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France

We demonstrate experimentally the manipulation of Lamb waves guided along reconfigurable phononic circuits
created by defects composed of threaded rods held with nuts in a perforated solid phononic crystal slab.
Adjusting the free length of the rod, the resonant frequency of the defect can be tuned, without any change
in the supporting phononic crystal slab. Both straight and bent waveguides are fabricated and measured in
an aluminum sample with a lattice constant of 20 mm and a complete band gap extending from 50 to 70 kHz.
Guidance of Lamb waves is clearly observed by Doppler vibrometer, even after 90◦ bends. The eigenmodes
of guided waves are obtained using finite element analysis and to explain the tuning of resonances through a
bending cantilever model. Numerical and experimental results are generally found to be in fair agreement.
They also suggest that the guiding frequency is rather independent of the details of the waveguides. They
are of significance for the design of reconfigurable phononic devices.

I. INTRODUCTION

Phononic crystals (PCs) are functional composites
with spatial periodicity1. Their unique property is to ex-
hibit band gaps in certain frequency range, within which
propagation of elastic waves is prohibited. Thus, they
have direct applications in noise isolation and vibration
reduction2. When periodicity is broken, confined defect
modes appear. Phononic crystals are a basis on which
to design novel elastic wave devices such as waveguides3,
splitters4, or acoustic channel drop filters5. Moreover,
their dispersive properties in passing bands also result
in promising phenomena, such as collimation or negative
refraction6.

Although phononic crystals provide a promising path-
way to the manipulation of elastic waves, there have had
few real-life applications so far. Actually, most of them
are characterized by a passive response and operate in
fixed frequency ranges. The topology or the material pa-
rameters are hardly tunable or reconfigurable after fabri-
cation. Tunable manipulation of acoustic or elastic waves
has thus become a fast developing topic7. Since elastic
wave propagation is controlled mainly by material prop-
erties and geometry parameters8, wave manipulation can
generally be classified as based on either tunability or re-
configurability.

For tunable PCs, physical or material properties are
tuned using an external control field. Such PCs may be
composed of multiphysical coupled components, such as
piezoelectric9, ferroelectric10, or magnetoelastic11 mate-
rials. Dynamic control can be realized by applying an
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external biased electric field12, a magnetic field13,14, and
so on. Piezoelectric materials are commonly used15 and
can be implemented either on the surface of or inside PC
units. The resonance or Bragg scattering characteristics
of the periodic structure can be tuned by an external
circuit, so as to dynamically regulate wave propagation.
When a feedback electronic control circuit is added16,
active or even smart control of wave propagation can
be expected. Moreover, the response can self adapt to
changes in the surrounding environment, such as an in-
cident aerodynamic flow17.

For reconfigurable PCs, the geometry or the layout is
changed in a mechanical way. For instance, tunable ma-
nipulation can be realized continuously based on the re-
configurability of fluid/solid systems: rotating or remov-
ing the solid scatterers in a fluid matrix3,18, or filling in a
fluid in a solid matrix containing cavities19–21. Soft mate-
rials can also exhibit large deformations22,23, so that their
geometry or even topology can be changed owing to the
bulking instability24,25, leading to a significant change of
wave dispersion. Thermal expansion of a solid material
can also be used to control wave propagation to a cer-
tain extent26. Bistable or multi steady states of shape
memory materials, including shape memory alloys27 and
polymers, can be used for the conversion of different wave
characteristics.

