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Abstract :

We consider a boundary layer flow horizontally homogenenube presence of a vertical stratification and of
a sinusoidal topography. We present a simple model desgritiie interaction between the mean flow and the
packet of internal waves emitted at the bottom, assumingitiabeys to the laws of the refraction. We focus
on the configurations where no critical layers develop ané&mshthe waves propagate upward. We show that
an equilibrium state exists when the bottom boundary canditare stationary. With numerical simulations and
considering the analytical expression of equilibra, wewlibat the presence of the waves amplifies the mean flow
evolutions.

Résumé :

Nous considérons un écoulement de couche limite horizentaht homogéne en présence d’'une stratification
verticale et d’une topographie sinusoidale. Nous présentm modeéle simple de I'interaction entre I'écoulement
moyen et le paquet d’'ondes émis au sol, en supposant quiil @inélois de la réfraction. Nous considérons des
configurations telles qu'aucune couche critique ne se fagirtelles que les ondes se propagent toujours vers le
haut. Nous montrons I'existence d'états d’equilibre ensprice des conditions aux limites stationnaires. A l'aide
de simulations numériques et en considérant I'expresgiaityéique des équilibres, nous montrons que la présence
des ondes amplifie les évolutions du champ moyen.
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1 Introduction

Gravity waves can be emitted by a wind flowing on a topograpleystratified media. They are
often described by the Euler equations under the Boussirgsgxmation (see for instance
Lighthill (1978)). The effect of the mean flow on the wave prgption has been taken into
account in the study of Bretherton (1966) through a ray theescribing the propagation of
internal gravity wave packets. Propagation of waves in tleamflow has been successfully
described by Bretherton & Garrett (1969) who introduced ttteoa density variable and its
conservation. The feedback of the waves on the mean flow deedmy transfer has been
considered formerly by Grimshaw (1975). For internal wayeserated by a topography, some
recent results are found in Lott & Teitelbaum (1993) who jievan atmospheric non periodic
picture of the phenomena discussed in this work. In the ptgsgper, we focus on the feedback
of the waves on the mean flow under the horizontal homogeasgymption, e.g., a boundary
layer on a sinusoidal topography.
If we denoteu(z,t) andp(z,t) the components of, respectively, velocity and density mean

fields, the internal waves propagating along the flow can lserdeed by the real part of
(wo, po) exp{i[kiz + ¢(z,t)]}, wherewy(z,t) andpy(z, t) are the slowly varying complex am-
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plitudes. In the linear approximation, the equations gowey the evolution of the wave com-
ponentsw’ andy’ read:

V' =0, (1a)
OV — (0.1 Oy’ — U 0, V*w') = —(9/pr)Osap’, (1b)
0up + 7 0up = (pr)9) N w — O;p. (1c)

where N~ (z,t) = ;g % s the Brunt-Vaisala frequency, is the gravity andp, a reference
density. Startlng from these equations, it is then possilese the WKB formalism to describe
the refraction of a wave packet. We denoteby= ¢ z andT = ¢t the slow variables of the
WKB method, where: represents the relation between the vertical charagtenstvelength
scale and the vertical variation scale of the mean fieldsyandenote the slowly varying fields
as functions ofZ andT'. At the first order (optical geometry approximation), weabtthe
Eikonal equation and the dispersion relation of internalegan the presence of the mean field

becomesQ(ks,u, N) = N 7+ k; u. This leads to

/kQ
ks ks  [owd ON 0 -
a_T+0933_Z_ 8—Z%+a—28—w Q(k:g,,u,N), (2)

wherek;(Z,T) = 22 is the local vertical wavenumber ang(Z, T) = — Nk ks (k2 + k3)(~3/2
= g—,g is the vertical group velocity. We assume that> 0 so thatc,; > 0 for k5 < 0. At the
second order, the action conservation relation (Brethekt@arrett (1969)) reads:

6A 0 9

8T oz
where A(Z,T) = E/Q, = p, w? (k¥ + k2)3/2 /(2Nk}) is the action density, i.e. the ratio
between energy wave densityand intrinsic frequenc{?, = €2 — k; u. For such wave packets,
one can show that the flux terms of the mean fields equations

ngA) O (3)

Ot + Ozu'w’ = 0, 4)
Orp+ 0zpw" =0, )

arep'w’ = 0, from the polarization relation (see Lighthill (1978))damiw’ = —k3 wo?/(2 k).

We thus haveg—; = 0 andN(Z) is time independent. A first analysis of this model has been
performed by Grimshaw (1975) who was interested in the hehafwaves near critical layers
and therefore to the energetic phenomena of dissipatiorasemed that the momentum-flux
was strong enough to changeat the zeroth order and thus change the refraction propatie
the medium. In the present paper, we focus on the respons$e ohodel to a change of the
mean velocitya.

