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Abstract :

The effects of Coriolis force on the elliptical instability are studied experimentally in cylindrical and spherical
rotating containers embarked on a table rotating at a fixed rate. For a given set-up, changing the ratio

���
of global

rotation to flow rotation leads to the selection of various unstable modes due to the presence of resonance bands,
in close agreement with the normal mode theory. No instability takes place when

� �
ranges between -3/2 and -1/2

typically. When decreasing
���

toward -1/2, resonance bands are first discretized for
�������

and progressively
overlap for �
	����� ��� � �

. Simultaneously, the growth rates and wavenumbers of the prevalent stationary
unstable mode significantly increase, in quantitative agreement with the viscous short-wavelength analysis. New
complex resonances have been observed for the first time in the sphere, in addition to the standard spin-over. We
argue that these results have significant implications in geo- and astrophysical contexts.

1 Introduction

The elliptical instability corresponds to the three-dimensional destabilisation of two-dimensional
rotating flows with elliptical streamlines (see the review by Kerswell, 2002, and references
therein). It has first been discovered in the context of strained vortices, but it generally appears
in any turbulent flow exhibiting some coherent structures with elliptical motion as well as in
a large range of industrial and natural systems (e.g. in the wake vortices behind aircrafts, in
planetary liquid cores, in binary stars and accretion disks), where the ellipticity is generated
either by vortex interactions or by tidal effects.

In most practical cases, the strain field responsible for the elliptical pattern rotates around
the same axis as the flow, but with a different rate and possibly in an opposite direction. In the
present paper, we thus systematically study the effects of Coriolis force on the elliptical insta-
bility, both in a rotating cylinder and in a rotating spheroid. Our experimental set-up is inspired
from Malkus (1989): it is similar to the one already used in Eloy et al. (2003) and Lacaze et al.
(2004) respectively. Contrary to former devices, it permits to analyse the growth and the satu-
ration of the elliptical instability. A deformable and transparent container - either a cylinder of
radius ������������

cm and height ������! "�$#
cm or a hollow sphere of radius ��������% &�"�

cm - is set
in rotation about its axis ')(+*-, with an angular velocity �.0/ up to 1"2"2 rpm and is simultaneously
deformed elliptically by two fixed rollers parallel to '3(+*", . The container is filled with water
seeded with anisotropic particles (Kalliroscope). A light sheet is formed in a plane containing
the rotation axis for visualisation, allowing the measurement of wavelengths and frequencies of
excited modes. Besides, the whole set-up (with also the camera and light projector) is placed on
a 0.5m-diameter rotating table, which allows rotation with angular velocity �.54 up to 687"2 rpm.
Our protocol is the same all along the experiments presented here. First, we set the global rota-
tion to its assigned value and wait for solid body rotation to take place in the container. Then we
start the rotation of the container: a spin–up phase first takes place, before the possible develop-
ment of an instability. All presented experiments are carried out near the instability threshold:
the characteristic growth time is then much larger than the spin–up time and decorrelation of
both phenomena is expected.
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2 Theoretical and experimental study in the cylinder

2.1 Theoretical approaches

The elliptical instability mechanism has been reviewed in Kerswell (2002). It is associated
with the parametric resonance of two inertial waves of the undistorted circular flow induced by
the underlying strain field (e.g. Waleffe, 1990; Kerswell, 2002). For small deformations, the
global (or normal mode) theory permits to calculate explicitly the conditions of resonance for
a given geometry and provides information on the structure of the eigenmodes. Results for the
elliptical instability in a cylinder with Coriolis effects have been obtained by Kerswell (1994).
Numerous resonances with various structures can be excited by changing the global rotation
rate

.54 � �.54�� �.0/ only, except in a forbidden band for
. 4

between � 1 � � and �  � � where the
elliptical instability cannot develop.

