer suitable for these experiments.

Consequently, more efficient methods for the opti-

misation of the hyper-parameters are required, such as

e.g. the evolutionary-inspired genetic algorithm [22]. In

this work, we propose the Bayesian optimisation [23,24,

25,26] for this task. This idea has already been tried on

time-delay [27], low-connectivity [28], and small-dimension

[29] reservoir computers in numerical simulations. Here,

we apply it to a more critical situation of an experimen-

tal large-scale reservoir computer, where the grid search

is no longer a suitable option. The simple idea behind

Bayesian optimisation is to build a surrogate model of

the cost function using Gaussian Process (GP) regres-

sion [30], and then efficiently sample the hyper-parame-

ters space by looking for regions with the most potential

for improvement.

Specifically, we consider the photonic reservoir com-

puter introduced in [20], together with the video-based

human action classification task, and apply Bayesian

optimisation to tune the hyper-parameters of the exper-

iment. We perform numerical and experimental investi-

gations, and report notable performance improvements

in both cases. Furthermore, Bayesian optimisation of-

fers a better understanding of the importance of differ-

ent hyper-parameters, i.e. it helps to differentiate the

significant parameters from those that have little im-

pact on the system performance. Considering the above

advantages, Bayesian optimisation could become the

standard hyper-parameters optimisation method for large-

scale photonic reservoir computers.

2 Methods

We start by briefly reviewing the basic principles of

reservoir computing (Sec. 2.1). Then, we present the

experimental reservoir computer and its hyper-parame-

ters (Sec. 2.2) and the human actions classification task

(Sec. 2.4), originally introduced in [20], used here to test

the Bayesian optimisation approach, presented in Sec.

2.3.

2.1 Basic principles of reservoir computing

A typical discrete-time reservoir computer contains a

large numberN of internal variables xi∈0...N−1(n) evolv-

ing in discrete time n ∈ Z, as given by

xi(n+ 1) = fnl

N−1∑
j=0

Wijxj(n) +

K−1∑
j=0

bijuj(n)

 . (1)

where fnl is the nonlinear function, uj(n) is the input

signal of dimension K, bij is the N ×K matrix of input

weights, often referred to as the “input mask”, and Wij

is the N×N matrix of interconnecting weights between

the neurons of the neural network.



Bayesian optimisation of large-scale photonic reservoir computers 3

The reservoir computer produces an output signal

y(n), given by a linear combination of the states of its

internal variables

y(n) =

N−1∑
i=0

wixi(n), (2)

where wi are the readout weights, trained either offline

(using standard linear regression methods, such as the

ridge regression algorithm [31] used here), or online [32],

in order to minimise the Normalised Mean Square Error

(NMSE) between the output signal y(n) and the target

signal d(n), given by

NMSE =

〈
(y(n)− d(n))

2
〉

〈
(d(n)− 〈d(n)〉)2

〉 . (3)

2.2 Photonic reservoir computer and its

hyper-parameters

The experimental setup, introduced in [20], is schema-

tised in Fig. 1. It is composed of a free-space optical

arm and digital electronics, depicted in blue. The opti-

cal beam, generated by a green LED source at 530 nm

(Thorlabs M530L3), is linearly polarised, collimated,

and expanded to roughly 17 mm in diameter to evenly

lighten the 7.68 mm × 7.68 mm surface of the spatial

light modulator (Meadowlark XY Phase P512 – 0532).

The SLM is imaged by a high-speed camera (Allied Vi-

sion Mako U-130B) after focusing the light beam with

the imaging lens and transforming phase modulation

(induced by the liquid crystals of the SLM) into inten-

sity modulation through a second polariser.

The experimental setup implements the nonlinear

function fnl in Eq. 1, that can be modelled as

fnl(Xi(n)) =
⌊
I0 sin2 (bXi(n)c8)

⌋
10

(4)

where Xi(n) is the argument of the function, defined

below, I0 is the intensity of the illuminating beam and

bc8,10 are the 8-bit and 10-bit quantifications due to

the SLM and the camera, respectively [19,20]. The rest

of the Eq. 1 is computed in Matlab. At each discrete

timestep n, the input to the nonlinear function

Xi(n) =

N−1∑
j=0

Wijxj(n) +

K−1∑
j=0

biju(n) (5)

is computed, and the resulting matrix is loaded onto

the SLM device. The polarisation-filtered SLM image,

formed via an imaging lense, is recorded by the camera.

