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Enhancing swimming and pumping performance
of helical swimmers at low Reynolds numbers

Johan E. Quispe1,+, Aude Bolopion2, Pierre Renaud3 and Stéphane Régnier1

Abstract—Helical swimmers, actuated by low-strength uni-
form rotating magnetic fields, can develop swimming and
pumping in low Reynolds number environments. They could
play an important role for future in vitro and in vivo biomedical
microrobotic tasks. Studying how their morphology influences
swimming and pumping tasks is then of importance. In this
paper, we focus on two geometrical aspects for optimizing
both tasks: their helical shape and their cross-section. As a
first contribution, we investigate the optimal performance of
swimming and pumping. As a second contribution, we elucidate
between optimal shapes at performing swimming and pumping
at the same time. This study based on numerical simulation
is intended to serve as a guiding reference for building
optimal helical structures either for swimming, pumping, or
a combination of both tasks.

Index Terms—Micro/Nano Robots, Automation at Micro-
Nano Scales.

I. INTRODUCTION

W IRELESS microrobots are an attractive solution for
microassembly [1], local remote sensing [2], and

future medical interventions [3]. Due to their compactness
and ease to actuate in very restrained environments, He-
lical Swimmers (HS) stand out for their common actuation
method that requires low-strength uniform rotating magnetic
fields of few milliteslas.
The importance of HS structures (HSs) relies on the func-
tionalities they can display. The first is the swimming ca-
pability: HSs would be capable of navigating through low
Reynolds (Re) fluids in the human conduits to transport
payloads such as drugs [4] or sperm cells [5]. The second
functionality is pumping fluids in obstructed conduits, for
mixing fluids [6] or dispensing microparticles [7]. There-
fore, studying how their morphological changes affect their
performance when realizing certain of such tasks is of great
interest. We intend with this work, to provide guidelines for
optimizing HSs for pumping and swimming.
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A large number of studies on the helical swimming effi-
ciency have been carried out experimentally [8, 9, 10, 11]
and through simulations. In that regard, the versatility of
numerical approaches was a key during optimization of
geometrical aspects and different physical conditions.
Previous works based on boundary element method (BEM)
have provided an important framework to find optimal
helical structures at swimming. Several aspects such as he-
lical shape variation [12, 13], cross-section orientation [14],
degree of confinement [15] could be analysed. Other works
with CFD have studied the effect on the swimming of differ-
ent helical shapes on propulsion speed was explored [16]. In
this paper, we address the effect of the cross-section and the
helical shape to analyse their combined effect on swimming.
Moreover, we provide an interesting framework to study
helical swimming through two criteria concerning the type
of magnetic source.
Regarding pumping, different aspects were studied such as
the flux generation [15], thrust [17], viscoelastic media [18],
and mixing capabilities [19]. On the other hand, efficiency at
pumping has not been totally covered. Besides, the optimal
operation of swimming and pumping at the same time
has not been deeply covered in the literature. And, in the
envisaged medical operations, swimmers might be required
to perform both tasks in one mission e.g. to arrive at blood
clots sites and apply a constant pumping action to reestablish
the blood flow.
Numerical methods such as RFT and SBT methods are based
on the partition of large bodies in segments that contribute
independently to the total propulsion of the structure. Even
if those techniques are computationally less expensive com-
pared to BEM and CFD, aspects such as the shape or cross-
section geometry, i.a. , cannot be analysed. In this work, we
exploit CFD to model helical swimming and pumping in
Newtonian fluids. This enables us to compute the generated
flux at pumping as well as to investigate geometrical aspects
that RFT and SBT methods cannot deal with e.g. low aspect
ratios, small helical radius, and the cross-section elongation
and orientation.
The formulation of the optimization problem is treated in
section II. In section III and IV we analyse the different
criteria for swimming and then for pumping. In section V
we analyse the optimization of both tasks at the same
time. Finally, we provide a summary of the relevant results
obtained in this work in section VI.
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II. FORMULATION OF THE OPTIMIZATION
PROBLEM

A. Helical Shape

We consider the following parametric equation ψ to
represent the helical centerline of HS structure (Fig. 1):

