
HAL Id: hal-03359800
https://hal.science/hal-03359800v1

Submitted on 30 Sep 2021 (v1), last revised 4 Oct 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Colonel Blotto Games with Favoritism: Competitions
with Pre-allocations and Asymmetric Effectiveness

Dong Quan Vu, Patrick Loiseau

To cite this version:
Dong Quan Vu, Patrick Loiseau. Colonel Blotto Games with Favoritism: Competitions with Pre-
allocations and Asymmetric Effectiveness. Proceedings of the 22nd ACM Conference on Economics
and Computation (ACM EC ’21), Jul 2021, Budapest, Hungary. pp.862-863. �hal-03359800v1�

https://hal.science/hal-03359800v1
https://hal.archives-ouvertes.fr


Colonel Blotto Games with Favoritism: Competitions with
Pre-allocations and Asymmetric Effectiveness

DONG QUAN VU, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, France
PATRICK LOISEAU, Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, France

We introduce the Colonel Blotto game with favoritism, an extension of the famous Colonel Blotto gamewhere the

winner-determination rule is generalized to include pre-allocations and asymmetry of the players’ resources

effectiveness on each battlefield. Such favoritism is found in many classical applications of the Colonel Blotto

game. We focus on the Nash equilibrium. First, we consider the closely related model of all-pay auctions with

favoritism and completely characterize its equilibrium. Based on this result, we prove the existence of a set of

optimal univariate distributions—which serve as candidate marginals for an equilibrium—of the Colonel Blotto

game with favoritism and show an explicit construction thereof. In several particular cases, this directly leads

to an equilibrium of the Colonel Blotto game with favoritism. In other cases, we use these optimal univariate

distributions to derive an approximate equilibrium with well-controlled approximation error. Finally, we

propose an algorithm—based on the notion of winding number in parametric curves—to efficiently compute

an approximation of the proposed optimal univariate distributions with arbitrarily small error.

Key Words: exact and approximate computation of equilibria; Blotto games; all-pay auctions

1 INTRODUCTION
TheColonel Blotto game, first introduced by [Borel, 1921], is a famous resource allocation games. Two

players A and B compete over 𝑛 battlefields by simultaneously distributing resources such that the

sum of each player’s allocations does not exceed her budget (the so-called budget constraint). Each
battlefield has a certain value. In each battlefield, the player who has the higher allocation wins and

gains the whole battlefield’s value while the other player gains zero; this is the winner-determination
rule. The total payoff of each player is the sum of gains from all the battlefields.

The Colonel Blotto game captures a large range of practical situations. Its original application is

military logistic [Gross, 1950; Gross and Wagner, 1950], where resources correspond to soldiers,

equipment or weapons; but it is now also used to model security problems where battlefields are
security targets and resources are security forces or effort [Chia, 2012; Schwartz et al., 2014], political
competitions where players are political parties who distribute their time or money resources to

compete over voters or states [Kovenock and Roberson, 2012a; Myerson, 1993; Roberson, 2006],

competitions in online advertising [Masucci and Silva, 2014, 2015], or radio-spectrum management
systems [Hajimirsaadeghi and Mandayam, 2017].

In many of these applications, however, the winner-determination rule of the Colonel Blotto

game is too restrictive to capture practical situations because a player might have an advantage

over some battlefields; we refer to this as favoritism. There can be two basic types of favoritism:

First, players may have resources committed to battlefields before the game begins—we refer to

them as pre-allocations. These pre-allocations then add up to the allocations to determine the

winner in each battlefield. In military logistics for instance, before the start of military operations,

it is often the case that one side (or both) already installed military forces on some battlefields.

Pre-allocations can also be found in R&D contests, where companies can use the technologies they

currently possess to gain advantage while competing to develop new products/technologies. In

political contests, it is often the case that voters have an a priori position that may be interpreted as

a pre-allocation of the corresponding party (e.g., Californian voters are in majority pro-Democrats).

Second, the resources effectiveness may not be the same for both players, and may vary across battle-

fields. For example, in airport-surveillance, it often requires several agents to patrol a security target
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while a single terrorist may suffice for a successful attack. In military logistics, the effectiveness of

resources (equipment, soldiers, etc.) may differ amongst players and vary according to the land-

scapes/features of the battlefields. In R&D contests, one unit of resources (researchers/machines) of

a company often has different strengths and weaknesses than that of other companies.

In this work, we propose and analyze an extension of the Colonel Blotto game with a winner-

determination rule capturing pre-allocations and asymmetric effectiveness of resources. Specifically,

we consider the following rule: in battlefield 𝑖 ∈ {1, · · · , 𝑛}, if the allocations of Players A and B

are 𝑥𝐴 and 𝑥𝐵 respectively, Player A wins if 𝑥𝐴 > 𝑞𝑖 · 𝑥𝐵 − 𝑝𝑖 and Player B wins otherwise (we will

specify the tie breaking rule below). Here, 𝑝𝑖 ∈ R and 𝑞𝑖 > 0 are given parameters known to both

players that represent pre-allocations and asymmetric effectiveness of resources respectively. We

call this game the Colonel Blotto game with favoritism and denote it by F-CB throughout the paper.

We focus on characterizing and computing Nash equilibria of the F-CB game.

Completely characterizing and computing a Nash equilibrium of the Colonel Blotto game, even

without favoritism, is a notoriously challenging problem (see related works below). A standard

approach consists in first identifying candidate equilibrium marginal distributions for each bat-

tlefield’s allocation—called the optimal univariate distributions. This is often done by looking for

an equivalence to the related problem of all-pay auctions—the game where two bidders secretly

bid on a common item and the higher bidder wins the item and gains its value but both players

pay their bids. Then, constructing an equilibrium based on these univariate distributions can be

done exactly for some particular cases of parameters configurations (see related works below). In

cases where this is not possible, an alternative solution is to look for approximate equilibria with
well-controlled approximation errors [Vu et al., 2020a]. Several works also consider a relaxation of

the game with budget constraints in expectation only—which is called the General Lotto game—as a
relevant model for certain applications [Kovenock and Roberson, 2020; Myerson, 1993].

In this paper, we analyze the Colonel Blotto game with favoritism by following a similar pattern

and make four main contributions as follows:

(1) We first consider the model of all-pay auction with favoritism (F-APA), where the rule deter-

mining the winning bidder is shifted with an additive and a multiplicative parameter. We

completely characterize the equilibria in general parameters configurations (with asymmetric

items evaluation and no restriction on which bidder has which kind of favoritism). While the

F-APA game was studied in prior works, this result fills a gap in the literature.

(2) We prove the existence of a set of optimal univariate distributions of the F-CB game and give

a construction thereof. The main challenge is that it is equivalent to finding a fixed point, but

for a complex two-dimensional function for which standard existence results fail to apply.

We overcome this obstacle by drawing tools from topology and carefully tailoring them to

our particular problem. Based on this core result, we deduce the equilibrium of the F-CB

game for particular cases for which it is known how to construct joint distributions from

the optimal univariate distributions. For other cases we show that, by applying the rescaling

technique of [Vu et al., 2020a], we can obtain an approximate equilibrium of the F-CB game

with negligible approximation error when the number of the battlefields is large. Finally, for

any parameter configuration, we immediately obtain the equilibrium of the relaxed General
Lotto game with favoritism in which one can simply sample independently on each battlefield.

(3) We propose an algorithm that efficiently finds an approximation of the proposed optimal

univariate distributions with arbitrarily small error. This improves the scalability of our

results upon the naive solution for exact computation (which is exponential in the number of
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battlefields). Our algorithm is based on approximately solving the two-dimensional fixed-

point problem by a dichotomy procedure using a generalization of the intermediate value

theorem with the notion of winding number of parametric curves.

(4) We conduct a number of numerical experiments to analyze and illustrate the effect of fa-

voritism in the players’ payoffs at equilibrium of the F-CB game (and of the F-GL game).

Related Work. There is a rich literature on characterizing equilibria of the (classical) Colonel

Blotto game. The common approach is to look for a set of optimal univariate distributions of the
game, and then construct𝑛-variate joint distributionswhose realizations satisfy the budget constraints
(in other words, their supports are subsets of the (mixed) strategy sets). These joint distributions

are equilibria of the game. Constructing such joint distributions, however, is challenging and

equilibria are only successfully characterized in several restricted instances: Colonel Blotto games

where players have symmetric budgets [Boix-Adserà et al., 2020; Borel and Ville, 1938; Gross, 1950;

Gross and Wagner, 1950; Laslier, 2002; Thomas, 2017], Colonel Blotto games with asymmetric

budgets and two battlefields [Macdonell and Mastronardi, 2015] or with any number of battlefields

but under assumptions on the homogeneity of battlefields’ values [Roberson, 2006; Schwartz

et al., 2014]. The Colonel Blotto game still lacks a complete characterization of equilibrium in its

generalized parameters configuration, i.e., with asymmetric budgets and heterogeneous battlefields

(see [Kovenock and Roberson, 2012b] for a survey). An extension of the Colonel Blotto game is

studied in [Kovenock and Roberson, 2020], where the two players can have different evaluations of

the battlefields. The authors find a set of optimal univariate distributions based on a solution of a

fixed-point equation, but they can construct the n-variate equilibrium distribution only in restricted

settings. Our work follows a similar pattern in spirit, but the fixed-point equation supporting the

optimal univariate distributions is different and harder to solve because it is two-dimensional.

While studying the Colonel Blotto game, many works also consider the corresponding General

Lotto game [Kovenock and Roberson, 2020; Myerson, 1993], in which budget constraints are

relaxed to hold in expectation. There, an equilibrium can be directly obtained from a set of optimal

univariate distributions by independently drawing on each battlefield. In recent work, [Vu et al.,

2020a] propose an alternative approach to find solutions of the Colonel Blotto game: it consists of

independently drawing on each battlefield and then rescaling to meet the budget constraint with

probability one. The authors show that this rescaling strategy (termed independently uniform (IU)

strategy) yields an approximate equilibrium with error decreasing with the number of battlefields.

The problem of constructing sets of optimal univariate distributions in the Colonel Blotto game

can be converted into the problem of searching for an equilibrium of an all-pay auction. The state-

of-the-art in characterizing equilibria of all-pay auctions is as follows: equilibria of the (classical)

all-pay auctions were completely characterized by [Baye et al., 1994; Hillman and Riley, 1989]

in games with any number of bidders. The all-pay auction with favoritism (also referred to as

all-pay auctions with head-starts and handicaps and all-pay auctions with incumbency advantages)

was studied by [Konrad, 2002] but its equilibria were explicitly characterized only in cases where

players assess the item with the same value and where both kinds of favoritism are in favor of

one player. Therefore, it still lacks an explicit analysis of equilibria with a general configuration of

parameters. Note also that the literature on the F-APA game (and all-pay auctions) goes beyond the

study on their equilibria, see e.g., [Fu, 2006; Li and Yu, 2012; Pastine and Pastine, 2012; Siegel, 2009,

2014] and surveys by [Corchón, 2007; Fu and Wu, 2019; Konrad and Kovenock, 2009].

Our work is the first to introduce the Colonel Blotto game with pre-allocations and asymmetric

effectiveness of players’ resources. The only exception is the recent work by [Chandan et al., 2020],

where partial results are obtained with pre-allocations only but from a very different perspective: the

authors study a three-stage Colonel Blotto game that allows players to pre-allocate their resources;
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several conditions where pre-allocating is advantageous are indicated and this result is extended

to three-player Colonel Blotto games. Note finally that there is also a growing literature on the

discrete Colonel Blotto game, where players’ allocations must be integers, see e.g., [Ahmadinejad

et al., 2016; Behnezhad et al., 2017, 2018, 2019; Hart, 2008; Hortala-Vallve and Llorente-Saguer, 2012;

Vu et al., 2018, 2020b]; but this literature did not consider favoritism and these results are based on

a very different set of techniques in comparison to that of the game models considered in this work.

Notation. Throughout the paper, we use bold symbols (e.g., 𝒙) to denote vectors and sub-

script indices to denote its elements (e.g., 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)). We also use the notation R𝑛>0
:=

{𝒙𝑛 ∈ R𝑛 : 𝑥𝑖 > 0,∀𝑖}, R𝑛≥0
:= {𝒙𝑛 ∈ R𝑛 : 𝑥𝑖 ≥ 0,∀𝑖} and [𝑛] = {1, 2, . . . , 𝑛}, for any 𝑛 ∈ N\{0}. We

use the notation 𝜙 to denote a player and −𝜙 to indicate her opponent. We also use the standard

asymptotic notation O and its variant
˜O which ignores logarithmic terms. Finally, we use P(𝐸) to

denote the probability of an event 𝐸 and E[𝑋 ] to denote the expectation of a random variable 𝑋 .

Outline of the Paper. The remainder of this paper is organized as follows. Section 2 introduces

the formulations of the F-CB, F-GL and F-APA games. We present our complete equilibria charac-

terization of the F-APA game in Section 3. Using this result, in Section 4, we prove the existence and

show the construction of a set of optimal univariate distributions of the F-CB game. In Section 5,

we derive several corollary results, concerning the equilibria and approximate equilibria of the

F-CB and F-GL games, from these optimal univariate distributions. In Section 6, we then present an

algorithm that efficiently finds an approximation of the proposed optimal univariate distributions

with arbitrarily small errors. In Section 7, we conduct several numerical experiments illustrating

the effect of two types of favoritism in the F-CB and F-GL games. Finally, we give a concluding

discussion in Section 8.

2 GAMES FORMULATIONS
In this section, we define the Colonel Blotto game with favoritism (F-CB), and two related models:

the General Lotto game with favoritism (F-GL) and the all-pay auction with favoritism (F-APA).

2.1 Colonel Blotto and General Lotto Games with Favoritism
The Colonel Blotto game with favoritism (F-CB game) is a one-shot complete-information game

between two Players A and B. Each player has a fixed budget of resources, denoted 𝑋𝐴
and 𝑋𝐵

respectively; without loss of generality, we assume that 0 < 𝑋𝐴 ≤ 𝑋𝐵
. There are 𝑛 battlefields

(𝑛 ≥ 3). Each battlefield 𝑖 ∈ [𝑛] has a value 𝑤𝑖 > 0 and is embedded with two additional pa-

rameters: 𝑝𝑖 ∈ R and 𝑞𝑖 > 0. Knowing these parameters, players compete over the 𝑛 battlefield

by simultaneously allocating their resources. The summation of resources that a player allocates

to the battlefields cannot exceed her budget; i.e., the pure strategy set of Player 𝜙 ∈ {𝐴, 𝐵} is
𝑆𝜙 =

{
𝒙𝜙 ∈ R𝑛≥0

:

∑𝑛
𝑖=1

𝑥
𝜙

𝑖
≤ 𝑋𝜙

}
. If Players A and B respectively allocate 𝑥𝐴𝑖 and 𝑥𝐵𝑖 to battlefield

𝑖 , the winner in this battlefield is determined by the following rule: if 𝑥𝐴𝑖 > 𝑞𝑖𝑥
𝐵
𝑖 − 𝑝𝑖 , Player A

wins and gains the value𝑤𝑖 ; reversely, if 𝑥
𝐴
𝑖 < 𝑞𝑖𝑥

𝐵
𝑖 − 𝑝𝑖 , Player B wins and gains𝑤𝑖 ; finally, if a tie

occurs, i.e., 𝑥𝐴𝑖 = 𝑞𝑖𝑥
𝐵
𝑖 − 𝑝𝑖 , Player A gains 𝛼𝑤𝑖 and Player B gains (1 − 𝛼)𝑤𝑖 , where 𝛼 ∈ [0, 1] is a

given parameter.
1
The payoff of each player in the game is the summation of gains they obtain

from all the battlefields. Formally, we have the following definition.

1
We call 𝛼 the tie-breaking parameter. It can be understood as if we randomly break the tie such that Player A wins

battlefield 𝑖 with probability 𝛼 while Player B wins it with probability (1 − 𝛼) . This includes all the tie-breaking rules

considered in classical CB games found in the literature.
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Definition 2.1 (The F-CB game). The Colonel Blotto game with favoritism (with 𝑛 battlefields),
denoted CB𝐹

𝑛 , is the game with the description above; in particular, when players A and B play the
pure strategies 𝒙𝐴 =

(
𝑥𝐴𝑖

)
𝑖∈[𝑛] ∈𝑆

𝐴 and 𝒙𝐵 =
(
𝑥𝐵𝑖

)
𝑖∈[𝑛] ∈ 𝑆𝐵 respectively, their payoffs are defined as:

Π
𝐴

CB𝐹
𝑛

(
𝒙𝐴, 𝒙𝐵

)
=

∑
𝑖∈[𝑛]

𝑤𝑖𝔅

(
𝑥𝐴𝑖 , 𝑞𝑖𝑥

𝐵
𝑖 −𝑝𝑖

)
and Π

𝐵

CB𝐹
𝑛

(
𝒙𝐴, 𝒙𝐵

)
=

∑
𝑖∈[𝑛]

𝑤𝑖

[
1−𝔅

(
𝑥𝐴𝑖 , 𝑞𝑖𝑥

𝐵
𝑖 −𝑝𝑖

)]
.

Here, 𝔅 : R2

≥0
→ [0, 1], termed as the Blotto function, is defined as follows: 𝔅 (𝑥,𝑦) = 1 if 𝑥 > 𝑦,

𝔅 (𝑥,𝑦) = 𝛼 if 𝑥 = 𝑦 and 𝔅 (𝑥,𝑦) = 0 if 𝑥 < 𝑦.

A mixed strategy of a player, say 𝜙 ∈ {𝐴, 𝐵}, in CB𝐹
𝑛 is an 𝑛-variate distribution such that any

pure strategy drawn from it is an 𝑛-tuple satisfying the corresponding budget constraint of player 𝜙 .

We reuse the notations Π
𝐴

CB𝐹
𝑛

(𝜎𝐴, 𝜎𝐵) and Π
𝐵

CB𝐹
𝑛

(𝜎𝐴, 𝜎𝐵) to denote the payoffs of Players A and B

when they play the mixed strategies 𝜎𝐴 and 𝜎𝐵 respectively. Note that to lighten the notation CB𝐹
𝑛 ,

we include only the subscript 𝑛 (the number of battlefields) and omit other parameters involved in

the definition of the game (including 𝑋𝐴, 𝑋𝐵, 𝛼,𝑤𝑖 , 𝑝𝑖 , 𝑞𝑖 ,∀𝑖 ∈ [𝑛]).
The game CB𝐹

𝑛 extends the classical Colonel Blotto game by including the favoritism that a player

may have in battlefield 𝑖 through the parameters 𝑝𝑖 and 𝑞𝑖 ; which can be interpreted as follows:

(𝑖) 𝑝𝑖 represents the difference between pre-allocations that players have at battlefield 𝑖 before the

game begins (note that pre-allocations are not included in the players’ budget 𝑋𝐴
and 𝑋𝐵

). If 𝑝𝑖 > 0,

Player A’s pre-allocation at battlefield 𝑖 is larger; if 𝑝𝑖 < 0, Player B has a larger pre-allocation.

(𝑖𝑖) 𝑞𝑖 represents the asymmetry in the effectiveness of players’ resources (not including the pre-
allocations). Specifically, in battlefield 𝑖 , each unit of Player B’s resource is worth 𝑞𝑖 units of Player

A’s resource. If 0 < 𝑞𝑖 < 1, Player A’s resource is more effective than that of Player B; reversely, if

𝑞𝑖 > 1, Player B’s resource is more effective.

Note that if 𝑝𝑖 = 0 and 𝑞𝑖 = 1,∀𝑖 ∈ [𝑛], the game CB𝐹
𝑛 coincides with the classical CB game. Unlike

many works in the literature on classical CB game, in the CB𝐹
𝑛 game defined above, we do not make

assumptions on the symmetry in players’ budgets or on the homogeneity of the battlefields’ values.

For the sake of conciseness, in the remainder, we consider F-CB under the following assumptions:

Assumption (A1).
∑

𝑖∈[𝑛]
(
𝑞𝑖𝑋

𝐵 − 𝑝𝑖
)
≥ 𝑋𝐴 and

∑
𝑖∈[𝑛]

(
𝑋𝐴 + 𝑝𝑖

)
/𝑞𝑖 ≥ 𝑋𝐵 .

Assumption (A2). For any 𝑖 ∈ [𝑛],
(
𝑞𝑖𝑋

𝐵 − 𝑝𝑖
)
≥ 0 and

(
𝑋𝐴 + 𝑝𝑖

)
/𝑞𝑖 ≥ 0.

These assumptions are used simply to exclude trivial cases where one player has too strong

favoritism in one (or all) battlefields. Indeed, if Assumption (A1) is violated, there exists trivial pure

equilibria.
2
On the other hand, if in battlefield 𝑖∗ ∈ [𝑛],

(
𝑞𝑖∗𝑋

𝐵 − 𝑝𝑖∗
)
< 0 (resp.

(
𝑋𝐴 + 𝑝𝑖∗

)
/𝑞𝑖∗ < 0),

then by allocating 0, Player A (resp. Player B) guarantees to win this battlefield regardless of

her opponent’s allocation. Therefore, if CB𝐹
𝑛 has an battlefield 𝑖∗ violating Assumption (A2), an

equilibrium of CB𝐹
𝑛 is simply the strategies where both players allocate 0 to battlefield 𝑖∗ and play

an equilibrium of the game CB𝐹
𝑛−1

having the same setting as CB𝐹
𝑛 but excluding battlefield 𝑖∗.

Note that analogous assumptions (when 𝑝𝑖 = 0 and 𝑞𝑖 = 1,∀𝑖) are found in other works considering

the classical CB game (see e.g., [Roberson, 2006] and Figure 1 in [Kovenock and Roberson, 2020]).

Next, similar to the definition of the General Lotto game obtained from relaxing the classical

CB game, for each instance of the F-CB game, we define an instance of the General Lotto with

favoritism (F-GL) where the budget constraint is requested to hold only in expectation. Formally:

2
If

∑
𝑖∈[𝑛]

(
𝑞𝑖𝑋

𝐵 − 𝑝𝑖
)
< 𝑋𝐴

, by allocating𝑞𝑖𝑋
𝐵−𝑝𝑖+Y to battlefield 𝑖 (Y is an arbitrarily small number), Player A guarantees

to win all battlefields regardless of Player B’ allocations. If

∑
𝑖∈[𝑛]

(
𝑋𝐴 + 𝑝𝑖

)
/𝑞𝑖 < 𝑋𝐵

, by allocating

(
𝑋𝐴 + 𝑝𝑖

)
/𝑞𝑖 + Y to

battlefield 𝑖 , Player B guarantees to win all battlefields.
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Definition 2.2 (The F-GL game). The General Lotto game with favoritism (with 𝑛 battlefields),
denoted GL𝐹

𝑛 , is the game with the same setting and parameters as the CB𝐹
𝑛 game, but where a

mixed strategy of Player 𝜙 ∈ {𝐴, 𝐵} in GL𝐹
𝑛 is an 𝑛-variate distribution with marginal distributions

(𝐹𝜙
𝑖
)𝑖∈[𝑛] such that

∑
𝑖∈[𝑛] E𝑥𝑖∼𝐹𝜙𝑖

[𝑥𝑖 ] ≤ 𝑋𝜙 .

We finally define the notion of Optimal Univariate Distributions in the F-CB game. This notion is

of great importance in studying equilibria of the F-CB game since intuitively, they are the candidates

for the marginals of the equilibria. Formally:

Definition 2.3 (Optimal Univariate Distributions (OUDs)).
{
𝐹𝐴𝑖 , 𝐹

𝐵
𝑖 : 𝑖 ∈ [𝑛]

}
is a set of OUDs of

the game CB𝐹
𝑛 if the following conditions are satisfied:

(C.1) the supports of 𝐹𝐴𝑖 , 𝐹
𝐵
𝑖 are subset of R≥0,

(C.2)
∑

𝑖∈[𝑛] E𝑥𝑖∼𝐹𝜙𝑖
[𝑥𝑖 ] ≤ 𝑋𝜙 , 𝜙 ∈ {𝐴, 𝐵},

(C.3) if Player 𝜙 draws her allocation to battlefield 𝑖 from 𝐹
𝜙

𝑖
, ∀𝑖 ∈ [𝑛], Player −𝜙 has no pure strategy

inducing a better payoff than when she draws her allocation to battlefield 𝑖 from 𝐹
−𝜙
𝑖

, ∀𝑖 ∈ [𝑛].

2.2 All-pay Auctions with Favoritism
All-pay auctions with favoritism (F-APA) have been studied in the literature under different sets of

assumptions (see Section 1). For the sake of coherence, in this section, we re-define the formulation

of the F-APA game using our notation as follows:

In the F-APA game, two players, A and B, compete for a common item that is evaluated by each

player with a value, denoted 𝑢𝐴 and 𝑢𝐵 respectively (𝑢𝐴, 𝑢𝐵 > 0).
3
The item is embedded with two

additional parameters: 𝑝 ∈ R and 𝑞 > 0. Players simultaneously submit their bids 𝑥𝐴, 𝑥𝐵 ≥ 0 (unlike

in the F-CB game, players can bid as large as they want in F-APA). If 𝑥𝐴 > 𝑞𝑥𝐵 − 𝑝 , Player A wins

the item and gains the value 𝑢𝐴; if 𝑥𝐴 < 𝑞𝑥𝐵 − 𝑝 , Player B wins and gains the value 𝑢𝐵 ; and in case

of a tie, i.e., 𝑥𝐴 = 𝑞𝑥𝐵 − 𝑝 , Player A gains 𝛼𝑢𝐴 and Player B gains (1 − 𝛼)𝑢𝐵 (𝛼 ∈ [0, 1]). Finally,
both players pay their bids.