The resulting data corresponds to the reservoir state

xi(n+ 1) = fnl(Xi(n)).

LE
D

Pol

Pol

Cam

S
L
M

×

Wij

+

×

u(n)

bij

×wi

y(n)

PC / Matlab xi(n− 1)Xi(n)

Fig. 1 Scheme of the experimental setup, composed of an
optical arm (top half) and digital electronics (bottom half,
rendered in blue). The optical part is composed of a light
source (green LED), a pair of lenses to expand the beam to
match the surface of the SLM, and a linear polariser rotated
accordingly to the fast axis of the SLM. The spatial light
modulator is imaged by a camera through an imaging lens and
a second polariser, that transforms the phase modulation into
intensity modulation. The electronics part is composed of a
computer, running Matlab, that captures the reservoir states
xi from the camera, evaluates the outputs y(n), computes the
inputs Xi to the SLM and loads them to the device.

The input mask bij and the interconnection matrix

Wij are generated randomly in the beginning of the ex-

periment. The input mask bij is initially drawn from

a uniform distribution over the interval [−1,+1] as in

[33,5,10], and then multiplied by a global scaling fac-

tor β, called the input gain. The interconnection matrix

Wij is generated as follows. First, a diagonal matrix of

size N ×N is created and multiplied by a coefficient α,

called the feedback gain, since the diagonal elements of

Wij are responsible for the feedback of the reservoir, i.e.

the connection of each neuron to its past states. A frac-

tion ρ of the off-diagonal elements of Wij are assigned

a fixed value γ, while all the others are set to zero. The

off-diagonal elements correspond to the connections be-

tween different neurons. Therefore, the connectivity of

the network is defined by two parameters: the intercon-

nection density ρ and the interconnection gain γ. In

summary, the dynamics of the reservoir computer de-

pend on four hyper-parameters: α, β, γ, and ρ, recapped

in Tab. 1.

The processing speed of the system depends on two

main factors: (i) the time Matlab requires to compute

the next SLM matrix (which increases with the reser-

voir size) and (ii) the communication speed between

Matlab and the SLM (which is independent of the reser-

voir size). The experiment is capable of processing 7



4 Piotr Antonik et al.

video frames per second with the smallest reservoir (N =

1,024) and 2 frames per second with the largest reser-

voir (N = 16,384). Therefore, the total classification of

the KTH database with roughly 53,000 inputs (see Sec.

2.4) takes from approximately 2 to 7 hours.

2.3 Bayesian optimisation of hyper-parameters

Many optimisation problems in machine learning are

“black-box” problems, where the objective function F (x)

is unknown. In our study, F (x) is the performance of the

reservoir computer on the KTH dataset (see Sec. 2.4),

i.e. the classification accuracy, as function of the four

hyper-parameters (see Sec. 2.2): accuracy = F (α, β, γ, ρ).

Finding the maximal value of F (α, β, γ, ρ) is a key step

in obtaining the optimal performance from the reservoir

computer.

If F is computationally cheap to evaluate, one can

sample the hyper-parameter space at many points e.g.

via grid or random search. Grid search has been the

standard approach in the photonic reservoir computing

field so far [4,5,6,7,8,10,11,12,13,34]. However, if the

function evaluation is expensive – such as in our case,

where one experimental evaluation of F (α, β, γ, ρ) takes

from 2 to 7 hours (see Sec. 2.2) – it is important to

minimise the number of samples of F required to find

its optimum.

The Bayesian optimisation technique attempts to

find the global optimum in a minimum number of steps.

It is an iterative approach that builds a surrogate model

to approximate the objective function F , the former

being much cheaper to evaluate. The sampling of new

points in the hyper-parameter space is guided by an ac-

quisition function, which estimates the hyper-parame-

ter regions of most uncertainty and most gain, i.e. where

an improvement over the current best observation (op-

timum) is the most likely.

A popular surrogate model for Bayesian optimisa-

tion is the GP regression [30], a non-parametric kernel-

based probabilistic model. Unlike linear regression, which

seeks the best parameters that fit a linear model onto

data, the GP approach finds a distribution over the

possible functions f(x) that are consistent with the ob-

served data. The Bayesian approach consists in building

a starting GP model of F (α, β, γ, ρ) from an initial set

of observations, and then updating the model as new

data points are being observed. An observation, in this

context, is the performance of the RC (the accuracy) for

a certain combination of hyper-parameters (α, β, γ, ρ).

The set of possible functions f(x) for the GP model is

defined by specifying their smoothness. This is achieved

through a covariance or kernel function, of the model.