Recently, PC slabs have received increasing interest for
the manipulation of Lamb waves20,28–30. Investigations
are focused on flat slabs decorated with holes31 or solid
inclusions32, or grafted with pillars33 or resonators34.
Various devices, such as waveguides35, splitters36 and
filters37, have been designed and verified experimentally.
However, manipulation of Lamb waves remains a difficult
task20. In the present work, we demonstrate experimen-
tally a simple way to reconfigure easily waveguides in
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Figure 1. (a) Photograph of the phononic crystal slab sam-
ple. A linear waveguide is formed by a sequence of threaded
rods clamped with nuts to the perforated square lumps. The
inset is a close-up view of the rods and nuts used. (b) Unit
cell of the phononic crystal slab and definition of geometrical
dimensions.

perforated PC slabs. Threaded rods, held in dry me-
chanical contact with the slab using nuts, are added at
chosen holes. Adjusting the free length of the rods, the
resonance frequency of bending modes of the rods can
be adjusted continuously within the complete phononic
band gap. Straight waveguides and 90◦ bent coupled-
resonator waveguides are formed experimentally in an
aluminum PC slab. To explore the physical mechanism
behind waveguiding, numerical simulations by using fi-
nite element analysis are performed. Numerical and ex-
perimental results generally agree fairly well, with slight
frequency shifts of resonances. This work is of signif-
icance for the design of reconfigurable elastic wave de-
vices.

II. EXPERIMENTAL AND NUMERICAL
METHODS

The manufactured square-lattice phononic crystal slab
sample is shown in Figure 1(a). It is machined in an
aluminum plate. It consists of perforated square lumps
connected by thin bars. In finite element computations,
aluminum is considered isotropic (mass density ρs = 2700
kg/m3, Poisson’s ratio υ = 0.33, and Young’s modulus
E = 6.89 GPa). The lattice constant is a = 20 mm and
the thickness of the slab is h1 = a/4. The width of the
perforated square lumps is c = 0.8a and the width of the
connecting bar is b = 0.1a. The radius of the central hole
is r = 0.1a. With those values, the phononic crystal slab
possesses a wide complete phononic band gap, as Figure
2 shows (see Section III for a discussion).

Reconfigurability is implemented by the addition of
threaded steel rods inside selected holes of the phononic
crystal slab. The rods are clamped to the lumps by steel
nuts placed symmetrically. In numerical computations,
steel is considered isotropic (mass density ρs = 6750
kg/m3, Poisson’s ratio υ = 0.3, and Young’s modulus
E = 206 GPa). The thickness of the nuts is h2 = 0.15a.
The total length of the rods is L = 1.5a and their radius

is r = 0.1a. As discussed in Section III, the length from
nut to free end of a rod defines its resonance frequencies.
By symmetry, we need only consider the length l of the
rod above the plate (see Fig. 1b). The length of the rod
below the plate is L− h1 − 2h2 − l.

Lamb waves are excited via a piezoelectric patch.
Propagating Lamb waves are detected and imaged using
a Polytec PSV-500 scanning vibrometer. Harmonic sig-
nals with either stepped or fixed frequencies are chosen
for the measurement of transmission and displacement
distribution, respectively. The excitation signal is ampli-
fied before it is applied to the piezoelectric patch bonded
to one side of the slab. The patch is polarized vertically.

Numerical simulations are performed with a 3D fi-
nite element method, for a better understanding of ex-
perimental results and the related physical mechanisms.
Band structures are calculated by applying Bloch bound-
ary conditions on the lateral sides of a single unit cell or
of a super-cell, depending on the distribution of rods and
nuts. Transmission properties are evaluated by consid-
ering a finite PC slab as shown in Fig. 1(a). An out-
of-plane wave source with unit amplitude (U0 = 1) is
applied on one side (S1) of the waveguide. By sweeping
the frequency, we evaluate the frequency response func-
tion (FRF) in decibel units by

F (f) = 20 log10


∫
S2

Uds∫
S1

U0ds

 (1)

where U is the total displacement collected over a receiver
segment (S2) placed at the exit side of the waveguide.
To differentiate the polarization of different modes, we
further compute the proportion of the out-of-plane dis-
placement in the squared total displacement via

pz =

∫
|w|2dV∫

(|u|2 + |v|2 + |w|2)dV

, (2)

with (u, v, w) the three components of displacement in
the reference frame of Figure 1(b). Experimental and
numerical results are compared in detail in the following
sections.