Definition 2.4 (The F-APA game). F-APA is the game with the above description; in particular, when
the players A and B bid𝑥𝐴 and𝑥𝐵 respectively, their payoffs areΠ

𝐴
F-APA

(
𝑥𝐴, 𝑥𝐵

)
=𝑢𝐴𝔅

(
𝑥𝐴, 𝑞𝑥𝐵−𝑝

)
−𝑥𝐴

and Π
𝐵
F-APA

(
𝑥𝐴, 𝑥𝐵

)
=𝑢𝐵 [1 −𝔅

(
𝑥𝐴, 𝑞𝑥𝐵−𝑝

)
]−𝑥𝐵 . Here, the function 𝔅 is defined in Definition 2.1.

The formulation of the F-APA game presented above differs from classical all-pay auctions by

the parameters 𝑝 and 𝑞. If 𝑝 > 0, Player A has an additive advantage in competing to win the item

and if 𝑝 < 0, Player B has this favoritism; likewise, when 0 < 𝑞 < 1, Player A has a multiplicative
favoritism to compete for the item and when 𝑞 > 1, it is in favor of Player B. Our formulation

of F-APA is more general than the models (with two players) considered by previous works in

the literature. If 𝑝 = 0, 𝑞 = 1 and 𝛼 = 1/2, the F-APA game coincides to the classic two-bidder

(first-price) all-pay auction (e.g., in [Baye et al., 1994; Hillman and Riley, 1989]). If 𝑢𝐴 = 𝑢𝐵 , 𝛼 = 1/2,

𝑝 > 0 and 0 < 𝑞 ≤ 1 (i.e., Player A has both advantages), F-APA coincides with the framework

of all-pay contests with incumbency advantages considered in [Konrad, 2002]. Moreover, we also

define F-APA with a generalization of the tie-breaking rule (with the parameter 𝛼 involving in the

function 𝔅) covering other tie-breaking rules considered in previous works. Finally, our definition

of F-APA and its equilibria characterization (see Section 3) can also be extended to cases involving

more than two players/bidders; in this work, we only analyze the two-player F-APA since it relates

directly to the F-CB game, which is our main focus.

3
The case where either 𝑢𝐴 = 0 or 𝑢𝐵 = 0 is trivial (there exist trivial pure equilibria) and thus, is omitted.
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3 EQUILIBRIA OF ALL-PAY AUCTIONS WITH FAVORITISM
In this section, we characterize the equilibrium of the F-APA game. The closed-form expression of

the equilibrium depends on the relation between the parameters 𝑢𝐴, 𝑢𝐵, 𝑝 and 𝑞. We present two

groups of results corresponding to two cases: 𝑝 ≥ 0 (Section 3.1) and 𝑝 < 0 (Section 3.2).

3.1 Equilibria of F-APA with 𝑝 ≥ 0.
We first focus on the case where 𝑝 ≥ 0; in other words, Player A has an additive advantage. In

equilibrium, players choose their bids according to uniform-type distributions which depend on

the relation between 𝑢𝐴, 𝑢𝐵, 𝑝 and 𝑞. Particularly, we obtain the following theorem:

Theorem 3.1. In the F-APA game where 𝑝 ≥ 0, we have the following results:
(𝑖) If 𝑞𝑢𝐵 − 𝑝 ≤ 0, there exists a unique pure equilibrium where players’ bids are 𝑥𝐴 = 𝑥𝐵 = 0 and

their equilibrium payoffs are Π
𝐴
F-APA = 𝑢𝐴 and Π

𝐵
F-APA = 0 respectively.

(𝑖𝑖) If 0 < 𝑞𝑢𝐵 −𝑝 ≤ 𝑢𝐴, there exists no pure equilibrium; there is a unique mixed equilibrium where
Player A (resp. Player B) draws her bid from the distribution 𝐹𝐴+

2

(resp. 𝐹𝐵+
2

) defined as follows.

𝐹𝐴+
2

(𝑥) =
{ 𝑝

𝑞𝑢𝐵 + 𝑥
𝑞𝑢𝐵 ,∀𝑥 ∈

[
0, 𝑞𝑢𝐵−𝑝

]
,

1 ,∀𝑥 > 𝑞𝑢𝐵−𝑝, and 𝐹𝐵+
2

(𝑥) =


1 − 𝑞𝑢𝐵

𝑢𝐴 + 𝑝

𝑢𝐴 ,∀𝑥 ∈
[
0,

𝑝

𝑞

)
1 − 𝑞𝑢𝐵

𝑢𝐴 + 𝑞 ·𝑥
𝑢𝐴 ,∀𝑥 ∈

[
𝑝

𝑞
, 𝑢𝐵

]
,

1 ,∀𝑥 > 𝑢𝐵 .

(1)

In this mixed equilibrium, players’ payoffs are Π
𝐴
F-APA = 𝑢𝐴 − 𝑞𝑢𝐵 + 𝑝 and Π

𝐴
F-APA = 0.

(𝑖𝑖𝑖) If 𝑞𝑢𝐵 − 𝑝 > 𝑢𝐴, there exists no pure equilibrium; there is a unique mixed equilibrium where
Player A (resp. Player B) draws her bid from the distribution 𝐹𝐴+

3

(resp. 𝐹𝐵+
3

) defined as follows.

𝐹𝐴+
3

(𝑥) =
{

1 − 𝑢𝐴

𝑞𝑢𝐵 + 𝑥
𝑞𝑢𝐵 ,∀𝑥 ∈

[
0, 𝑢𝐴

]
,

1 ,∀𝑥 > 𝑢𝐴,
and 𝐹𝐵+

3

(𝑥) =


0 ,∀𝑥 ∈

[
0,

𝑝

𝑞

)
− 𝑝

𝑢𝐴 + 𝑞 ·𝑥
𝑢𝐴 ,∀𝑥 ∈

[
𝑝

𝑞
,
𝑢𝐴+𝑝
𝑞

]
,

1 ,∀𝑥 >
𝑢𝐴+𝑝
𝑞

.

(2)

In this mixed equilibrium, players’ payoffs are Π
𝐴
F-APA = 0 and Π

𝐵
F-APA = 𝑢𝐵 − (𝑢𝐴 + 𝑝)/𝑞.

A formal proof of Theorem 3.1 can be found in Appendix A.2; here we discuss an intuitive

interpretation of the result. First, note that no player has an incentive to bid more than the value at

which she assesses the item, otherwise she is guaranteed a negative payoff. Then, the condition in

Result (𝑖) of Theorem 3.1 indicates that Player A has too large advantages such that she always

wins regardless of her own bid and Player B’s bid, hence it is optimal for both players to bid zero

(see the proof for the case 𝑞𝑢𝐵 − 𝑝 = 0). The condition in Result (𝑖𝑖) of Theorem 3.1 gives Player A

a favorable position: she can guarantee to win with a non-negative payoff by bidding 𝑢𝐴 knowing

that Player B will not bid more than 𝑢𝐵 ; reversely, the condition in Result (𝑖𝑖𝑖) implies that Player

B has a favorable position: by bidding 𝑢𝐵 , she guarantees to win with a non-negative payoff since

Player A will not bid more than 𝑢𝐴. Importantly, in Result (𝑖𝑖) of this theorem, as long as the

condition 0 < 𝑞𝑢𝐵 − 𝑝 ≤ 𝑢𝐴 is satisfied, when 𝑝 increases (and/or 𝑞 decreases), the equilibrium

payoff of Player A increases. This is in coherence with the intuition that when Player A has larger

advantages, she can gain more. However, if 𝑝 is too large (and/or 𝑞 is too small) such that the

condition in Result (𝑖) of Theorem 3.1 is satisfied, Player B gives up totally and Player A gains a

fixed payoff (𝑢𝐴) even if 𝑝 keeps increasing (and/or 𝑞 keeps decreasing). A similar intuition can be

deduced for Player B and Result (𝑖𝑖𝑖).
We now turn our focus to the distributions 𝐹𝐴+

2

, 𝐹𝐵+
2

, 𝐹𝐴+
3

and 𝐹𝐵+
3

in Results (𝑖𝑖) and (𝑖𝑖𝑖) of
Theorem 3.1. First, note that the superscript

+
in the notations of these distributions simply refers
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𝑥

(a) F-APA instance with 𝑢𝐴 = 4, 𝑢𝐵 = 2,
𝑝 = 1.5, 𝑞 = 1.5 (i.e., 0 ≤ 𝑞𝑢𝐵 − 𝑝 < 𝑢𝐴).

𝑥

(b) F-APA instance with 𝑢𝐴 = 2, 𝑢𝐵 = 4,
𝑝 = 1, 𝑞 = 1 (i.e., 𝑞𝑢𝐵 − 𝑝 > 𝑢𝐴).

Fig. 1. The mixed equilibrium of the F-APA with 𝑝 ≥ 0.

to the condition 𝑝 ≥ 0 being considered (to distinguish it with the case where 𝑝 < 0 presented

below) while the subscript index (2 or 3) indicates that these distributions correspond to Results (𝑖𝑖)
or (𝑖𝑖𝑖). These distributions all relate to uniform distributions: 𝐹𝐴+

2

is the distribution placing a

non-negative probability mass at zero, and then uniformly distributing the remaining mass on

the range

(
0, 𝑞𝑢𝐵 − 𝑝

]
while 𝐹𝐵+

2

places a non-negative mass at zero, then uniformly distributes

the remaining mass on

[
𝑝/𝑞,𝑢𝐵

]
; similarly, 𝐹𝐴+

3

places a mass at zero and uniformly distributes

the remaining mass on

(
0, 𝑢𝐴

]
while 𝐹𝐵+

3

is the uniform distribution on

[
𝑝/𝑞, (𝑢𝐴 + 𝑝)/𝑞

]
; see an

illustration in Fig. 1. Note finally that Theorem 3.1 is consistent with results in the restricted cases

of F-APA presented in [Konrad, 2002] (where 𝑢𝐴 = 𝑢𝐵 , 𝑝 ≥ 0, 0 < 𝑝 < 1 and 𝛼 = 1/2) and with

results for the classical APA from [Baye et al., 1996; Hillman and Riley, 1989] (i.e., when 𝑝 = 0,

𝑞 = 1, 𝛼 = 1/2); see Appendix A.1 where we reproduce these results to ease comparison.

3.2 The F-APA game with 𝑝 < 0

We now consider the F-APA game in the case 𝑝 < 0. We first define 𝑝 ′ = −𝑝/𝑞 and 𝑞′ = 1/𝑞. Since
𝑝 < 0, we have 𝑝 ′ > 0. Moreover, 𝔅

(
𝑥𝐴, 𝑞𝑥𝐵 − 𝑝

)
= 𝔅

(
(𝑥𝐴 + 𝑝)/𝑞, 𝑥𝐵

)
= 𝔅

(
𝑞′𝑥𝐴 − 𝑝 ′, 𝑥𝐵

)
for

any 𝑥𝐴, 𝑥𝐵 . Therefore, the F-APA game with 𝑝 < 0 (and 𝑞 > 0) is equivalent to an F-APA with

𝑝 ′ > 0 (and 𝑞′ > 0) in which the roles of players are exchanged. Applying Theorem 3.1 with 𝑝 ′ > 0

(and 𝑞′ > 0), we can easily deduce the equilibrium of the F-APA with 𝑝 < 0. Due to the limited

space, we only present this result in Appendix A.3.

4 OPTIMAL UNIVARIATE DISTRIBUTIONS OF THE COLONEL BLOTTO GAME WITH
FAVORITISM

The notion of optimal univariate distributions plays a key role in the equilibrium characterization

of the Colonel Blotto game and its variants. In this section, we prove the existence of, and construct

a set of optimal univariate distributions of the F-CB game. This is the core result of our work.

As discussed in Section 1, a classical approach in the Blotto games literature is to reduce the

problem of constructing optimal univariate distributions (OUDs) to the problem of finding the

equilibria of a set of relevant all-pay auction instances—each corresponding to players’ allocations

in one battlefield. The main question then becomes: which set of all-pay auction instances should we
consider in order to find OUDs of the F-CB game? Naturally, from their formulations in Section 2.1

and Section 2.2, a candidate is the set of F-APA games in which the additive and multiplicative

advantages of the bidders correspond to the parameters representing the pre-allocations and

asymmetric effectiveness of players in each battlefield of the F-CB game. The (uniquely defined)
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Table 1. 𝐹𝐴^
𝑖
and 𝐹𝐵^

𝑖
corresponding to^ = (^𝐴, ^𝐵) and a CB𝐹

𝑛 game. The notation 𝐼+
𝑗
(^𝐴, ^𝐵) and 𝐼−

𝑗
(^𝐴, ^𝐵)

for 𝑗 = 1, 2, 3 denote the set of indices of battlefields satisfying the corresponding conditions; for example,
𝐼+
1
(^𝐴, ^𝐵) = {𝑖 ∈ [𝑛] : 𝑝𝑖 ≥ 0, 𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖 ≤ 0} and ∀𝑖 ∈ 𝐼+
1
(^𝐴, ^𝐵), 𝐹𝐴^

𝑖
(𝑥) = 1, 𝐹𝐵^

𝑖
(𝑥) = 1,∀𝑥 ≥ 0.

Indices Sets Conditions Definition

𝐼+
1
(^𝐴, ^𝐵 ) 𝑖 ∈ [𝑛] : 𝑝𝑖 ≥ 0, 𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖 ≤ 0 𝐹𝐴^
𝑖
(𝑥) = 1, ∀𝑥 ≥ 0 and 𝐹𝐵^

𝑖
(𝑥) = 1, ∀𝑥 ≥ 0.

𝐼+
2
(^𝐴, ^𝐵 ) 𝑖 ∈ [𝑛] : 𝑝𝑖 ≥ 0,

0 < 𝑞𝑖𝑤𝑖^
𝐵 − 𝑝𝑖 ≤ 𝑤𝑖^

𝐴

𝐹𝐴^
𝑖
(𝑥) =

{
𝑝𝑖

𝑞𝑖𝑤𝑖^
𝐵 + 𝑥

𝑞𝑖𝑤𝑖^
𝐵 , ∀𝑥 ∈

[
0, 𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖
]
,

1 , ∀𝑥 > 𝑞𝑖𝑤𝑖^
𝐵 − 𝑝𝑖 ,

𝐹𝐵^
𝑖
(𝑥) =


1 − 𝑞𝑖^

𝐵

^𝐴
+ 𝑝𝑖

𝑤𝑖^
𝐴 , ∀𝑥 ∈

[
0,

𝑝𝑖
𝑞𝑖

)
,

1 − 𝑞𝑖^
𝐵

^𝐴
+ 𝑞𝑖 ·𝑥

𝑤𝑖^
𝐴 , ∀𝑥 ∈

[
𝑝𝑖
𝑞𝑖
, 𝑤𝑖^

𝐵
]
,

1 , ∀𝑥 > 𝑤𝑖^
𝐵 .

𝐼+
3
(^𝐴, ^𝐵 ) 𝑖 ∈ [𝑛] : 𝑝𝑖 ≥ 0,

𝑞𝑖𝑤𝑖^
𝐵 − 𝑝𝑖 > 𝑤𝑖^

𝐴

𝐹𝐴^
𝑖
(𝑥) =

{
1 − ^𝐴

𝑞𝑖^
𝐵 + 𝑥

𝑞𝑖𝑤𝑖^
𝐵 , ∀𝑥 ∈

[
0, 𝑤𝑖^

𝐴
]
,

1 , ∀𝑥 > 𝑤𝑖^
𝐴,

𝐹𝐵^
𝑖
(𝑥) =


0 , ∀𝑥 ∈

[
0,

𝑝𝑖
𝑞𝑖

)
,

− 𝑝𝑖

𝑤𝑖^
𝐴 + 𝑞𝑖 ·𝑥

𝑤𝑖^
𝐴 , ∀𝑥 ∈

[
𝑝𝑖
𝑞𝑖
,
𝑤𝑖^

𝐴+𝑝𝑖
𝑞𝑖

]
,

1 , ∀𝑥 >
𝑤𝑖^

𝐴+𝑝𝑖
𝑞𝑖

.

𝐼−
1
(^𝐴, ^𝐵 ) 𝑖 ∈ [𝑛] : 𝑝𝑖 < 0, 𝑤𝑖^

𝐴 ≤ −𝑝𝑖 𝐹𝐴^
𝑖
(𝑥) = 1, ∀𝑥 ≥ 0 and 𝐹𝐵^

𝑖
(𝑥) = 1, ∀𝑥 ≥ 0.

𝐼−
2
(^𝐴, ^𝐵 ) 𝑖 ∈ [𝑛] : 𝑝𝑖 < 0,

−𝑝𝑖 < 𝑤𝑖^
𝐴 ≤ 𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖

𝐹𝐴^
𝑖
(𝑥) =


1 − ^𝐴

𝑞𝑖^
𝐵 − 𝑝𝑖

𝑞𝑖𝑤𝑖^
𝐵 , ∀𝑥 ∈ [0,−𝑝𝑖 ) ,

1 − ^𝐴

𝑞𝑖^
𝐵 + 𝑥

𝑞𝑖𝑤𝑖^
𝐵 , ∀𝑥 ∈

[
−𝑝𝑖 , 𝑤𝑖^

𝐴
]
,

1 , ∀𝑥 > 𝑤𝑖^
𝐴,

𝐹𝐵^
𝑖
(𝑥) :


− 𝑝𝑖

𝑤𝑖^
𝐴 + 𝑞𝑖 ·𝑥

𝑤𝑖^
𝐴 , ∀𝑥 ∈

[
0,

𝑤𝑖^
𝐴+𝑝𝑖
𝑞𝑖

]
,

1 , ∀𝑥 >
𝑤𝑖^

𝐴+𝑝𝑖
𝑞𝑖

.

𝐼−
3
(^𝐴, ^𝐵 ) 𝑖 ∈ [𝑛] : 𝑝𝑖 < 0,

𝑤𝑖^
𝐴 > 𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖

𝐹𝐴^
𝑖
(𝑥) =


0 , ∀𝑥 ∈ [0,−𝑝𝑖 ) ,

𝑝𝑖

𝑞𝑖𝑤𝑖^
𝐵 + 𝑥

𝑞𝑖𝑤𝑖^
𝐵 , ∀𝑥 ∈ [−𝑝𝑖 , 𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖 ],
1 , ∀𝑥 > 𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖 ,

𝐹𝐵^
𝑖
(𝑥) =


1 − 𝑞𝑖^

𝐵

^𝐴
+ 𝑞𝑖 ·𝑥

𝑤𝑖^
𝐴 , ∀𝑥 ∈

[
0, 𝑤𝑖^

𝐵
]
,

1 , ∀𝑥 > 𝑤𝑖^
𝐵 .

equilibrium distributions of these F-APA games satisfy Condition (C.3) in Definition 2.3 (i.e., they

are the marginal best-response against one another in the corresponding battlefield of the F-CB

game). Now, we only need to define the items’ values in these F-APA games in such a way that their

corresponding equilibrium distributions also hold Condition (C.2) in Definition 2.3 (i.e., they satisfy

the budget constraints in expectation). To do this, we first parameterize the items’ values assessed by

the bidders in the involved F-APA games, then we match these parameters with equations defining

Condition (C.2). Summarizing the above discussion, we define a particular set of distributions (on

R≥0) as follows:

Definition 4.1. Given a game CB𝐹
𝑛 and a pair of positive real numbers ^ = (^𝐴, ^𝐵) ∈R2

>0
, for each

𝑖 ∈ [𝑛], we define 𝐹𝐴^
𝑖
and 𝐹𝐵^

𝑖
to be the pair of distributions that forms the equilibrium of the F-APA

game with 𝑝 := 𝑝𝑖 , 𝑞 := 𝑞𝑖 , 𝑢𝐴 := 𝑤𝑖 · ^𝐴 and 𝑢𝐵 := 𝑤𝑖 · ^𝐵 . The explicit formulas of 𝐹𝐴^
𝑖
and 𝐹𝐵^

𝑖
are

given in Table 1 for each configuration of𝑤𝑖 , 𝑝𝑖 , 𝑞𝑖 , ^
𝐴 and ^𝐵 .
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We consider the following system of equations (with variables ^𝐴, ^𝐵):{ ∑
𝑖∈[𝑛] E𝑥∼𝐹𝐴^

𝑖

[𝑥] = 𝑋𝐴,∑
𝑖∈[𝑛] E𝑥∼𝐹𝐵^

𝑖

[𝑥] = 𝑋𝐵 .
(3)

By defining the sets 𝐼+ (^𝐴, ^𝐵) :=

{
𝑗 : 𝑝 𝑗 ≥ 0, ^𝐵 >

𝑝 𝑗

𝑞 𝑗𝑤𝑗

}
, 𝐼− (^𝐴, ^𝐵) :=

{
𝑗 : 𝑝 𝑗 < 0, ^𝐴 >

−𝑝 𝑗

𝑤𝑗

}
and

the term ℎ𝑖
(
^𝐴, ^𝐵

)
:= min{𝑞𝑖𝑤𝑖^

𝐵,𝑤𝑖^
𝐴 + 𝑝𝑖 }, and computing the expected values of 𝐹𝐴^

𝑖
and 𝐹𝐵^

𝑖

for 𝑖 ∈ [𝑛] (see the details in Appendix B.2), we can rewrite System (3) as:{
𝑔𝐴 (^𝐴, ^𝐵) = 0,

𝑔𝐵 (^𝐴, ^𝐵) = 0,
(4)

where 𝑔𝐴, 𝑔𝐵 : R2 → R are the following functions (for each given instance of the CB𝐹
𝑛 game):

𝑔𝐴 (^𝐴, ^𝐵)=
∑

𝑖∈𝐼+ (^𝐴,^𝐵 )

[
ℎ𝑖

(
^𝐴, ^𝐵

) ]
2−𝑝𝑖2

2𝑞𝑖𝑤𝑖

+
∑

𝑖∈𝐼− (^𝐴,^𝐵 )

[
ℎ𝑖

(
^𝐴, ^𝐵

) ]
2

2𝑞𝑖𝑤𝑖

− 𝑋𝐵^𝐴, (5a)

𝑔𝐵 (^𝐴, ^𝐵)=
∑

𝑖∈𝐼+ (^𝐴,^𝐵 )

[
ℎ𝑖

(
^𝐴, ^𝐵

)
−𝑝𝑖

]
2

2𝑞𝑖𝑤𝑖

+
∑

𝑖∈𝐼− (^𝐴,^𝐵 )

[
ℎ𝑖

(
^𝐴, ^𝐵

)
−𝑝𝑖

]
2−𝑝2

𝑖

2𝑞𝑖𝑤𝑖

−𝑋𝐴^𝐵 . (5b)

With these definitions, we can state our main result as the following theorem:

Theorem 4.2. For any game CB𝐹
𝑛 ,

(𝑖) There exists a positive solution ^ = (^𝐴, ^𝐵) ∈ R2

>0
of System (4).

(𝑖𝑖) For any positive solution ^ = (^𝐴, ^𝐵) ∈R2

>0
of System (4), the corresponding set of distributions{

𝐹𝐴^
𝑖
, 𝐹𝐵^

𝑖
, 𝑖 ∈ [𝑛]

}
from Definition 4.1 is a set of optimal univariate distributions of CB𝐹

𝑛 .

Theorem 4.2 serves as a core result for other analyses in this paper; it is interesting and important

in several aspects. First, it shows that in any instance of the F-CB game, there always exists a set of

OUDs with the form given in Definition 4.1. Second, by comparing these OUDs of the F-CB game

with that of the classical Colonel Blotto game (see e.g., results from [Kovenock and Roberson, 2020]),

we can see how the pre-allocations and the asymmetric effectiveness affect players’ allocations at

equilibrium; we will return to this point in Section 7 with more discussions. Moreover, as candidates

for marginals of the equilibrium of the F-CB game (in cases where it exists), the construction of

such OUDs allows us to deduce a variety of corollary results concerning equilibria and approximate

equilibria of F-CB and F-GL games (we present and discuss them in Section 5 and Section 6).

We give a detailed proof of Theorem 4.2 in Appendix B.2 and only discuss its main intuition

here. First, we can prove Result (𝑖𝑖) of Theorem 4.2 by simply checking the three conditions

of Definition 2.3 defining the OUDs of the F-CB game: it is trivial that for ^ ∈ R2

>0
, the sup-

ports of 𝐹𝐴^
𝑖
, 𝐹𝐵^

𝑖
,∀𝑖 ∈ [𝑛] are subsets of R≥0 (thus, they satisfy Condition (C.1)); moreover, if

^ = (^𝐴, ^𝐵) ∈ R2

>0
is a solution of System (4), then it is a solution of System (3) and trivially,

𝐹𝐴^
𝑖
, 𝐹𝐵^

𝑖
,∀𝑖 ∈ [𝑛] satisfy Condition (C.2);4 finally, we can check that for each configuration of

𝑤𝑖 , 𝑝𝑖 , 𝑞𝑖 , ^
𝐴, ^𝐵 (given that ^𝐴, ^𝐵 > 0), the distributions 𝐹𝐴^

𝑖
, 𝐹𝐵^

𝑖
form the equilibrium of the

corresponding F-APA game; thus 𝐹𝐴^
𝑖
, 𝐹𝐵^

𝑖
, 𝑖 ∈ [𝑛] satisfy Condition (C.3).