In practice, choosing a kernel function often requires

an initial guess by the user, while approaches exist to

optimising the kernel through cross-validation [35].

The acquisition function is executed over the GP

prediction of the objective function F (α, β, γ, ρ). It takes

into account the GP model with its uncertainties to

evaluate the potential improvement over the current

optimum in each point of the hyper-parameters space.

Intuitively, it provides a trade-off between exploitation

of the region close to the current optimum – i.e. ob-

servation of the neighbour points – and exploration –

the probing of different regions of the hyper-parame-

ters space in search for another possible optimum. In

this work, we use the expected improvement function,

that evaluates the expected amount of improvement in

the objective function, ignoring values that cause an in-

crease in the objective (see [24] for a review of several

acquisition functions).

The Bayesian optimisation of our reservoir computer

can be summarised as follows:

1. Run the reservoir computer (numerically or exper-

imentally) several times (typically 5-10) to build a

starting set of observations.

2. Compute the GP model from the observation set.

3. Evaluate the acquisition function over the entire hy-

per-parameters space and find its maximum, which

becomes the candidate for the next observation.

4. Set the new values of the hyper-parameters and run

the reservoir computer. Add the resulting observa-

tion to the set.

5. Repeat steps 2 to 4 until the desired accuracy has

been achieved.

The Bayesian optimisation is supported by Matlab

and can be implemented using the provided functions.
The GP regression is carried out by the fitrgp func-

tion. To avoid influencing the algorithm with any a pri-

ori knowledge we might possess, we let it choose its op-

timal parameters (such as the basis function, the kernel

function and its parameters) through cross-validation

by setting the option OptimizeHyperparameters to all

[36]. For the acquisition function, we chose the expected-

improvement function, readily implemented in Matlab

[37] and defined by:

EI(x) = max (0, Fbest − F (x)) (6)

where Fbest is the optimal value of F (α, β, γ, ρ) ob-

served so far. On top of the standard Bayesian optimi-

sation procedure described above, we added a special

modification to check that every new observation can-

didate is a previously unprobed, new set of parameters.

This allows the algorithm to scan the hyper-parame-

ters space faster by avoiding the repetition of identical

parameter values.



Bayesian optimisation of large-scale photonic reservoir computers 5

Figure 2 illustrates the Bayesian optimisation algo-

rithm in action on a toy example in one dimension.

The objective function, displayed in black, was cho-

sen to present one local and one global minimum. Red

markers show the observations of the target function,

the acquisition function is shown in green, and the GP

model is shown in blue with shaded uncertainty. The

green markers indicate the acquisition function’s max-

ima, which are the candidates for the following obser-

vations. For visual clarity, the plot of the acquisition

function was rescaled at each step. Figure 2(a) shows

the stage after the two starting observations, that were

used to initialise the GP model. Figure 2(b) shows that

the model has located the local minimum region after

three additional observations, with a significant uncer-

tainty in the right-hand region. In Fig. 2(c), after an-

other four observations, the acquisition function forces

the process away from the local minimum on the left in

order to explore the right-hand side region. Finally, in

Fig 2(d), after a total of 12 observations, the model has

found another minimum region. The low overall uncer-

tainty indicates that it is the global minimum of the

function, that can now be exploited to pin-point the

exact optimal value.

2.4 KTH human actions classification task

Similarly to Ref. [20], we used the KTH database of

human actions [38], limited to the first “s1” scenario.

The video database contains six types of human actions

– walking, jogging, running, boxing, hand waving, and

hand clapping (illustrated in Fig. 3) – performed 4 times

by 25 subjects, for a total of 600 video sequences. They

vary in length and contain between 24 and 239 frames.

All videos were recorded over homogeneous background

with a static camera at 25 fps and downsampled to the

spatial resolution of 160× 120 pixels.

We used the Histograms of Gradients (HOG) al-

gorithm [39,40] to extract the relevant features from

the video frames. The main idea of this technique is

that local object appearance and shape can often be

expressed well enough by distribution of local intensity

gradients or edges’ directions [20]. The computation

of HOG features was performed in Matlab, individu-

ally for each frame of every sequence using the built-in

extractHOGFeatures function with a cell size of 8× 8

and a block size of 2×2. Given the frame size of 160×120

pixels, we obtained 9,576 features per frame. We then

applied the principal component analysis (PCA) [41,

42] based on the covariance method [43], to reduce the

number of features down to 2,000, keeping 91.6% of to-

tal variance.