ψ(s) = Rcos(s)x̂+Rsin(s)ŷ+
λ s
2π

ẑ (1)

with ψ : R → R3, s ∈ [0,2πN], R the helical radius, λ the
pitch value, and N the number of turns.
The HSs are considered initially to have a circular cross-
section with radius r. To compare structures during the
optimization, we set a constant total volume, V = Lπr2,
with L the total flagellum length. By doing that, we can
reduce the number of possible geometrical configurations
in Eq. (1). For that purpose, we introduce a dimensionless
set of parameters {β , θ , R

r } with the aspect ratio β = L
2r ,

the helical angle θ = arcsin(t · ẑ), and the normalized helical
radius R

r . Note that the helical angle here is the complement
of the pitch angle that is commonly defined as arccos(t · ẑ)
being t the tangent vector of the helix equation and ẑ the
propulsion direction of the swimmer. With those variables,
Eq. (1) turns into:

Λ(β ,θ ,
R
r
,s) =

R
r
(

V
2πβ

)
1
3 cos(s)x̂+

R
r
(

V
2πβ

)
1
3 sin(s)ŷ+

R
r
(

V
2πβ

)
1
3 tan(θ)sẑ

(2)

with θ ∈ [0, π

2 ],
R
r and β in R+, s ∈ [0,2πN], and

N = β cos(θ)
πR/r . The cross-section is also parametrized for the

optimization. We consider the general case of an elliptic ge-
ometry with major radius a, minor radius b, and orientation
φ (Fig. 1(b) and (c)). Major and minor radius are computed
considering the cross-section area as constant for each
configuration with the same aspect ratio β , so, ab = r2. By
utilizing the vector base perpendicular to the helix centerline
{n,b} formed by the normal and binormal vectors, and the
base associated to the minor and major axis respectively
{np,bp}, the orientation is defined as φ = arccos(n ·np).
Thus, we use the ratio between major and minor radius a

b
and orientation φ as control parameters to tune the cross-
section shape. The parameter φ has been already used in the
literature for the building of twist-type HSs [20]. Then, its
implementation in the design of future micromachines for
medical purposes has been demonstrated to be practical and
feasible.

B. Magnetic Propulsion

HSs are commonly actuated by low-strength uniform
rotating magnetic fields. For that purpose, their composition
include magnetic elements. They experience a magnetic
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Figure 1: Geometrical parameters of HSs. (a) A general HS
structure with elliptic cross-section showing the relevant parameters
in our study namely, the helical angle θ , the tangent to the helix
centerline t, the pitch λ , the flagellum length L, and the helical
radius R. (b) Elliptic cross-section with major radius a, minor radius
b and orientation φ . (c) Orientation of the cross-section φ . (d)
Notations: Ω f is the fluid domain, ∂Ω f s depicts boundaries of the
HS in contact with the fluid, and ∂Ω f c the container boundaries
with radius Rc.

force fm, and a magnetic torque τm given by the following
expressions [21]:

fm =Vm(m ·∇)B τm =Vmm×B (3)

where Vm is the volume of the magnetic material presented
in HSs, m is the volumic density of the magnetic moment,
and B the magnetic field in which HSs are exposed. As
the magnetic field is considered quasi-uniform [21], the
magnetic force fm is negligible. Then, HSs only experience a
magnetic torque τm having a maximum value when m⊥ B.
Swimming and pumping depend on the magnetic torque τm,
and at the same time τm is affected by the magnetization
method used to fabricate them. We have then to set condi-
tions to investigate optimal swimming and pumping.
Regarding magnetization conditions, in [22], the magnetic
material is deposited on the HSs’ surface along the whole
body length. Then, magnetic torque τm for such cases
depend on the surface of each structure. On the other
hand, in [23, 24], authors made use of a soft-magnetic
head prepared by e-beam evaporation. Hence, all structures
experienced the same τm under the same B but not the
same fluidic torque τf since they could have different geome-
tries. Other methods combine the use of superparamagnetic
polymer composites with two photon polymerization for
the fabrication of HSs [20]. Through the application of an
external magnetic field during the composite soft baking,
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Figure 2: Different tasks of HSs. (a) Swimming. (b) pumping, in
this task a tethered structure is considered (U = 0) and a flow is
generated in the opposite direction of the thrust (T ).

the single-domain is magnetized parallel to the external
magnetic field, achieving shape-independent magnetic prop-
erties. In this work, let us consider that all HSs have
the same quantity of magnetic material Vm as well as the
volumic density of the magnetic moment m. In that regard,
the method used in [20] can apply for our subsequent
evaluation. We consider structures with same volume that
in average can keep the same quantity of magnetic material,
if such particles are magnetized through the HS easy axis, in
average, the magnetization of such structures will be almost
the same. Other cases where this study could be applicable
is when using magnetic heads [23], nonetheless, in such a
case, the head drag have to be negligible to not alter the
helical contribution to the thrust. Under such conditions, the
differential factor for optimizing those structures relies on
the fluidic torque τf generated by them.