On the other hand, proving Result (𝑖) of Theorem 4.2 is a challenging problem in itself: 𝑔𝐴

and 𝑔𝐵 are not simply quadratic functions of ^𝐴 and ^𝐵 since these variables also appear in the

conditions of the involved summations. Note that the particular instance of System (4) where

𝑝𝑖 = 0, 𝑞𝑖 = 1,∀𝑖 ∈ [𝑛] coincides with a system of equations considered in [Kovenock and

4
Note that due to the “use-it-or-lose-it" rule of the F-CB game, among the existing equilibria (if any), there exists at least

one equilibrium in which players use all their resources, thus we only need to consider the equality case of Condition (C.2).
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Roberson, 2020] for the case of the classical Colonel Blotto game (without favoritism). Proving

the existence of positive solutions of this system in this particular case can be reduced to showing

the existence of positive solutions of a real-valued 1-dimensional function (with a single variable

_ = ^𝐴/^𝐵) which can be done by using the intermediate value theorem (see [Kovenock and

Roberson, 2020]). In the general case of the F-CB game and System (4), this approach cannot be
applied due to the involvement of arbitrary parameters 𝑝𝑖 , 𝑞𝑖 , 𝑖 ∈ [𝑛]. Alternatively, one can see

our problem as proving the existence of a fixed-point in R2

>0
of the function 𝐹 : R2 → R2

such that

𝐹
(
^𝐴, ^𝐵

)
=

(
𝑔𝐴

(
^𝐴, ^𝐵

)
/𝑋𝐵 + ^𝐴, 𝑔𝐵

(
^𝐴, ^𝐵

)
/𝑋𝐴 + ^𝐵

)
. This direction is also challenging since the

particular formulations of 𝑔𝐴 and 𝑔𝐵 (thus, of 𝐹 ) does not allow us to use well-known tools such as

Brouwer’s fixed-point theorem [Brouwer, 1911] and/or Poincaré-Miranda theorem [Kulpa, 1997].

Instead of the approaches discussed above, in this work, we prove Result (𝑖) of Theorem 4.2 via

the following equivalent formulation: proving the existence of a positive zero, i.e., the existence of a
point (𝑎, 𝑏) ∈ R2 such that 𝐺 (𝑎, 𝑏) = (0, 0), of the 𝐺 : R2 → R2

defined as follows:

𝐺 (^𝐴, ^𝐵) =
(
𝑔𝐴 (^𝐴, ^𝐵), 𝑔𝐵 (^𝐴, ^𝐵)

)
∈ R2,∀(^𝐴, ^𝐵) ∈ R2 . (6)

Note also that although (0, 0) is a trivial solution of System (4) (i.e., it is a zero of 𝐺), we can

only construct 𝐹𝐴^
𝑖
, 𝐹𝐵^

𝑖
(as in Definition 4.1) from solutions whose coordinates are strictly positive

(i.e., only from positive zeros of 𝐺). In this proof, we work with the notion of winding numbers
which is intuitively defined as follows: the winding number, denoted W(𝜑,𝑦), of a parametric

(2-dimensional) closed curve 𝜑 around a point 𝑦 ∈ R2
is the number of times that 𝜑 travels

counterclockwise around 𝑦 (see formal definitions of parametric curves, winding numbers and

other related notions in Appendix B.1). This notion allows an important result as follows:
5

Lemma 4.3. If 𝐺 is a continuous mapping, for any set 𝐷 ⊂ R2 which is topologically equivalent to a
disk such that W(𝜑, (0, 0)) ≠ 0 where 𝜑 is the 𝐺-image of the boundary of 𝐷 , then (0, 0) ∈ 𝐺 (𝐷).

Our proof proceeds by crafting a tailored set 𝐷 ⊂ R2> 0 such that the function 𝐺 from (6)

satisfies all sufficient conditions of Lemma 4.3;
6
then, we conclude that 𝐺 has a zero in 𝐷 and

Result (𝑖𝑖) of Theorem 4.2 follows. Note that finding such a set 𝐷 and quantifying the involved

winding number are non-trivial due to the complexity in the expressions of 𝑔𝐴 and 𝑔𝐵 . We illustrate

Lemma 4.3 and how the proof of Result (𝑖𝑖) of Theorem 4.2 proceeds in a particular instance of

F-CB in Example 4.4.

Example 4.4. Consider a game CB𝐹
𝑛 with 𝑛 = 4, 𝑋𝐴 = 4, 𝑋𝐵 = 4, 𝑤1 = 𝑤3 = 1, 𝑤2 = 𝑤4 = 2,

𝑝1 = 𝑝2 = 1, 𝑝3 = 𝑝4 = −1, 𝑞𝑖 = 1,∀𝑖 . We illustrate in Fig. 2 the values of the function 𝐺 : R2 → R2

corresponding to this game. Fig. 2(a) represents the output plane where each point is mapped with a
color; e.g., if a point has the color blue, we know that both coordinates of this point are positive. Fig. 2(b)
presents the input plane. Function 𝐺 maps each point in this input plane with a point in the output
plane. Then, in Fig. 2(b), we colorize each point in the input plane with the corresponding color of
its output (colors are chosen according to Fig. 2(a)). Solving (4) in this case, we see that (2, 2) is the
unique zero of 𝐺 . We observe that in Fig. 2(b), when one choose a disk containing (2, 2), its boundary
passes through all colors, which indicates that the 𝐺-image of its boundary goes around the origin
(0, 0) of the output plane. This is confirmed by Fig. 2(c) showing the𝐺-image of a rectangle 𝐷 having
the vertices (1, 1), (1, 4), (4, 4), (4, 1) (thus, it contains (2, 2)); we observe that 𝐺 (𝜕𝐷), which is the
blue curve, travels 1 time around (0, 0), thusW(𝐺 (𝐷), (0, 0)) ≠ 0.

5
See [Chinn and Steenrod, 1966] for a more general statement of Lemma 4.3. It is also considered in the literature as a

variant of the main theorem of connectedness in topology (see e.g., Theorem 12.N in [Viro et al., 2008]).

6
It is trivial that 𝑔𝐴 ( ·, ^𝐵 ), 𝑔𝐴 (^𝐴, ·) and 𝑔𝐵 ( ·, ^𝐵 ), 𝑔𝐵 (^𝐴, ·) are all continuous and monotone functions in R>0; therefore,

from Proposition 1 of [Kruse and Deely, 1969], 𝑔𝐴 (^𝐴, ^𝐵 ) and 𝑔𝐵 (^𝐴, ^𝐵 ) are continuous functions in 𝑅2

>0
.
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(a) Output plane as a heatmap to
be used as reference

^𝐴

^𝐵

(b) Input plane with the colors of
the values of function𝐺

(c) The image via function𝐺 of the
rectangle 𝐷

Fig. 2. Illustration of the function 𝐺 on an instance of CB𝐹
𝑛 (Example 4.4).

To complete this section, we compute the players’ payoffs in the F-CB game in the case where

their allocations follow the proposed OUDs. Recall the notation of the indices sets defined in Table 1,

we have the following proposition (its proof is given in Appendix B.3):

Proposition 4.5. Given a game CB𝐹
𝑛 and ^ =

(
^𝐴, ^𝐵

)
∈ R2

>0
, if Players A and B play strategies

such that the marginal distributions corresponding to battlefield 𝑖 ∈ [𝑛] are 𝐹𝐴^
𝑖
and 𝐹𝐵^

𝑖
respectively,

then their payoffs are:

Π𝐴

CB𝐹
𝑛

=
∑

𝑖∈𝐼+
1
(^𝐴,^𝐵 )

[
𝑤𝑖 I{𝑝𝑖>0} + 𝛼𝑤𝑖 I{𝑝𝑖=0}

]
+

∑
𝑖∈𝐼+

2
(^𝐴,^𝐵 )

[
𝑤𝑖

(
1−𝑞𝑖^

𝐵

^𝐴
+ 𝑝𝑖

𝑤𝑖^
𝐴

)
+ (𝑞𝑖𝑤𝑖^

𝐵−𝑝𝑖 )2

2𝑤𝑖^
𝐴𝑞𝑖^

𝐵

]
+

∑
𝑖∈𝐼+

3
(^𝐴,^𝐵 )

[
𝑤𝑖^

𝐴

2𝑞𝑖^
𝐵

]
+

∑
𝑖∈𝐼−

2
(^𝐴,^𝐵 )

[
𝑤𝑖^

𝐴

2𝑞𝑖^
𝐵
−

𝑝2

𝑖

2𝑤𝑖^
𝐴𝑞𝑖^

𝐵

]
+

∑
𝑖∈𝐼−

3
(^𝐴,^𝐵 )

[
𝑤𝑖−

𝑞𝑖^
𝐵𝑤𝑖

2^𝐴

]
, (7a)

Π𝐵

CB𝐹
𝑛

=
∑
𝑖∈[𝑛]

𝑤𝑖 − Π𝐴

CB𝐹
𝑛

. (7b)

If there exists an equilibrium of the game CB𝐹
𝑛 whose marginals are 𝐹𝐴^

𝑖
, 𝐹𝐵^

𝑖
, 𝑖 ∈ [𝑛], then (7a)

and (7b) are formulations of the equilibrium payoffs in this game. Observe, however, that as 𝑝𝑖 and

𝑞𝑖 (and𝑤𝑖 ) change, System (4) also changes; thus, its solutions also vary and the configuration of the

corresponding indices sets change. Therefore, the relationship between the favoritism parameters

and the payoffs induced by the corresponding OUDs is not easily deducible from (7a)-(7b). We delay

our discussion on this to Section 7 where we present results from numerical experiments.

5 EQUILIBRIA RESULTS FOR THE COLONEL BLOTTO GAMEWITH FAVORITISM
In the previous section, we successfully construct a set of OUDs of the F-CB game; we now show

how one can use this result to deduce an equilibrium. As a preliminary result, we give a high-level

condition under which the OUDs from Definition 4.1 constitute an equilibrium of the F-CB game;

it is presented as a direct corollary from Theorem 4.2 as follows:

Corollary 5.1. For any game CB𝐹
𝑛 and any positive solution ^ = (^𝐴, ^𝐵) of System (4), if there exists

a mixed-strategy of Player A (resp., Player B) whose univariate marginal distributions correspond to
𝐹𝐴^

𝑖
(resp., 𝐹𝐵^

𝑖
) for all 𝑖 ∈ [𝑛], then these mixed strategies constitute an equilibrium of CB𝐹

𝑛 .

Corollary 5.1 is a standard statement in analyzing equilibria of Colonel Blotto games from their

OUDs. In general, it is challenging to construct such mixed strategies as required in Corollary 5.1—

this is, as discussed in Section 1, a notorious difficulty in studying the Colonel Blotto game. In

the literature, several alternative concepts of solutions are proposed based on the related OUDs,

they are relaxed from the equilibrium of the Colonel Blotto game in one way or another. We show
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that these results can also be extended to the F-CB game thanks to Theorem 4.2: in Section 5.2,

we analyze a trivial equilibrium of the F-GL game and in Section 5.3, we propose an approximate

equilibrium of the F-CB game based on the rescaling technique of [Vu et al., 2020a]. Nevertheless,

we start in Section 5.1 by listing special cases of F-CB where the exact equilibrium can be computed.

5.1 Exact Equilibria of the F-CB Game in Particular Cases
For several parameters configurations, we can leverage existing results in special cases of the

Colonel Blotto game to solve special cases of the F-CB game. For instance, [Roberson, 2006]

successfully constructs an equilibrium of the game with homogeneous battlefields—the key idea

is that this game has a set of OUDs that are the same for all battlefields. Therefore, we can

generalize this idea to construct an equilibrium from the set of OUDs

{
𝐹𝐴^

𝑖
, 𝐹𝐵^

𝑖
: 𝑖 ∈ [𝑛]

}
in any

CB𝐹
𝑛 game whose parameters𝑤𝑖 , 𝑝𝑖 , 𝑞𝑖 are such that 𝐹𝐴^

𝑖
(𝑥) = 𝐹𝐴^

𝑗
(𝑥),∀𝑥 ∈ [0,∞), ∀𝑖, 𝑗 ∈ [𝑛] (and

𝐹𝐵^
𝑖
(𝑥) = 𝐹𝐵^

𝑗
(𝑥),∀𝑥 ∈ [0,∞)). A simple example where this condition holds is when 𝑤𝑖 = 𝑤 𝑗 ,

𝑝𝑖 = 𝑝 𝑗 and 𝑞𝑖 = 𝑞 𝑗 , ∀𝑖, 𝑗 ∈ [𝑛] in which any solution of System (4) induces an indices set (as

defined in Table 1) that contains the whole set {1, . . . , 𝑛}. It is also possible to extend this approach

to F-CB games where the set of battlefields can be partitioned into groups with homogeneous

OUDs and such that the cardinality of each group is sufficiently large (following an idea proposed

by [Schwartz et al., 2014] in the case of classical Colonel Blotto games).

5.2 Equilibrium of the General Lotto Game with Favoritism
In some applications of the F-CB game (and of the classical Colonel Blotto game), the budget

constraints do not need to hold with probability 1; instead, they are only required to hold in

expectation. In such cases, the General Lotto game with favoritism (F-GL) is relevant and applicable.

Due to the relaxation in the budget constraints, any set of OUDs of a game instance CB𝐹
𝑛 can serve

as a set of equilibrium marginals of the corresponding game GL𝐹
𝑛 (having the same parameters): it

is trivial to deduce mixed strategies of GL𝐹
𝑛 from univariate distributions 𝐹𝐴^

𝑖
, 𝐹𝐵^

𝑖
, 𝑖 ∈ [𝑛] (from

Definition 4.1). Formally, from Theorem 4.2, we have the following corollary:

Corollary 5.2. For any game GL𝐹
𝑛 and any positive solution ^ = (^𝐴, ^𝐵) of System (4), the strategy

profile where Player A (resp., Player B) draws independently her allocation to battlefield 𝑖 ∈ [𝑛] from
𝐹𝐴^

𝑖
(resp., 𝐹𝐵^

𝑖
) is an equilibrium.

Naturally, in the F-GL game, when players follow the equilibrium described in Corollary 5.2,

they gain the same payoffs as in (7a)-(7b). It is also trivial to check that Corollary 5.2 is consistent

with previous results on the classical General Lotto game (i.e., the F-GL game where 𝑝𝑖 = 0 and

𝑞𝑖 = 1 for any 𝑖 ∈ [𝑛]), e.g., from [Kovenock and Roberson, 2020; Myerson, 1993].

5.3 An Approximate Equilibrium of the F-CB Game
In the game theory literature, approximate equilibria are often considered as alternative solution-

concepts when it is impossible or inefficient to compute exact equilibria. Here, we focus on finding

a good approximate equilibrium of the F-CB game that can be simply and efficiently constructed;

this is relevant in applications where the budget constraints must hold precisely (e.g., in security or

telecommunication systems involving a fixed capacity of resources) but sub-optimality is acceptable

if the error is negligible relative to the scale of the problem. We begin by recalling the definition of

approximate equilibria [Myerson, 1991; Nisan et al., 2007] in the context of the F-CB game:

Definition 5.3 (Y-equilibria). For any Y ≥ 0, an Y-equilibrium of a game CB𝐹
𝑛 is any strategy profile

(𝑠∗, 𝑡∗) such that Π𝐴

CB𝐹
𝑛

(𝑠, 𝑡∗) ≤Π𝐴

CB𝐹
𝑛

(𝑠∗, 𝑡∗)+Y and Π𝐵

CB𝐹
𝑛

(𝑠∗, 𝑡) ≤Π𝐵

CB𝐹
𝑛

(𝑠∗, 𝑡∗)+Y for any strategy 𝑠
and 𝑡 of Players A and B.
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The set of OUDs constructed in Section 4 allows us to apply directly a technique from the

literature of classical Colonel Blotto game to look for an approximate equilibrium of the F-CB

game: in recent work, [Vu et al., 2020a] propose an approximation scheme (called the IU strategy)

for the Colonel Blotto game in which players independently draw their allocations from a set of

OUDs, then rescale them to guarantee the budget constraint. The authors prove that IU strategies

constitute an Y𝑊 -equilibrium of the CB game where Y = ˜O(𝑛−1/2) and𝑊 is the sum of battlefields’

values. We extend this idea to the F-CB game and propose the following definition:

Definition 5.4 (IU Strategies). For any game CB𝐹
𝑛 and any solution^ = (^𝐴, ^𝐵) ∈ R2

>0
of System (4),

we define IU𝜙
^ to be the mixed strategy of player 𝜙 ∈ {𝐴, 𝐵} such that her allocations, namely 𝒙𝜙 ,

are randomly generated by the following simple procedure:7 Player A draws independently a real
number 𝑎𝑖 from 𝐹𝐴^

𝑖
,∀𝑖 ∈ [𝑛]. If ∑𝑛

𝑗=1
𝑎 𝑗 = 0, set 𝑥𝐴𝑖 = 𝑋𝐴

𝑛
; otherwise, set 𝑥𝐴𝑖 =

𝑎𝑖∑𝑛
𝑗=1

𝑎 𝑗
· 𝑋𝐴. Player B

draws independently a real number 𝑏𝑖 from 𝐹𝐵^
𝑖
,∀𝑖 ∈ [𝑛]. If ∑𝑛

𝑗=1
𝑏 𝑗 = 0, set 𝑥𝐵𝑖 = 𝑋𝐵

𝑛
; otherwise, set

𝑥𝐵𝑖 =
𝑏𝑖∑𝑛
𝑗=1

𝑏 𝑗
· 𝑋𝐵 .

Intuitively, by playing IU strategies, players draw independently from the OUDs then normalize

before making the actual allocations. It is trivial to check that the realizations from IU
𝜙
^ satisfies the

corresponding budget constraint in the F-CB game. Now, we consider the following assumption:

Assumption (A3). ∃�̄�,
¯

𝑤 : 0 <
¯

𝑤 ≤ 𝑤𝑖 ≤ �̄� < +∞, ∀𝑖 ∈ [𝑛].
Assumption (A3) is a mild technical assumption that is satisfied by most (if not all) applications of

the F-CB game. Intuitively, it says that the battlefields’ values of the game F-CB are bounded away

from 0 and infinity. With a simple adaptation of the results of [Vu et al., 2020a] (for the classical

Colonel Blotto game), we obtain the following proposition (we give its proof in Appendix C):

Proposition 5.5 (IU Strategies is an Y-equilibrium). In any game CB𝐹
𝑛 satisfying Assumption (A3),

there exists a positive number Y = ˜O
(
𝑛−1/2

)
such that for any solution^ = (^𝐴, ^𝐵) ∈ R2

>0
of System (4),

the profile
(
IU𝐴

^ , IU
𝐵
^

)
is an Y𝑊 𝑛-equilibrium where𝑊 𝑛

:=
∑𝑛

𝑖=1
𝑤𝑖 .

Here, recall that the notation
˜O is a variant of the O-asymptotic notation where logarithmic

terms are ignored. We can interpret Proposition 5.5 as follows: consider a sequence of games CB𝐹
𝑛

in which 𝑛 increases (i.e., games with larger and larger numbers of battlefields). Note that𝑊 𝑛
is an

upper-bound of the players’ payoffs in the game CB𝐹
𝑛 , thus𝑊

𝑛
is relative to the scale of this game.

To qualify the proposed approximate equilibrium based on the evolution of 𝑛, we consider the ratio

between the involved approximation error Y𝑊 𝑛
of

(
IU

𝐴
^ , IU

𝐵
^

)
and this relative-scaled quantity𝑊 𝑛

;

this tracks down the proportion of payoff that Player 𝜙 might lose by following IU
𝜙
^ instead of

the best-response against IU
−𝜙
^ . As we consider CB𝐹

𝑛 games with larger and larger 𝑛, this ratio

(which is exactly Y) quickly tends to 0 with a speed in order
˜O(𝑛−1/2). Therefore, in the F-CB games

with large number of battlefields, the players can confidently play

(
IU

𝐴
^ , IU

𝐵
^

)
as an approximate

equilibrium knowing that the involved level of error is negligible. Note also that the approximation

error presented in Proposition 5.5 also depend on other parameters of the game including 𝑋𝐴, 𝑋𝐵
,

¯

𝑤, �̄� , max{|𝑝𝑖 | , 𝑖 ∈ [𝑛]},min{𝑞𝑖 , 𝑖 ∈ [𝑛]} and 𝛼 (these constants are hidden in the
˜O notation).

6 EFFICIENT APPROXIMATION OF OPTIMAL UNIVARIATE DISTRIBUTIONS
Our characterization of the (approximate) equilibria of the F-CB and F-GL games build upon

System (4). Theorem 4.2 shows the existence of a solution of this system, but in practice it is also

7
In fact, in this definition, when

∑
𝑗∈[𝑛] 𝑎 𝑗 = 0 (resp. when

∑
𝑗∈[𝑛] 𝑏 𝑗 = 0), we can assign any arbitrary 𝒙𝐴 ∈ 𝑆𝐴 (resp. any

𝒙𝐴 ∈ 𝑆𝐵 ). This choice will not affect the asymptotic results stated in this section (particularly, Proposition 5.5).
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important to be able to compute such a solution. It is not clear how to do this efficiently: recall

that (4) is not simply a system of quadratic equations in ^𝐴, ^𝐵 since as these variables change,

the configuration of the indices sets (involved in the definitions of 𝑔𝐴, 𝑔𝐵) also changes. Given a

game CB𝐹
𝑛 , a naive way to solve System (4) would be to consider all possible partitions of [𝑛]

into 𝐼+ (^𝐴, ^𝐵), 𝐼− (^𝐴, ^𝐵) and [𝑛]\
[
𝐼+ (^𝐴, ^𝐵)⋃ 𝐼− (^𝐴, ^𝐵)

]
, then solve the particular system of

quadratic equations corresponding to each case. This approach, however, is inefficient as in the

worst case, the number of partitions is exponential in 𝑛; as illustrated in the following toy example:

^𝐵

^𝐴

Fig. 3. Conditions to partition battlefields into the indices sets of the CB𝐹
𝑛 game in Example 6.1.

Example 6.1. Consider the game CB𝐹
𝑛 with 𝑛 = 2, 𝑋𝐴 = 𝑋𝐵 = 2, 𝑤1 = 𝑤2 = 1, 𝑝1 = −2, 𝑝2 = 0,

𝑞1 = 1/2 and 𝑞2 = 1. Even in this extremely simple game, there are 6 possible configurations of
𝐼+ (^𝐴, ^𝐵) and 𝐼− (^𝐴, ^𝐵). In Fig. 3, we illustrate these cases by 6 regions in the first quadrant of the
^𝐴-^𝐵 plane separated by the axes and the polynomials involving in the conditions that determine
the indices sets. Consider these cases, each inducing a system of quadratic equations, we see that
there is no positive solution of (4) in the cases corresponding to Regions I, II, III, IV and VI of Fig. 3.
Only when 2 < ^𝐴 < min{^𝐵, ^𝐵/2 + 2} (i.e., the point (^𝐴, ^𝐵) lies in Region V of Fig. 3), we have
𝐼− (^𝐴, ^𝐵) = {1} and 𝐼+ (^𝐴, ^𝐵) = {2} and thus, System (4) has a unique positive solution in R2

>0

that is ^𝐴 = 2 +
√

4/3 and ^𝐵 = 2 +
√

12 (which satisfy the conditions of Region V).

In large or even moderate instances, this naive approach is impossible, leading to the important

question: can we (approximately) solve System (4) more efficiently? We answer this question

positively: we propose in Section 6.1 an approximation algorithm that computes an solution of

System (4) with arbitrarily small error, and we analyze its running time in Section 6.2. Finally, in

Section 6.3, we analyze the impact of the approximation error on the OUDs from Section 4.

6.1 An Approximation Algorithm Solving System (4)

Throughout this section, we focus on the following approximation concept: in any game CB𝐹
𝑛 (and

GL𝐹
𝑛 ), for any 𝛿 > 0, a point ( ˜̂

𝐴, ˜̂
𝐵) ∈ R2

>0
is called a 𝛿-approximate solution of System (4) if there

exists a solution (^𝐴, ^𝐵) ∈ R2

>0
of System (4) satisfying the following conditions:��

˜̂
𝐴 − ^𝐴

�� ≤ 𝛿 and

��
˜̂
𝐵 − ^𝐵

�� ≤ 𝛿, (8)

and 𝑔𝐴 ( ˜̂
𝐴, ˜̂

𝐵) ≤ 0 and 𝑔𝐵 ( ˜̂
𝐴, ˜̂

𝐵) ≤ 0. (9)

Intuitively, any ˜̂ = ( ˜̂
𝐴, ˜̂

𝐵) satisfying (8) is 𝛿-close to a solution of System (4) (in the metric

induced by the ∥ · ∥∞ norm) and, by (9), the distributions

{
𝐹𝐴 ˜̂

𝑖
, 𝐹𝐵 ˜̂

𝑖
, 𝑖 ∈ [𝑛]

}
from Definition 4.1
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corresponding to ˜̂ satisfies Condition (C.2) of Definition 2.3 (i.e., budget constraints).
8
In principle,

we would like to find 𝛿-approximate solutions such that 𝛿 is as small as possible; naturally, this will

come with a trade-off on the running time (we discuss this further in Section 6.2).