The reservoir computer was trained over a subset

of 450 video sequences, and tested over the remaining

150 sequences. We trained 6 binary classifiers (i.e. the

output nodes), each for one motion class, and applied

the winner-takes-all approach between them. The final

decision over the duration of a sequence was made by

taking the most frequent class in the reservoir output.

The classification accuracy is defined as the ratio of the

correctly recognised video sequences in the testing set

over the total number of 150 sequences.

3 Results

3.1 Performance improvement

To demonstrate the performance improvement offered

by the Bayesian optimisation, in comparison to the sim-

ple grid search, we employ both methods on the same

photonic reservoir computer, described in Sec. 2.2, and

applied to the same benchmark task, presented in Sec.

2.4. Furthermore, we evaluate the system’s performance

both in experiments and in numerical simulations. Sim-

ilarly to the original work on this experiment [20], we

consider reservoir sizes from 1,024 to 16,384 nodes.

The optimisation of our four hyper-parameters with-

out a priori knowledge of the regions of better perfor-

mance is a non-trivial task for grid search, especially

when the evaluation of a set of values can take up to

several hours experimentally. In order to keep manage-

able experimental times, we had to severely restrict the

grid search intervals down to 2-3 values for each pa-

rameters. This approach allows to determine the right

scaling of each parameter, but lacks the resolution to

find the most optimal values. Table 1 contains the al-

lowed values for each parameter used in the grid search.

The Bayesian optimisation is only affected by the di-

mensionality of the hyper-parameter space in the sense

that it requires a larger starting set of observations to fit

an accurate enough GP model onto the data and start

sampling the right regions for improvement. Our trials

have shown that 8 starting observations were enough

to properly initialise the GP model. To truly test the

Bayesian optimisation approach, we used a much larger,

and fine-grained hyper-parameter space than with the

grid search. Moreover, despite gaining some intuition on

the optimal parameters with the grid search, we made

sure not to disclose any a priori knowledge to the GP

model. That is, the starting observations were chosen

from the extreme values in the hyper-parameter space,

with one observation in the middle to force a non-linear

fit. Table 1 shows the intervals used for the Bayesian

optimisation.



6 Piotr Antonik et al.

(a) 2 observations (b) 5 observations (c) 9 observations (d) 12 observations

Fig. 2 Illustration of the Bayesian optimisation on a toy 1D problem. The target function is shown in black, the red markers
correspond to the observations, the acquisition function is rendered in green, and the GP model is shown in blue (the shade
corresponds to the uncertainty).

Parameter Symbol Search values (grid search) Search intervals (Bayesian optimisation)
Feedback gain α 0.6, 0.8, 1.0 0.1 − 1.5
Input gain β 0.01, 0.1 10−10 − 1
Interconnectivity gain γ 0.001, 0.01, 0.1 10−10 − 1
Interconnectivity density ρ 0.001, 0.01, 0.1 10−10 − 1

Table 1 Hyper-parameters search intervals for the two optimisation approaches.

Fig. 3 Examples of action frames from the KTH database,
from left to right: boxing, hand clapping, hand waving, jog-
ging, running, and walking. Six different subjects are illus-
trated out of the total of 25. All videos have been taken out-
doors over a homogeneous background, which corresponds to
the “s1” subset of the full database.

Figure 4 shows the results obtained with both opti-

misation methods, experimentally (in red) and numer-

ically (in green), with reservoirs of different sizes. Each

point corresponds to the highest accuracy we could

obtain with the corresponding approach. In each ex-

periment, the Bayesian optimisation (plus markers and

solid lines) either matches, or outperforms the grid search

(round markers and dotted lines). The improvement is

quite significant in numerical simulations with a small

(N = 1,024) reservoir – from 83.3% to 86.0%, and in

experiments with a large (N = 16,384) reservoir – from

86.0% to 90.0%. Comparing the accuracy of the present

setup (91.3%, see [20]) to the state-of-the-art result of

95.6% reported in [44], a 4% increase in performance is

a valuable improvement.