III. RESULTS AND DISCUSSION

In this section, we discuss the band structures and the
frequency response of different phononic circuits.

A. Bare phononic crystal slab

For comparison, we first consider the phononic prop-
erties of the perfect PC slab summarized in Fig. 2. With
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Figure 2. Band structures of the perfect PC slab (a) and
transmission properties of the perfect PC obtained from sim-
ulation (b) and experiment (c). The light-gray parts mark the
passing band for out-of-plane modes. The color bar represents
the polarization from 0(blue) to 1(red).

the color scale in the phononic band structure varying
from in-plane (blue color) to out-of-plane polarized (rd
color), it is seen that both polarizations are effectively
separated, as results for the mid-plane symmetry of the
phononic crystal slab. Two bandgaps for out-of-plane
Lamb waves are observed in the band structure, covering
the frequency ranges between 43.15 and 46.37 kHz, and
49.15 kHz and 70.08 kHz. The second, larger, bandgap
is mostly considered in the following. The measured fre-
quency response is generally in agreement with the com-
puted band structure and frequency response, though a
slight upward frequency shift is observed at the entrance
of the bandgap. This difference may be due to the ne-
glection of the presence of threaded holes in the slab, ef-
fectively leading to an overestimation of the mass of the
perforated lumps. Significantly, the measured bandgap is
wide enough for the preparation of different waveguides
operating between 50 and 70 kHz, typically.

B. Defect modes with rods and nuts

The addition of threaded rods and a pair of nuts allows
one for the design of reconfigurable waveguides formed
from coupled defects. We consider three different values
of length l: A) l = 0, B) l = 0.15a, and C) l = 0.3a.
The respective supercells are shown in the first column
of Fig. 3. Phononic band structures are shown in the
second column of the figure. As a remark, when defects
are added, the structure looses the mid-plane symmetry
and the separation between in-plane and out-of-plane po-
larized elastic waves is lost. It can be seen, however, that
bands of the bare phononic crystal slab are still appar-
ent with unchanged polarization type. Additionally, de-
fect bands appear. Those have a color in between blue
and red, meaning that their polarization is mixed and
all three displacements in space coexist. Guiding bands
induced by the presence of defect states are identified in
dark-gray in Fig. 3. Their frequency ranges are reported

in Table I.
Vibration modes around 50 kHz for defect A (l = 0)

are shown in Fig. 3. The bottom free end of the rod
vibrates in a bending motion typical of a clamped-free
beam. The two modes of vibration depicted are orthogo-
nal and couple with flexural waves of the supporting slab.
Since those flexural waves are evanescent in the surround-
ing phononic crystal slab, the defect modes are strongly
confined spatially. Globally, one of the pair of modes
vibrates in the direction of the waveguide, x, whereas
the other vibrates in the lateral direction, y. Given the
symmetry of the excitation source with respect to the
x axis in the experiment, we expect the latter mode to
be deaf and hence not to be excited. In addition, an-
other resonance appears around 65 kHz. This mode is
mostly polarized out-of-plane but there is almost no cou-
pled vibration in the rod. The displacement distribution
is asymmetric with respect to the x axis, so this mode is
also expected to be deaf.

When length l is increased to 0.15a with defect B, the
vibration motion remains of the exact same type but the
resonance frequency shifts upward to around 60 kHz. As
argued below, the frequency shift results from the de-
crease in the length of the bottom free end of the rod.
When length l is further increased to 0.3a with defect C,
the resonance frequency remains almost the same, around
59 kHz. The top free end of the rod, however, is now vi-
brating instead of the bottom end.