C. Fluid and Helical Structure Dynamics

HSs develop a rotary motion for swimming and pumping
under low Reynolds number Re conditions. The fluid flow
generated by HS structure is then governed by Navier-
Stokes (N-S) equations in the creeping flow regime given
as follows:

∇ ·Γ = 0 in Ω f × [0, t0] (4)

Γ =−pI+µ(∇u+(∇u)T ) (5)

∇ ·u = 0 in Ω f × [0, t0] (6)

with u the fluid velocity field, p the pressure, ρ the fluid
density and µ its dynamic viscosity. Γ represents the stress
on an infinitesimal fluid volume, Ω f depicts the fluid domain
(Fig. 1(d)), and [0, t0] the temporal domain. The boundary
condition in the fluid-structure domain ∂Ω f s are given by:

u = us in ∂Ω f s× [0, t0] (7)

us =
dr
dt

in ∂Ω f s× [0, t0] (8)

us = U+ω× (r− r0) in ∂Ω f s× [0, t0] (9)

where us is the HS structure velocity in one point r situated
on its surface. r0 is the HS center of mass, U = Uẑ is the

propulsion swimming speed (cf. Fig. 2(a)), which in the case
of pumping is zero (cf. Fig. 2(b)). Finally, ω = ωẑ is the
HS angular velocity. The final boundary condition, defined
for the limits of the container (∂Ω f c), is:

u = 0 in ∂Ω f c× [0, t0] (10)

which indicates a zero fluid speed in the fluid-container
boundary. Then, the fluidic force ff on the HS is computed
by integrating the total stress (Γ) over all the HS structure’s
surface.

ff =
∫

∂Ω f s

Γn f ds (11)

being n f the normal vector to the surface of each finite
element on the robot surface, and ds the surface element.
Analogously, we can compute the fluidic torque τf as fol-
lows:

τf =
∫

∂Ω f s

(r− r0)×Γn f ds (12)

Finally, as HSs are immersed in a low Re fluid, getting the
steady state is quasi-immediate as the sum of external forces
and torques is null:

fm + ff = 0 τm + τf = 0 (13)

D. Criteria For Optimization

Authors in [25] provides three different coefficients for
evaluating the optimal swimming performance, namely,
energetic efficiency, swimming efficiency, and propulsion
efficiency. To compute those coefficients, they made use of
the swimming speed U (Fig. 2), the motor torque τ and
drag coefficients given by RFT. A helical flagellum was then
considered with a head as a base structure. Then, using the
head drag coefficient A0, the energy efficiency was computed
as the ratio A0U

τω . On the other hand, the drag effect was
not considered for the definition of swimming efficiency,
computed as the ratio U

τω . In [12] a dimensionless expres-
sion of swimming efficiency µL2U

τ
is proposed, with τ the

fluidic torque and L the flagellum length of the HS. In this
work, we consider HSs without head or the case where the
head drag can be negligible. Then, the latter expression is
the most adapted. Swimming efficiency coefficient makes
the optimization problem to be interpreted as to find the
optimal structure that generates a greater speed consuming
the least possible torque. On the other hand, the propulsion
efficiency, defined as U

ω , and can be regarded as a possible
measurement of the linear distance covered per rotation.
Previous expressions, µL2U

τ
and U

ω , stand for two different
ways of focusing on the optimization problem considering
the nature of the power source. The former definition
indicates that we have a limited magnetic source, and in
order to find an optimum HS structure, we have to search
for structures that outperforms the others with the least
possible torque. The latter definition refers to the fact that
we have an infinite magnetic source, typically a few teslas,
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Figure 3: Color-map depicting the swimming speed (in µm/s) of structures with the same volume V in the configuration space defined
by {β ,θ , R

r ,}. To compute these results, HSs were set at constant angular speed ω = 2π Hz. Rd represents a distance equivalent
to 18r100 = 0.6318µm, where r100 = 3.51× 10−2µm is the flagellum radius r for the structure with aspect ratio β = 100. Then,
18r100 ≈ 14.3r50 ≈ 10.5r20.