We propose an approximation algorithm, having a stopping-criterion parameter 𝛿 , that quickly

finds a 𝛿-approximate solution of (4) in any game CB𝐹
𝑛 . A pseudo-code of this algorithm is given

in Appendix D.3 along with many details; we discuss here only its main intuition. Recall that

the function 𝐺 : R2 → R2
defined in (6) is a continuous mapping and that solving System (4) is

equivalent to finding a zero of 𝐺 . To do this, our approximation algorithm consists of a dichotomy

procedure (i.e., a bisection method) such that at each loop-iteration, it considers a smaller subset of

R2
. It starts with an arbitrary rectangle 𝐷 ⊂ R2

>0
(including its boundary and interior), then checks

to see whether its image via𝐺 contains the point (0, 0)—this can be done by computing the winding

number of the𝐺-image of the boundary of 𝐷 (which is a closed parametric curve) around (0, 0): due
to Lemma 4.3, if this winding number is non-zero, 𝐺 (𝐷) contains (0, 0). If 𝐺 (𝐷) does not contains
(0, 0), we enlarge the rectangle 𝐷 (e.g., by doubling its length and width) while maintaining that

𝐷 ⊂ R2

>0
. We repeat this enlargement step until we find a rectangle whose 𝐺-image contains (0, 0).

Due to Theorem 4.2 and Lemma 4.3, such a rectangle 𝐷 exists with a zero of 𝐺 inside. We then

proceed by dividing the rectangle 𝐷 into smaller rectangles and checking which among them has a

𝐺-image containing (0, 0), then repeating this procedure on that smaller rectangle. The algorithm

terminates as soon as it finds a rectangle, say 𝐷∗
, such that 𝐺 (𝐷∗) has a non-zero winding number

around (0, 0) and 𝐷∗
has a diameter smaller than 𝛿 (thus any point in 𝐷∗

satisfies (8)); as a sub-

routine of the computation of the involved winding number, our algorithm also determines a point

( ˜̂
𝐴, ˜̂

𝐵) in 𝐷∗
satisfying (9). The output ( ˜̂

𝐴, ˜̂
𝐵) is a 𝛿-approximate solution of System (4).

6.2 Computational Time of the Approximation Algorithm
In the approximation algorithm described above, the most complicated step is the computation

of the winding number of the involved rectangles. To do this efficiently, we draw tools from the

literature: for any parametric curve 𝜑 : [𝑎, 𝑏] → R2
where min𝑡 ∈[𝑎,𝑏 ] ∥𝜑 (𝑡)∥∞ = 𝛿 , the insertion

procedure with control of singularity (IPS) algorithm proposed by [Zapata and Martín, 2012]

takes O
(
(𝑏 − 𝑎)𝛿−1

)
time to output a special polygonal approximation of 𝜑—having a number

O
(
(𝑏 − 𝑎)𝛿−1

)
of vertices—such that the winding number of this polygonal approximation is

precisely the winding number of 𝜑 . To compute this winding number, we calculate the value of 𝜑

at all vertices of this polygon. Inserting IPS into our approximation algorithm running with the

parameter 𝛿 , in any game CB𝐹
𝑛 , for any rectangle 𝐷 in consideration, we can represent𝐺 (𝜕𝐷) by a

parametric curve 𝜑 : [𝑎, 𝑏] → R2
and compute the winding number of 𝐺 (𝜕𝐷) in O

(
𝑛(𝑏 − 𝑎)𝛿−1

)
time (it takes O(𝑛) time to compute the 𝐺-value of a vertex of the polygonal approximation). Note

that this computational time also depends on other parameters of the game CB𝐹
𝑛 (they are hidden

in O-notation above); we discuss this point in details in Appendix D.3. Based on this procedure, we

have the following proposition:

Proposition 6.2. For any game CB𝐹
𝑛 and 𝛿 < 1, the approximation algorithm described above finds

a 𝛿-approximate solution of System (4) in ˜O(𝑛𝛿−1) time.

Proposition 6.2 confirms the efficiency of our approximation algorithm, as the running time

of our algorithm is only O(𝑛). The order ˜O(𝛿−1) gives the trade-off between the running-time

and the precision-level of solutions 𝛿 . In fact, the running time of our algorithm also depends on

8
Note also that since𝐺 is continuous (it is also Lipschitz-continuous w.r.t ∥ · ∥∞ norm), the distance between𝐺 ( ˜̂

𝐴, ˜̂
𝐵 )

and (0, 0) also tends to 0 when 𝛿 → 0; to quantify this, one might look for the Lipschitz constants of 𝑔𝐴, 𝑔𝐵 ; but since this

analysis is not relevant to results presented in this section, we omit the details.
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the choice of the initial rectangle. More precisely, for a solution (^𝐴, ^𝐵) of System (4) such that

∥(^𝐴, ^𝐵)∥∞<𝑅, our approximation algorithm, initialized with a rectangle whose center (^𝐴
0
, ^𝐵

0
)

satisfying ∥(^𝐴
0
, ^𝐵

0
)∥∞ = 𝐿0 and 𝛿 < 1, terminates after O

(
log

(
𝑅
𝛿

)
+ log

(
max

{
𝑅
𝐿0

,
𝐿0

𝑅

}))
iterations

and each iteration runs in O
(
𝑅𝑛𝛿−1

)
time. Intuitively, if the initialized rectangle is too small and/or

the actual solution is too far away from this rectangle, the algorithm requires a longer time. We

conduct several experiments to illustrate the computational time of our approximation algorithm.

Due to space constraints, we place these results in Appendix D.3; globally, our proposed algorithm

is very fast in comparison with the naive approach described above.

6.3 Approximations of Optimal Univariate Distributions of the F-CB Game
To conclude this section, we show that from a 𝛿-approximate solutions of System (4), one gets an

approximate equilibrium for the F-CB and F-GL games. This is based on the following proposition:

Proposition 6.3. In any game CB𝐹
𝑛 (and GL𝐹

𝑛 ), let ^ = (^𝐴, ^𝐵) and ˜̂ = ( ˜̂
𝐴, ˜̂

𝐵) be a positive
solution and a 𝛿-approximate solution of System (4) respectively (such that^, ˜̂ satisfy (8)-(9)). Then, the
sets of distributions {𝐹𝐴^

𝑖
, 𝐹𝐵^

𝑖
, 𝑖 ∈ [𝑛]} and {𝐹𝐴 ˜̂

𝑖
, 𝐹𝐵 ˜̂

𝑖
, 𝑖 ∈ [𝑛]} from Definition 4.1 corresponding to ^

and ˜̂ satisfy
��𝐹𝐴^

𝑖
(𝑥)−𝐹𝐴 ˜̂

𝑖
(𝑥)

�� ≤ O(𝛿) and
��𝐹𝐵^

𝑖
(𝑥) −𝐹𝐵 ˜̂

𝑖
(𝑥)

�� ≤ O(𝛿), for any 𝑖 ∈ [𝑛] and 𝑥 ∈ [0,∞).

A proof of Proposition 6.3 is given in Appendix D.3. Intuitively, it shows that when ˜̂ = ( ˜̂
𝐴, ˜̂

𝐵)
is a 𝛿-approximate solution of (4), the distributions 𝐹𝐴 ˜̂

𝑖
, 𝐹𝐵 ˜̂

𝑖
are approximations of the distributions

𝐹𝐴^
𝑖
, 𝐹𝐵^

𝑖
with the approximation error in order O(𝛿) (note that it is also polynomial in terms of

1/min{^𝐴, ˜̂
𝐴, ^𝐵, ˜̂

𝐵}, max{^𝐴, ˜̂
𝐴, ^𝐵, ˜̂

𝐵}, 1/min𝑖∈[𝑛] 𝑞𝑖 and max𝑖∈[𝑛] |𝑝𝑖 |). From Proposition 6.3,

we can also deduce that the players’ payoffs when they use strategies with marginals following

𝐹𝐴 ˜̂

𝑖
, 𝐹𝐵 ˜̂

𝑖
, 𝑖 ∈ [𝑛] are [O(𝛿)𝑊 𝑛]-close to the payoffs when players use strategies with marginal

𝐹𝐴^
𝑖
, 𝐹𝐵^

𝑖
, 𝑖 ∈ [𝑛] (see the formulations given in (7a)-(7b)). As a consequence, by following the

scheme leading to results in Section 5, for any games CB𝐹
𝑛 and GL𝐹

𝑛 (having the same parameters),

for any 𝛿-approximate solution ˜̂ = ( ˜̂
𝐴, ˜̂

𝐵) of System (4), we have:

(𝑖) In GL𝐹
𝑛 , the strategies profile when Player A (resp. Player B) draws independently her

allocation to battlefield 𝑖 from 𝐹𝐴 ˜̂

𝑖
(resp. 𝐹𝐵 ˜̂

𝑖
) constitutes a [O(𝛿)𝑊 𝑛]-equilibrium.

9

(𝑖𝑖) In CB𝐹
𝑛 , the strategies (IU𝐴

˜̂
, IU𝐵

˜̂
) is a [O(𝛿 + Y)𝑊 𝑛]-equilibrium where Y = ˜O(𝑛−1/2). In this

case, we cannot obtain an approximate equilibrium with a level of error better than Y; to

achieve this, we only need to run the approximation algorithm with 𝛿 = Y.

7 NUMERICAL ILLUSTRATIONS OF THE EFFECT OF FAVORITISM IN COLONEL
BLOTTO AND GENERAL LOTTO GAMES

In this section, we conduct numerical experiments illustrating the effect of favoritism in the F-CB and

F-GL games. For each game instance, if its parameters satisfy Assumption (A1) and Assumption (A2),

we run the approximation algorithm described in Section 6 to find a 𝛿-approximate solution

˜̂ = ( ˜̂
𝐴, ˜̂

𝐵) of the corresponding System (4) where we set 𝛿 = 10
−6
; then, we report the obtained

results regarding the distributions 𝐹𝐴 ˜̂

𝑖
, 𝐹𝐵 ˜̂

𝑖
, 𝑖 ∈ [𝑛] from Definition 4.1 corresponding to ˜̂ . If

Assumption (A1) and Assumption (A2) are violated, we report the results corresponding to the

trivial pure equilibria.

In the first experiment, we aim to illustrate the relation between parameters 𝑝𝑖 , 𝑞𝑖 (𝑖 ∈ [𝑛]) and
the players’ equilibrium payoffs in the F-GL game presented in (7a)-(7b) (which are also the payoffs

of the corresponding F-CB game if the assumptions in Corollary 5.1 hold). Since F-GL and F-CB

9
These are indeed mixed strategies of GL𝐹

𝑛 since

∑
𝑖∈[𝑛] E𝑥∼𝐹

𝐴 ˜̂

𝑖

[𝑥 ] < 𝑋𝐴
and

∑
𝑖∈[𝑛] E𝑥∼𝐹

𝐵 ˜̂

𝑖

[𝑥 ] < 𝑋𝐵
due to (9).
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are constant-sum games, we focus on the payoff of Player A. Although our results hold for F-CB

and F-GL games in the general setting of parameters, we first focus on instances where the players’

budgets are symmetric and all battlefields are homogeneous in order to single out the effect of

favoritism. In particular, we consider a group of instances of the F-GL game with 𝑛 = 4 battlefields,

𝑋𝐴 = 𝑋𝐵 = 10, 𝛼 = 1/2, in which all battlefields have the same values (𝑤𝑖 = 1,∀𝑖) and the same

favoritism parameters 𝑝𝑖 = 𝑝, 𝑞𝑖 = 𝑞,∀𝑖 for given 𝑝, 𝑞. For comparison, recall that the instance

where 𝑝 = 0, 𝑞 = 1 corresponds to the classical Colonel Blotto/ General Lotto game.

𝑝
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(a) 𝑞1 = 𝑞2 = 𝑞3 = 𝑞4 = 𝑞

𝑝

P
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y
o
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o
f
P
l
a
y
e
r
A

(b) 𝑞1 = 𝑞2 = 𝑞, 𝑞3 = 𝑞4 = 1/𝑞

Fig. 4. Equilibrium payoffs of Player A in F-GL games where 𝑛=4,𝑋𝐴 =𝑋𝐵 = 10, 𝛼 = 1

2
;𝑤𝑖 =1, 𝑝𝑖 =𝑝 , ∀𝑖 ∈ [𝑛].

Fig. 4(a) illustrates the (expected) equilibrium payoff of Player A in instances of the F-GL game

where 𝑝 ∈
{
−𝑋𝐴,−0.99𝑋𝐴, . . . , 0, 0.01𝑋𝐴, 0.02𝑋𝐴, . . . , 𝑋𝐴

}
and 𝑞 ∈ {1/10, 1/5, 1/2, 1, 2, 5, 10}. First

we observe that as 𝑝 increases and/or 𝑞 decreases, i.e., favoritism inclines towards Player A, her

expected payoff naturally increases (or at least does not decrease). Second, most instances satisfy

Assumption (A1) and Assumption (A2); in this case the curves representing Player A’s payoffs

are piecewise quadratic in 𝑝 , which is consistent with its theoretical expression in (7a). Third, we

observe that the equilibrium payoff of Player A, as a function of 𝑝 , is discontinuous at several

points. This is due to the fact that for instances where 𝑝 is very small or when 𝑞 is very large (i.e.,

Player B has strong favoritism), the game has trivial equilibria where Player B can guarantee to

win all battlefields (and thus, Player A’s payoff is 0).

Next, we consider game instances with the same 𝑛,𝑋𝐴, 𝑋𝐵,𝑤𝑖 and 𝑝𝑖 , but we allow resource’s

effectiveness to vary across battlefields, in particular, 𝑞1 = 𝑞2 = 𝑞 and 𝑞3 = 𝑞4 = 1/𝑞 where

𝑞 ∈ {0.1, 0.2, 0.5}. Fig. 4(b) reports Player A’s equilibrium payoff in these cases. First, we observe that

when 𝑝 = 0, the game is symmetric and each player’s equilibrium payoff is precisely

∑
𝑖∈[𝑛] 𝑤𝑖/2 = 2.

Contrary to the case of Fig. 4(a), however, in Fig. 4(b) when 𝑝 is large, Player A can no longer

guarantee to win all battlefields. Moreover, in cases where 𝑞𝑖 ∈ {0.1, 0.2}, when 𝑝 ≥ 2 and it

increases (i.e., Player A has strong pre-allocations), she cannot improve much her payoff. This is

explained by the fact that although Player A can guarantee to win battlefields 1 and 2 (where 𝑞𝑖 is

small), the effectiveness of her resources in battlefields 3 and 4 is too weak so she does not gain

much in these battlefields. This illustrates the different effect on equilibrium of the favoritism in

resources’ effectiveness and in pre-allocations.

In the next experiment, we consider the following situation: players compete on 𝑛 = 4 battlefields

where 𝑤1 = 𝑤2 = 𝑤3 = 1, 𝑤4 = 5 and 𝑞𝑖 = 1,∀𝑖 (i.e., resources have the same effectiveness).

Player A has a total budget 𝑋 ∗ = 10, but in this experiment a proportion 𝑃 < 𝑋 ∗
taken out of

this budget is pre-allocated. Then, Players A and B play an F-GL (or an F-CB ) game where Player

A’s budget is 𝑋𝐴 = 10 − 𝑃 , Player B’s budget is 𝑋𝐵 = 10, and 𝑝𝑖 ≥ 0 such that

∑
𝑖∈[𝑛] 𝑝𝑖 = 𝑃 .

We aim to analyze Player A’s payoff when 𝑃 increases (i.e., when more and more of her budget
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is committed as pre-allocation). While interesting, we leave the question of what is an optimal

distribution of pre-allocation as future work; here we simply compare two simple distributions of

Player A’s pre-allocation: (i) in the spread strategy, the pre-allocation is spread over all battlefields:

𝑝𝑖 = 𝑃/𝑛,∀𝑖 ∈ [𝑛]; (ii) in the focus strategy, the pre-allocation is concentrated on battlefield 4 (the

battlefield with a large value): 𝑝1 = 𝑝2 = 𝑝3 = 0 and 𝑝4 = 𝑃 .

𝑃
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Fig. 5. Player A’s equilibrium payoffs and expected allocations in the F-GL game where 𝑛 = 4,
𝑤1 = 𝑤2 = 𝑤3 = 1,𝑤4 = 5, 𝑋𝐴 = 10 − 𝑃 , 𝑋𝐵 = 10, 𝑞𝑖 = 1,∀𝑖 and ∑

𝑖∈[𝑛] 𝑝𝑖 = 𝑃 .

Fig. 5(a) illustrates Player A’s equilibrium payoff in the F-GL games as described above with

𝑃 ∈ {0, 0.1, . . . , 9.9}. When 𝑃 = 0, it is the classical CB game and in this case, the game is symmetric,

thus, each player has an equilibrium payoff

∑
𝑖∈[𝑛] 𝑤𝑖/2 = 4. As 𝑃 increases, Player A’s payoff

decreases; intuitively, when the proportion of Player A’s budget that is pre-allocated increases, she

reveals more information about her (pre-)allocations and has less flexibility in play. Interestingly, we

observe that in instances where 𝑃 is relatively large, Player A gets a better payoff by distributing the

pre-allocations using the focus strategy rather than by the spread strategy, i.e., it is better for Player

A to focus on “securing” the big battlefield. In Fig. 5(b), we plot the expected allocations of Player

A at equilibrium, alone and when added to her pre-allocations (note that since the parameters on

battlefields 1, 2, 3 are identical, Player A’s expected allocations are the same on these battlefields). As

𝑃 increases, Player A’ expected allocations to the battlefields decrease since her budget𝑋𝐴 = 𝑋 ∗ − 𝑃

is reduced (although the aggregate of her allocation and pre-allocation increases in some cases).

Interestingly, when 𝑃 is relatively small, Player A’s expected allocations to battlefield 4 is much

larger than that at battlefield 1 (this is because𝑤4 > 𝑤1). However, when 𝑃 increases and under the

focus strategy for pre-allocation, her allocation at battlefield 4 decreases quicker than that with the

spread strategy. This is consistent with the intuition above that she already “secures” this battlefield

by the focus strategy thus, she should not distribute a large allocation there.

8 CONCLUDING DISCUSSION
We introduced the Colonel Blotto game with favoritism and analyzed its equilibria and approximate

equilibria. We first characterized completely the equilibrium of all-pay auctions with favoritism.

Using this, we then proved that there exists a set of optimal univariate distributions of the Colonel

Blotto game with favoritism and gave a construction thereof. In several special cases of the Colonel

Blotto game with favoritism, these univariate distributions give an exact equilibrium; in other cases,

we derived an approximate equilibrium. We then proposed an algorithm that efficiently computes

an approximation of the proposed optimal univariate distributions with arbitrarily small error.

Our model of favoritism uses a linear-form of the winner-determination rule, defined in Sec-

tion 2.1, similar to works on all-pay auctions with favoritism (see e.g., [Konrad, 2002; Siegel, 2014]).
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This is a natural formulation to capture the fundamental properties of favoritism due to its sim-

plicity and to the natural interpretation of the parameters 𝑝𝑖 and 𝑞𝑖 ; and our Colonel Blotto game

with favoritism—which is derived from this rule—provides a meaningful model for applications

with favoritism (see Section 1 for several motivational examples). Nevertheless, an interesting

direction for future investigations would be to consider more general winner-determination rules to

model favoritism. A natural extension of our work is to consider polynomial winner-determination

rules, that is, player A wins battlefield 𝑖 if 𝑃𝑚
𝐴,𝑖

(𝑥𝐴𝑖 ) ≥ 𝑃𝑚
𝐵,𝑖
(𝑥𝐵𝑖 ) and loses otherwise; where, 𝑃𝑚

𝐴,𝑖
(·)

and 𝑃𝑚
𝐵,𝑖
(·) are some pre-determined polynomials of degree𝑚 with coefficients dependent on the

battlefield and the corresponding player (the first two coefficients are similar to 𝑝𝑖 and 𝑞𝑖 ). It would

remain possible to map the corresponding Colonel Blotto game to a set of all-pay auctions; but these

all-pay auctions would now have complex (polynomial) winner-determination rules. This raises

two challenges: (i) the equilibrium for such complex all-pay auctions (used to derive the optimal

univariate distributions of the Colonel Blotto game) is not known and appears to be non-trivial to

derive; and (ii) proving the existence of the univariate distributions might require a fixed-point

technique other than our solution in the linear-form case (cf. Theorem 4.2)—or at least an adaptation

of our proof technique.
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Appendix A SUPPLEMENTARY MATERIALS FOR RESULTS IN SECTION 3
Appendix A.1 Known results on equilibria of all-pay auctions
To ease the comparison between the state-of-the-art and our main results on the F-APA game

(Section 3), we review here several results in the literature. The results stated in this section are

extracted from previous works and rewritten in our notations.

Theorem Appendix A.1 (extracted from [Baye et al., 1994; Hillman and Riley, 1989]). In the
classical two-player all-pay auction (i.e., an F-APA with 𝑝 = 0, 𝑞 = 1 and 𝛼 = 1/2), if 𝑢𝐴 ≥ 𝑢𝐵 , there
exists a unique mixed equilibrium where Players A and B bid according to the following distributions:

𝐴(𝑥) =
{

𝑥
𝑢𝐵 ,∀𝑥 ∈

[
0, 𝑢𝐵

]
,

1 ,∀𝑥 > 𝑢𝐵,
and 𝐵(𝑥) =

{
𝑢𝐴−𝑢𝐵

𝑢𝐴 + 𝑥
𝑢𝐴 ,∀𝑥 ∈

[
0, 𝑢𝐵

]
1 ,∀𝑥 > 𝑢𝐵 .

(A.1)

In this equilibrium, Player A’s payoff is Π𝐴 = 𝑢𝐴 − 𝑢𝐵 , Player B’s payoff is Π𝐵 = 0.

In intuition,𝐴(𝑥) is the uniform distribution on [0, 𝑢𝐵] and 𝐵(𝑥) is the distribution with a (strictly
positive) probability mass at 0 and the remaining mass is distributed uniformly in (0, 𝑢𝐵]. In the

case where 𝑢𝐵 > 𝑢𝐴, players exchange their roles and a similar statement to Theorem Appendix A.1

can be easily deduced.

Theorem Appendix A.2 (extracted from [Konrad, 2002]). In the F-APA where 𝑢𝐴 = 𝑢𝐵 = 𝑢, 𝑞 > 0,
0 < 𝑞 < 1 and 𝛼 = 1/2,
(𝑖) If 𝑞𝑢 − 𝑝 ≤ 0, there exists a unique pure equilibrium where players’ bids are 𝑥𝐴 = 𝑥𝐵 = 0 and

their equilibrium payoffs are Π𝐴 = 𝑢 and Π𝐵 = 0.
(𝑖𝑖) If 0 < 𝑞𝑢 − 𝑝 , there exists no pure equilibrium; the unique mixed equilibrium is where Players A

and B draw their bids from the following distributions:

𝐴(𝑥) =
{ 𝑝

𝑞𝑢
+ 𝑥

𝑞𝑢
,∀𝑥 ∈ [0, 𝑞𝑢 − 𝑝] ,

1 ,∀𝑥 > 𝑞𝑢 − 𝑝,
and 𝐵(𝑥) =


1 − 𝑞 + 𝑝

𝑢
,∀𝑥 ∈

[
0,

𝑝

𝑞

)
1 − 𝑞 + 𝑞 ·𝑥

𝑢
,∀𝑥 ∈

[
𝑝

𝑞
, 𝑢

]
,

1 ,∀𝑥 > 𝑢.

(A.2)

In this mixed equilibrium, players’ payoffs are Π𝐴 = 𝑢 (1 − 𝑞) + 𝑝 and Π𝐵 = 0.

Intuitively, 𝐴(𝑥) is the distribution placing a positive mass at 0 and distributing the remaining

mass uniformly on (0, 𝑞𝑢 − 𝑝] and 𝐵(𝑥) is the distribution placing a mass at 0 and distributing the

remaining mass uniformly on (𝑝/𝑞,𝑢). It is possible to deduce similar results for the case where

𝑝 < 0 and 𝑞 > 1 (it is not stated explicitly in [Konrad, 2002]). However, [Konrad, 2002] does not

consider the cases where the additive asymmetric parameter 𝑝 is in favor of one player while the

multiplicative asymmetric parameter 𝑞 is in favor of the other.