As a observed above, the resonance frequency can be
tuned by adjusting length l. The dynamic equation for
an homogeneous rod according to Euler-Bernoulli beam
theory is38

∂2

∂y2

[
EI

∂2v

∂y2

]
− ρAω2v = 0 (3)

where E is Young’s modulus, I is the second moment of
area of the beam, and A is the cross-section area. The
natural frequency for a clamped-free beam with an effec-
tive length le can be evaluated by

ωn = (βnle)
2(EI/ml4e)1/2 (4)

where n = 1, 2... is the order of the vibration mode and
m = ρA is the mass density per unit length. Numeri-
cal value for the mode constants of the first two normal
modes are (β1le)

2 = 3.5160 and (β2le)
2 = 22.0345. For

defect C, the resonance can be identified with the first or

Table I. Guiding bands predicted from finite element compu-
tations and measured for straight and bent waveguides. The
frequency unit is kHz.

Type A B C

Numerical 49.3-51.4 60.7-61.7 59.5-61.0

Straight waveguide 52.6-56.0 54.6-63.2 57.6-61.2

Bent waveguide 52.7-55.5 59.0-61.3 60.3-62.0
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Figure 3. Phononic properties of defects composed of threaded rods held with nuts in the perforated solid phononic crystal
slab of Figure 2. Three different defects are introduced, with varying value of the free length of rod l: A) l = 0, B) l = 0.15a,
and C) l = 0.3a. In each case, the band structure for the corresponding supercell is shown. The color scale represents the
contribution of out-of-plane displacements to the total polarization of elastic waves, from 0 (blue) to 1 (red). The light-gray
areas indicate the passing band for the out-of-plane polarized waves in the perfect PC slab. The dark-gray areas indicate
the considered waveguiding bands. Vibration modes at marked points are shown on the right. The color scale represents the
normalized amplitude of out-of-plane displacements, from negative (blue) to positive (red).

fundamental normal mode, whereas for defects A and B
the resonance can be identified with the second normal
mode. The normal mode frequencies ωn vary with the in-
verse of the square of the free length of the rod. It should
be stressed, however, that the correspondence is mostly
qualitative, since the nuts are not taken into account in
the homogeneous beam model and the clamping bound-
ary condition is not met since the lump deforms during
vibration. Anyway, this analysis explains the continuous
tunability of the resonance frequency by adjustement of
the free length of the rod.

C. Straight waveguides

In this subsection, we focus on the operation of straight
waveguides made from defects A, B, and C. The total
length of the straight waveguides is 6a in the experiments,
i.e. they are composed of a line of 6 defects. Numerical
and experimental FRF are shown in Fig. 4. They are in
fair agreement but show some differences. For all three
defects, the numerical FRF predicts some transmission

in a frequency band extending around 65 kHz that is not
observed experimentally. From the phononic band struc-
ture, this response corresponds to mode P3 in Figure 3
that should be deaf. The numerical FRF is however quite
small and may remain below the experimental detection
baseline. More significant are the transmission bands
highlighted in dark grey in Fig. 4. The numerical FRFs
clearly correspond to the resonant frequency ranges iden-
tified in Fig. 3 and listed in Table I. The experimental
FRFs appear to be shifted in frequency compared to their
numerical counterparts and to have a wider frequency ex-
tension. Since it is known that the frequency bandwidth
of coupled-resonator waveguides is directly related to the
coupling strength between resonant defects39, the obser-
vation indicates that coupling may be underestimated
in the finite element analysis. Furthermore, clear chan-
nelled spectra are observed, with the number of maxima
within transmission bands of the order of the number of
defects in the coupled chain35,40. The frequency shifts
of the resonances may be attributed to the difficulty of
controlling precisely the pre-stress applied to the nuts in
the experimental sample. The pre-stress is assumed to be
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(b)(a)

54.1kHz
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Numerical FRF (dB) Experimental FRF (dB)

Figure 4. Frequency response function (FRF) of straight
waveguides. Numerical and experimental FRFs are shown in
panels (a) and (b). The light-gray areas indicate the passing
bands for out-of-plane polarized waves in the perfect phononic
crystal slab. The dark-gray areas indicate the waveguiding
bands induced by each defect. The FRF for the bare phononic
crystal slab is plotted with a dashed line in (a) for comparison.
Experimentally measured displacement fields at selected fre-
quencies are displayed in panel (c). The color-scale indicates
the amplitude of out-of-plane displacement from 0 (blue) to
maximum (red).

zero in the numerical simulations. In the experiment, a
varying pre-stress is probably applied to each individual
defect.