which always provides the necessary torque to rotate the HS,
thus, demonstrating no step-out frequencies or frequencies at
which the magnetic torque τm is not strong enough to rotate
the HS structure synchronously with B. Therefore, in such a
case, evaluating the swimming speed per rotation indicates
an optimum performance.
To evaluate pumping, in [26, 17] the total thrust (T = ff · ẑ)
generated by HSs is used as a study variable. In [15], authors
introduce the total flux I generated by HSs for studying
pumping. They compute the flux I =

∫
H u ·nHds in a plane

H perpendicular to axis of the HS, with u the fluid velocity
field and nH the normal vector of plane H. In those cases,
the pumping action is evaluated under the criterion of an
infinite magnetic source. However, for future HS that must
accomplish pumping and swimming tasks for one mission,
the evaluation under the limited magnetic source criterion is
of high importance.
The criteria used in our study consists in evaluating sepa-
rately the swimming and pumping, considering the two types
of magnetic sources namely, an infinite and a limited one.
Afterward, we analyse the performance of both tasks at the
same time.
For swimming, we evaluate propulsion efficiency with the
situation of infinite magnetic source by proposing the fol-
lowing expressions as study variables: the swimming speed
U and the dimensionless speed U

L f with f = ω
2π

. Then, to
evaluate the case where we account with a limited magnetic
source, we use the dimensionless swimming efficiency µL2U

τ
.

For pumping, we treat the case of the infinite source through
analysing directly the total thrust T generated by HS struc-
ture and the normalized flux I

ωR3
c

at the middle plane of the
HS (Hm) with Rc the container radius. To treat the case of the
finite source we propose for the first time the dimensionless
energetic efficiency at pumping expression, T L

τ
.

Finally, to consider at the same time swimming and pump-
ing, we build an objective function g that is the weighed sum
of swimming and energetic efficiencies using a coefficient
α ∈ [0,1] to indicate the balance between swimming and
pumping priorities: g = α

S
S0
+(1−α) P

P0
.

III. SWIMMING PERFORMANCE OPTIMIZATION

In this section, the fluid and structure dynamics is treated
with the finite element method through a commercial soft-
ware, COMSOL Multiphysics. For that purpose, we used the
CFD-package with the Math package “arbitrary Lagrangian-
Eulerian” method (ALE) for treating the structure mesh
displacement. Simulations were generated using a Intel(R)
Core(TM) processor with 28GB-RAM. The mesh resolu-
tion was extremely fine (about 200000 elements on the
HS surface). The computation time for each simulation in
the transitory regime is between 5 and 25 min depending
on the geometry of the HSs. The swimming of HSs is
studied considering an angular speed ω of 2π Hz, which
is equivalent to 1 rotation per second. The choice of this
value is appropriate since either flux and thrust have linear
behaviours with respect to ω. Afterwards, the choice of
the constant volume V was based on the flagellum bundle
volume of the E. coli bacteria considered in [27, 15, 28],
the values of L and r are the ones considered in [15, 28].
Since L and R are 7.1 µm and 0.035 µm respectively, the
computed volume is about 2.73× 10−20 m3, ensuring that
the structures characteristic length will be in the microscale,
Re can be computed as ρLU/µ , being in this study about
7.1×10−6, the structures speed U being about 1µm/s, and
the fluid properties density ρ and viscosity µ being that of
distilled water.

A. Helical Shape Influence

Here, circular cross-sections are considered ( a
b = 1).

Figure 3 depicts the swimming speed U of the dif-
ferent structures in the space of variables {θ , R

r } for
aspect ratios β = {20,50,100} corresponding to total
lengths L = {2.41,4.43,7.03}µm and flagellum radius
{r20 =6.01,r50 =4.43,r100 =3.51}10−8m, respectively. Op-
timum propulsion efficiency is achieved for HSs with a
helical angle θ ∈ [40◦,60◦] and a normalized helical radius
R
r with the largest possible value. Knowing that the scale
R
r is different in each color-map for each aspect ratio β
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Figure 4: Dependence of the swimming propulsion speed U on the
configuration space set {β , R

r ,θ}. (a) R
r vs. U for θ ∈ [10,80] given

β = 20. (b) θ vs. U for R
r ∈ [6,18] given β = 20. (c) R

r vs. U for
β ∈ {20,50,100} given θ = 50◦. (d) θ vs. U for β ∈ {20,50,100}
given R

r = 18.

