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Emergency medical services (EMS) provide crucial emergency assistance and ambula-1 tory services. One key measurement of EMS's quality of service is their ambulances' response 2 time (ART), which generally refers to the period between EMS notification and the moment an am-3 bulance arrives on the scene. Due to many victims require care within adequate time (e.g., cardiac 4 arrest), improving ARTs is vital. This paper proposes to predict ARTs using machine learning (ML) 5 techniques, which could be used as a decision-support system by EMS to allow a dynamic selection 6 of ambulance dispatch centers. However, one well-known predictor of ART is the location of 7 the emergency (e.g., if it is urban or rural areas), which is sensitive data because it can reveal who 8 received care and for which reason. Thus, we considered the 'input perturbation' setting in the 9 privacy-preserving ML literature, which allows EMS to sanitize each location data independently 10 and, hence, ML models are trained only with sanitized data. In this paper, geo-indistinguishability 11 was applied to sanitize each emergency location data, which is a state-of-the-art formal notion 12 based on differential privacy. To validate our proposals, we used retrospective data of an EMS 13 in France, namely, Departmental Fire and Rescue Service of Doubs, and publicly available data 14 (e.g., weather and traffic data). As shown in the results, the sanitization of location data and the 15 perturbation of its associated features (e.g., city, distance) had no considerable impact on predicting 16 ARTs. With these findings, EMSs may prefer using and/or sharing sanitized datasets to avoid 17 possible data leakages, membership inference attacks, or data reconstructions, for example.

Introduction 22

Ambulance response time (ART) is a key component for evaluating pre-hospital 23 emergency medical services (EMS) operations. ART refers to the period between the 24 notification and the moment an ambulance arrives at the emergency scene [START_REF] Bürger | The Effect of Ambulance Response Time on Survival Following Out-of-Hospital 533 Cardiac Arrest[END_REF][START_REF] Byrne | Association Between Emergency Medical Service Response Time and Motor Vehicle Crash 536 Mortality in the United States[END_REF], and it 25 is normally divided into two periods: the pre-travel delay, from the notification to the 26 ambulance dispatch, and the travel time, from the ambulance dispatch to arrival on-27 scene. In many urgent situations (e.g., cardiovascular emergencies, trauma, or respiratory 28 distress), the victims need first-aid treatment within adequate time to increase survival 29 rate [START_REF] Bürger | The Effect of Ambulance Response Time on Survival Following Out-of-Hospital 533 Cardiac Arrest[END_REF][START_REF] Byrne | Association Between Emergency Medical Service Response Time and Motor Vehicle Crash 536 Mortality in the United States[END_REF][START_REF] Do | A Quantile Regression Analysis of Ambulance Re-538 sponse Time[END_REF][START_REF] Holmén | Shortening Ambulance Response Time Increases Survival in Out-of-Hospital Cardiac Arrest[END_REF][START_REF] Chen | Demand Forecast Using Data Analytics for the Preallocation of Ambulances[END_REF][START_REF] Lee | Association between ambulance response time and neurologic outcome in patients with cardiac arrest[END_REF] and, hence, improving ART is vital.

30

In many parts of the world, such as France, fire departments are responsible for 31 many critical situations, including fires, hazards, severe storms, floodings, as well as 32 non-urgent and urgent EMS calls (e.g., traffic accidents, drowning). In this paper, we 33 analyzed EMS operations of the Departmental Fire and Rescue Service of Doubs (SDIS 34 [START_REF] Abadi | Deep Learning with Differential Privacy[END_REF]), which has 71 centers currently deployed across the Doubs region in France to attend 35 to its population. As noticed in [START_REF] Arcolezi | Forecasting the number of firefighter interventions per region with local-differential-privacy-based data[END_REF][START_REF] Cerna | A Comparison of LSTM and XGBoost for Predicting Firemen Interventions[END_REF], the SDIS 25 and fire departments in general, have and/or share sanitized data with trusted third parties to train and develop ML-based 91 decision support systems.

92

To summarize, this paper proposes the following contributions:

93

•

Recognize the most influential variables when building accurately ML-based mod-94 els to predict ART. This would allow other EMS to collect these variables and 95 recreate our methodology or develop their own considering their policies.

96

• Evaluate the effectiveness of several values of (i.e., the privacy budget), to sani-97 tize emergency location data with GI and train ML-based models to predict ART.

98

To the author's knowledge, this is the first work to assess the impact of geo-99 indistinguishability on sanitizing the location of emergency scenes when training 100 ML models for such an important task. While predicting ART is a means to allow 101 EMS to save more lives, we notice that it is also possible to do so while preserving 102 the victims' privacy.