Figure 5 illustrates the functioning of the Bayesian

optimisation process on the hyper-parameters of the

reservoir computer with N = 1,024 nodes. For the sake

of visualisation, we fixed two parameters to their op-

timal values – the interconnection density ρ and the

interconnection gain γ – and ran the optimisation of

the two remaining hyper-parameters: the feedback gain

α and the input gain β, so that the results could be

plotted on a 3D graph. After collecting 5 observations

of the cost function, we fit a GP model and evaluate the

acquisition function (not displayed here) to guide the
sampling of the hyper-parameter space (Fig. 5(a)). The

geometry of the GP model’s cost function – a rapidly

rising fraction on the left-hand side and a moderately

flat fraction on the right-hand side – suggests the ex-

ploration of the flat region with the most promising

uncertainty. After 5 additional observations there the

process discovers a pit (Fig. 5(b)) and starts exploiting

(Fig. 5(c)). The optimal accuracy of 86% (as indicated

in Fig. 4) is found after 19 iterations of the algorithm

(Fig. 5(d)). As a side note, one should keep in mind

that the shape of the objective function (i.e. the geom-

etry of the GP model) highly depends on the task at

hand (here, the classification of videos from the KTH

dataset) and the definition of the accuracy (see Sec.

2.4).



Bayesian optimisation of large-scale photonic reservoir computers 7

0.82

0.84

0.86

0.88

0.9

0.92

0.94

4,000 8,000 12,000 16,000

A
cc

ur
ac

y

Reservoir size

Simulations (grid search)
Simulations (Bayesian optimisation)

Experiments (grid search)
Experiments (Bayesian optimisation)

Fig. 4 Performance of numerical (blue lines) and experimental (red lines) reservoir computers of different sizes, optimised with
either the grid search (dotted lines and hollow markers) or the Bayesian approach (solid lines and cross markers), with search
intervals and values given in Tab. 1. In most cases, the Bayesian optimisation outperforms the grid search (and matches in
the worst ones), with the accuracy increase of up to 4% (in the case of the largest experimental reservoir). This is a significant
improvement in the field of classification tasks, where the last fractions of percent are the hardest to gain.

3.2 Time gain

The Bayesian approach not only improves the RC per-

formance, but also requires less time to find the op-

timal parameters, i.e. minimises the number of time-

consuming iterations of the experiment. Without a pri-

ori intuition on the optimal settings, the grid search

needs to be executed over all 54 combinations of the hy-

per-parameters values from Tab. 1 in order to find the

best composition. Bayesian optimisation, on the other

hand, requires between 19 iterations (for a small reser-

voir with N = 1,024 nodes) and 39 iterations (for a

large reservoir with N = 16,384 nodes), which corre-

sponds to a 65%− 28% time gain, respectively.

Another significant advantage of an iterative algo-

rithm over the grid search is that it autonomously con-

verges towards the optimal value, and could, if neces-

sary, be stopped, e.g. when the desired accuracy has

been achieved. To illustrate this idea, consider the ex-

perimental results with the largest reservoir of 16,384

nodes. The Bayesian approach managed to find the op-

timum after 39 iterations (including the starting ob-

servations), which represents roughly a 30% gain in

time. Interestingly, a slightly less optimal combination

of hyper-parameters, with an accuracy loss of 1.3%, was

found after only 22 iterations. That is, a speed gain of

roughly 60% can be obtained with no more than 1.3%

loss in performance should time be a more restricted

commodity. Such flexibility cannot be achieved with

grid search.

3.3 Structure of the hyper-parameters space

Another indirect result provided by Bayesian optimisa-

tion is a better understanding of the relative importance

of the four hyper-parameters α, β, γ, and ρ. Grid search

only evaluates the combinations that the user believes

to be relevant, while Bayesian optimisation uses the

acquisition function (see Sec. 2.3) to explore the entire

hyper-parameters space and in particular the regions

of high uncertainty, where an improvement could po-

tentially be found. Therefore, by exploring the regions

a user might not have thought of, it provide additional

insights about the cost function’s shape and the relative

impact of the different dimensions.