depicted in Fig. 3, a fixed radial distance Rd for each color-
map will be situated differently. Here, we propose arbitrarily
Rd = 18r100 (when R

r = 18 in graph with β = 100) to observe
the different positions that the same distance represents in
all graphs. For the other color-map graphs, that distance
represents other value in the scale R

r e.g. R
r ≈ 14.3 for

graph with β = 50 and R
r ≈ 10.5 for graph with β = 20

(Fig. 3 magenta line). Rd can serve to establish a criterion
for bounding the helical radius of HSs. Under that condition,
HSs with β = 100 can achieve a greater swimming speeds
U compared to HSs with lower aspect ratios. From these
results, structures with larger aspect ratios and a helical
angle θ ≈ 50◦ experiences a better propulsion efficiency.
Fig. 4 represents the swimming speed U with respect the
set of variables {β , R

r ,θ}. Graphs (a) and (c) show a linear
behavior of U with respect to the normalized helical radius
R
r . In addition, from graphs (b) and (d) a maximum value
of U is observed for θ ≈ 50◦. In order to have a better
approximation, Fig. 5 proposes a zoom on the region of
interest for β = 20. In that figure the propulsion efficiency
(a), the swimming efficiency (b), the fluidic torque (c), and
the behaviour of U

L f as function of θ (d) are depicted.
Regarding the propulsion efficiency (cf. Fig. 5(a) and (d)),
we found a maximum efficiency for θ = 52.5◦ for every
R
r . In previous works [26, 29, 30], analytical models were
implemented using RFT and SBT approximations. There
exists a relation that links the propulsion speed with drag
coefficients and the geometrical parameters of the helix
given by U = ωR (χ−1)sin(2θc)

2[1+(χ−1)sin2(θc)]
, with χ ≈ 2 using the

slender body approximation. Through this assumption, the
maximum speed is attained for θc =

1
2 arccos( χ−1

χ+1 )= 35.26◦,
which is with our nomenclature equivalent to θ = 54.74◦.
Nonetheless, we found a maximum angle for θ ≈ 52.5◦. The

Figure 5: Optimization of HSs with aspect ratio β = 20. (a)
Performance per rotation ( U

L f ). (b) Performance per torque ( µL2U
τ

).
(c) Fluidic torque τ . (d) θ vs. U

L f for different R
r values.

difference can be due to the slender-body approximation,
that is not needed with finite element method. Structures are
then considered of quasi-zero filament width, and moreover,
the force interaction with the neighboring points is ne-
glected. Additionally, we considered structures with a small
helical normalized radius R/r, which makes the contribution
from the neighboring points much stronger. Experimental
results in [20] are obtained with superparamagnetic HSs of
regular composition and the same aspect ratio β and helical
normalized radius R/r. It is demonstrated that for θ = 52.5◦,
the swimmer structures achieve a better dimensionless speed
U/L f . Hence, our simulation results are in good agreement
according to such experimental data. Regarding the torque,
its value increases as R

r increases (cf. Fig. 5(c)). On the
other hand, regarding the normalized swimming efficiency,
the maximum efficiency is found for θ = 55◦ and R

r = 2.3
(cf. Fig. 5(b)). Keaveny et al. in [12] found the optimum
swimmer under this criterion for θ = 57.2◦ and R

r = 2.2. The
slight differences between these two results can be explained
by the fact that in [12] authors used BEM-based corrections
for computing the traction and resistances coefficients of
an RFT model, which provides a relationship of U

τ
where

parallel and normal drag coefficients are intervening. Here,
we compute the kinematic and dynamic parameters of the
HS using CFD by integrating the traction through solving
Navier-stokes equations with the boundary conditions using
finite elements, thus, dispensing with drag coefficients.

B. Cross-Section Influence

Here, we analyze the influence of cross-section parameters
a
b and φ on the propulsion efficiency. To do so, we choose
arbitrarily a HS structure with β = 20, θ = 50◦ and R

r = 3.
Fig. 6(a) represents the influence of the variables { a

b ,φ}
on the propulsion efficiency ( U

L f ). The best performance are
found for a

b = 4 (the largest value) with φ = 90◦ that has an
Archimedian pump-like structure with efficiency U

L f = 0.187.
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Figure 6: Cross-section influence of { a
b ,φ} on the swimming

performance of a HS with β = 20, θ = 50◦ and R
r = 3. (a) U

L f .