103

Outline: The remainder of this paper is organized as follows. In Section 2, we describe 104 the material and methods used in this work, i.e., the geo-indistinguishability privacy 105 notion that we are considering, the data presentation (context, collection, and analysis),

106
the sanitization of emergency scenes with GI, the ML models, and the experimental 107 setup. In Section 3, we present the results of our experiments and our discussion. Lastly,

108
in Section 4, we present the concluding remarks and future directions. 

Materials and Methods

110

In this section, we revise the notion of privacy considered in this paper, namely, Differential privacy [START_REF] Dwork | The algorithmic foundations of differential privacy[END_REF] has been accepted as the de facto standard for data privacy.

118

DP was developed in the area of statistical databases but it is now applied to several 119 fields. Furthermore, DP has also been extended to a local model (a.k.a. LDP [START_REF] Kasiviswanathan | What Can We Learn Privately[END_REF]) in 120 which users sanitize their data before sending it to the server. While DP is well-suited to 121 the case of trusted curators, with LDP, users do not need to trust the curator.

122

Geo-indistinguishability [START_REF] Andrés | Geo-indistinguishability[END_REF] is based on a generalization of DP developed in [START_REF] Chatzikokolakis | Broadening the Scope of Differential Privacy Using Metrics[END_REF] 123 and has been proposed for preserving location privacy without the need of a trusted 124 curator (e.g., a malicious location-based service -LBSs). A mechanism satisfies -GI 125 if for any two locations x 1 and x 2 within a radius r, the output y of them is ( , r)-geo-126 indistinguishable if we have:

127 Pr(y|x 1 ) Pr(y|x 2 ) ≤ e r , ∀r > 0, ∀y, ∀x 1 , x 2 : d(x 1 , x 2 ) ≤ r.
Intuitively, this means that for any point x 2 within a radius r from x 1 , GI forces the 128 corresponding distributions to be at most l = r distant. In other words, the level of 129 distinguishability l increases with r, e.g., an attacker can distinguish that the user is in 130

Paris rather than London but can hardly (controlled by ) determine the user's exact 131 location. Although both GI and DP use the notation of to refer to the privacy budget, 132 they cannot be compared directly because in GI contains the unit of measurement (e.g., 133 meters).

134

On the continuous plane (as we consider in this paper), an intuitive polar Laplace 135 mechanism has been proposed in [START_REF] Andrés | Geo-indistinguishability[END_REF] to achieve GI, which is briefly described in the 143 Algorithm 1 Polar Laplace mechanism in continuous plane [START_REF] Andrés | Geo-indistinguishability[END_REF] 1:

Input : > 0, real location x ∈ R 2 . 2: Output : sanitized location y ∈ R 2 . 3: Draw θ uniformly in [0, 2π) 4: Draw p uniformly in [0, 1) 5: Set r = C -1 (p) = -1 W -1 p-1 e + 1 
6: return : y = x + r cos (θ), r sin (θ) VSAV.

152

The process of an intervention is briefly described in the following. First, an 153 emergency call is received and treated by an operator. Next, the adequate crew/engine 154 is notified (t 1 ). Once the sufficient armament is gathered, the ambulance goes to the 155 emergency scene (t 2 ). Upon arriving on-scene, the crew uses a mechanical system to 156 report their arrival (t 3 ). We focus on the ART period, which is calculated as: ART = 157 t 3t 1 .

158

The operation process to decide the adequate SDIS 25 center to attend the interven- Summary statistics per year and per zone are shown in Table 1. The metrics in this table includes the total number of dispatched ambulances (Nb. Amb.), and descriptive statistics such as mean and standard deviation (std) values for the ART variable. We recall that for the year 2020, these statistics are up to June 2020 only. As also noticed in [START_REF] Arcolezi | Forecasting the number of firefighter interventions per region with local-differential-privacy-based data[END_REF][START_REF] Cerna | A Comparison of LSTM and XGBoost for Predicting Firemen Interventions[END_REF], the number of interventions increases throughout the years. The year 2010 presented high values in comparison with all other years, e.g., for Z1, the average ART was above the 10 min recommendation.

Preserving emergency location privacy with geo-indistinguishability

To preserve the privacy of each emergency scene, we apply the polar Laplace mechanism in Alg. We used five different levels for the privacy budget = l/r, where l is the privacy level we want within a radius r. center, even in real life, it would not imply that this center took charge of the intervention.

272

Therefore, the center attribute was not 'perturbed'.