Displacement fields at selected frequencies are mea-
sured over the surface and displayed in the rightmost
column of Fig. 4. Vibration modes appear to be a com-
bination of the x and y polarized modes in Fig. 3. Specif-
ically, modes P1 and P2 degenerate for defect A, modes
P4 and P5 degenerate for defect B, and modes P6 and P7
degenerate for defect C. Overall, Lamb waves are clearly
guided along the waveguides at different frequencies, thus
verifying the reconfigurability of the proposed system.
As a note, no attempt was made at adjusting the free
length of the rods to match experimental and numerical
frequencies.

60.9kHz

61.8kHz

55.6kHz

(b)(a) (c)

Numerical FRF (dB) Experimental FRF (dB)

Figure 5. Frequency response function (FRF) of bent waveg-
uides. Numerical and experimental FRFs are shown in panels
(a) and (b). The light-gray areas indicate the passing bands
for out-of-plane polarized waves in the perfect phononic crys-
tal slab. The dark-gray areas indicate the waveguiding bands
induced by each defect. The FRF for the bare phononic cry-
atl slab is plotted with a dashed line in (a) for comparison.
Experimentally measured displacement fields at selected fre-
quencies are displayed in panel (c). The colorscale indicates
the amplitude of out-of-plane displacement from 0 (blue) to
maximum (red).

D. Bent waveguides

Beyond straight waveguides, the principle of coupled-
resonators also allows one to design more arbitrary
chains35. the reconfigurability principle for instance also
applies to 90◦ bent waveguides, as we consider in this
subsection. The total length of the bent waveguides is
7a, or a chain of 7 coupled defects. Numerical and ex-
perimental FRF are shown in Fig. 5. The numerical
FRFs around the resonant bands have limited changes
compared to straight waveguides, although bent waveg-
uides have an additional defect and a sharp band after
the fourth defect. This observation suggests that waveg-
uiding is very efficient in theory, and independent of the
number of defects as well as of the existence of bends.
The experimental FRFs show more changes, especially
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regarding the width of resonant bands but also the am-
plitude of the response at the end of the chain of defects.

Displacement fields at selected frequencies are mea-
sured over the surface and displayed in the rightmost
column of Fig. 5. As in the case of straight waveguides,
the mixture of x and y polarized modes identified in Fig.
3 explains how Lamb waves are guided along the chain
of defects and especially across the 90◦ bend.

IV. CONCLUSION

In this paper, Lamb wave propagation in phononic
circuits formed by reconfigurable chains of defects has
been investigated. Defects are introduced by attaching
threaded rods with nuts to a two-dimensional perforated
square-lattice phononic crystal slab. The consideration of
threaded rods naturally provides reconfigurability by ad-
justing continuously their free length and hence their nat-
ural resonance frequencies. Besides, the solid phononic
crystal slab is completely reusable and unaltered when
reconfiguring the phononic circuits. Both straight and
90◦ bent waveguides were designed and fabricated. As
illustrated by a simple bending cantilever model, the cen-
tral frequency can span the available complete phononic
band gap. In numerical simulations, the frequency re-
sponse function is almost independent of the length of
the chain of defects and of the presence of bends. Ex-
perimental results are generally in fair agreement with
numerical ones, though the mechanical reconfigurablility
provided by a human experimenter remains somehow im-
precise, including the pre-stress applied when fastening
the nuts. Mechanical robots with force sensors may be
considered to conduct precise control of wave propaga-
tion. Other phononic circuits could also be designed as
a direct extension of the present work.
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