Appendix A.2 Proof of Theorem 3.1
Proof. Proof of Result (𝑖): For any𝑥𝐵 ≥ 𝑢𝐵 and any𝑥𝐴, we haveΠ𝐵

F-APA

(
𝑥𝐴, 𝑥𝐵

)
< 0. Moreover,

due to the condition 𝑞𝑢𝐵 − 𝑝 ≤ 0, we have 𝑥𝐴 > 𝑞𝑥𝐵 − 𝑝 for any 𝑥𝐴 ≥ 0 and 0 ≤ 𝑥𝐵 < 𝑢𝐵 ; that is,

player B always loses if she bids strictly lower than 𝑢𝐵 . Trivially, 𝑥𝐵 = 0 is the unique dominant

strategy of player B. Player A’s best response against 𝑥𝐵 = 0 is 𝑥𝐴 = 0. In conclusion, we have:

Π𝐴
F-APA

(0, 0) = 𝑢𝐴 and Π𝐴
F-APA

(
𝑥𝐴, 0

)
= 𝑢𝐴 − 𝑥𝐴 < 𝑢𝐴,∀𝑥𝐴 > 0,

Π𝐵
F-APA

(0, 0) = 0 and Π𝐵
F-APA

(
0, 𝑥𝐵

)
< 0,∀𝑥𝐵 > 0,
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Proof of Result (𝑖𝑖) First, from 0 < 𝑞𝑢𝐵 − 𝑝 ≤ 𝑢𝐴, we have 0 ≤ 𝑝/𝑞 < 𝑢𝐵 . We prove (by

contradiction) that there exists no pure equilibrium under this condition. Assume that the profile

𝑥𝐴, 𝑥𝐵 is a pure equilibrium of the F-APA game. We consider two cases:

• Case 1: If 𝑥𝐴 = 0, then player B’s best response is to choose 𝑥𝐵 = 𝑝/𝑞 + Y with an infinitesimal

Y > 0 since by doing it, she can guarantee to win (since 𝑞(𝑝/𝑞 + Y) − 𝑝 = 𝑞Y > 0) and gets

the payoff 𝑢𝐵 − 𝑝/𝑞 − Y > 0.
10
However, player A’s best response against 𝑥𝐵 = 𝑝/𝑞 + Y is not

𝑥𝐴 = 0.
11

• Case 2: If 𝑥𝐴 > 0, then player B’s best response is either 𝑥𝐵 = (𝑥𝐴 + 𝑝)/𝑞 + Y if there exists

Y > 0 small enough such that 𝑞𝑢𝐵 − 𝑝 − 𝑥𝐴 − Y > 0 or 𝑥𝐵 = 0 if there is no such Y. However,

𝑥𝐴 > 0 is not the best response of player A against neither 𝑥𝐵 = (𝑥𝐴 + 𝑝)/𝑞 + Y nor against

𝑥𝐵 = 0.
12

We conclude that 𝑥𝐴, 𝑥𝐵 cannot the best response against each other; thus, there exists no pure

equilibrium in this case.

Now, we prove that if player B plays according to 𝐹𝐵+
2

, player A has no incentive to deviate from

playing according to 𝐹𝐴+
2

. Denote by 𝐴+
2
and 𝐵+

2
the random variables that correspond to 𝐹𝐴+

2

and

𝐹𝐵+
2

, since 𝐹𝐴+
2

is a continuous distribution on

(
0, 𝑞𝑢𝐵 − 𝑝

]
, we have:

Π𝐴
F-APA

(
𝐹𝐴+

2

, 𝐹𝐵+
2

)
=

[
𝑢𝐴P

(
𝐵+

2
<

𝑝

𝑞

)
− 0

]
P

(
𝐴+

2
= 0

)
+

[
𝛼𝑢𝐴P

(
𝐵+

2
=
𝑝

𝑞

)
− 0

]
P

(
𝐴+

2
= 0

)
+

∫ 𝑞𝑢𝐵−𝑝

0

[
𝑢𝐴P

(
𝐵+

2
<

𝑥 + 𝑝

𝑞

)
− 𝑥

]
d𝐹𝐴+

2

(𝑥)

= 𝑢𝐴𝐹𝐵+
2

(
𝑝

𝑞

)
𝑝

𝑞𝑢𝐵
+ 0 +

∫ 𝑞𝑢𝐵−𝑝

0

[
𝑢𝐴𝐹𝐵+

2

(
𝑥 + 𝑝

𝑞

)
− 𝑥

]
d𝐹𝐴+

2

(𝑥) (A.3)

=

(
𝑢𝐴 − 𝑞𝑢𝐵 + 𝑝

) 𝑝

𝑞𝑢𝐵
+

∫ 𝑞𝑢𝐵−𝑝

0

(
𝑢𝐴 − 𝑞𝑢𝐵 + 𝑝

)
1

𝑞𝑢𝐵
d𝑥

= 𝑢𝐴 − 𝑞𝑢𝐵 + 𝑝.

Here, (A.3) comes from the fact that P
(
𝐵+

2
= 𝑝/𝑞

)
= 0, due to definition. Now, if player A plays a

pure strategy 𝑥𝐴 > 𝑞𝑢𝐵 − 𝑝 while player B plays 𝐹𝐵+
2

, her payoff is:

Π𝐴
F-APA

(
𝑥𝐴, 𝐹𝐵+

2

)
≤ 𝑢𝐴 − 𝑥𝐴 < 𝑢𝐴 − 𝑞𝑢𝐵 + 𝑝 = Π𝐴

F-APA

(
𝐹𝐴+

2

, 𝐹𝐵+
2

)
.

Moreover, for any pure strategy 𝑥𝐴 ∈ [0, 𝑞𝑢𝐵 − 𝑝], we have:

Π𝐴
F-APA

(
𝑥𝐴, 𝐹𝐵+

2

)
= 𝑢𝐴P

(
𝐵+

2
<

𝑥𝐴+𝑝
𝑞

)
+ 𝛼𝑢𝐴P

(
𝐵+

2
=
𝑥𝐴+𝑝
𝑞

)
−𝑥𝐴

≤ 𝑢𝐴𝐹𝐵+
2

(
𝑥𝐴+𝑝
𝑞

)
−𝑥𝐴 = 𝑢𝐴

[
1−𝑞𝑢𝐵

𝑢𝐴
+ 𝑞

𝑢𝐴

(𝑥𝐴+𝑝)
𝑞

]
−𝑥𝐴

=𝑢𝐴−𝑞𝑢𝐵+𝑝

=Π𝐴
F-APA

(
𝐹𝐴+

2

, 𝐹𝐵+
2

)
.

In conclusion, Π𝐴
(
𝐹𝐴+

2

, 𝐹𝐵+
2

)
≥ Π𝐴

(
𝑥𝐴, 𝐹𝐵+

2

)
for any 𝑥𝐴 ≥ 0.

10
Note that if player B choose 𝑥𝐵 = 0, she loses and hes payoff is only 0.

11
Player A’s best response against 𝑥𝐵 = 𝑝/𝑞 + Y is 𝑥𝐴 = 𝑞Y + 𝛿 (with an infinitesimal 𝛿 > 0 such that 𝑢𝐴 − 𝑞Y − 𝛿 > 0).

12
The best response of player A against 𝑥𝐵 = (𝑥𝐴 + 𝑝)/𝑞 + Y is 𝑥𝐴 + 𝑞Y + 𝛿 where 0 < 𝛿 < 𝑢𝐴 − 𝑥𝐴 − 𝑞Y (𝛿 exists thanks

to the condition on Y and that 𝑞𝑢𝐵 − 𝑝 ≤ 𝑢𝐴) and her best response against 𝑥𝐵 = 0 is 𝑥𝐴 = 0.
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Similarly, we prove that when player A plays 𝐹𝐴+
2

, player B has no incentive to deviate from 𝐹𝐵+
2

.

Indeed, since 𝐹𝐵+
2

is a continuous distribution on [𝑝/𝑞,𝑢𝐵], we have

Π𝐵
F-APA

(
𝐹𝐴+

2

, 𝐹𝐵+
2

)
=

[
𝑢𝐵P

(
𝐴+

2
< 0

)
− 𝑝

𝑞

]
P

(
𝐵+

2
=
𝑝

𝑞

)
+

[
(1 − 𝛼)𝑢𝐵P

(
𝐴+

2
= 0

)
− 𝑝

𝑞

]
P

(
𝐵+

2
=
𝑝

𝑞

)
+

∫ 𝑢𝐵

𝑝/𝑞

[
𝑢𝐵P

(
𝐴+

2
< 𝑞𝑥 − 𝑝

)
− 𝑥

]
d𝐹𝐵+

2

(𝑥)

= 0 + 0 +
∫ 𝑢𝐵

𝑝/𝑞

[
𝑢𝐵𝐹𝐴+

2

(𝑞𝑥 − 𝑝) − 𝑥

]
d𝐹𝐵+

2

(𝑥) (A.4)

=

∫ 𝑢𝐵

𝑝/𝑞

[
𝑢𝐵

(
𝑝

𝑞𝑢𝐵
+ 𝑞𝑥 − 𝑝

𝑞𝑢𝐵

)
− 𝑥

]
𝑞

𝑢𝐴
d𝑥

= 0.

Here, (A.4) comes from the fact P
(
𝐵+

2
= 𝑝/𝑞

)
= 0 and that P(𝐴+

2
= 𝑧) = 0 for any 𝑧 ∈ (0, 𝑞𝑢𝐵 − 𝑝]

due to definition. Now, as stated above, for any pure strategy 𝑥𝐵 > 𝑢𝐵 , trivially Π𝐵
F-APA

(𝐹𝐴+
2

, 𝑥𝐵) < 0.

Moreover, Π𝐵
F-APA

(
𝐹𝐴+

2

, 𝑥𝐵
)
≤ 𝑢𝐵𝐹𝐴+

2

(
𝑞𝑥𝐵−𝑝

)
−𝑥𝐵 =0 for any 𝑥𝐵 ∈ [0, 𝑢𝐵]. Therefore, we conclude

that Π𝐵
F-APA

(
𝐹𝐴+

2

, 𝐹𝐵+
2

)
≥ Π𝐵

F-APA

(
𝐹𝐴+

2

, 𝑥𝐵
)
for any 𝑥𝐵 ≥ 0.

Proof of Result (𝑖𝑖𝑖). Similarly to the proof of Result (𝑖𝑖), we can prove that there exists no pure

equilibrium if 𝑞𝑢𝐵 − 𝑝 > 𝑢𝐴 > 0. Now, let us denote by 𝐴+
3
and 𝐵+

3
the random variables that

correspond to 𝐹𝐴+
3

and 𝐹𝐵+
3

; we prove that if player B plays according to 𝐹𝐵+
3

, player A has no

incentive to deviate from playing according to 𝐹𝐴+
3

.

Π𝐴
F-APA

(
𝐹𝐴+

3

, 𝐹𝐵+
3

)
=

[
𝑢𝐴P

(
𝐵+

3
<

𝑝

𝑞

)
− 0

]
P

(
𝐴+

3
= 0

)
+

[
𝛼𝑢𝐴P

(
𝐵+

3
=
𝑝

𝑞

)
− 0

]
P

(
𝐴+

3
= 0

)
+

∫ 𝑢𝐴

0

[
𝑢𝐴P

(
𝐵+

3
<

𝑥 + 𝑝

𝑞

)
− 𝑥

]
d𝐹𝐴+

3

(𝑥)

= 0 + 0 +
∫ 𝑢𝐴

0

[
𝑢𝐴𝐹𝐵+

2

(
𝑥 + 𝑝

𝑞

)
− 𝑥

]
d𝐹𝐴+

3

(𝑥)

=

∫ 𝑢𝐴

0

[
𝑢𝐴

(
−𝑝
𝑢𝐴

+ 𝑞

𝑢𝐴

(𝑥 + 𝑝)
𝑞

)
− 𝑥

]
d𝐹𝐴+

3

(𝑥)

= 0.

Moreover, trivially, for any 𝑥𝐴 > 𝑢𝐵 , we have Π𝐴
F-APA

(
𝑥𝐴, 𝐹𝐵+

3

)
< 0 and for any 𝑥𝐴 ∈ [0, 𝑢𝐵], we

have

Π𝐴
F-APA

(
𝑥𝐴, 𝐹𝐵+

3

)
≤𝑢𝐴𝐹𝐵+

3

(
𝑥𝐴 + 𝑝

𝑞

)
− 𝑥𝐴

=𝑢𝐴
[
−𝑝
𝑢𝐴

+ 𝑞

𝑢𝐴

(𝑥𝐴 + 𝑝)
𝑞

]
− 𝑥𝐴

=0 = Π𝐴
F-APA

(
𝐹𝐴+

3

, 𝐹𝐵+
3

)
.
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Therefore, Π𝐴
F-APA

(
𝐹𝐴+

3

, 𝐹𝐵+
3

)
≥ Π𝐴

F-APA

(
𝑥𝐴, 𝐹𝐵+

3

)
for any 𝑥𝐴 ≥ 0.

On the other hand, since 𝐹𝐵+
3

is a continuous distribution on

[
𝑝

𝑞
,
𝑢𝐴+𝑝
𝑞

]
, we do not need to consider

the tie cases and we can deduce that:

Π𝐵
F-APA

(
𝐹𝐴+

3

, 𝐹𝐵+
3

)
=

∫ 𝑢𝐴+𝑝
𝑞

𝑝/𝑞

[
𝑢𝐵𝐹𝐴+

3

(𝑞𝑥 − 𝑝) − 𝑥

]
d𝐹𝐵+

3

(𝑥)

=

∫ 𝑢𝐴+𝑝
𝑞

𝑝/𝑞

[
𝑢𝐵

(
1 − 𝑢𝐴

𝑞𝑢𝐵
+ 𝑞𝑥 − 𝑝

𝑞𝑢𝐵

)
− 𝑥

]
𝑞

𝑢𝐴
d𝑥

= 𝑢𝐵 − 𝑢𝐴 + 𝑝

𝑞
.

Moreover, trivially, for any 𝑥𝐵 > 𝑢𝐵 , we haveΠ𝐵
(
𝐹𝐴+

3

, 𝑥𝐵
)
< 0 < 𝑢𝐵−𝑢𝐴+𝑝

𝑞
; and for any 𝑥𝐵 ∈ [0, 𝑢𝐵],

we have:

Π𝐵
F-APA

(
𝐹𝐴+

3

, 𝑥𝐵
)
≤ 𝑢𝐵𝐹𝐴+

3

(
𝑞𝑥𝐵 − 𝑝

)
− 𝑥𝐵 = 𝑢𝐵

(
1 − 𝑢𝐴

𝑞𝑢𝐵
+ 𝑞𝑥𝐵 − 𝑝

𝑞𝑢𝐵

)
− 𝑥𝐵 = 𝑢𝐵 − 𝑢𝐴 + 𝑝

𝑞
.

Therefore, we can conclude that Π𝐵
F-APA

(
𝐹𝐴+

3

, 𝐹𝐵+
3

)
≥ Π𝐵

(
𝐹𝐴+

3

, 𝑥𝐵
)
for any 𝑥𝐵 ≥ 0.

Finally, for a proof of uniqueness of the mixed equilibrium in Result (𝑖𝑖) and (𝑖𝑖𝑖), we can follow

the scheme presented by [Baye et al., 1996] and check through a series of lemmas. This is a standard

approach in the literature of all-pay auction and we omit the detailed proof here. □

Appendix A.3 Equilibrium of F-APA when 𝑝 < 0, 𝑞 > 0

We now consider the F-APA game in the case 𝑝 < 0. We first define 𝑝 ′ = −𝑝/𝑞 and 𝑞′ = 1/𝑞. Since
𝑝 < 0, we have 𝑝 ′ > 0. Moreover, for any 𝑥𝐴, 𝑥𝐵 , we have:

𝔅

(
𝑥𝐴, 𝑞𝑥𝐵 − 𝑝

)
= 𝔅

(
(𝑥𝐴 + 𝑝)/𝑞, 𝑥𝐵

)
= 𝔅

(
𝑞′𝑥𝐴 − 𝑝 ′, 𝑥𝐵

)
.

Therefore, the F-APA game with 𝑝 < 0 (and 𝑞 > 0) is equivalent to an F-APA with 𝑝 ′ > 0 (and

𝑞′ > 0) in which the roles of players are exchanged. Applying Theorem 3.1 to this new game, we

can deduce the following theorem:

Theorem Appendix A.3. In the F-APA game where 𝑝 < 0, we have the following results:

(𝑖) If (𝑢𝐴 + 𝑝)/𝑞 ≤ 0,13 there exists a unique pure equilibrium where players’ bids are 𝑥𝐴 = 𝑥𝐵 = 0

and their equilibrium payoffs are Π𝐴 = 0 and Π𝐵 = 𝑢𝐵 respectively.
(𝑖𝑖) If 0 < (𝑢𝐴 + 𝑝)/𝑞 ≤ 𝑢𝐵 ,14 there exists no pure equilibrium; there is a mixed equilibrium where

Player A (resp. Player B) draws her bid from the distribution 𝐹𝐴+
2

(resp. 𝐹𝐵+
2

) defined as follows.

𝐹𝐴−
2

(𝑥) =


1 − 𝑢𝐴

𝑞𝑢𝐵 − 𝑝

𝑞𝑢𝐵 ,∀𝑥 ∈ [0,−𝑝) ,
1 − 𝑢𝐴

𝑞𝑢𝐵 + 𝑥
𝑞𝑢𝐵 ,∀𝑥 ∈

[
−𝑝,𝑢𝐴

]
,

1 ,∀𝑥 > 𝑢𝐴,

and 𝐹𝐵−
2

(𝑥) =


− 𝑝

𝑢𝐴 + 𝑞𝑥

𝑢𝐴 ,∀𝑥 ∈
[
0,

𝑢𝐴+𝑝
𝑞

]
1 ,∀𝑥 >

𝑢𝐴+𝑝
𝑞

.

(A.5)

In this mixed equilibrium, players’ payoffs are Π𝐴 = 0 and Π𝐵 = 𝑢𝐵 − (𝑢𝐴 + 𝑝)/𝑞.

13
That is 𝑞′𝑢𝐵 − 𝑝′ ≤ 0.

14
That is 0 ≤ 𝑞′𝑢𝐴 − 𝑝′ ≤ 𝑢𝐵

.
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(𝑖𝑖𝑖) If (𝑢𝐴 +𝑝)/𝑞 > 𝑢𝐵 ,15 there exists no pure equilibrium; there is a mixed equilibrium where Player
A (resp. Player B) draws her bid from the distribution 𝐹𝐴−

3

(resp. 𝐹𝐵−
3

) defined as follows.

𝐹𝐴−
3

(𝑥) =


0 ,∀𝑥 ∈ [0,−𝑝) ,
𝑝

𝑞𝑢𝐵 + 𝑥
𝑞𝑢𝐵 ,∀𝑥 ∈

[
−𝑝, 𝑞𝑢𝐵 − 𝑝

]
,

1 ,∀𝑥 > 𝑞𝑢𝐵 − 𝑝,

and 𝐹𝐵−
3

(𝑥) =
{

1 − 𝑞𝑢𝐵

𝑢𝐴 + 𝑞 ·𝑥
𝑢𝐴 ,∀𝑥 ∈

[
0, 𝑢𝐵

]
,

1 ,∀𝑥 > 𝑢𝐵 .

(A.6)

In this mixed equilibrium, players’ payoffs are Π𝐴 = 𝑢𝐴 − 𝑞𝑢𝐵 + 𝑝 and Π𝐵 = 0.

Similarly to the case where 𝑝 ≥ 0, we can verify that in Theorem Appendix A.3, all the functions

𝐹𝐴−
2

, 𝐹𝐵−
2

, 𝐹𝐴−
3

and 𝐹𝐵−
3

satisfy the conditions of a distribution and they are continuous on [0,∞).
These distributions are also in the class of uniform-type distributions. The interpretation of these

functions are very similar to the analysis for 𝐹𝐴+
2

, 𝐹𝐵+
2

, 𝐹𝐴+
3

and 𝐹𝐵+
3

and their illustration are given in

Figure 6.

𝑥

(a) F-APA instance with 𝑢𝐴 = 3, 𝑢𝐵 = 4, 𝑝 = −1,
𝑞 = 1 (i.e., 0 ≤ (𝑢𝐴 + 𝑝)/𝑞 < 𝑢𝐵 ).

𝑥

(b) F-APA instance with𝑢𝐴 = 4,𝑢𝐵 = 2, 𝑝 = −1,
𝑞 = 1 (i.e., (𝑢𝐴 + 𝑝)/𝑞 > 𝑢𝐵 ).

Fig. 6. The mixed equilibrium of the F-APA with 𝑝 < 0.

We compare the results in Theorem Appendix A.3 with the results in the classical all-pay auction

(Theorem Appendix A.1).

Appendix B SUPPLEMENTARY MATERIALS FOR RESULTS IN SECTION 4
We will provide the proof of Theorem 4.2 in Appendix B.2 and the proof of Proposition 4.5 in

Appendix B.3. The main tool used in these proofs is the notion of the winding number of parametric

curves—an important notion in topology; for the sake of completeness, we first revisit the definitions

related to this concept in Appendix B.1.

Appendix B.1 Preliminaries on Winding Number of Parametric Curves
Intuitively, the winding number of a 2-dimensional curve relative to a given (2-dimensional) point

is the number of rotations the curve goes around the point. A 2-dimensional curve can either be

defined as a continuous function fromR toR2
(often used in topology) or either as a complex-valued

function of a real variable (often used in complex analysis); as a consequence, the winding number

can also be defined by using either topological terminology or Cauchy integral formula (i.e., contour

integral) of complex curves. In this work, we choose the former approach, i.e., defining the winding

15
That is 𝑞′𝑢𝐴 − 𝑝′ > 𝑢𝐵

.
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number in topological sense. The related definitions presented below are mostly extracted from

[Chinn and Steenrod, 1966] and rewritten in our notation.

We begin with the basic concepts of parametric curves in topology. Given a range [𝑎, 𝑏] ⊂ R,
any continuous mapping 𝜑 : [𝑎, 𝑏] → R2

is called a parametric curve. Henceforth, we refer to a

parametric curve simply as a curve. For a curve 𝜑 , we abuse the notation and denote its image (i.e.,

𝜑 ( [𝑎, 𝑏]) ⊂ R2
) also by 𝜑 . There are two type of curves that are of special interest for us in this

work as follows:

Definition B-1 (Closed curve and short curve).
• 𝜑 : [𝑎, 𝑏] → R2 is a closed curve if and only if 𝜑 (𝑎) = 𝜑 (𝑏).
• 𝜑 : [𝑎, 𝑏] → R2 is a short curve relative to to a point 𝑦 ∈ R2 if there exists a ray, say 𝑅, coming
from 𝑦 which does not intersect 𝜑 .

Now, in the R2
plan, for a given ray 𝑅 starting from 𝑦 ∈ R2

, we call P(𝑅,𝑦) the polar coordinate
system whose pole (i.e., the reference point) is 𝑦 and the polar axis (i.e., the reference direction) is 𝑅.

For any point 𝑥 ∈ R2
, we denote its angular coordinate in P(𝑅,𝑦) by A(𝑅,𝑦)

𝑥 ; WLOG, we assume

that A
(𝑅,𝑦)
𝑥 ∈ [0, 2𝜋],∀𝑥 ∈ R2

(the counterclockwise rotation is positive).

Given a short curve 𝜑 : [𝑎, 𝑏] → R2
, a point 𝑦 ∉ 𝜑 (i.e., �𝑡 ∈ [𝑎, 𝑏] : 𝜑 (𝑡) = 𝑦) and a ray 𝑅 coming

from 𝑦 which does not intersect 𝜑 , the value of the angle swept by 𝜑 relative to the point 𝑦 is defined

as follows:

A(𝜑,𝑦) = A(𝑅,𝑦)
𝜑 (𝑏) − A(𝑅,𝑦)

𝜑 (𝑎) .

In other words, the angle swept by a short curve relative to a point is the difference between the

angular coordinates of its two ending-points in the corresponding polar coordinate system.

Lemma B-2 (extracted from [Chinn and Steenrod, 1966]). The angle swept of short curves is additive;
more formally, let 𝑎 < 𝑏 < 𝑐 be real numbers and let 𝜑 : [𝑎, 𝑐] → R2 be a short curve relative to a
point 𝑦. Denote 𝜑1 = 𝜑 [𝑎,𝑏 ] and 𝜑2 = 𝜑 [𝑏,𝑐 ] , then 𝜑1, 𝜑2 are also short curves relative to 𝑦 and we have
A(𝜑,𝑦) = A(𝜑1, 𝑦) + A(𝜑2, 𝑦).

Next, we define the notion of sufficiently-fine partitions of a curve. For any curve 𝜑 : [𝑎, 𝑏] → R2
,

let 𝑡0, 𝑡1, . . . , 𝑡𝑚 be a sequence of real numbers such that 𝑎 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑚 = 𝑏. A sufficiently-
fine partition of the curve 𝜑 relative to a point 𝑦 is a sequence of curves {𝜑1, 𝜑2, . . . , 𝜑𝑚} such
that 𝜑𝑖 = 𝜑 [𝑡𝑖−1 .𝑡𝑖 ]

is a short curve relative to 𝑦 for any 𝑖 = 1, 2, . . . ,𝑚. Importantly, for any curve

𝜑 and a point 𝑦 ∉ 𝜑 , there always exists a sufficient partition of 𝜑 relative to 𝑦. Moreover, if

{𝜑1, 𝜑2, . . . , 𝜑𝑚} and {𝜑 ′
1
, 𝜑 ′

2
, . . . , 𝜑 ′

𝑘
} are two sufficiently-fine partitions of the curve 𝜑 relative to 𝑦,

then

∑𝑚
𝑗=1

A(𝜑 𝑗 , 𝑦) =
∑𝑘

𝑗=1
A(𝜑 ′

𝑗 , 𝑦) (see [Chinn and Steenrod, 1966] for proofs of these statements).

Based on Lemma B-2 concerning the angle swept by short curves and the notion of sufficiently

fine partition, we can define the angle swept by any generic parametric curve (not necessarily

short) which induces the definition of the winding number.

Definition B-3 (Angle swept by a curve). For any curve 𝜑 and a point 𝑦 ∉ 𝜑 , the angle swept by
𝜑 relative to 𝑦 is defined as A(𝜑,𝑦) = ∑𝑚

𝑖=1
A(𝜑𝑖 , 𝑦) where {𝜑1, 𝜑2, . . . , 𝜑𝑚} is any sufficiently-fine

partition of 𝜑 relative to 𝑦 (note that for any 𝑖 = 1, 2, . . . ,𝑚, A(𝜑𝑖 , 𝑦) is well-defined since 𝜑𝑖 is a short
curve relative to 𝑦).