273

To show the impact of the noise added to the Location attribute, From Table 3, one can notice that many features are perturbed due to sanitization Extreme Gradient Boosting (XGBoost) [START_REF] Chen | XGBoost: A Scalable Tree Boosting System[END_REF] is a decision-tree-based ensemble ML 296 algorithm that produces a forecast model based on an ensemble of weak forecast 297 models (decision trees). XGBoost uses a novel regularization approach over stan-298 dard gradient boosting machines, which significantly decreases model's complexity.

299

The system is optimized by a quick parallel tree construction and adapted to be 300 fault-tolerant under distributed environments.

301

• Light Gradient Boosted Machine (LGBM) [START_REF] Ke | A Highly Efficient Gradient Boosting Decision Tree[END_REF] tuning process via Bayesian optimization (BO). To this end, we used the HYPEROPT 352 library [START_REF] Bergstra | Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures[END_REF] with 100 iterations for each model. Table 4 in Appendix A displays the range of each hyperparameter we considered in the BO, as well as the final configuration used to train and evaluate the models.

Results and Discussion

In this section, we present the results of our experimental validation (Subsection 3.1) and a general discussion (Subsection 3.2) including related work and limitations. of existing literature, lower R 2 scores and similar RMSE and MAE results were achieved in [START_REF] Lian | Scalable Real-time Prediction and Analysis of San Francisco Fire Department Response Times[END_REF] to predict ART while using original location data only. With more details, Table 5 in Appendix A numerically exhibits the results from Figure 4. As one can notice in the left-hand plot of Figure 5, once data are sanitized with different levels of -GI, the hyperparameters optimization via BO is also perturbed. This way, local minimums were achieved in different steps of the BO (i.e., the last marker per curve indicates the local minimum). For instance, even though = 0.002747 is more strict than = 0.005493, results were still better for the former since, in the last steps of BO, three better local minimums were found. Besides, prospective predictions were achieved with either original or sanitized data. For instance, in the right-hand plot of 

Privacy-preserving ART prediction

XGBoost LGBM MLP LASSO

Discussion

394

The medical literature has mainly focused attention on the analysis of ART [3,32, 395 41] and its association with trauma [START_REF] Byrne | Association Between Emergency Medical Service Response Time and Motor Vehicle Crash 536 Mortality in the United States[END_REF][START_REF] Pons | Eight minutes or less: does the ambulance response time guideline impact trauma patient outcome?[END_REF] and cardiac arrest [START_REF] Bürger | The Effect of Ambulance Response Time on Survival Following Out-of-Hospital 533 Cardiac Arrest[END_REF][START_REF] Holmén | Shortening Ambulance Response Time Increases Survival in Out-of-Hospital Cardiac Arrest[END_REF][START_REF] Lee | Association between ambulance response time and neurologic outcome in patients with cardiac arrest[END_REF], for example. To 396 reduce ART, some works propose reallocation of ambulances [START_REF] Chen | Demand Forecast Using Data Analytics for the Preallocation of Ambulances[END_REF][START_REF] Carvalho | Integrating the ambulance dispatching and relocation problems to maximize system's preparedness[END_REF], operation demand 397 forecasting [START_REF] Chen | Demand Forecast Using Data Analytics for the Preallocation of Ambulances[END_REF][START_REF] Arcolezi | Forecasting the number of firefighter interventions per region with local-differential-privacy-based data[END_REF][START_REF] Cerna | A Comparison of LSTM and XGBoost for Predicting Firemen Interventions[END_REF][START_REF] Couchot | Anonymously forecasting the number and nature of firefighting operations[END_REF][START_REF] Lin | Leveraging Machine Learning Techniques and Engineering of Multi-Nature Features for National Daily Regional Ambulance Demand Prediction[END_REF], travel time prediction [START_REF] Aladdini | EMS response time models: A case study and analysis for the region of Waterloo[END_REF], simulation models [START_REF] Peleg | A geographic information system simulation model of EMS: reducing ambulance response time[END_REF][START_REF] Aboueljinane | Reducing ambulance response time using simulation: The case of Val-de-Marne department Emergency Medical service[END_REF], and EMS 398 response time predictions [START_REF] Aladdini | EMS response time models: A case study and analysis for the region of Waterloo[END_REF][START_REF] Lian | Scalable Real-time Prediction and Analysis of San Francisco Fire Department Response Times[END_REF]. The work in [START_REF] Lian | Scalable Real-time Prediction and Analysis of San Francisco Fire Department Response Times[END_REF] propose a real-time system for 399 predicting ARTs for the San Francisco fire department, which closely relates to this paper.