In addition to the conditions for resonance given by the global approach, the local approach
allows the analytical determination of the growth rate of the instability. It is based on the inviscid
short–wavelength Lagrangian theory developed by Bayly (1986) and Craik & Criminale (1986).
In this approach, perturbations are assumed to be sufficiently localised in order to be advected
along flow trajectories and are searched in the form of local plane waves. This method has been
applied to the elliptical instability with global rotation by Le Dizès (2000). He determined the
exponential growth rate at order 1 in eccentricity �

� � ���� � 1
	 � . 4
# '  	 . 4 ,��� ����� �  � ���  	 . 4 ������� '��!, � ��� (1)

where � is the angle between the flow rotation axis and the wavevector.
Assuming that the viscous dissipation is of order � , viscous effects on the localised pertur-

bations can be easily taken into account by adding the viscous damping rate ��� � Re � � (Craik &
Criminale, 1986). Here Re is the Reynolds number defined by Re

� �.0/ �� � �"! ,
!

the kinematic
viscosity of the fluid and � the wavevector of the perturbation. Viscous effects on the surface of
the container for plane wave perturbations can be estimated using the work of Kudlick (1966)
and introduce corrections of order Re � ��# � . For given values of ' �� � �� � �. / �$!%� ��, , bands of insta-
bility then take place depending on the global rotation rate

. 4
, each band corresponding to a

given axial structure determined by the number & of axial half-periods. Two examples of these
theoretical predictions are shown in figure 1, together with our experimental data.

2.2 Experimental study

A series of experiments was performed using a cylinder of height �� � �� "� #
cm and eccen-

tricity � � 2 � 2"' � , systematically changing �. / and �. 4 . Good agreement is found with the
linear inviscid global approach: stationary mode with a sinusoidal rotation axis and various
wavelengths (figure 2) as well as other more exotic modes recognised by their complex radial
structure and/or by their periodic behaviour can be selected by changing the dimensionless ratio. 4

only, providing the Reynolds number is large enough.
The growth rate of the stationary mode can be determined experimentally: from sequences

of images, we measure the maximum amplitude of the sinusoidally deformed rotation axis; its
temporal evolution is then fitted with an exponential growth, which can be compared to the
exponential growth rate determined by the local theory (see figure 1). First, one can notice that
the threshold for instability agrees with the theory, with for instance the sharp disappearance of
resonant modes at

. 4( � � 2 ����� 2 6 2 � 2"2 # for �.0/ � 2 ��� 2 � 6 2 � 2"2 � Hz. Besides, measurements
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Figure 1: Viscous growth rate of the elliptical instability determined by the local analysis as a function of
the global rotation rate ��� for a given cylinder of radius

������
	���
cm, height

���������	��
cm, eccentricity� ����	�����

, filled with water ( � �����! #"�$&%�'� )(
): (a)

��+* �,��	-���/.0��	�����
Hz (Re

�,�
	����213����4
) and

(b)
�� * �5��	-���6.7��	������

Hz (Re
�8��	-���91:��� 4

). Triangles stand for experimental measurements and
solid lines for theoretical predictions. The predicted number n of axial half-wavelengths increases by

�
from the right to the left on each resonant band, starting from ; �<� in (a) and ; �<= in (b); measured
values are indicated above each experimental point. Note that in (a), additional resonances were observed
for � � in the range >@? ��	-��A�CB ? ��	�����=ED ; nevertheless, because of their small wavelength and their rapid
growth rate, quantitative measurements were not accurate.
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Figure 2: Variation of the wavelength of the elliptical instability versus the global rotation
�� � for a

given cylinder of radius
������
	���

cm and height
���������	��

cm with an eccentricity � �7��	����� rotating at�� * ����	-���F.G��	����� Hz (Re
���
	����H1I��� 4

). In these pictures, the rotation axis is horizontal.

3



18 ème Congrès Français de Mécanique Grenoble, 27-31 août 2007

of the growth rate qualitatively agree with the theory, regarding the general increasing trend
when

. 4
decreases toward �  � � , and also regarding the specific shape of one resonance band

(see for instance in figure 1a the band around
. 4 � 2 ��� ' � that we have explored in detail).

Quantitatively, orders of magnitude also agree, but theoretical values always overestimate ex-
perimental values. Three main explanations can be provided. First, non-linear effects were not
taken into account in the theory, but are expected to be stabilising (Eloy et al., 2003). Then,
it is worth recalling that the theoretical estimate is based on a short–wavelength (i.e. large k)
asymptotic analysis: the discrepancy could therefore be associated with finite k effects. The last
source of discrepancy is experimental, since in our set-up, rollers only deform the central part
of the cylinder.

3 Theoretical and experimental study in the sphere

The eigenmodes of the sphere have been studied in the non-rotating case by Greenspan (1968).
His study can be modified to take into account an additional Coriolis force, similarly to what
has been done for the cylindrical case. The global rotation leads to exactly the same changes as
in the cylinder. Hence, in contrast with the non-rotating case where the only exact resonance in
the sphere leads to the spin–over mode (i.e. a solid body rotation around the axis of maximum
strain, see Lacaze et al., 2004), the analytical study suggests that more complex instabilities can
be triggered by the global rotation.