Based on this approach we learned through numer-

ical simulations that the system is only sensitive to the

first two parameters – the input scaling β and the feed-

back gain α. In other words, those parameters need to

be accurately adjusted to maximise the accuracy, while

the remaining two parameters – the interconnection

gain γ and the interconnection density ρ – can take mul-

tiple (very) different values within the ranges we stud-

ied. To illustrate this result, we ran the Bayesian opti-

misation of a small numerical reservoir computer with

N = 1,024 nodes for 500 iterations, to let it explore the

hyper-parameters space. Out of 500 observations, the



8 Piotr Antonik et al.

−5 −4 −3 −2 −1
0 0

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

−1

−0.8

−0.6

−0.4

−0.2

0

Input gain (log) Fee
dba

ck
gai

n

−
A

cc
ur

ac
y

(a) 5 observations

−5 −4 −3 −2 −1
0 0

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

−1

−0.8

−0.6

−0.4

−0.2

0

Input gain (log) Fee
dba

ck
gai

n

−
A

cc
ur

ac
y

(b) 10 observations

−5 −4 −3 −2 −1
0 0

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

−1

−0.8

−0.6

−0.4

−0.2

0

Input gain (log) Fee
dba

ck
gai

n

−
A

cc
ur

ac
y

(c) 14 observations

−5 −4 −3 −2 −1
0 0

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

−1

−0.8

−0.6

−0.4

−0.2

0

Input gain (log) Fee
dba

ck
gai

n

−
A

cc
ur

ac
y

(d) 19 observations

Fig. 5 Illustration of the Bayesian optimisation on a small reservoir computer (N = 1,024) with two hyper-parameters (input
and feedback gains). The interconnection density and gain are fixed (i.e. not optimised in this example) for the sake of simplicity.
The accuracy is plotted with a negative sign for a better visualisation. (a) The starting set of 5 observations (red marks), the
fitted GP model (blue) and its lower uncertainty (light blue). Upper uncertainty is omitted, again, for the sake of clarity. (b)
The process starts with the exploration of the flat region of the model with the lowest uncertainty. (c) The process discovers
a pit in the cost function towards the lower values of the feedback gain and exploits it to find the optimum. (d) The optimum
is found after 19 iterations, with the best accuracy of 86% (see Fig. 4).

maximum accuracy of 86% was obtained in 116 different

points. However, these points only differ in the values

of γ and ρ, which take values within [10−10, 10−5.5] and

[10−10, 1], respectively, while the first two parameters

take the same exact values of β = 0.0158 and α = 1.

The same outcome appears with different reservoir

sizes, as summarised in Tab. 2. The first two param-

eters, α and β, only slightly vary with different reser-

voir sizes, without a noticeable trend. In general, the

system works best with a high feedback gain α (mem-

ory capacity is required to store the information from

previous frames) and a relatively low input scaling β,

which is mostly due to the large dimensionality of the

input signal. As for γ and ρ, optimal performance can

be obtained in multiple points of the (γ, ρ)-plane. In

other words, reservoirs with different topologies, i.e.

networks with different interconnection matrices, per-

form the classification equally as good. On the other

hand, the spectral radii of these matrices remain very

similar, which is logical, since the spectral radius de-

termines the dynamics of the system and how it pro-

cesses the input information. These findings call for an

in-depth study of the properties of the interconnection

matrix Wij in large-scale photonic reservoir computers,

that we leave for future work.

4 Conclusion

In this work, we proposed the Bayesian optimisation al-

gorithm for tuning the hyper-parameters in large-scale



Bayesian optimisation of large-scale photonic reservoir computers 9

Grid search Bayesian optimisation
Reservoir size α β log γ log ρ α β log γ log ρ

1,024 0.8 0.01 −1 −2 1 0.0158 [−5.5,−10] [0,−10]
4,096 0.6 0.1 −2 −3 0.9 0.0398 −4.8 −0.1
6,400 0.6 0.1 −1 −2 1.0 0.0501 [−6.8,−7.3] [−4.8,−5.6]
9,216 0.8 0.01 −1 −2 0.8 0.0316 [−0.4,−10] [0,−10]
12,544 1.0 0.01 −3 −2 0.6 0.01 [0,−10] [0,−10]
16,384 1.0 0.1 −3 −1 0.9 0.0079 [0,−10] [0,−10]

Table 2 Optimal values of hyper-parameters obtained in numerical simulations for different reservoir sizes.

photonic reservoir computers. We tested this approach

on a previously reported experimental system, applied

to a challenging task in computer vision, and compared

the results to the grid search, commonly used by the

RC community. We report improvements in terms of

(1) the classification performance, with an accuracy in-

crease up to 4%, and (2) the convergence time to the

optimal set of hyper-parameters, with a roughly 30%

gain in time (that could be doubled for a less than

1.5% accuracy penalty). Taking into account the prox-

imity of the accuracy of our photonic reservoir com-

puter to the state-of-the-art results on this task, and

the experimental hyper-parameters optimisation time

measured in days, these improvements prove to be pre-

cious enhancements of the system performance. Fur-

thermore, extensive exploration of the hyper-parame-

ters space with the Bayesian method offers valuable in-

sights on its underlying structure and the relative im-

portance of the parameters. Considering all the advan-

tages offered by the Bayesian optimisation algorithm,

it may soon become the new standard approach for the

optimisation of hyper-parameters in photonic reservoir

computing.