400

The authors processed about 4.5 million EMS calls considering original raw location 401 data to predict ART using four ML models, namely linear regression, linear regression 402 with elastic net regularization, decision tree regression, and random forest. However, no 403 privacy-preserving experiment was performed because the main objective of their paper 404 was proposing a scalable, ML-based, and real-time system for predicting ART. Besides,

405
we also included weather data that the authors in [START_REF] Lian | Scalable Real-time Prediction and Analysis of San Francisco Fire Department Response Times[END_REF] did not consider in their system, 406 which could help to recognize high ARTs due to bad weather conditions, for example.

407

Currently, many private and public organizations collect and analyze data about 408 their associates, customers, and patients. Because most of these data are personal 409 and confidential (e.g., location), there is a need for privacy-preserving techniques for 410 processing and using these data. Location privacy is an emergency research topic [START_REF] Shokri | Quantifying Location Privacy[END_REF][START_REF] Chatzikokolakis | Methods for Location Privacy: A comparative overview[END_REF] 411 due to the ubiquity of LBSs. Within our context, sharing and/or publishing the exact 412 location of an emergency raises many privacy issues. For instance, the Seattle Fire

413

Department [START_REF]Real-Time 911 Dispatch[END_REF] displays live EMS response information with the precise location and 414 reason for the incident. While the intention of some fire departments [START_REF] Lian | Scalable Real-time Prediction and Analysis of San Francisco Fire Department Response Times[END_REF][START_REF]Real-Time 911 Dispatch[END_REF] is laudable, 415 there are many ways for (mis)using this information, which can jeopardize users' privacy.

416

In our case, because the intervention's reason does not impose limits on SDIS 25 ARTs,

417

we did not consider this sensitive attribute in our data analysis and privacy-preserving 418 prediction models. Additionally, although during the EMS call processing, the SDIS 25 operator may acquire some personal data about the victim, this is not an operational 420 requirement and, hence, we did not use this information too. This way, we focused our 421 attention on the location privacy of each intervention.

422

To address location privacy, the authors in [START_REF] Andrés | Geo-indistinguishability[END_REF] proposed the concept of GI, which 423 is based on a generalization [START_REF] Chatzikokolakis | Broadening the Scope of Differential Privacy Using Metrics[END_REF] of the state-of-the-art DP [START_REF] Dwork | The algorithmic foundations of differential privacy[END_REF] to data breaches [START_REF] Mccandless | World's Biggest Data Breaches & Hacks[END_REF] and/or misuse of data, which compromises users' privacy. On 440 the other hand, training ML models with raw data can also leak private information.

441

For instance, in [START_REF] Song | Machine Learning Models that Remember Too Much[END_REF] the authors evaluate how some models can memorize sensitive 442 information from the training data, and in [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF], the authors investigate how ML models 443 are susceptible to membership inference attacks. To address these problems, some 444 works [START_REF] Arcolezi | Forecasting the number of firefighter interventions per region with local-differential-privacy-based data[END_REF][START_REF] Chamikara | Privacy Preserving Face Recognition Utilizing Differential Privacy[END_REF][START_REF] Fan | Image Pixelization with Differential Privacy[END_REF][START_REF] Couchot | Anonymously forecasting the number and nature of firefighting operations[END_REF][START_REF] Fukuchi | Differentially Private Empirical Risk Minimization with Input Perturbation[END_REF][START_REF] Agrawal | On the design and quantification of privacy preserving data mining algorithms[END_REF][START_REF] Agrawal | Privacy-preserving data mining[END_REF][START_REF] Kang | Input Perturbation: A New Paradigm between Central and Local Differential Privacy[END_REF] propose to train ML models with sanitized data, which is also known 445 as input perturbation [START_REF] Kasiviswanathan | What Can We Learn Privately[END_REF].

446

Input perturbation-based ML and GI are linked directly with local DP [START_REF] Kasiviswanathan | What Can We Learn Privately[END_REF] in which 447 each sample is sanitized independently, either by the user during the data collection 448 process or by the trusted curator, which aims to preserve privacy of each data sample.

449

This way, data are protected from data leakage and are more difficult to reconstruct, for 450 example. In [START_REF] Fukuchi | Differentially Private Empirical Risk Minimization with Input Perturbation[END_REF][START_REF] Kang | Input Perturbation: A New Paradigm between Central and Local Differential Privacy[END_REF], the authors investigate how input perturbation through applying 451 controlled Gaussian noise on data samples can guarantee ( , δ)-DP on the final ML model.