2 The mean field feedback model

Equations ), (3) and @) define a coupled system representing the interactionselestthe

waves 3, A) and the horizontal mean fieid

In order to obtain dimensionless equations, we choose tl@viog dimensionless variables:
=Z/L,, T*=T N,, @* =7/(N, L,), wi=wy/(N, L,), N =N/N,, k* =k L,,

whereL, and N, are the reference values of, respectively, a space lengtd and the Brunt-

Vaisala frequency (the dimensionless equations yieldesgions identical to that dimensional:

2
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in the following the asterisks will be dropped). With the défons of the action densityl and
the vertical group velocity,; we can writefu'w’ = cg3 A and therefore, combiningf and
(4),whenA(Z,0) andu(Z,0) are specified, a new simplified model can be written:

Ok Oks(Z,T)  [0uw & ON 0

ar G+ D) —5o— == oz * oz aw) Lo ® N (63)
ou ]{?1 0

(2T + Loz len(Z. ) AZ.T)) =0, (6b)
with A(Z, T) = A(Z,0) + k—u(Z T) - %u(z, 0). (6¢)

From the study of the characteristics of the system (see,Mésulin & Thual (2007)) it

is shown that the system is hyperbolic fgr < 2 and that the wave information propagates
upward for% <2 — :—9 < 1. In this paper, we only explore regimes for which the
model is everthere hyperbolic with upward propagatiorhefwaves.

3 Initial values: the equilibrium states

As stated in Section, N(Z) is time independent and fixed arbitrarily. Given a mean field
profilew.(Z), assumed to be stationary, we look for a family of stationaayes fieldks.(2)
and A.(Z) for the coupled modeb@-6b). For such equilibria, Equatiori¢) can be integrated
into

Q [k:f%e(Z)?ae(Z)’N(Z)] =Q [/{,‘36(0),@6<0),N(0):| = QO- (7)
Equation {) admits the solution
— 2 (1/2)
kge(Z> = Sign [1{336(0)] ]Cl (QO+1ZE)€(Z)> — 1] s (8)

defined on the interval € [0, Z,| under the necessary and sufficient conditions:
0<[Q—ku(Z)<N(Z).

The breaking of those conditions are respectively assatiat the formation of critical layers
and the reflection of the waves.
The dimensionless valug;,, in the framework of the WKB theory, is assumedas = ¢ z;,
wherez is the long-length vertical scale amds small. When these conditions are fulfilled,
cy3.(Z) is also defined on the interval € [0, Z,| and the integration of Equatiofi}) lead to

0) A.(0)

A7) = ngZige(Z)

Sincew,.(Z) is given, the choice ofs.(0) will be restricted in order to obtain a stationary
solution of Equationsy) and 0).

9)

4 Analytical expression of final equilibria

Since we restrict our study to regimes for which the modeldp) is hyperbolic with upward
propagation, we can specify stationary bottom boundargitonsw(0,7) = u, k3(0,7) =

3
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ksp, A(0,T) = A, and initial conditionsu(Z,0) = w;(2), k3(Z,0) = ksi(Z), A(Z,0) =
A;(Z), that will presumably evolve and reach a final equilibriamn ks, Ay If we further
assume that no critical layer develops and no reflectionrsadwring the evolution of the sys-
tem, a final equilibrium has to be reached in finite time. Int ttw@se, we can infer the final
configuration from an integration of the equatiofig-(b), yielding

— > (1/2)
_ N(Z)
it = | (a2ie) 1] _—
CngAb
Ap(Z) = cis (Z)] (10b)
with Hf(Z):%Af(Z)—%Ai(Z)+ﬂi(Z) (10c)

wherecys, = ¢g3(0,T) and€; = Q [ks;(0),w;(0), N(0)]. From systemi(0a-10c) we derive an
analytical solution fofii;(Z) as a solution of an eighth degree polynomia (see Masi, M@ulin
Thual (2007)) :

(up+a®—2any) (' +u +4c*u -4 U —Acu}+2u5c%) (W2—kf ?—kjui+2ckiuy) ~d*N° =0,

[V

S5wi(2) k2 + k2(Z . 1 L 2
Witha:—05w0’(_>[ ) + (%), c=N0)———= + W, d:_oi 3b Wop
N(Z)k NGRS N(Z)k?

From the eight real or complex roots obtained at each aétiftidve can build a unique real and
continuous profiléi;(Z) which satisfies the conditiom;(0) = @;(0).