Definition B-4 (Winding number). Given a closed curve 𝜑 and a point 𝑦 ∉ 𝜑 , the winding number
of 𝜑 around 𝑦 is defined as:

W(𝜑,𝑦) = A(𝜑,𝑦)
2𝜋

.
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Trivially, since 𝜑 is a closed curve, its winding numberW(𝜑,𝑦) is an integer number. Finally,

we present the following fixed-point theorem based on the notion of winding number.

Lemma B-5 (Fixed-point theorem (extracted from [Chinn and Steenrod, 1966])). Let 𝐷 be a disk
in R2 (or any topologically equivalence of a disk) and 𝜕𝐷 be its boundary. Let 𝐺 : 𝐷 → R2 be a
continuous mapping and 𝑦 ∈ R2 such that 𝑦 ∉ 𝐺 (𝜕𝐷). If the closed curve 𝜑 := 𝐺 (𝜕𝐷) has a non-zero
winding number around 𝑦, then 𝑦 ∈ 𝐺 (𝐷); in other words, there exists 𝑥 ∈ 𝐷 such that 𝐺 (𝑥) = 𝑦.

A proof of this theorem is given in [Chinn and Steenrod, 1966]. We note that this theorem can

be considered as a generalization of the intermediate value theorem (for 1-dimensional functions).

Appendix B.2 Proof of Theorem 4.2 (OUDs Construction of the F-CB Game)
While the proof of Result (𝑖𝑖) of Theorem 4.2 has been presented completely in Section 4; we will

prove Result (𝑖) of this theorem in this section. In other words, given a game instance CB𝐹
𝑛 , we

look for a set 𝐷 ∈ R2
, topologically equivalent to a R2

-disk, such that when combined with the

function 𝐺 corresponding to CB𝐹
𝑛 , this set satisfies sufficient conditions of Lemma 4.3 (which is an

adaptation of Lemma B-5 into the problem in consideration. Particularly, we want to find 𝐷 such
that 𝐺 (𝜕𝐷) (where 𝐺 is defined as in (6)) is a closed curve and it has a non-zero winding number
around (0, 0).
As discussed in Section 4, if 𝑝𝑖 = 0,∀𝑖 ∈ [𝑛], we can follow the approach of [Kovenock and

Roberson, 2020] to convert System 4 into a real-valued 1-dimensional function and proceed to prove

the existence of its solution via the intermediate value theorem. In the remainder of this section, we

assume that in the game CB𝐹
𝑛 , there exists 𝑖 ∈ [𝑛] such that 𝑝𝑖 ≠ 0. For the sake of brevity, we use

the notations 𝐼≥0 := {𝑖 ∈ [𝑛] : 𝑝𝑖 ≥ 0} and 𝐼<0 := {𝑖 ∈ [𝑛] : 𝑝𝑖 < 0}. For any given (^𝐴, ^𝐵) ∈ R2
,

we also define 𝐼+ (^𝐴, ^𝐵) :=

{
𝑗 ∈ 𝐼≥0 : ^𝐵 >

𝑝 𝑗

𝑞 𝑗𝑤𝑗

}
and 𝐼− (^𝐴, ^𝐵) :=

{
𝑗 ∈ 𝐼<0 : ^𝐴 >

−𝑝 𝑗

𝑤𝑗

}
.

Now, let us choose 𝐷 to be a rectangle whose vertices are (𝛿, 𝛿), (𝐿, 𝛿), (𝐿, 𝐿) and (𝐿, 𝛿) where
𝛿, 𝐿 will be defined later such that 0 < 𝛿 < 𝐿. More formally, we define the following closed curve:

𝜑 : [𝛿, 4𝐿 − 3𝛿] −→ R2

𝑡 ↦−→


(𝑡, 𝛿),∀𝑡 ∈ [𝛿, 𝐿],
(𝐿, 𝛿 − 𝐿 + 𝑡),∀𝑡 ∈ [𝐿, 2𝐿 − 𝛿],
(3𝐿 − 𝑡 − 𝛿, 𝐿),∀𝑡 ∈ [2𝐿 − 𝛿, 3𝐿 − 2𝛿],
(𝛿, 4𝐿 − 2𝛿 − 𝑡),∀𝑡 ∈ [3𝐿 − 2𝛿, 4𝐿 − 3𝛿] .

In other words, 𝜑 is a parametric curve form of 𝜕𝐷 that starts at (𝛿, 𝛿), goes along the sides of the
rectangle 𝐷 in the counter-clockwise direction and stops when it reaches (𝛿, 𝛿) again. for the sake
of notation, we will denote by 𝐺 (𝜑) the 𝐺-image of 𝜑 ; importantly, by the definition of 𝐺 and the

fact that𝐺 is a continuous mapping, 𝐺 (𝜑) is also a closed curve in R2
. If (0, 0) ∈ 𝐺 (𝜑) (i.e., (0, 0)

lies on the 𝐺-image of 𝜕𝐷 , then we have proved that there exists a positive zero of 𝐺 ; thus, we can

conclude the proof in this case. In the remainder of the proof, we assume that (0, 0) ∉ 𝐺 (𝜑).
Now, we also define

• 𝜑1 := 𝜑 [𝛿,𝐿] representing the curve going along the side of the rectangle 𝐷 from (𝛿, 𝛿)
to (𝐿, 𝛿),

• 𝜑2 := 𝜑 [𝐿,2𝐿−𝛿 ] representing the curve going along the side of the rectangle 𝐷 from (𝐿, 𝛿)
to (𝐿, 𝐿),

• 𝜑3 := 𝜑 [2𝐿−𝛿,3𝐿−2𝛿 ] representing the curve going along the side of the rectangle 𝐷 from (𝐿, 𝐿)
to (𝛿, 𝐿),
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• 𝜑4 := 𝜑 [3𝐿−2𝛿,4𝐿−3𝛿 ] representing the curve going along the side of the rectangle 𝐷 from

(𝐿, 𝐿) to (𝛿, 𝛿).
For any 𝑖 = 1, 2, 3, 4, we also denote 𝐺 (𝜑𝑖 ) the 𝐺-image of 𝜑𝑖 and note that 𝐺 (𝜑𝑖 ) is also a para-

metric curve in R2
. We will proceed the proof by showing that {𝐺 (𝜑1),𝐺 (𝜑2),𝐺 (𝜑3),𝐺 (𝜑4}) is a

sufficiently-fine partition of 𝐺 (𝜑) (i.e., of 𝜕𝐷) relative to (0, 0); moreover,

∑
4

𝑗=1
A(𝜑 𝑗 ) ≠ 0. The

curves 𝐺 (𝜑1),𝐺 (𝜑2),𝐺 (𝜑3),𝐺 (𝜑4) have different forms and features; each requires a different

analysis. We do this in six steps as follows.

Step 0: Prove that 𝐺 (𝛿, 𝛿) ∈ R2

<0
and 𝐺 (𝐿, 𝐿) ∈ R2

>0
when 𝛿 is small enough and 𝐿 is large enough.

Let us choose 𝛿 such that

𝛿 < ¯𝛿 =


min

{
min

𝑖∈𝐼≥0

{
𝑝𝑖

𝑞𝑖𝑤𝑖

}
, min

𝑖∈𝐼<0

{
−𝑝𝑖
𝑤𝑖

}}
, if 𝐼≥0 ≠ ∅ and 𝐼𝑝<0 ≠ ∅,

min

𝑖∈𝐼≥0

{
𝑝𝑖

𝑞𝑖𝑤𝑖

}
, if 𝐼<0 = ∅,

min

𝑖∈𝐼<0

{
−𝑝𝑖
𝑤𝑖

}
, if 𝐼≥0 = ∅.

(B.7)

Trivially, under the assumptions mentioned above, 𝛿 > 0; moreover, 𝐼+ (𝛿, 𝛿) = 𝐼− (𝛿, 𝛿) = ∅; thus,

𝑔𝐴 (𝛿, 𝛿) = −𝑋𝐵𝛿 < 0 and 𝑔𝐵 (𝛿, 𝛿) = −𝑋𝐴𝛿 < 0.

On the other hand, for any 𝐿 > 𝐿0 := max

{
max

𝐼≥0

{
𝑝𝑖

𝑞𝑖𝑤𝑖

}
,max

𝑖∈𝐼<0

{
−𝑝𝑖
𝑤𝑖

}}
, we have 𝐼+ (𝐿, 𝐿) = 𝐼≥0 and

𝐼− (𝐿, 𝐿) = 𝐼<0. Therefore, we have

𝑔𝐴 (𝐿, 𝐿)=
∑
𝑖∈𝐼≥0

[ℎ𝑖 (𝐿, 𝐿)]2−𝑝𝑖2

2𝑞𝑖𝑤𝑖

+
∑
𝑖∈𝐼<0

[ℎ𝑖 (𝐿, 𝐿)]2

2𝑞𝑖𝑤𝑖

− 𝑋𝐵𝐿 (B.8)

𝑔𝐵 (^𝐴, ^𝐵)=
∑
𝑖∈𝐼≥0

[ℎ𝑖 (𝐿, 𝐿)−𝑝𝑖 ]2

2𝑞𝑖𝑤𝑖

+
∑
𝑖∈𝐼<0

[ℎ𝑖 (𝐿, 𝐿)−𝑝𝑖 ]2−𝑝2

𝑖

2𝑞𝑖𝑤𝑖

−𝑋𝐴𝐿. (B.9)

By definition, ℎ𝑖 (𝐿, 𝐿) := min{𝑞𝑖𝑤𝑖𝐿,𝑤𝑖𝐿 + 𝑝𝑖 }; therefore, the right-hand-sides of (B.8) and (B.9)

are quadratic expressions in terms of 𝐿 with a strictly-positive second-degree coefficient; in other

words, they are convex functions in terms of 𝐿. Therefore, there exists a constant 𝐿1 > 0 such that

for any 𝐿 ≥ max{𝐿0, 𝐿1}, we have 𝑔𝐴 (𝐿, 𝐿) > 0 and 𝑔𝐵 (𝐿, 𝐿) > 0.

Step 1: Prove that𝐺 (𝜑1) is a short curve and A(𝐺 (𝜑1), (0, 0)) < 0 when 𝛿 is small enough and 𝐿 is
large enough.
We recall that 𝜑1 : [𝛿, 𝐿] → R2

and 𝜑1 (𝑡) = (𝑡, 𝛿). Now, from the choice of 𝛿 as in (B.7), for any

𝑡 ∈ [𝛿, 𝐿], we have 𝛿 <
𝑝𝑖

𝑞𝑖𝑤𝑖
for any 𝑖 ∈ 𝐼≥0; therefore, 𝐼

+ (𝑡, 𝛿) = ∅. Thus,

𝑔𝐴 (𝑡, 𝛿) =
∑

𝑖∈𝐼− (𝑡,𝛿)

ℎ𝑖 (𝑡, 𝛿)2

2𝑞𝑖𝑤𝑖

− 𝑋𝐵𝑡 .

If 𝐼<0 = ∅, trivially 𝑔𝐴 (𝑡, 𝛿) < 0. Now, if 𝐼<0 = ∅, we have:

𝑔𝐴 (𝑡, 𝛿) ≤
∑

𝑖∈𝐼− (𝑡,𝛿)

(𝑞𝑖𝑤𝑖𝛿)2

2𝑞𝑖𝑤𝑖

− 𝑋𝐵𝑡

=
∑

𝑖∈
{
𝑗 ∈𝐼<0:𝑡>

−𝑝𝑗
𝑤𝑗

}
(𝑡,𝛿)

[
𝑞𝑖𝑤𝑖𝛿

2

2

− 𝑋𝐵𝑡

|𝐼− (𝑡, 𝛿) |

]
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≤
∑

𝑖∈
{
𝑗 ∈𝐼<0:𝑡>

−𝑝𝑗
𝑤𝑗

}
(𝑡,𝛿)

[
𝑞𝑖𝑤𝑖𝛿

2

2

− 𝑋𝐵𝛿

|𝐼− (𝑡, 𝛿) |

]
(since 𝛿 <

−𝑝𝑖
𝑤𝑖

< 𝑡)

Therefore, for any 𝛿 < 𝑋𝐵

|𝐼− (𝑡,𝛿) |
2

max𝑞𝑖𝑤𝑖
, we always have 𝑔𝐴 (𝑡, 𝛿) < 0. In other words, for any

𝑡 ∈ [𝛿, 𝐿], the curve 𝐺 (𝑡, 𝛿) lies on the left of the Oy axis in the the R2
-plane. We conclude that

𝐺 (𝜑1) is a short curve relative to (0, 0) (we can use 𝑅1 : [0, +∞) → R2
such that 𝑅1 (𝑡) = (𝑡, 0) as

the reference ray). On the other hand,

𝑔𝐵 (𝑡, 𝛿) =
∑

𝑖∈𝐼− (𝑡,𝛿)

[ℎ𝑖 (𝑡, 𝛿) − 𝑝𝑖 ]2 − 𝑝2

𝑖

2𝑞𝑖𝑤𝑖

− 𝑋𝐴𝛿.

For any 𝑖 ∈ 𝐼− (𝑡, 𝛿), [ℎ𝑖 (𝑡, 𝛿) − 𝑝𝑖 ]2 − 𝑝2

𝑖 is an increasing function of 𝑡 . Intuitively, this means that

as 𝑡 increases from 𝛿 to 𝐿, the curve 𝐺 (𝜑1) lies on the left of the Oy-axis and only goes upward.

Therefore, the angle swept by 𝐺 (𝜑1) relative to (0, 0) is negative, i.e., A(𝐺 (𝜑1), (0, 0)) < 0.

Step 2: Prove that𝐺 (𝜑2) is a short curve and A(𝐺 (𝜑2), (0, 0)) < 0 when 𝛿 is small enough and 𝐿 is
large enough.

We recall that 𝜑2 : [𝐿, 2𝐿 −𝛿] → R2
and 𝜑2 (𝑡) = (𝐿, 𝑡 −𝐿 +𝛿). In this step, for the sake of brevity,

let us denote 𝑡 ′ = 𝑡 − 𝐿 + 𝛿 ; as 𝑡 increases from 𝐿 to 2𝐿 − 𝛿 , we have 𝑡 ′ increases from 𝛿 to 𝐿. In

other words, we can rewrite 𝜑2 (𝑡) = (𝐿, 𝑡 ′).
First, to prove that 𝐺 (𝜑2) is a short curve, we will prove that it does not intersect the ray

𝑅4 : [0, +∞) → R2
such that 𝑅4 (𝑡) = (0,−𝑡); intuitively, this means that all intersection points

of 𝐺 (𝜑2) and the Oy-axis have positive x-coordinates. Indeed, fix a number 𝑡 ′ ∈ [𝛿, 𝐿] such that

𝑔𝐴 (𝐿, 𝑡 ′) = 0,
16
we have ℎ𝑖 (𝐿, 𝑡 ′) := min{𝑞𝑖𝑤𝑖𝑡

′,𝑤𝑖𝐿 + 𝑝𝑖 } = 𝑞𝑖𝑤𝑖𝑡
′
for any 𝑖 ∈ 𝐼+ (𝐿, 𝑡 ′). We can see

this by using proof by contradiction: assume otherwise, i.e., assume there exists 𝑗 ∈ 𝐼+ (𝐿, 𝑡 ′) such
that 𝑞 𝑗𝑤 𝑗𝑡

′ > 𝑤 𝑗𝐿 + 𝑝 𝑗 , then 𝑔𝐴 (𝐿, 𝑡 ′) > (𝑤𝑗𝐿+𝑝 𝑗 )2

2𝑞 𝑗𝑤𝑗
− 𝑋𝐵𝐿 > 0 when we choose 𝐿 large enough;

17

this contradicts with the assumption that 𝑔𝐴 (𝐿, 𝑡 ′) = 0. As a consequence,

𝑔𝐴 (𝐿, 𝑡 ′) = 0

⇔
∑

𝑖∈𝐼+ (𝐿,𝑡 ′)

ℎ𝑖 (𝐿, 𝑡 ′)2 − 𝑝2

𝑖

2𝑞𝑖𝑤𝑖

+
∑

𝑖∈𝐼− (𝐿,𝑡 ′)

ℎ𝑖 (𝐿, 𝑡 ′)2

2𝑞𝑖𝑤𝑖

− 𝑋𝐵𝐿 = 0 (B.10)

⇔
∑

𝑖∈𝐼+ (𝐿,𝑡 ′)

(𝑞𝑖𝑤𝑖𝑡
′)2 − 𝑝2

𝑖

2𝑞𝑖𝑤𝑖

+
∑

𝑖∈𝐼− (𝐿,𝑡 ′)

(𝑞𝑖𝑤𝑖𝑡
′)2

2𝑞𝑖𝑤𝑖

− 𝑋𝐵𝐿 = 0,

which implies that ∑
𝑖∈𝐼+ (𝐿,𝑡 ′)

(𝑞𝑖𝑤𝑖𝑡
′)2 − 𝑝2

𝑖

2𝑞𝑖𝑤𝑖

− 𝑋𝐵𝐿 ≤ 0. (B.11)

On the other hand, we have:

𝑔𝐵 (𝐿, 𝑡 ′) =
∑

𝑖∈𝐼+ (𝐿,𝑡 ′)

[ℎ𝑖 (𝑡, 𝛿) − 𝑝𝑖 ]2

2𝑞𝑖𝑤𝑖

+
∑

𝑖∈𝐼− (𝐿,𝑡 ′)

[ℎ𝑖 (𝑡, 𝛿) − 𝑝𝑖 ]2 − 𝑝2

𝑖

2𝑞𝑖𝑤𝑖

− 𝑋𝐴𝑡 ′

16
There exists such 𝑡 ′ since 𝑔𝐴 (𝐿, 𝛿) < 0 and 𝑔𝐴 (𝐿, 𝐿) > 0 (see Step 1 and 2).

17
The right-hand-side of this inequality is a quadratic expression in terms of 𝐿 with a strictly-positive second-degree

coefficient
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=
∑

𝑖∈𝐼+ (𝐿,𝑡 ′)

−2ℎ𝑖 (𝐿, 𝑡 ′)𝑝𝑖 + 𝑝2

𝑖

2𝑞𝑖𝑤𝑖

+
∑

𝑖∈𝐼− (𝐿,𝑡 ′)

−2ℎ𝑖 (𝐿, 𝑡 ′)𝑝𝑖
2𝑞𝑖𝑤𝑖

+ 𝑋𝐵𝐿 − 𝑋𝐴𝑡 ′ (from (B.10))

≥ −
∑

𝑖∈𝐼+ (𝐿,𝑡 ′)

2𝑞𝑖𝑤𝑖𝑡
′𝑝𝑖 + 𝑝2

𝑖

2𝑞𝑖𝑤𝑖

+ 𝑋𝐵𝐿 − 𝑋𝐴𝑡 ′ (since 𝑝𝑖 < 0,∀𝑖 ∈ 𝐼− (𝐿, 𝑡 ′)) . (B.12)

Now, if 𝐼+ (𝐿, 𝑡 ′) = ∅, from (B.12), trivially 𝑔𝐵 (𝐿, 𝑡 ′) ≥ 0 (since 𝑋𝐴 ≤ 𝑋𝐵
and 𝑡 ′ ≤ 𝐿). In cases

where 𝐼+ (𝐿, 𝑡 ′) ≠ ∅, we have ∑
𝑖∈𝐼+ (𝐿,𝑡 ′)

𝑞𝑖𝑤𝑖

2
> 0 and we define

𝐶2 (𝐿) :=

√√√√∑
𝑖∈𝐼+ (𝐿,𝑡 ′)

𝑝2

𝑖

2𝑞𝑖𝑤𝑖
+ 𝑋𝐵𝐿∑

𝑖∈𝐼+ (𝐿,𝑡 ′)
𝑞𝑖𝑤𝑖

2

.

From (B.11), we have 𝑡 ′ ≤ 𝐶2 (𝐿). Combining this to (B.12), we have

𝑔𝐵 (𝐿, 𝑡 ′) ≥ −
∑

𝑖∈𝐼+ (𝐿,𝑡 ′)

2𝑞𝑖𝑤𝑖𝑡
′𝑝𝑖 + 𝑝2

𝑖

2𝑞𝑖𝑤𝑖

+ 𝑋𝐵𝐿 − 𝑋𝐴 ·𝐶2 (𝐿). (B.13)

Now, since 𝐶2 (𝐿) = O(
√
𝐿), the right-hand-side of (B.13) is a quadratic expression in terms of

√
𝐿

with a strictly-positive second-degree coefficient; therefore, there exists 𝐿2 > 0 large enough such

that for any 𝐿 ≥ max{𝐿0, 𝐿1, 𝐿2}, if 𝑔𝐴 (𝐿, 𝑡 ′) = 0, we always have 𝑔𝐵 (𝐿, 𝑡 ′) ≥ 0.

Finally, we conclude that𝐺 (𝜑2) is a short curve relative to (0, 0) (we can choose 𝑅4 defined above

as the reference ray). Note that (𝐿, 𝛿) and (𝐿, 𝐿) are respectively the starting point and ending point
of 𝐺 (𝜑2); moreover, from Steps 1 and 2, we have proved 𝑔𝐴 (𝐿, 𝛿) < 0 and 𝑔𝐴 (𝐿, 𝐿) > 0, therefore,

the angle swept by 𝐺 (𝜑2) relative to (0, 0) is also negative, i.e., A(𝐺 (𝜑2), (0, 0)) < 0.

Step 3: Prove that𝐺 (𝜑3) is a short curve and A(𝐺 (𝜑3), (0, 0)) < 0 when 𝛿 is small enough and 𝐿 is
large enough.
We recall that 𝜑3 : [2𝐿 − 𝛿, 3𝐿 − 2𝛿] → R2

and 𝜑3 (𝑡) = (3𝐿 − 𝑡 − 𝛿, 𝐿). In this step, for the sake

of brevity, let us denote 𝑡 ′ = 𝑡 − 2𝐿 + 2𝛿 ; as 𝑡 increases from 2𝐿 − 𝛿 to 3𝐿 − 2𝛿 , we have 𝑡 ′ increases
from 𝛿 to 𝐿. In other words, we can rewrite 𝜑3 (𝑡) = (𝐿 + 𝛿 − 𝑡 ′, 𝐿).

First, we aim to prove that𝐺 (𝜑3) does not intersect the ray𝑅3 : [0,∞) → R2
where𝑅3 (𝑡) = (−𝑡, 0),

i.e., we prove that if 𝑔𝐵 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) = 0 then 𝑔𝐴 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) > 0. To do this, we notice that for

any 𝑡 ′ ∈ [𝛿, 𝐿] such that 𝑔𝐵 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) = 0, we have

ℎ𝑖 (𝐿+𝛿 −𝑡 ′, 𝐿) = min{𝑞𝑖𝑤𝑖𝐿,𝑤𝑖 (𝐿 + 𝛿 − 𝑡 ′) + 𝑝𝑖 } = 𝑤𝑖 (𝐿+𝛿 −𝑡 ′) +𝑝𝑖 ,∀𝑖 ∈ 𝐼− (𝐿+𝛿 −𝑡 ′, 𝐿). (B.14)

Indeed, we can prove (B.14) by proof of contradiction: assume otherwise, i.e., assume that there exists

𝑗 ∈ 𝐼− (𝐿+𝛿−𝑡 ′, 𝐿) such that𝑞 𝑗𝑤 𝑗𝐿 < 𝑤 𝑗 (𝐿+𝛿−𝑡 ′)+𝑝 𝑗 , then𝑔
𝐵 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) > (𝑞 𝑗𝑤𝑗𝐿−𝑝 𝑗 )2−𝑝2

𝑗

2𝑞 𝑗𝑤𝑗
− 𝑋𝐴𝐿 > 0

when we choose 𝐿 large enough; this contradicts with the assumption that 𝑔𝐵 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) = 0.