452

This means, since ML models are trained with perturbed data, there is a perturbation on 453 the gradient and on the final parameters of the model too. Service in English) analyzed in [START_REF] Aboueljinane | Reducing ambulance response time using simulation: The case of Val-de-Marne department Emergency Medical service[END_REF]. Besides, there is the possibility of human error when 471 using the mechanical system to report (i.e., record) the arrival on-scene time "ADate".

472

For instance, the crew may have forgotten to record status on arrival and may have registered later, or conversely, where the crew may have accidentally recorded before 474 arriving at the location. Also, it is noteworthy to mention that the arrival on-scene does 475 not mean arriving at the victim's side, e.g., in some cases the real location of a victim is 476 at the n-th stage of a building as investigated in [START_REF] Silverman | Vertical Response Time": Barriers to Ambulance Response in an Urban Area[END_REF]. 

Conclusion 478

In the event of an acute medical event such as a respiratory crisis or cardio-479 respiratory arrest, the time an ambulance takes to arrive on-scene has a direct impact on 

  109

  111 geo-indistinguishability (Subsection 2.1), we provide a description of the processing of 112 interventions by SDIS 25 (Subsection 2.2), the data collection process (Subsection 2.3), 113 the analysis of SDIS 25 ARTs (Subsection 2.4), the GI-based sanitization of emergency 114 location data (Subsection 2.5), the ML models used for predicting ARTs (Subsection 2.6), 115 and the experimental setup (Subsection 2.7).

116 2 . 1 .

 21 Geo-indistinguishability117

  136following. Rather than reporting the user's true location x ∈ R 2 , we report a point 137 y ∈ R 2 generated randomly according to D (y) = 2 2π e -d 2 (x,y) . Algorithm 1 shows the pseudocode of the polar Laplace mechanism in the continuous plane. More specifically, 139 the noise is drawn by first transforming the true location x to polar coordinates. Then, 140 the angle θ is drawn randomly between [0, 2π) (line 3), and the distance r is drawn from 141 C -1 (p) (line 5), which is calculated using the negative branch W -1 of the Lambert W 142 function. Finally, the generated distance and angle are added to the original location.

  226

Figure 2 3 Figure 1 .Figure 2 .

 2312 Figure 2 illustrates the hourly number of dispatched ambulances (left-hand plot)

Figure 3 .

 3 Figure 3. Emergency locations and SDIS 25 centers throughout the Doubs region: original data (left-hand plot), = 0.005493-GI data (middle plot), and = 0.002747-GI data (right-hand plot).

  282of emergency's location with GI. With high levels of (i.e., less private), the city and 283 the zone suffer low 'perturbation'. On the other hand, district is reassigned many times 284 as it is geographically smaller than the others. When = 0.000866, the city is already 285 reassigned more than 50% of the time and the district about 75% of the time. Moreover, 286 one can notice that the mean and std values of the great-circle distance increase as the 287 parameter decreases (i.e., more private). Because = l/r, making l smaller and/or r 288 higher, the stricter becomes, and therefore more noise is added to the original locations. 289 Besides, the correlation between the great-circle distance with the ART variable decreases 290 proportionally as becomes smaller. = 0.005493 5.20(0.05) 7.68(0.06) 25.8(0.05) 3.48(1e-3) 3.72(7e-4) 0.367(2e-4) = 0.002747 11.3(0.05) 17.6(0.10) 41.5(0.12) 3.57(1e-3) 3.72(1e-3) 0.362(2e-4) = 0.001155 28.1(0.06) 42.3(0.10) 66.2(0.09) 4.03(3e-3) 3.74(3e-3) 0.335(5e-4) = 0.000866 35.5(0.10) 52.4(0.11) 74.0(0.11) 4.38(3e-3) 3.81(4e-3) 0.313(1e-3) = 0.000693 41.4(0.12) 60.3(0.09) 79.4(0.05) 4.77(6e-3) 3.92(5e-3) 0.288(1e-3)Table 3: Percentage of perturbation for categorical attributes (city, zone, and district) according to and statistical properties (mean and std values and correlation with ART) of the original and GI-based datasets for the great-circle distance attribute. Mean(std) values are reported since we repeated our experiments with 10 different seeds. 2.6. Machine learning models 292 Four state-of-the-art ML techniques have been considered during our experiments, 293 to predict the scalar ART outcome in a regression framework. They are briefly described 294 in the following: 295 •

Figure 4

 4 Figure 4 illustrates the impact of the level of GI for each ML model to predict ART according to each metric. As one can notice in this figure, for XGBoost, LGBM, and LASSO, there were minor differences between training models with original location data or sanitized ones. On the other hand, models trained with MLP performed poorly with GI-based data. In addition, by analyzing models trained with original data, while the smaller RMSE for LASSO is about 5.65, for more complex ML-based models, RMSE is less than 5.6, achieving 5.54 with XGBoost and LGBM. In comparison with the results

Figure 4 .