Compliance with Ethical Standards

Conflict of Interest. The authors declare that they

have no conflict of interest.

Ethical approval. This article does not contain any

studies with human participants or animals performed

by any of the authors.

References

1. H. Jaeger, Science 304(5667), 78 (2004). DOI 10.1126/
science.1091277

2. W. Maass, T. Natschlger, H. Markram, Neural
Computation 14(11), 2531 (2002). DOI 10.1162/
089976602760407955

3. M. Lukoševičius, H. Jaeger, Computer Science Review
3(3), 127 (2009). DOI 10.1016/j.cosrev.2009.03.005

4. L. Appeltant, M. Soriano, G.V. der Sande, J. Danck-
aert, S. Massar, J. Dambre, B. Schrauwen, C. Mirasso,
I. Fischer, Nature Communications 2(1) (2011). DOI
10.1038/ncomms1476

5. Y. Paquot, F. Duport, A. Smerieri, J. Dambre,
B. Schrauwen, M. Haelterman, S. Massar, Scientific Re-
ports 2(1) (2012). DOI 10.1038/srep00287

6. L. Larger, M.C. Soriano, D. Brunner, L. Appeltant, J.M.
Gutierrez, L. Pesquera, C.R. Mirasso, I. Fischer, Optics
Express 20(3), 3241 (2012). DOI 10.1364/oe.20.003241

7. R. Martinenghi, S. Rybalko, M. Jacquot, Y.K. Chembo,
L. Larger, Physical Review Letters 108(24) (2012). DOI
10.1103/physrevlett.108.244101

8. L. Larger, A. Baylón-Fuentes, R. Martinenghi, V.S.
Udaltsov, Y.K. Chembo, M. Jacquot, Physical Review
X 7(1) (2017). DOI 10.1103/physrevx.7.011015

9. P. Antonik, M. Haelterman, S. Massar, Cognitive
Computation 9(3), 297 (2017). DOI 10.1007/
s12559-017-9459-3

10. F. Duport, B. Schneider, A. Smerieri, M. Haelterman,
S. Massar, Optics Express 20(20), 22783 (2012). DOI
10.1364/oe.20.022783

11. D. Brunner, M.C. Soriano, C.R. Mirasso, I. Fischer,
Nature Communications 4(1) (2013). DOI 10.1038/
ncomms2368

12. Q. Vinckier, F. Duport, A. Smerieri, K. Vandoorne, P. Bi-
enstman, M. Haelterman, S. Massar, Optica 2(5), 438
(2015). DOI 10.1364/optica.2.000438

13. A. Akrout, A. Bouwens, F. Duport, Q. Vinckier, M. Hael-
terman, S. Massar, arXiv:1612.08606 (2016)

14. K. Vandoorne, P. Mechet, T.V. Vaerenbergh, M. Fiers,
G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre,
P. Bienstman, Nature Communications 5(1) (2014). DOI
10.1038/ncomms4541

15. F. Triefenbach, A. Jalalvand, B. Schrauwen, J.P.
Martens, in Advances in neural information processing
systems (2010), pp. 2307–2315

16. The 2006/07 forecasting competition for neural net-
works & computational intelligence. http://www.

neural-forecasting-competition.com/NN3/ (2006)
17. F.D.L. Coarer, M. Sciamanna, A. Katumba,

M. Freiberger, J. Dambre, P. Bienstman, D. Rontani,
IEEE Journal of Selected Topics in Quantum Electronics
24(6), 1 (2018). DOI 10.1109/jstqe.2018.2836985

18. J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot,
L. Larger, D. Brunner, Optica 5(6), 756 (2018). DOI
10.1364/optica.5.000756

19. P. Antonik, N. Marsal, D. Rontani, IEEE Journal of Se-
lected Topics in Quantum Electronics 26(1), 1 (2020).
DOI 10.1109/jstqe.2019.2924138

20. P. Antonik, N. Marsal, D. Brunner, D. Rontani,
Nature Machine Intelligence (2019). DOI 10.1038/
s42256-019-0110-8

21. J. Dong, M. Rafayelyan, F. Krzakala, S. Gigan, IEEE
Journal of Selected Topics in Quantum Electronics 26(1),
1 (2020). DOI 10.1109/jstqe.2019.2936281

22. B. Penkovsky, L. Larger, D. Brunner, Journal of Ap-
plied Physics 124(16), 162101 (2018). DOI 10.1063/
1.5039826. URL http://aip.scitation.org/doi/10.