(b) φ vs. U
L f for different a

b . (c) µL2U
τ

. (d) φ vs. µL2U
τ

for different
a
b . (e) Cross-section deformation with respect to the ratio a

b given
φ = 0. (f) Change of the orientation φ given a

b = 4, for φ = 0 and
π

2 we have the binormal and normal-type respectively according
to [20].

The least performant is found for a
b = 4 but φ = 0, having

a ribbon like structure with efficiency U
L f = 0.078. For

structures with a circular cross-section, a
b = 1, the efficiency

is U
L f = 0.155. If we compare the structures with the best and

the one with the lowest performance, there is an increment
on performance of 139%. On the other hand, if we compare
the structures with the best performance with the one which
has a circular cross-section, it results in an increment of
about 20% of propulsion efficiency. HSs in the literature
having a binormal-type structure such as the ones presented
in [24] at the micrometer scale, or in [31] at the millimeter
scale could experience an increment of more than 100% in
their propulsion speed if their cross-sections were twisted
in φ = π

2 becoming normal-type swimmers. Therefore, the
studied structure with fixed helical parameters (β = 20,
θ = 50◦ and R

r = 3) with an elongated cross-section a
b = 4

and φ = 90◦ demonstrates the best swimming performance.
Regarding results of HSs in a limited power source frame-
work (Fig. 6(c) and (d)) the best performance is achieved
for a HS with a/b≈ 2.25 and φ ≈ 85◦ ( µL2U

τ
= 0.59) while

the less performant as in the previous case is for a HS with

Figure 7: Influence of the helical shape on pumping for HSs with
β = 20. (a) Thrust at pumping fixed angular speed ω for a variable
space defined by {θ , R

r }. Normalized thrust/torque T L
τ

(energetic
efficiency). (c) Normalized flux I

ωR3
c
. (d) Thrust as a function of

θ for different R
r , θ optimum changes for each R

r .

the larger a/b = 4 and φ = 0◦ ( µL2U
τ

= 0.32). Such novel
result would impact future designs of future HS. Fig. 6(e)
and (f) depicts the HS morphology as a function of a

b and
φ .

IV. PUMPING PERFORMANCE IMPROVEMENT

The pumping of HSs is investigated by first studying how
the helical shape influences the pumping performance and
then analyse the effect of the cross-section.

A. Helical shape influence

Here, we study HSs with circular cross-sections with an
arbitrary value of aspect ratio β = 20. Fig. 7(a) represents
the thrust at pumping generated in the variable space defined
by {θ , R

r }. The helical angle θ that maximises thrust is
function of R

r (cf. Fig. 7(d)) i.e. θmax = 55.0◦ for R
r = 0.9,

θmax = 52.5◦ for R
r = 2.3, and θmax = 50.0◦ for R

r = 3.5. On
the other hand, Fig. 7(b) depicts the energetic efficiency at
pumping T L

τ
. The optimal parameters are found for θ = 55◦

and R
r = 2.3. Figure 7(c) stands for the normalized flux I

ωR3
c

generated at the middle cross-sectional plane Hm of the HS
structure. The maximum I

ωR3
c

is generated by helical angles
θ ranging from [45◦,50◦].

B. Cross-section influence

For the analysis of the cross-section influence, we choose
as we did in section III.B, a HS structure with parameters
β = 20, θ = 50◦ and R

r = 3. Fig. 8(a-b) represents the
influence of the thrust at pumping, the maximum value
obtained is for a

b = 4 (the largest value) and φ = 90◦ with
T = 30.9× 10−15N. The least performant one is achieved
by the structure whose parameters are a

b = 4 and φ = 0
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with T = 12.1× 10−15N. The best structure outperforms
in 156% the least performant. Moreover, a structure with
circular cross-section generates a thrust at pumping of about
T = 18.0× 10−15N. Then, the best structure with respect
to this last one increases the thrust 71.9%. Fig. 8(c-d)
represents the energetic efficiency at pumping T L

τ
. Similarly

to the previous results, the parameters that maximises the
efficiency are found for a

b = 4 and φ = 90◦ with T L
τ
= 1.65,

and the parameters for the least performant are a
b = 4 and

φ = 0 with T L
τ

= 0.83. In this case, the relative increment
is about 99% with respect to the least performant structure.
With respect to the structures with a circular cross-section,
T L
τ

= 1.38, this increment is about 20%. Analogously, it
happens the same when analysing the normalized flux ( I

ωR3
c
)

(cf. Fig. 8(e-f)). The parameters that maximises I
ωR3

c
are

found for large values of a
b with φ ∼ 80−90◦.