 4 Figure 4. Impact of the level of -geo-indistinguishability for each ML model to predict ART according to each metric.Indeed, among the four tested models, LGBM and XGBoost achieve similar metric results while favoring the LGBM model. Thus, Figure5illustrates the BO iterative process for LGBM models trained with original and sanitized data according to the RMSE metric (left-hand plot); and ART prediction results for 50 dispatched ambulances in 2020 out of 8,709 ones (right-hand plot) with an LGBM model trained with original data (Pred: original) and with two LGBM models trained sanitized data, i.e., with = 0.005493 (low privacy level) and with = 0.000693 (high privacy level).

Figure 5 .

 5 Figure 5. The left-hand plot illustrates the hyperparameters tuning process via Bayesian optimization with 100 iterations for LGBM models trained with original data and sanitized ones. The right-hand plot illustrates the prediction of ARTs with LGBM models trained with original data and with sanitized ones.

Figure 5 ,

 5 Figure 5, even for the high peak-value of ART around 40 minutes, LGBM's prediction 384
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  1 to the Location attribute of each intervention. This means, even

	if our dataset is per ambulance dispatch (i.e., 186, 130 ambulances), we used the same
	sanitized value per intervention (i.e., 182, 700 unique interventions). Although in [14] the
	authors propose two further steps to Alg. 1, i.e., discretization and truncation, both steps
	can be neglected in our context. This is, first, because SDIS 25 may also help other EMS
	outside the Doubs region as we discussed in Subsection 2.2, and second, we assume
	that any location in the continuous plane can be an emergency scene. While reporting

an approximate location in the middle of a river may not have much sense in LBSs, in an emergency dataset with approximate locations, this may indicate an urgency for someone who drowned in the river, for example.

Table 1 :

 1 Table 2 exhibits the five different levels of privacy. For Mean and std values for the ART variable and the total number of dispatched ambulances (Nb. Amb.) per year in zones Z1, Z2, and Z3, respectively. For 2020, we only consider cases of the first semester.

	Year	Z1 Nb. Amb. Mean Std Nb. Amb. Mean Std Nb. Amb. Mean Std Z2 Z3
	2006	197	9.23 4.41	367	11.25 5.50	354	14.27 5.40
	2007	236	7.39 3.05	671	10.79 5.04	595	14.35 5.52
	2008	799	8.69 6.04	1,055	11.19 5.32	911	14.53 6.02
	2009	1,363	8.76 6.05	2,087	11.08 5.67	1,872	14.94 6.46
	2010	2,643	10.08 7.23	2,797	12.48 6.85	2,483	16.01 7.22
	2011	5,971	8.26 5.61	4,276	11.24 6.13	3,295	14.50 6.25
	2012	6,078	8.66 5.89	4,661	11.18 6.39	3,602	14.86 6.24
	2013	6,780	8.82 5.72	5,048	11.03 6.11	3,972	15.07 6.30
	2014	6,847	8.37 5.23	5,481	10.80 5.86	4,240	14.91 6.34
	2015	7,226	8.46 5.50	5,596	10.86 5.78	4,643	15.02 6.12
	2016	7,510	8.50 5.35	6,179	11.19 5.92	4,861	15.32 6.35
	2017	8,650	8.76 5.32	7,251	11.49 6.01	5,523	15.51 6.36
	2018	9,051	8.90 5.46	7,641	11.64 6.11	5,956	15.59 6.23
	2019	7,030	9.42 6.02	6,238	12.29 6.66	5,016	16.60 6.88
	2020 *	3,397	9.73 5.87	2,843	12.59 6.56	2,449	16.46 6.44
	264						
			= l/r	l	r (meters)		
			0.005493 ln (3)	200		
			0.002747 ln (3)	400		
			0.001155 ln (2)	600		
			0.000866 ln (2)	800		
			0.000693 ln (2)	1, 000		

the sake of illustration, Figure

3

exhibits three maps of the Doubs region with the points 260 of original raw location (left-hand plot), = 0.005493-GI location (middle plot), and 261 = 0.002747-GI location (right-hand plot). As one can notice, with an intermediate 262 privacy level (l = ln (3), r = 400), locations are more spread throughout the map while 263 with a lower privacy level (l = ln (3), r = 200), locations approximate the real clusters.