A series of experiments was performed in the sphere of radius �� � ���  �"�
cm with a fixed

eccentricity � � 2 � � 2 , systematically changing �.54 and �.0/ to excite various resonances. In
the explored range � 2 � 7�� . 4 � 2 , we observed the same behaviour as in the cylinder:
when

.54
decreases towards �  � � , the number of axial structures as well as the growth rate

of the instability rapidly increase (see figure 3), until the instability suddenly disappears in the
vicinity of

. 4�� �  � � . Excited modes are in good agreement with analytical predictions for.54
ranging in a resonance band of 682 � 2�1 typically around the theoretical perfect–resonance

value. With our experimental device, the visualisation in the sphere was not precise enough to
allow a systematic measurement of the growth rate of the elliptical instability, but we determined
experimentally the viscous threshold of instability for two given values of the flow rotation
rate:

. 4( � � 2 � �"�"� 6 2 � 2"2 # for �.0/ � 2 ��� 2  6 2 � 2"2 � Hz and
. 4( � � 2 � �"�� 6 2 � 2"2 # for

�. / � 2 � � # � 6 2 � 2"2 � Hz. We recall that in the absence of global rotation, the only perfect
resonance and the only observed mode in the vicinity of threshold (i.e. at low Reynolds number)
is the spin-over, corresponding to a single additional rotation around the axis of maximum strain
(see Lacaze et al., 2004).

4 Conclusion

In this paper, we have presented the analytical and experimental study of the influence of Cori-
olis force on the elliptical instability. For a given container - either cylindrical with a fixed
aspect ratio �� � �� or spherical -, the global rotation rate allows to select various resonances, in
good agreement with the global theory. In particular, we have observed in the sphere numer-
ous complex stationary modes at relatively low values of the Reynolds number, in addition to
the simple spin-over that takes place in the non–rotating case. For both the cylinder and the
sphere, when decreasing progressively the global rotation rate, we have observed that various
bands of resonance coexist for

. 4�� .54( � �  � � , first separated by large regions of stabil-
ity (especially for cyclones), then progressively overlapping (especially for anticyclones). All
resonances sharply disappear once the global rotation rate reaches a critical value

. 4( � �  � � .
4
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Figure 3: Pictures of the flow structure associated with the elliptical instability for different global
rotation rates �

� 4
in the deformed sphere with an eccentricity �������
	�� and a fixed fluid rotation

�
� /

�����
��������������� Hz (Re ����������������� ). The measured number n of axial half-wavelengths is
also indicated. In these pictures, the rotation axis is horizontal.

Focusing on the stationary modes, we have shown that the instability wavenumber as well as its
growth rate significantly increase and reach a maximum just before

. 4( . In the cylindrical ge-
ometry, all these results agree quantitatively with the theoretical estimations taking into account
the viscous corrections. Our conclusions in the cylinder and in the sphere also agree qualita-
tively with the general trend observed by Afanasyev (2002) in vortex pairs and by Stegner et al.
(2005) in Karman vortex streets, even if our experimental set-up is totally different (i.e. their
vortices are not confined and are subjected to rather large elliptical deformations). Indeed, both
studies report the systematic destruction of elliptical anticyclones by a sinusoidal mode with a
decreasing wavelength when

. 4
decreases up to a certain critical value, corresponding to the

overlapping resonances mentioned here. We thus argue that this behaviour is universal, except
for the explicit value of

. 4( that will depend both on the considered vortical structure and on the
value of the eccentricity (see also Sipp et al., 1999; Le Dizès, 2000).

Conclusions in the spherical geometry are especially interesting in the geophysical and as-
trophysical contexts. For instance, complex motions can be expected in the Earth’s core in
addition to the simple spin-over excited by both precession and elliptical instability. More
generally, one can imagine that binary stars and moon–planet systems where the elliptical in-
stability is expected to take place, encounter various bands of instability during their evolution:
depending on the relative changes in their rotation and revolution rates, different and complex
histories regarding energy dissipation and flow motions can thus be expected. Clearly, the role
of the elliptical instability in natural flows, as suggested for instance by Kerswell & Malkus
(1998), still demands more works, in order to fully understand the implications of all natural
complexities on the standard and well-known hydrodynamical model (see also Lacaze et al.,
2006; Le Bars & Le Dizès, 2006).
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