V. SWIMMING AND PUMPING ENHANCEMENT
A. Criterion

To assess the HSs that can provide efficient swimming
and pumping, it is needed first to define our optimization
framework. Firstly, we define a dimensionless function g
that links both efficiencies, at swimming and pumping,
respectively. This function is defined as follows:

g(x,α) = α
S(x)
S0

+(1−α)
P(x)
P0

(14)

where S(x) = µL2U(x)
τ(x) is the efficiency at swimming and S0

is the maximum reached value. The efficiency at pumping is
P(x) = T (x)L

τ(x) and the maximum value reached P0. Note that
x = (β ,θ , R

r ). The balance between swimming and pumping
importance is obviously dependent on the exact applicative
context. To handle this, the parameter α indicates which
task is prioritized i.e. α = 0 for pumping task while α = 1
for swimming. The optimization problem is thus defined as
follows: max

x
g(x,α) subject to V = const. & β = 20 with

θ ∈ [30◦,70◦], R
r ∈ [0.9,3.5] and α ∈ [0,1].

B. Results

From Fig. 9, we can observe the slight evolution of the
darker region (optimal zone) as a function of α . We made
distinction between 3 different regions, i.e. for g = 0.90,
0.95 and 0.98. Those are highlighted with thicker color
lines in Fig. 9. It is interesting to see that a wide region
exists (R/r ∈ 1.8-2.7, θ ∈ 48-58) where swimming and
pumping are possible with a high efficiency (g = 0.98). On
the other hand, the optimum configuration is unmodified
when considering swimming, pumping, or their combina-
tion. The global optimum parameters in all cases are found
for θ = 55◦ and R

r = 2.3. Those results, which are novel
to our knowledge, shows it is possible to have optimal
performance for swimming and pumping using a single
geometry of HS belonging to a wide region in the parameter
space. This is very interesting for the design of versatile HS
in future applicative contexts.

Figure 8: Influence of the cross-section at pumping. (a-b) Thrust
as a function of the variable space { a

b ,φ}. (c-d) Normalized thrust
per torque ( T L

τ
). (e-f) Normalized flux ( I

ωR3
c
).

VI. CONCLUSIONS

Through this study, we review different criteria for max-
imising efficiency of helical swimmer structures (HSs) for
two specific tasks namely, pumping and swimming. We
mainly investigated two geometrical features concerning the
helical shape through the variable space defined by the
aspect ratio, the helical angle and the normalized helical
radius, {β ,θ , R

r }, and the cross-section shape via the elon-
gation and the cross-section orientation { a

b ,φ}. We observed
that structures with a certain elongation a

b > 1 can achieve
a relative high efficiency per rotation at swimming and
pumping if their cross-sections are oriented with φ = 90◦. In
the limited power source case, we found the existence of an
optimum for a

b ≈ 2.25 and φ ≈ 85◦. We identified optimal
structure for pumping and swimming, defined by θ = 55◦,
R
r = 2.3 under the definition of efficiency per torque, limited
power source case. In addition, it was observed through the
analysis of a criterion combining swimming and pumping
performance that the same geometry is of interest for com-
bined tasks. This study is intended to serve as a guiding
reference for building optimal HSs for future medical tasks,
which is the main perspective of this work. One first next
step of this study is to test the optimal designs through
experiments. Moreover, in envisioned medical interventions,
HSs must navigate through non-Newtonian bio-fluids with
viscoelastic behavior that may alter the dynamics of helical
robots. In that regard, our next step toward such in-vivo
applications will be to study HS optimization under such
complex conditions.
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Figure 9: Optimization of swimming and pumping at the same time. The solutions are depicted for α = 0 (just pumping), α = 0.50
(half relevance on swimming and half on pumping), and α = 1.00 (just swimming).
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