Table 2 :

 2 Values of = l/r for sanitizing emergency location data with GI.

	271

With the new Location values of each intervention, we also reassigned the city, 265 the district, and the zone when applicable. In addition, we recalculated the following 266 features associated with it: the great-circle distance, the estimated driving distance, and 267 estimated travel time. The two features recalculated with OSRM API only consider 268 roads, i.e., if the obfuscated location is in the middle of a farm, the closest route estimates 269 the driving distance and travel time until the closest road. We also highlight that if the 270 new coordinates of the emergency scene indicate a location closer to another SDIS 25

Table 3

 3 

	exhibits the

277

values since we repeated our experiments with 10 different seeds (i.e., DP algorithms are 278 randomized). Although we did not include the estimated driving distance and estimated 279 travel time from OSRM API in this analysis, in preliminary tests, we noticed that these 280 two features follow a similar pattern as the great-circle distance attribute.

all models were tested with original 336 raw data as it would be if EMS deployed a decision-support system in real life. In this

  

	304		computational speed and resource consumption in comparison to other decision
	305		tree-based algorithms.
	306	•	Multilayer Perceptron (MLP) is an artificial neural network of the feedforward
	307		type [35]. These algorithms are based on the interconnection of several units
	308		(neurons) to transmit signals, which are normally structured into three or more
	309		layers, input, hidden(s), and output. We used the Keras library [36] to implement
	310		our deep learning models.
	311	•	Least Absolute Shrinkage and Selection Operator (LASSO), a method of contracting
	312		the coefficients of the regression, whose ability to select a subset of variables is
	313		due to the nature of the constraint on the coefficients. Originally proposed by
	314		Tibshirani [37] for models using the standard least squares estimator, it has been
	315		extended to many statistical models such as generalized linear models, etc. We
	316		used the LASSO implementation from the Scikit-learn library [38].
	317	2.7. Experiments
			Because in Table 3 there are low variations (i.e., small std values) considering 10
	340				n	∑ n i=1 (y i -ŷi ) 2 ;
	341	•	Mean absolute error (MAE) measures the averaged absolute difference between
	342		real and predicted values and is calculated as: MAE = 1 n ∑ n i=1 |y i -ŷi |;
	343	•	Mean absolute percentage error (MAPE) measures how far the model's predictions
	344		are off from their corresponding outputs on average and is calculated as: MAPE =
	345		1 n ∑ n i=1	y i -ŷi y i	• 100%;
	346	•	Coefficient of determination (R 2 ) measures the proportion of the variance in the
	347		dependent variable that is predictable from the independent variable(s). An R 2 = 1
	348		would indicate a model that fully captures the variation in ARTs;
		in which y i is the real output, ŷi is the predicted output, and n is the total number of
					is a novel gradient boosting frame-

318

different executions on all analyzed features, we ran our experimental validation only 319 once. In our experiments, each sample corresponds to one ambulance dispatch, in 320 which we included temporal features (e.g., hour, day), weather data (e.g., pressure, 321 temperature), traffic data, the emergency's location (latitude and longitude in radians), 322 and computable features (e.g., distance, travel time). The scalar target variable is the ART 323 in minutes, which is the time measured from the EMS notification to the ambulance's 324 arrival on-scene. All numerical features (e.g., temperature) were standardized using the 325 StandardScaler function from the Scikit-Learn library. Categorical features (e.g., center, 326 zone, hour) were encoded using mean encoding, i.e., the mean value of the ART variable 327 with respect to each feature. The target variable, namely ART, was kept in its original 328 format (minutes) since no remarkable improvement was achieved with scaling.

329

We divided our dataset into training (years 2006-2019) and testing (six months of 330 2020) sets to evaluate our models. Thus, five models per ML technique (i.e., XGBoost,

331

LGBM, MLP, and LASSO) were built to predict ART on each month of 2020 considering 332 the sanitized datasets with different levels of -GI location data (cf. Table

2

). In addition,

333

for comparison, we also trained one additional model per ML technique with original 334 raw data. All models were trained continuously, i.e., at the end of each month, the new 335 known data were added to the training set. Lastly, 337 paper, the models were evaluated using the following regression metrics: 338 • Root mean squared error (RMSE) measures the square root average of the squares 339 of the errors and is calculated as: RMSE = 1 349 samples, for i ∈ [1, n]. Results for each metric were calculated considering the 6 months 350 period of evaluation. The RMSE metric was also used during the hyperparameters 351

XGBoost LGBM MLP LASSO 0 10 20 30 40 MAPE

  