5 Numerical Simulation - A boundary layer on a sinusoidal toppgraphy

We consider thati(Z, T) is flowing on a sinusoidal topograptiyz) = “me= cos(ky,z) with
u(0,T) = uy, for all T'. With this forcing, internal waves are emitted with the battwavenum-
ber components; andks, solutions of the dispersion relatidn| ks, w,, N(0)] = 0, and they
are amplified such asg, = h’g% (k1up). Imposingu, andh,,,, is equivalent to a choice of
ks, and A,. On Figure 1 an example of a physical configuration is showre Aumerical inte-
gration of model ¢a-6b) is done by a difference finite explicit scheme, with an uphépace
and an Euler temporal discretisation. In the simulation,cheose as boundary conditions
u(0,T) = u, =: u.(0) +1,(0), k3(0,T) = kg, =: k3.(0), A(0,T) = A, =: A.(0) forall T,
and, as initial conditionsy;(2) = 4.(Z) +u,(Z), k3i(Z) = kse(Z), Ai(Z) = Ac(Z), whereuw,

is a perturbation term. Our intention is, in fact, to peratgban equilibrium state by prescribing
an initial condition of the mean flowu() that corresponds to a modification of the balanced
mean flow profile§.) by a perturbation term,,. The frequency profile is set t¥(Z) = 1. For

a constant valué; = 0.2 and a value of4, such that the amplitude bottom valueug = 0.2,
we choose a vertical wavenumber boundary vahye= —0.45 to fulfill the conditions of hy-
perbolicity and upward propagation at tifie= 0. The initial conditionks;(Z) = ks.(Z) is
given by Equation§) and the initial condition4,;(Z) = A.(Z) is inferred from Expression
(9). In order to give an estimation of the physical ¢) variables, the ratie = 0.2 between
characteristics lengths scalesr(|ks,| and z;) is proposed. We initialize our system with a
wave field[ks., A.] in equilibrium with a mean flowi.(2) = u, + F (Z/Z;)Y?. Since we
deal with dimensionless equations,is a mean flow Froude number basedignand N, (in
the simulation its value is set t6 = 1). Then we perturbate this wind profile, by choosing

4
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Figure 1: An example of a feedback on the mean flow above a sinusoidejreghy.

an initial condition that corresponds at a 30% decreaseefrtaximum value of the variable
velocity field component, i.€u;(Z) = u.(Z) + u,(Z) = w, + 0.7F (Z/Z)"?. The other
components of the system remain unchanged atTime0. The evolution of the principal vari-
ables in the transient time are plotted in Figure 2, alongy wie final equilibrium state reached
by the system. As we can see, in the presence of a new profilendf the waves change their
ray paths and, therefore, their influence the mean field wikiatodified. The final equilibrium
state is reached in a finite tin# ~ 60 (corresponding to a physical time~ % N'). The
final profile of the mean flow represents a new equilibriumestdtere the velocity is lower than
the perturbated initial mean flow. For example Zatvherew is maximum, an initial decrease
of 30% of the mean flow, corresponds at the final decreas®@f. This phenomenon can be
related to a transfer of energy from the mean flow toward theeviield during the transient.
In order to propose a realistic physical atmospheric cordion, we choose the dimensional
values of length scalé, = 10?7 and time scaleéV, = 10~2s~!. The other variables become:
the horizontal wavelength = 27 /k; ~ 3.1 km, the altitude of mean field variation, ~ 7 km,
the mean field velocity at the bottom = 2ms~!, the bottom value of vertical velocity fluctu-
ations (wave amplitude)y, = 0.2ms~! and the bottom value of frequenay = 0.0041 s7*.
Therefore, the sinusoidal topography presents a maximughte,,.. = 2 wg,/wo ~ 100 m.
The physical time of transient to reach the new equilibrismh i~ 8.3 . The same numerical
simulation proposed for a real oceanic configuration coeldich as the choice is. = 10m
and N, = 107! s~!, obtaining a sinusoidal topography with a maximum height, ~ 10m
and an horizontal wavelength ~ 310 m, with an altitude of mean flow variatiofy, ~ 700 m
for the same mean field bottom velocity = 2 ms~—!, the same bottom value of vertical veloc-
ity fluctuationswg, = 0.2ms~! and a bottom value of frequency, = 0.041 s~L. In this case,
the new state of equilibrium after perturbation is reacluea physical time ~ 50 min.

6 Conclusion

In the present work we have studied a model for the interadieiween internal gravity waves
and a horizontal mean field in a two-dimensional slowly \aganedium. We have developed
an analytical solution which links the initial conditiors the resulting final equilibrium when
it exists. This analytical solution has been used as a vaiddor numerical simulations. The
present study has shown that the momentum-flux is stronggéntmuchange the mean field

5
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Figure 2. Evolution of: a) vertical wavenumber, b) mean flow, c) vertgralup velocity, d) action
density.

during a transient regime which duration can be predicteotedver, it has been shown that the
waves have an “amplifying” behavior on the mean field by ersfgiiag its trend. We think that
the present model could be used in a parametrization of mmeflux transfer for the subgrid
models of the oceanic and atmospheric circulations, inrda&ake into account the feedback
phenomena between internal waves and the mean current.
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