1063/1.5039826

http://www.neural-forecasting-competition.com/NN3/
http://www.neural-forecasting-competition.com/NN3/
http://aip.scitation.org/doi/10.1063/1.5039826
http://aip.scitation.org/doi/10.1063/1.5039826


10 Piotr Antonik et al.

23. J. Mockus, Journal of Global Optimization 4(4), 347
(1994). DOI 10.1007/bf01099263

24. E. Brochu, V.M. Cora, N. De Freitas, arXiv preprint
arXiv:1012.2599 (2010)

25. J. Mockus, Bayesian approach to global optimization:
theory and applications, vol. 37 (Springer Science & Busi-
ness Media, 2012)

26. P.I. Frazier, arXiv preprint arXiv:1807.02811 (2018)
27. J. Yperman, T. Becker, arXiv:1611.05193 (2016). URL

http://arxiv.org/abs/1611.05193

28. A. Griffith, A. Pomerance, D.J. Gauthier, Chaos: An
Interdisciplinary Journal of Nonlinear Science 29(12),
123108 (2019). DOI 10.1063/1.5120710

29. L. Cerina, G. Franco, M.D. Santambrogio, in Proceedings
of ESANN (2019)

30. C.E. Rasmussen, C.K. Williams, Gaussian process for
machine learning (MIT press, 2006)

31. A.N. Tikhonov, A. Goncharsky, V. Stepanov, A.G.
Yagola, Numerical methods for the solution of ill-posed
problems, vol. 328 (Springer Netherlands, 1995)

32. P. Antonik, F. Duport, M. Hermans, A. Smerieri,
M. Haelterman, S. Massar, IEEE Transactions on Neu-
ral Networks and Learning Systems 28(11), 2686 (2017).
DOI 10.1109/tnnls.2016.2598655

33. A. Rodan, P. Tino, IEEE Transactions on Neural Net-
works 22(1), 131 (2011). DOI 10.1109/tnn.2010.2089641

34. G.V. der Sande, D. Brunner, M.C. Soriano, Nanophoton-
ics 6(3) (2017). DOI 10.1515/nanoph-2016-0132

35. D.J.C. MacKay, Neural Computation 4(3), 448 (1992).
DOI 10.1162/neco.1992.4.3.448

36. MathWorks. Gaussian process regression model. http:

//fr.mathworks.com/help/stats/fitrgp.html

37. MathWorks. Bayesian optimization algo-
rithm. http://fr.mathworks.com/help/stats/

bayesian-optimization-algorithm.html

38. C. Schuldt, I. Laptev, B. Caputo, in Proceedings of the
17th International Conference on Pattern Recognition,
2004. ICPR 2004. (IEEE, 2004). DOI 10.1109/icpr.2004.
1334462

39. N. Dalal, B. Triggs, in 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (IEEE, 2005). DOI 10.1109/cvpr.2005.177

40. H.E. Bahi, Z. Mahani, A. Zatni, S. Saoud, A robust
system for printed and handwritten character recog-
nition of images obtained by camera phone. Tech.
rep. (2015). URL http://www.wseas.org/multimedia/

journals/signal/2015/a045714-403.pdf

41. K. Pearson, The London, Edinburgh, and Dublin Philo-
sophical Magazine and Journal of Science 2(11), 559
(1901). DOI 10.1080/14786440109462720

42. H. Hotelling, Journal of Educational Psychology 24(6),
417 (1933). DOI 10.1037/h0071325

43. L.I. Smith, A tutorial on principal components analysis.
Tech. rep. (2002)

44. Y. Shi, W. Zeng, T. Huang, Y. Wang, in 2015 IEEE In-
ternational Conference on Multimedia and Expo (ICME)
(IEEE, 2015). DOI 10.1109/icme.2015.7177461

http://arxiv.org/abs/1611.05193
http://fr.mathworks.com/help/stats/fitrgp.html
http://fr.mathworks.com/help/stats/fitrgp.html
http://fr.mathworks.com/help/stats/bayesian-optimization-algorithm.html
http://fr.mathworks.com/help/stats/bayesian-optimization-algorithm.html
http://www.wseas.org/multimedia/journals/signal/2015/a045714-403.pdf
http://www.wseas.org/multimedia/journals/signal/2015/a045714-403.pdf

	1 Introduction
	2 Methods
	3 Results
	4 Conclusion