As a consequence of (B.14), we have:

𝑔𝐵 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) = 0 (B.15)

⇔
∑

𝑖∈𝐼+ (𝐿+𝛿−𝑡 ′,𝐿)

[ℎ𝑖 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) − 𝑝𝑖 ]2

2𝑞𝑖𝑤𝑖

+
∑

𝑖∈𝐼− (𝐿+𝛿−𝑡 ′,𝐿)

[ℎ𝑖 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) − 𝑝𝑖 ]2 − 𝑝2

𝑖

2𝑞𝑖𝑤𝑖

− 𝑋𝐴𝐿 = 0

(B.16)

⇒
∑

𝑖∈𝐼− (𝐿+𝛿−𝑡 ′,𝐿)

[ℎ𝑖 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) − 𝑝𝑖 ]2 − 𝑝2

𝑖

2𝑞𝑖𝑤𝑖

− 𝑋𝐴𝐿 ≤ 0
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⇒
∑

𝑖∈𝐼− (𝐿+𝛿−𝑡 ′,𝐿)

[𝑤𝑖 (𝐿 + 𝛿 − 𝑡 ′, 𝐿)]2 − 𝑝2

𝑖

2𝑞𝑖𝑤𝑖

− 𝑋𝐴𝐿 ≤ 0 (B.17)

On the other hand,

𝑔𝐴 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) (B.18)

=
∑

𝑖∈𝐼+ (𝐿+𝛿−𝑡 ′,𝐿)

ℎ𝑖 (𝐿 + 𝛿 − 𝑡 ′, 𝐿)2 − 𝑝2

𝑖

2𝑞𝑖𝑤𝑖

+
∑

𝑖∈𝐼− (𝐿+𝛿−𝑡 ′,𝐿)

ℎ𝑖 (𝐿 + 𝛿 − 𝑡 ′, 𝐿)2

2𝑞𝑖𝑤𝑖

− 𝑋𝐵𝐿

=
∑

𝑖∈𝐼+ (𝐿+𝛿−𝑡 ′,𝐿)

2ℎ𝑖 (𝐿 + 𝛿 − 𝑡 ′, 𝐿)𝑝𝑖
2𝑞𝑖𝑤𝑖

+
∑

𝑖∈𝐼− (𝐿+𝛿−𝑡 ′,𝐿)

𝑤𝑖 (𝐿 + 𝛿 − 𝑡 ′)𝑝𝑖
2𝑞𝑖𝑤𝑖

+ 𝑋𝐵𝐿 − 𝑋𝐴 (𝐿 + 𝛿 − 𝑡 ′) (due to (B.16))

≥
∑

𝑖∈𝐼− (𝐿+𝛿−𝑡 ′,𝐿)

𝑤𝑖 (𝐿 + 𝛿 − 𝑡 ′)𝑝𝑖
2𝑞𝑖𝑤𝑖

+ 𝑋𝐵𝐿 − 𝑋𝐴 (𝐿 + 𝛿 − 𝑡 ′)(since 𝑝𝑖 > 0,∀𝑖 ∈ 𝐼+ (𝐿 + 𝛿 − 𝑡 ′, 𝐿).

(B.19)

Now, if 𝐼− (𝐿 + 𝛿 − 𝑡 ′, 𝐿) = ∅, from (B.19), trivially 𝑔𝐴 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) > 0 since 𝑋𝐵 ≥ 𝑋𝐴
and

𝐿 ≥ 𝐿 + 𝛿 − 𝑡 ′,∀𝑡 ′ ∈ [𝛿, 𝐿]. Reversely, if 𝐼− (𝐿 + 𝛿 − 𝑡 ′, 𝐿) ≠ ∅, we have ∑
𝑖∈𝐼− (𝐿+𝛿−𝑡 ′,𝐿)

𝑤2

𝑖

2𝑞𝑖𝑤𝑖
> 0, and

we can define:

𝐶3 (𝐿) :=

√√√√√√√√√ ∑
𝑖∈𝐼− (𝐿+𝛿−𝑡 ′,𝐿)

𝑝2

𝑖

2𝑞𝑖𝑤𝑖
+ 𝑋𝐴𝐿∑

𝑖∈𝐼− (𝐿+𝛿−𝑡 ′,𝐿)

𝑤2

𝑖

2𝑞𝑖𝑤𝑖

.

From (B.17), we have (𝐿 + 𝛿 − 𝑡 ′) ≤ 𝐶3 (𝐿); therefore, combine with (B.19), we have

𝑔𝐴 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) ≥
∑

𝑖∈𝐼− (𝐿+𝛿−𝑡 ′,𝐿)

𝑤𝑖 (𝐿 + 𝛿 − 𝑡 ′)𝑝𝑖
2𝑞𝑖𝑤𝑖

+ 𝑋𝐵𝐿 − 𝑋𝐴 ·𝐶3 (𝐿). (B.20)

Now, since 𝐶3 (𝐿) = O(
√
𝐿), the right-hand-side of (B.20) is a quadratic expression in terms of√

𝐿 with a strictly-positive second-degree coefficient; therefore, with 𝐿 large enough, we have

𝑔𝐴 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) ≥ 0.

In conclusion, we have prove that if 𝑔𝐵 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) = 0, we always have 𝑔𝐴 (𝐿 + 𝛿 − 𝑡 ′, 𝐿) ≥ 0;

thus, 𝐺 (𝜑3) does not intersect the ray 𝑅3. Therefore, 𝐺 (𝜑3) is a short curve relative to (0, 0). Note
that (𝐿, 𝐿) and (𝛿, 𝐿) are respectively the starting point and ending point of 𝐺 (𝜑3); moreover,

𝑔𝐵 (𝐿, 𝐿) > 0 and 𝑔𝐵 (𝛿, 𝐿) > 0, we conclude that the angle swept by 𝐺 (𝜑3) relative to (0, 0) is
negative, i.e., A(𝐺 (𝜑3), (0, 0)) < 0.

Step 4: Prove that𝐺 (𝜑4) is a short curve and A(𝐺 (𝜑4), (0, 0)) < 0 when 𝛿 is small enough and 𝐿 is
large enough.

We recall that 𝜑4 : [3𝐿 − 2𝛿, 4𝐿 − 3𝛿] → R2
and 𝜑4 (𝑡) = (𝛿, 4𝐿 − 2𝛿 − 𝑡). In this step, for the sake

of brevity, let us denote 𝑡 ′ = 3𝐿 − 3𝛿 − 𝑡 ; as 𝑡 increases from 3𝐿 − 2𝛿 to 4𝐿 − 3𝛿 , we have 𝑡 ′ increases
from 𝛿 to 𝐿. In other words, we can rewrite 𝜑4 (𝑡) = (𝛿, 𝐿 + 𝛿 − 𝑡 ′).

As 𝛿 is chosen as in (B.7), we have 𝐼− (𝛿, 𝐿 + 𝛿 − 𝑡 ′) = ∅; therefore,

𝑔𝐵 (𝛿, 𝐿 + 𝛿 − 𝑡 ′) =
∑

𝑖∈𝐼+ (𝛿,𝐿+𝛿−𝑡 ′)

[ℎ𝑖 (𝛿, 𝐿 + 𝛿 − 𝑡 ′) − 𝑝𝑖 ]2

2𝑞𝑖𝑤𝑖

− 𝑋𝐴 (𝐿 + 𝛿 − 𝑡 ′) (B.21)
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If 𝐼+ (𝛿, 𝐿+𝛿−𝑡 ′) = ∅, then from (B.21), trivially𝑔𝐵 (𝛿, 𝐿+𝛿−𝑡 ′) < 0. Reversely, if 𝐼+ (𝛿, 𝐿+𝛿−𝑡 ′) ≠ ∅,
we can rewrite (B.21) as follows:

𝑔𝐵 (𝛿, 𝐿 + 𝛿 − 𝑡 ′) =
∑

𝑖∈𝐼+ (𝛿,𝐿+𝛿−𝑡 ′)

[
[ℎ𝑖 (𝛿, 𝐿 + 𝛿 − 𝑡 ′) − 𝑝𝑖 ]2

2𝑞𝑖𝑤𝑖

𝑋𝐴 (𝐿 + 𝛿 − 𝑡 ′)
|𝐼+ (𝛿, 𝐿 + 𝛿 − 𝑡 ′) |

]
≤

∑
𝑖∈𝐼+ (𝛿,𝐿+𝛿−𝑡 ′)

[
[𝑤𝑖𝛿]2

2𝑞𝑖𝑤𝑖

𝑋𝐴𝛿

|𝐼+ (𝛿, 𝐿 + 𝛿 − 𝑡 ′) |

]
(B.22)

Therefore, if 𝛿 < 𝑋𝐴

|𝐼+ (𝛿,𝐿+𝛿−𝑡 ′) | min
𝐼≥0

{
2𝑞𝑖
𝑤𝑖

}
, we have 𝑔𝐵 (𝛿, 𝐿 + 𝛿 − 𝑡 ′) < 0. Therefore, the curve𝐺 (𝜑4)

does not intersect the ray 𝑅2 : [0,∞) → R2
such that 𝑅2 (𝑡) = (0, 𝑡); thus, 𝐺 (𝜑4) is a short curve.

Note that (𝛿, 𝐿) and (𝛿, 𝛿) are respectively the starting point and ending point of 𝐺 (𝜑4); moreover,

for 𝐿 large enough, we have

𝑔𝐵 (𝛿, 𝐿) =
∑

𝑖∈𝐼+ (𝛿,𝐿)

[ℎ𝑖 (𝛿, 𝐿) − 𝑝𝑖 ]2

2𝑞𝑖𝑤𝑖

− 𝑋𝐴𝐿 ≤
∑

𝑖∈𝐼+ (𝛿,𝐿)

[𝑤𝑖𝛿]2

2𝑞𝑖𝑤𝑖

− 𝑋𝐴𝐿 ≤ −𝑋𝐴𝛿 = 𝑔𝐵 (𝛿, 𝛿).

Therefore, the angle swept by 𝐺 (𝜑4) relative to (0, 0) is negative, i.e., A(𝐺 (𝜑4), (0, 0)) < 0.

Step 5: Conclusion By choosing 𝛿 > 0 small enough and 𝐿 ≫ 𝛿 large enough such that all condi-

tions mentioned in Steps 0-4 hold, we conclude that {𝐺 (𝜑1),𝐺 (𝜑2),𝐺 (𝜑3),𝐺 (𝜑4)} is a sufficiently

fine partition of the curve 𝐺 (𝜑); therefore,

W(𝐺 (𝜑), (0, 0)) =
∑

4

𝑗=1

A (𝐺 (𝜑 𝑗 ), (0, 0))2Π < 0.

Recall that 𝜑 is the boundary of the rectangle 𝐷 whose vertices are (𝛿, 𝛿), (𝐿, 𝛿), (𝐿, 𝐿) and (𝐿, 𝛿).
Apply Lemma B-5, we conclude that (0, 0) ∈ 𝐺 (𝐷). This concludes the proof.

Appendix B.3 Proof of Proposition 4.5
In this section, we focus on Proposition 4.5. We aim to compute the payoffs of the players in a game

CB𝐹
𝑛 when they play the strategies having marginals

{
𝐹𝐴^

𝑖
, 𝐹𝐵^

𝑖

}
𝑖∈[𝑛] where (^

𝐴, ^𝐵) is a solution
of System (4); more precisely, it is when the allocation of Player A (resp. Player B) to battlefield 𝑖

follows 𝐹𝐴^
𝑖
(resp. 𝐹𝐵^

𝑖
).

We denote 𝐴𝑖 (respectively, 𝐵𝑖 ) the random variable corresponding to 𝐹𝐴^
𝑖
(respectively, 𝐹𝐵^

𝑖
).

In this case, the expected payoff that Player A gains in battlefield 𝑖 ∈ [𝑛] is defined as follows

Π𝐴
𝑖 := 𝛼𝑤𝑖P(𝐴𝑖 = 𝑞𝑖𝐵𝑖 − 𝑝𝑖 ) +𝑤𝑖P

(
𝐵𝑖 <

𝐴𝑖+𝑝𝑖
𝑞𝑖

)
. We have the following remark:

Remark Appendix B.6. If tie allocations happen with probability zero, i.e., P
(
𝐵𝑖 =

𝐴𝑖+𝑝𝑖
𝑞𝑖

)
= 0,

P

(
𝐵𝑖 <

𝑥 + 𝑝𝑖

𝑞𝑖

)
= 𝐹𝐵^

𝑖

(
𝑥 + 𝑝𝑖

𝑞𝑖

)
,∀𝑥 ∼ 𝐴𝑖 . (B.23)

Now, 𝐹𝐴^
𝑖
and 𝐹𝐵^

𝑖
are define in Table 1 which involve 6 cases of parameter configurations

which corresponds to 6 indices sets 𝐼+
1
(^𝐴, ^𝐵), 𝐼+

2
(^𝐴, ^𝐵), 𝐼+

3
(^𝐴, ^𝐵), 𝐼−

1
(^𝐴, ^𝐵), 𝐼−

2
(^𝐴, ^𝐵) and

𝐼−
3
(^𝐴, ^𝐵). In the following, we consider these 6 cases:

Case 1: 𝑖 ∈ 𝐼+
1
. In this case, both players allocate zero with probability 1. Therefore, if 𝑝𝑖 > 0,

Player A wins this battlefield with probability 1. On the other hand, if 𝑝𝑖 = 0, a tie situation happens.

Therefore, we have
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Π𝐴
𝑖 = 𝑤𝑖 I{𝑝𝑖>0} + 𝛼𝑤𝑖 I{𝑝𝑖=0} .

Case 2: 𝑖 ∈ 𝐼+
2
. First, we show that tie situations only happen with probability 0 in this case.

Indeed, we have:

• If 𝑝𝑖 = 0, trivially we see that 𝐹𝐴^
𝑖
is a uniform distribution (on [0, 𝑞𝑖𝑤𝑖^

𝐵]), thus, P(𝑥𝐴 =

𝑞𝑖𝑥
𝐵 − 𝑝𝑖 ) = 0 for any 𝑥𝐴 ∼ 𝐴𝑖 , 𝑥

𝐵 ∼ 𝐵𝑖 .

• If 𝑝𝑖 > 0, note that 𝐹𝐴^
𝑖
and 𝐹𝐵^

𝑖
are distributions with an atom at 0; therefore, 𝐴𝑖 = 0 and

𝐵𝑖 = 0 might happen with a positive probability. However, if that is the case, Player A

wins this battlefield (since 0 < 0 − 𝑝𝑖 ). On the other hand, due to the continuity of 𝐹𝐴^
𝑖
on

(0, 𝑞𝑖𝑤𝑖^
𝐵 − 𝑝𝑖 ), P(𝑥𝐴 = 𝑞𝑖𝑥

𝐵 − 𝑝𝑖 ) = 0 for any 𝑥𝐴
∑
𝐴𝑖 and 𝑥

𝐴 ≠ 0 and 𝑥𝐵 ∼ 𝐵𝑖 .

Using Remark Appendix B.6 and the fact that the derivative of 𝐹𝐴^
𝑖
equals zero on (𝑞𝑖𝑤𝑖^

𝐵−𝑝𝑖 ,∞),
we the following:

Π𝐴
𝑖 := 𝑤𝑖

𝑝𝑖

𝑞𝑖𝑤𝑖^
𝐵

(
1 − 𝑞𝑖^

𝐵

^𝐴
+ 𝑝𝑖

𝑤𝑖^
𝐴

)
+𝑤𝑖

∞∫
0

𝐹𝐵^
𝑖

(
𝑥 + 𝑝𝑖

𝑞𝑖

)
d𝐹𝐴^

𝑖
(𝑥)

= 𝑤𝑖

𝑝𝑖

𝑞𝑖𝑤𝑖^
𝐵

(
1 − 𝑞𝑖^

𝐵

^𝐴
+ 𝑝𝑖

𝑤𝑖^
𝐴

)
+𝑤𝑖

𝑞𝑖𝑤𝑖^
𝐵−𝑝𝑖∫

0

(
1 − 𝑞𝑖^

𝐵

^𝐴
+ 𝑥 + 𝑝𝑖

𝑤𝑖^
𝐴

)
1

𝑞𝑖^
𝐵𝑤𝑖

d𝑥

= 𝑤𝑖

(
1 − 𝑞𝑖^

𝐵

^𝐴
+ 𝑝𝑖

𝑤𝑖^
𝐴

)
+ (𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖 )2

2𝑤𝑖^
𝐴𝑞𝑖^

𝐵
. (B.24)

Case 3: 𝑖 ∈ 𝐼+
3
. In this case, since 𝐹𝐵^

𝑖
is the uniform distribution on

[
𝑝𝑖
𝑞𝑖
,
𝑤𝑖^

𝐴+𝑝𝑖
𝑞𝑖

]
, ties happen

with probability zero. Therefore,

Π𝐴
𝑖 := 𝑤𝑖

∞∫
0

𝐹𝐵^
𝑖

(
𝑥 + 𝑝𝑖

𝑞𝑖

)
d𝐹𝐴^

𝑖
(𝑥)

= 𝑤𝑖

𝑤𝑖^
𝐴∫

0

(
−𝑝𝑖
𝑤𝑖^

𝐴
+ 𝑥 + 𝑝𝑖

𝑤𝑖^
𝐴

)
1

𝑞𝑖𝑤𝑖^
𝐵
d𝑥

=
𝑤𝑖^

𝐴

2𝑞𝑖^
𝐵
.

Case 4: 𝑖 ∈ 𝐼−
1
. In this case, both players allocate zero with probability 1. Since conditions of the

indices set 𝐼−
1
require that 𝑝𝑖 < 0, Player B wins with probability 1; therefore, Player A’s payoff is:

Π𝐴
𝑖 := 0.

Case 5: 𝑖 ∈ 𝐼−
2
. In this case, ties happens with probability zero (note that although P(𝐴𝑖 = 0) > 0

and P(𝐵𝑖 = 0) > 0, if both players allocate zero, Player B wins since 𝑝𝑖 < 0). Therefore,

Π𝐴
𝑖 := 𝑤𝑖

∞∫
0

𝐹𝐵^
𝑖

(
𝑥 + 𝑝𝑖

𝑞𝑖

)
d𝐹𝐴^

𝑖
(𝑥)
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= 𝑤𝑖

𝑤𝑖^
𝐴∫

−𝑝𝑖

(
−𝑝𝑖
𝑤𝑖^

𝐴
+ 𝑥 + 𝑝𝑖

𝑤𝑖^
𝐴

)
1

𝑞𝑖𝑤𝑖^
𝐵
d𝑥

=
𝑤𝑖^

𝐴

2𝑞𝑖^
𝐵
−

𝑝2

𝑖

2𝑤𝑖^
𝐴𝑞𝑖^

𝐵
.

Case 6: 𝑖 ∈ 𝐼−
3
. In this case, since 𝐹𝐴^

𝑖
is the uniform distribution on

[
−𝑝𝑖 , 𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖
]
, ties

happen with probability zero. Therefore,

Π𝐴
𝑖 := 𝑤𝑖

∞∫
0

𝐹𝐵^
𝑖

(
𝑥 + 𝑝𝑖

𝑞𝑖

)
d𝐹𝐴^

𝑖
(𝑥)

= 𝑤𝑖

𝑞𝑖𝑤𝑖^
𝐵−𝑝𝑖∫

−𝑝𝑖

(
1 − 𝑞𝑖^

𝐵

^𝐴
+ 𝑥 + 𝑝𝑖

𝑤𝑖^
𝐴

)
1

𝑞𝑖𝑤𝑖^
𝐵
d𝑥

= 𝑤𝑖

(
1 − 𝑞𝑖^

𝐵

^𝐴
+ 𝑝𝑖

𝑤𝑖^
𝐴

)
+
(𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖 )2 − 𝑝2

𝑖

2𝑤𝑖^
𝐴𝑞𝑖^

𝐵

= 𝑤𝑖 −
𝑞𝑖^

𝐵𝑤𝑖

2^𝐴
.

In conclusion, the total expected payoff of each player is simply the aggregate of her payoffs in

each battlefields; therefore, given a pair of ^𝐴, ^𝐵 , the total payoff of Player A is:

Π𝐴
:=

∑
𝑖∈𝐼+

1

[
𝑤𝑖 I{𝑝𝑖>0} + 𝛼𝑤𝑖 I{𝑝𝑖=0}

]
+

∑
𝑖∈𝐼+

2

[
𝑤𝑖

(
1 − 𝑞𝑖^

𝐵

^𝐴
+ 𝑝𝑖

𝑤𝑖^
𝐴

)
+ (𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖 )2

2𝑤𝑖^
𝐴𝑞𝑖^

𝐵

]
+

∑
𝑖∈𝐼+

3

[
𝑤𝑖^

𝐴

2𝑞𝑖^
𝐵

]
+

∑
𝑖∈𝐼−

2

[
𝑤𝑖^

𝐴

2𝑞𝑖^
𝐵
−

𝑝2

𝑖

2𝑤𝑖^
𝐴𝑞𝑖^

𝐵

]
+

∑
𝑖∈𝐼−

3

[
𝑤𝑖 −

𝑞𝑖^
𝐵𝑤𝑖

2^𝐴

]
. (B.25)

Player B’s expected payoff is simply

Π𝐵 =
∑
𝑖∈[𝑛]

𝑤𝑖 − Π𝐴 . (B.26)

Appendix C SUPPLEMENTARY MATERIALS FOR RESULTS IN SECTION 5
In Section 5.3, we have presented Proposition 5.5 concerning the IU strategies in the F-CB game.

As mentioned above, the result of this proposition can be obtained by following the proof of [Vu

et al., 2020a] for the case of classical Colonel Blotto game. For the sake of completeness, in this

section, we present the main ideas of the proof of Proposition 5.5.

To prove that (IU𝐴
^ , IU

𝐵
^ ) constitutes an Y𝑊 𝑛

-equilibrium of a game CB𝐹
𝑛 where Y = O(𝑛−1/2), we

need to prove the following inequalities hold for any pure strategies 𝒙𝐴 and 𝒙𝐵 of Players A and B:

Π𝐴

CB𝐹
𝑛

(𝒙𝐴, IU𝐵
^ ) ≤ Π𝐴

CB𝐹
𝑛

(IU𝐴
^ , IU

𝐵
^ ) + Y𝑊 𝑛

(C.27)

Π𝐵

CB𝐹
𝑛

(IU𝐴
^ , 𝒙

𝐵) ≤ Π𝐵

CB𝐹
𝑛

(IU𝐴
^ , IU

𝐵
^ ) + Y𝑊 𝑛 . (C.28)
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We focus on (C.27) (the proof for (C.28) can be done similarly). For the sake of brevity, we only

present the proof where the tie-breaking rule parameter 𝛼 is set to 1 (i.e., if a tie happens at a

battlefield 𝑖 , Player A gains the value𝑤𝑖 ). The case with a general value of 𝛼 can be done similarly

by noticing that the distributions 𝐹𝐴^
𝑖
, 𝐹𝐵^

𝑖
are continuous at almost all points of their supports

except at a single point (either 0 or 𝑝𝑖/𝑞𝑖—depending on the index set to which 𝑖 belongs); thus,

the probability of a ties happens are 0 almost everywhere; even at the points where 𝐹𝐴^
𝑖
, 𝐹𝐵^

𝑖
are

discontinuous, the probability that a tie happens also goes quickly to 0 when 𝑛 increases with a

speed much faster than the approximation error that we consider; therefore, one can also ignore

these tie cases (see [Vu et al., 2020a] for a detailed discussions on similar phenomenon in the

classical Colonel Blotto game).

Now, let us denote 𝐴𝑖 and 𝐵𝑖 the random variables corresponding to distributions 𝐹𝐴^
𝑖
, 𝐹𝐵^

𝑖
. For

any 𝑖 ∈ [𝑛], we also define the random variables:

𝐴𝑛
𝑖 =

𝐴𝑖 · 𝑋𝐴∑
𝑗 ∈[𝑛] 𝐴 𝑗

and 𝐵𝑛𝑖 =
𝐵𝑖 · 𝑋𝐵∑
𝑗 ∈[𝑛] 𝐵 𝑗

,

and call the corresponding distributions by 𝐹𝐴𝑛
𝑖
and 𝐹𝐵𝑛

𝑖
. By definition, 𝐹𝐴𝑛

𝑖
, 𝑖 ∈ [𝑛] are the marginals

of the IU
𝐴
^ strategy and 𝐹𝐵𝑛

𝑖
, 𝑖 ∈ [𝑛] are the marginals of the IU

𝐵
^ strategy. Therefore, we can rewrite

the involved payoffs as follows:

Π𝐴

CB𝐹
𝑛

(𝒙𝐴, IU𝐵
^ ) =

∑
𝑖∈[𝑛]

𝑤𝑖P

(
𝐵𝑛𝑖 ≤

𝑥𝐴𝑖 + 𝑝𝑖

𝑞𝑖

)
=

∑
𝑖∈[𝑛]

𝑤𝑖𝐹𝐵𝑛
𝑖

(
𝑥𝐴𝑖 + 𝑝𝑖

𝑞𝑖

)
,

Π𝐴

CB𝐹
𝑛

(IU𝐴
^ , IU

𝐵
^ ) =

∑
𝑖∈[𝑛]

𝑤𝑖

∫ ∞

0

𝐹𝐵𝑛
𝑖

(
𝑥 + 𝑝𝑖

𝑞𝑖

)
d𝐹𝐴𝑛

𝑖
(𝑥).

Now, to make connection between these payoffs and the players’ payoffs when they have

marginals 𝐹𝐴^
𝑖
, 𝐹𝐵^

𝑖
, 𝑖 ∈ [𝑛] (which are OUDs of the game), we need the following important lemma:

Lemma C-1. In any game CB𝐹
𝑛 , we have

sup

𝑥 ∈[0,∞)

��𝐹𝐴^
𝑖
(𝑥) − 𝐹𝐴𝑛

𝑖
(𝑥)

�� < O(𝑛−1/2) and sup

𝑥 ∈[0,∞)

��𝐹𝐵^
𝑖
(𝑥) − 𝐹𝐵𝑛

𝑖
(𝑥)

�� < O(𝑛−1/2).

A proof of this lemma can be obtained by following Lemma B4 of [Vu et al., 2020a]. At a high-

level, Lemma C-1 comes from applying Hoeffding’s inequality [Hoeffding, 1963] and the fact that

^ = (^𝐴, ^𝐵) is a solution of System 4 (thus E
[∑

𝑗 ∈[𝑛] 𝐴 𝑗

]
= 𝑋𝐴

) to show that as 𝑛 → ∞,

𝐴𝑛
𝑖 =

𝐴𝑖 · 𝑋𝐴∑
𝑗 ∈[𝑛] 𝐴 𝑗

→ 𝐴𝑖 · 𝑋𝐴

E
[∑

𝑗 ∈[𝑛] 𝐴 𝑗

] =
𝐴𝑖𝑋

𝐴

𝑋𝐴
= 𝐴𝑖 .