								Original =0.005493 =0.002747	=0.001155 =0.000866 =0.000693
	6	5.54 5.55 5.56 5.58 5.59 5.6	5.54 5.55 5.55 5.59 5.59 5.6	5.59 5.64 5.7 5.82 5.86 6.05	5.65 5.66 5.66 5.67 5.67 5.67		4	3.43 3.45 3.44 3.48 3.5 3.51	3.39 3.39 3.46 3.5 3.47 3.51	3.56 3.58 3.64 3.86 3.87 3.97	3.48 3.5 3.5 3.51 3.51 3.52
	2 4 RMSE					1 2 3 MAE			
	0	30.11 30.43 30.36 31.1 31.52 31.64	29.48 29.63 30.69 31.33 30.96 31.54	31.87 32.31 32.69 35.7 35.81 36.12	30.26 30.57 30.61 30.84 30.91 31.01	R 2	0 0.2 0.3 0.4	XGBoost LGBM MLP LASSO 0.34 0.34 0.33 0.31 0.34 0.34 0.32 0.31 0.34 0.34 0.3 0.31 0.33 0.33 0.27 0.31 0.33 0.33 0.22 0.26 0.31 0.33 0.33 0.31
							0.1			
							0.0	XGBoost LGBM MLP LASSO

  model. As highlighted

	424	
	425	in [14], attackers in LSBs may have side information about the user's reported location,
	426	e.g., knowing that the user is probably visiting the Eiffel Tower instead of swimming in
	427	the Seine river. However, this does not apply in our context because someone may have
	428	drowned and EMS had to intervene. Similarly, even for the dataset with intermediate
	429	privacy (and higher) in which locations are spread out in the Doubs region (cf. map
	430	with 0.005493-GI location in Figure 3), someone may have been lost in the forest and
	431	EMS would have to interfere. For these reasons, sharing datasets with approximate
	432	emergency locations (i.e., sanitized with GI, for example) has prospective directions as
	433	many locations are possible emergency scenes. Indeed, we are not interested in hiding
	434	the emergency's location completely since some approximate information is required in
	435	order to retrieve other features (e.g., city, zone, estimated distance) to use for predicting
	436	ART.
	437	Moreover, learning and extracting meaningful patterns from data, e.g., through ML,
	438	play a key role in advancing and understanding several behaviors. However, on the
	439	one hand, storing and/or sharing raw personal data with trusted curators may still lead

Table 4 :

 4 Search space for hyperparameters by ML model and the best configuration obtained for predicting ARTs per dataset.

	480	
	481	the quality of service provided [1,2,4-6,28]. Ambulance response time is a fundamental
	482	indicator of the effectiveness of EMS systems. For this reason, an intelligent decision-
	483	support system is necessary to help minimize overall EMS response times. The present
	484	work first analyzes historical records of ARTs to find correlations between their extracted
	485	features and explain the trends through the 15 years of collected data. Then, we sought
	486	to predict the response time that each center equipped with ambulances had to an event,
	487	but not only that, because we also consider that sharing or making public the location
	488	of the emergency would be subject to privacy issues. Therefore, the joint work aimed
		to evaluate the effectiveness of predicting ARTs considering ML models trained over

489

sanitized location data with different levels of -geo-indistinguishability. As shown in 490 the results, the sanitization of location data and the perturbation of its associated features 491 (e.g., city, distance) had no considerable impact on predicting ART. With these findings, 492 EMS may prefer using and/or sharing sanitized datasets to avoid possible data leakages, 493 membership inference attacks, or data reconstructions, for example.

494

For future work, we aim to extend the analysis and predictions to different operation 495 times such as the pre-travel delay (i.e., gathering personnel and ambulances) and travel 496 time (e.g., from the emergency scene to hospitals), while respecting users' privacy. In 497 addition, new variables will be considered such as the number of dispatched ambulances 498 registered in a previous or current time, and the number of ambulances and firefighters 499 available in each center at a given time, given that while there are few resources available, 500 ART may be longer. Indeed, the aim is to build an intelligent system capable of predicting 501 ARTs while respecting victims' privacy. This way, this system would allow us to reinforce 502 SDIS 25 centers with the necessary firefighters to attend incidents faster; to create a new 503 center according to the concurrence and high average ARTs for a given area; as well 504 as to convert a static resource deployment plan into a dynamic one, which would be 505 based on the selection of the center with shorter response times taking into account the

Table 5 :

 5 Metrics results for each ML model trained with original data and sanitized ones. The best results per metric and model are highlighted in bold.

tions with victim, that were attended by SDIS 25 centers with a VSAV, were eligible

https://en.wikipedia.org/wiki/Great-circle_distance

work, which implemented a leaf-wise strategy. This strategy significantly reduces
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