We also have a similar result for 𝐵𝑛𝑖 and 𝐵𝑖 . Based on this, we can prove that 𝐹𝐴𝑛
𝑖
and 𝐹𝐵𝑛

𝑖
uniformly

converge toward 𝐴𝑖 and 𝐵𝑖 as 𝑛 increases. Importantly, by working out the details, we can also

determine the rate of this convergence (which gives the upper-bounds presented in Lemma C-1).

Now, based on Lemma C-1, we can show that as

Π𝐴

CB𝐹
𝑛

(𝒙𝐴, IU𝐵
^ ) ≤

∑
𝑖∈[𝑛]

𝑤𝑖𝐹𝐵^
𝑖

(
𝑥𝐴𝑖 + 𝑝𝑖

𝑞𝑖

)
+

𝑛∑
𝑖=1

𝑤𝑖 O(𝑛−1/2). (C.29)



38 Vu and Loiseau: Colonel Blotto Games with Favoritism

On the other hand, we can also combine Lemma C-1 with a variant of the portmanteau theorem

(see e.g., Lemma B5 of [Vu et al., 2020a]) to obtain that:����∫ ∞

0

𝐹𝐵𝑛
𝑖

(
𝑥 + 𝑝𝑖

𝑞𝑖

)
d𝐹𝐴𝑛

𝑖
(𝑥) −

∫ ∞

0

𝐹𝐵^
𝑖

(
𝑥 + 𝑝𝑖

𝑞𝑖

)
d𝐹𝐴^

𝑖
(𝑥)

���� < O(𝑛−1/2) (C.30)

By definition, 𝐹𝐴^
𝑖
and 𝐹𝐵^

𝑖
are equilibrium of the corresponding F-APA game (see Definition 4.1);

therefore, they are best-response against one another. In other words, for any pure strategy 𝒙𝐴 of

Player A, we have: ∑
𝑖∈[𝑛]

𝑤𝑖𝐹𝐵^
𝑖

(
𝑥𝐴𝑖 + 𝑝𝑖

𝑞𝑖

)
≤

∑
𝑖∈[𝑛]

𝑤𝑖

∫ ∞

0

𝐹𝐵^
𝑖

(
𝑥 + 𝑝𝑖

𝑞𝑖

)
d𝐹𝐴^

𝑖
(𝑥).

Combining this inequality with (C.29) and (C.30), we have:

Π𝐴

CB𝐹
𝑛

(𝒙𝐴, IU𝐵
^ ) =

∑
𝑖∈[𝑛]

𝑤𝑖𝐹𝐵𝑛
𝑖

(
𝑥𝐴𝑖 + 𝑝𝑖

𝑞𝑖

)
,

≤
∑
𝑖∈[𝑛]

𝑤𝑖𝐹𝐵^
𝑖

(
𝑥𝐴𝑖 + 𝑝𝑖

𝑞𝑖

)
+

𝑛∑
𝑖=1

𝑤𝑖 O(𝑛−1/2)

≤
∑
𝑖∈[𝑛]

𝑤𝑖

∫ ∞

0

𝐹𝐵^
𝑖

(
𝑥 + 𝑝𝑖

𝑞𝑖

)
d𝐹𝐴^

𝑖
(𝑥) +

𝑛∑
𝑖=1

𝑤𝑖 O(𝑛−1/2)

≤
∑
𝑖∈[𝑛]

𝑤𝑖

∫ ∞

0

𝐹𝐵𝑛
𝑖

(
𝑥 + 𝑝𝑖

𝑞𝑖

)
d𝐹𝐴𝑛

𝑖
(𝑥) +

𝑛∑
𝑖=1

𝑤𝑖 O(𝑛−1/2)

≤ Π𝐴

CB𝐹
𝑛

(IU𝐴
^ , IU

𝐵
^ ) +𝑊 𝑛 O(𝑛−1/2).

Similarly, we can prove that Π𝐵

CB𝐹
𝑛

(IU𝐴
^ , 𝒙

𝐵) ≤ Π𝐵

CB𝐹
𝑛

(IU𝐴
^ , IU

𝐵
^ ) +𝑊 𝑛 O(𝑛−1/2). This concludes

the proof.

Appendix D SUPPLEMENTARY MATERIALS FOR RESULTS IN SECTION 6
In Section 6, we presented the main ideas of the approximation algorithm that we propose in order

to efficiently compute a 𝛿-approximate solution of System 4 in any given F-CB game instance. In

this section, we give re-discuss this algorithm in more details. First, we discuss a pseudo-code of

this algorithm in Appendix D.1. We then give more details on the computational time results of

this algorithm in Appendix D.2

Appendix D.1 A Pseudo-code of the Approximation Algorithm
Algorithm 1 follows precisely the template described in Section 6. Note that Algorithm 1 takes 3

parameters as inputs: 𝛿 controls the preciseness level of the output approximation solutions,𝑚 and

𝑀 controls the initialized rectangle. Moreover, it also uses a sub-routine to compute the winding

number of the𝐺-image of the rectangles involved in the dichotomy procedure. We present a pseudo-

code of this sub-routine procedure as Algorithm 2. Intuitively, to compute a winding number of

𝐺 (𝐷) where 𝐷 is a rectangle having the parametric (closed) curve form as 𝜑 : [𝑎, 𝑏] → R2
, we

compute a polygonal approximation of 𝐺 (𝐷) via IPS algorithm proposed by [Zapata and Martín,

2012]; we then calculate the winding number of this polygon by checking how many time one

cross the Ox-axis in the R2
-plane when tracking the curve 𝐺 (𝜑)by following the sides of this
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Algorithm 1: Approximation algorithm finding a 𝛿-approximate solution of System (4)

Input: CB𝐹
𝑛 game.

1 Parameters: 𝛿 > 0,𝑚 > 0 and𝑀 ≫𝑚;

Output: A 𝛿-approximate solution ( ˜̂
𝐴, ˜̂

𝐵) ∈ R2

>0
of System 4 of CB𝐹

𝑛 (satisfying (8) and (9))

2 Initialize 𝐷 to be the rectangle with four vertices (𝑚,𝑚), (𝑚,𝑀), (𝑀,𝑀), (𝑀,𝑚) ;
3 Compute 𝜔𝐷 = the winding number of 𝐺 (𝐷) around (0, 0) via Algorithm 2;

4 if 𝜔𝐷 = 0 then
5 M:= 2M and𝑚 :=𝑚/2 , then repeat line 1

6 else if 𝜔𝐷 ≠ 0 then
7 Divide 𝐷 into two rectangles, 𝐷1 and 𝐷2, with equal areas;

8 Compute 𝜔𝐷1
= the winding number of 𝐺 (𝐷1) around (0, 0) via Algorithm 2;

9 if 𝜔𝐷1
≠ 0 then

10 if diameter of 𝐷1 is less than 𝛿 then
11 Stop and return ( ˜̂

𝐴, ˜̂
𝐵) ∈ 𝐷1 satisfying (9) computed by Algorithm 2;

12 else Set 𝐷 := 𝐷1 and repeat line 6;

13 else
14 Compute 𝜔𝐷2

= the winding number of 𝐺 (𝐷2) around (0, 0) via Algorithm 2;

15 if diameter of 𝐷2 is less than 𝛿 then
16 Stop and return ( ˜̂

𝐴, ˜̂
𝐵) ∈ 𝐷2 satisfying (9) computed by Algorithm 2

17 else Set 𝐷 := 𝐷2 and repeat line 6;

polygon (if it crosses in counterclockwise direction, we increase the counting by 1 unit and it

crosses in clockwise direction, we decrease it by 1 unit). Moreover, while doing this, Algorithm 2

also computes the 𝐺-value of all vertices of the involved polygon; Algorithm 2 will record a any

point (𝑥,𝑦) ∈ 𝐷 whose 𝐺-image is one of the vertex of the polygon and that (𝑥,𝑦) satisfies (9). If
the winding number of 𝐺 (𝐷) is non-zero, such (𝑥,𝑦) is guaranteed to exist due to Lemma B-5.

Algorithm 2: Winding number computation

Input: CB𝐹
𝑛 game, a rectangle 𝐷 presented as a parametric (closed) curve 𝜑 : [𝑎, 𝑏] → R2

Output: 𝜔𝐷 = the winding number of 𝐺 (𝐷) around (0, 0) and a point in 𝐷 satisfying (9)

1 Initialize 𝜔𝐷 = 0;

2 Use IPS Algorithm from [Zapata and Martín, 2012] to find an array (𝑡0 = 𝑎, 𝑡1, . . . , 𝑡𝑘 = 𝑏) satisfying
properties of connection relative to 𝐺 (𝜑) (i.e., {𝐺 (𝜑 (𝑡𝑖 )), 𝑖 = 0, . . . , 𝑘} forms a polygonal

approximation of 𝐺 (𝐷));
3 for 𝑖 = 0, . . . , 𝑘 do
4 Compute 𝐺 (𝜑 (𝑡𝑖 )), 𝐺 (𝜑 (𝑡𝑖+1));
5 if 𝐺 (𝜑 (𝑡𝑖 )) satisfy (9) then Return the point 𝜑 (𝑡𝑖 );
6 if Segment from 𝐺 (𝜑 (𝑡𝑖 )) to 𝐺 (𝜑 (𝑡𝑖+1)) crosses from {(𝑥,𝑦) ∈ 𝑅2

: 𝑥 > 0, 𝑦 < 0} to
{(𝑥,𝑦) ∈ 𝑅2

: 𝑥 > 0, 𝑦 > 0} then 𝜔𝐷 = 𝜔𝐷 + 1;

7 else if Segment from 𝐺 (𝜑 (𝑡𝑖 )) to 𝐺 (𝜑 (𝑡𝑖+1)) crosses from {(𝑥,𝑦) ∈ 𝑅2
: 𝑥 > 0, 𝑦 > 0} to

{(𝑥,𝑦) ∈ 𝑅2
: 𝑥 > 0, 𝑦 < 0} then 𝜔𝐷 = 𝜔𝐷 − 1;

Appendix D.2 Computational Time of the Approximation Algorithm
Proposition 6.2 states that by running our approximation algorithm in

˜O(𝑛𝛿−1) time, we will find a

𝛿-approximate solution of System (4). In this section, we first give a proof of this proposition.
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Proof of Proposition 6.2. Recall the notation 𝑅 and 𝐿0 denoting the max-norm of an actual solution

(^𝐴, ^𝐵) of System (4) and that of the center of the initialized rectangle. In Algorithm 1, we observe

that after each enlargement step (Lines 5), we end up with a rectangle that is double in size; therefore,

the loop in Lines 4-5 will terminate after O(log(max{𝑅/𝐿0, 𝐿0/𝑅})) iterations; when this loops end,

we guarantee to find a rectangle containing (^𝐴, ^𝐵) (thus, the 𝐺-image of the boundary of this

rectangle has non-zero winding number around (0, 0)).
Now, each time the loop in Lines 6-17 of Algorithm 1 repeats, the size of the rectangle in

consideration is reduced by one half. Therefore, after at most O(log(𝑅/𝛿)) iterations (we assume

that 𝛿 < 1), we end up with a rectangle whose diameter is smaller than 𝛿 . The fact that there is

always a sub-rectangle (obtained by dividing the rectangle considered in the previous loop run) such

that the winding number of its𝐺-image is non-zero is guaranteed by Lemma B-5; this guarantees

that this loop cycle terminates after O(log(𝑅/𝛿)) iterations.
Finally, we see that each time we need to compute a winding number in Algorithm 1, we call

for a run of Algorithm 2. From Theorem 4 of [Zapata and Martín, 2012], it takes IPS Algorithm

O
(
(𝑏 − 𝑎)𝛿−1

)
time to output the array (𝑡0 = 𝑎, 𝑡1, . . . , 𝑡𝑘 = 𝑏) as described in Line 2 of Algorithm 2

where 𝑘 = O
(
(𝑏 − 𝑎)𝛿−1

)
(thus, it induces a polygon with 𝑘 vertices). Note that since𝐺 is Lipschitz-

continuous, 𝐺 (𝐷) is also a Lipschitz curve; thus the sufficient conditions of this theorem holds.

Finally, each time Algorithm 2 computes a value 𝐺 (𝜑 (𝑡𝑖 )), it takes O(𝑛) time; this is due the the

definition of 𝐺 in (6). In conclusion, each call of Algorithm 2 takes O
(
(𝑏 − 𝑎)𝛿−1

)
𝑛 time and the

result follows. □
Now, to illustrate the efficiency of our approximation algorithm, we conduct several experiments.

First, re-visit the toy-example (Example 4.4) considered in Section 6 where we showed that a

naive approach for computing its solution is very inefficient. The application of our approximate

algorithm to solve this problem is given as Example D-1.

Example D-1. Recall the game instance CB𝐹
𝑛 (with𝑛 = 2) considered in Example 6.1 where System (4)

has one positive (exact) solution (^𝐴, ^𝐵) := (2+
√

4/3, 2+
√

12) ≈ (3.1547005, 5.4641016). With the pa-
rameter 𝛿 = 10

−6, our approximation algorithm outputs the solution ( ˜̂
𝐴, ˜̂

𝐵) = (3.1547010, 5.4641018).
The computation time is ∼ 2.78 seconds when initializing with the rectangle whose vertices are (𝛿, 𝛿),
(𝛿, 10𝑋𝐴), (10𝑋𝐴, 10𝑋𝐴) and (10𝑋𝐴, 𝛿).

𝛿

s
e
c
o
n
d
s

Fig. 7. The trade-off between the running time of 1 and 𝛿 . Both axes are drawn with log-scale.
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Next, we conduct the following experiment (running with a machine with an Intel Xeon CPU

2.20GHz and 12Gb RAM). For each 𝑛 ∈ {5, 10, 20, 50, 100}, we randomly generate 10 instances
18

of CB𝐹
𝑛 . We then run 1 on each game instance with the input 𝛿 ∈ {10

−1, 10
−2, . . . , 10

−6} and

𝑀 := 10 · min{𝑋𝐴, 𝑋𝐵}; we then measure the time it takes to output the 𝛿-approximate solution

of the corresponding System (4). Figure 7 shows the average running time of 1 taken from the 10

instances for each 𝑛 and 𝛿 .

Appendix D.3 Approximations of Optimal Univariate Distributions
In this section, we give the proof of Proposition 6.3 which shows the relation between the distri-

butions 𝐹𝐴 ˜̂

𝑖
𝐹𝐵 ˜̂

𝑖
, 𝑖 ∈ [𝑛] from Definition 4.1 that corresponds with any 𝛿-approximate solution of

System (4) to and the OUDs 𝐹𝐴^
𝑖
, 𝐹𝐵^

𝑖
, 𝑖 ∈ [𝑛] (based on the solution (^𝐴, ^𝐵) of System 4.

Proof of Proposition 6.3. Fix an 𝑖 ∈ [𝑛], we look for upper-bounds of |𝐹𝐴^
𝑖
(𝑥) − 𝐹𝐴 ˜̂

𝑖
(𝑥) | and

|𝐹𝐵^
𝑖
(𝑥) − 𝐹𝐵 ˜̂

𝑖
(𝑥) |. To do this, we consider two main cases: where 𝑝𝑖 ≥ 0 and where 𝑝𝑖 < 0.

We start with the case where 𝑝𝑖 ≥ 0. WLOG, let us assume ^𝐴 ≤ ˜̂
𝐴
and ^𝐵 ≤ ˜̂

𝐵
(the case

where either ^𝐴 > ˜̂
𝐴
or ^𝐵 > ˜̂

𝐵
can be done similarly by switching the roles of ^𝐴, ^𝐵 and ˜̂

𝐴, ˜̂
𝐵
).

Given the value (^𝐴, ^𝐵), battlefield 𝑖 belongs to one of the indices sets 𝐼+
1
(^𝐴, ^𝐵), 𝐼+

2
(^𝐴, ^𝐵) or

𝐼+
3
(^𝐴, ^𝐵). Similarly, we know that 𝑖 also belongs to one of the indices sets 𝐼+

1
( ˜̂

𝐴, ˜̂
𝐵), 𝐼+

2
( ˜̂

𝐴, ˜̂
𝐵)

or 𝐼+
3
( ˜̂

𝐴, ˜̂
𝐵).

Case 1.1: If 𝑖 belongs to 𝐼+
1
(^𝐴, ^𝐵) ∩ 𝐼+

1
( ˜̂

𝐴, ˜̂
𝐵). Trivially, 𝐹𝐴^

𝑖
(𝑥) = 𝐹𝐴 ˜̂

𝑖
(𝑥) = 1,∀𝑥 and 𝐹𝐵^

𝑖
(𝑥) =

𝐹𝐵 ˜̂

𝑖
(𝑥) = 1,∀𝑥 . Trivially, |𝐹𝐴^

𝑖
(𝑥) − 𝐹𝐴 ˜̂

𝑖
(𝑥) | = 0 < 𝛿 and |𝐹𝐵^

𝑖
(𝑥) − 𝐹𝐵 ˜̂

𝑖
(𝑥) | = 0 < 𝛿 for any 𝑥 .

Case 1.2: If 𝑖 belongs to 𝐼+
2
(^𝐴, ^𝐵) ∩ 𝐼+

2
( ˜̂

𝐴, ˜̂
𝐵). We have

𝐹𝐴^
𝑖
(𝑥) =

{ 𝑝𝑖

𝑞𝑖𝑤𝑖^
𝐵 + 𝑥

𝑞𝑖𝑤𝑖^
𝐵 ,∀𝑥 ∈

[
0, 𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖
]
,

1 ,∀𝑥 > 𝑞𝑖𝑤𝑖^
𝐵 − 𝑝𝑖 ,

and 𝐹𝐴 ˜̂

𝑖
(𝑥) =

{ 𝑝𝑖

𝑞𝑖𝑤𝑖 ˜̂
𝐵 + 𝑥

𝑞𝑖𝑤𝑖 ˜̂
𝐵 ,∀𝑥 ∈

[
0, 𝑞𝑖𝑤𝑖 ˜̂

𝐵 − 𝑝𝑖
]
,

1 ,∀𝑥 > 𝑞𝑖𝑤𝑖 ˜̂
𝐵 − 𝑝𝑖 ,

For any 𝑥 ∈ [0, 𝑞𝑖𝑤𝑖^
𝐵 − 𝑝𝑖 ], we also have 𝑥 ∈ [0, 𝑞𝑖𝑤𝑖 ˜̂

𝐵 − 𝑝𝑖 ] and thus

|𝐹𝐴^
𝑖
(𝑥) − 𝐹𝐴 ˜̂

𝑖
(𝑥) | =

���� 𝑝𝑖

𝑞𝑖𝑤𝑖^
𝐵
+ 𝑥

𝑞𝑖𝑤𝑖^
𝐵
− 𝑝𝑖

𝑞𝑖𝑤𝑖 ˜̂
𝐵
− 𝑥

𝑞𝑖𝑤𝑖 ˜̂
𝐵

����
=

����𝑝𝑖 + 𝑥

𝑞𝑖𝑤𝑖

(
˜̂
𝐵 − ^𝐵

^𝐵 ˜̂
𝐵

)����
≤

����𝑞𝑖𝑤𝑖 ˜̂
𝐵

𝑞𝑖𝑤𝑖

(
𝛿

^𝐵 ˜̂
𝐵

)����
=

𝛿

^𝐵

Now, for any 𝑥 such that 𝑞𝑖𝑤𝑖^
𝐵 − 𝑝𝑖 < 𝑥 ≤ 𝑞𝑖𝑤𝑖 ˜̂

𝐵 − 𝑝𝑖 , we have:

|𝐹𝐴^
𝑖
(𝑥) − 𝐹𝐴 ˜̂

𝑖
(𝑥) | =

����1 − 𝑝𝑖

𝑞𝑖𝑤𝑖 ˜̂
𝐵
− 𝑥

𝑞𝑖𝑤𝑖 ˜̂
𝐵

����
18
We choose 𝑋𝐴, 𝑋𝐵 ∈ {1, 2, . . . , 100} randomly at uniform (𝑋𝐴 ≤ 𝑋𝐵

); then, for each 𝑖 ∈ [𝑛], we randomly generate

a battlefield value 𝑤𝑖 ∼ U(0, 𝑋𝐴 ] and with equal probability, we choose either 𝑝𝑖 > 0 or 𝑝𝑖 =< 0 or 𝑝𝑖 = 0; then draw

𝑝𝑖 from U(0, 𝑋𝐴) or U(−𝑋𝐴, 0) or set it equal 0 respectively; then, with equal probability, we choose either 𝑞𝑖 > 1 or

𝑞𝑖 ∈ (0, 1) or 𝑞𝑖 = 1; then draw 𝑞𝑖 from U(1, 𝑋𝐴) or U(1/𝑋𝐴, 1) or set it equal 1 respectively.
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=

����𝑞𝑖𝑤𝑖 ˜̂
𝐵 − 𝑝𝑖 − 𝑥

𝑞𝑖𝑤𝑖 ˜̂
𝐵

����
<

����𝑞𝑖𝑤𝑖 ˜̂
𝐵 − 𝑝𝑖 − 𝑞𝑖𝑤𝑖^

𝐵 + 𝑝𝑖

𝑞𝑖𝑤𝑖 ˜̂
𝐵

����
=

𝛿

˜̂
𝐵

Finally, for any 𝑥 > 𝑞𝑖𝑤𝑖 ˜̂
𝐵 − 𝑝𝑖 > 𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖 , trivially |𝐹𝐴^
𝑖
(𝑥) − 𝐹𝐴 ˜̂

𝑖
(𝑥) | = |1 − 1| = 0 < 𝛿 .

Therefore, we conclude that in this case, for any 𝑥 , |𝐹𝐴^
𝑖
(𝑥) −𝐹𝐴 ˜̂

𝑖
(𝑥) | ≤ 𝛿/min

{
^𝐵, ˜̂

𝐵
}
. A similar

proof can be done to show that |𝐹𝐵^
𝑖
(𝑥) − 𝐹𝐵 ˜̂

𝑖
(𝑥) | ≤ 𝛿/min

{
^𝐴, ˜̂

𝐴
}
.

Case 1.3: If 𝑖 belongs to 𝐼+
3
(^𝐴, ^𝐵) ∩ 𝐼+

3
( ˜̂

𝐴, ˜̂
𝐵). We have:

𝐹𝐴^
𝑖
(𝑥) =

{
1 − ^𝐴

𝑞𝑖^
𝐵 + 𝑥

𝑞𝑖𝑤𝑖^
𝐵 ,∀𝑥 ∈

[
0,𝑤𝑖^

𝐴
]
,

1 ,∀𝑥 > 𝑤𝑖^
𝐴,

and 𝐹𝐴 ˜̂

𝑖
(𝑥) =

{
1 − ˜̂

𝐴

𝑞𝑖 ˜̂
𝐵 + 𝑥

𝑞𝑖𝑤𝑖 ˜̂
𝐵 ,∀𝑥 ∈

[
0,𝑤𝑖 ˜̂

𝐴
]
,

1 ,∀𝑥 > 𝑤𝑖 ˜̂
𝐴,

For any 𝑥 ∈ [0,𝑤𝑖^
𝐴], we also have 𝑥 ∈ [0,𝑤𝑖 ˜̂

𝐴], therefore,���𝐹𝐴^
𝑖
(𝑥) − 𝐹𝐴 ˜̂

𝑖
(𝑥)

��� =����1 − ^𝐴

𝑞𝑖^
𝐵
+ 𝑥

𝑞𝑖𝑤𝑖^
𝐵
− 1 + ˜̂

𝐴

𝑞𝑖 ˜̂
𝐵
− 𝑥

𝑞𝑖𝑤𝑖 ˜̂
𝐵

����
=

���� 1

𝑞𝑖

(
˜̂
𝐴

˜̂
𝐵
− ^𝐴

^𝐵

)
+ 𝑥

𝑞𝑖𝑤𝑖

˜̂
𝐵 − ^𝐵

˜̂
𝐵^𝐵

����
≤
���� 2

𝑞𝑖

˜̂
𝐴

˜̂
𝐵

���� + ����𝑤𝑖 ˜̂
𝐴

𝑞𝑖𝑤𝑖

˜̂
𝐵 − ^𝐵

˜̂
𝐵^𝐵

����
≤
���� 2

𝑞𝑖

˜̂
𝐴

˜̂
𝐵

���� + ���� ˜̂
𝐴

𝑞𝑖

𝛿

˜̂
𝐵^𝐵

����
=O(𝛿)

For any 𝑥 such that𝑤𝑖^
𝐴 < 𝑥 ≤ 𝑤𝑖 ˜̂

𝐴
, we have���𝐹𝐴^

𝑖
(𝑥) − 𝐹𝐴 ˜̂

𝑖
(𝑥)

��� = ����1 − 1 + ˜̂
𝐴

𝑞𝑖 ˜̂
𝐵
− 𝑥

𝑞𝑖𝑤𝑖 ˜̂
𝐵

���� = ����𝑤𝑖 ˜̂
𝐴 − 𝑥

𝑞𝑖𝑤𝑖 ˜̂
𝐵

���� ≤ ˜̂
𝐴 − ^𝐴

𝑞𝑖 ˜̂
𝐵

≤ 𝛿

𝑞𝑖 ˜̂
𝐵
.

Finally, for any 𝑥 > 𝑤𝑖 ˜̂
𝐴 ≥ 𝑤𝑖^

𝐴
, trivially, we have

���𝐹𝐴^
𝑖
(𝑥) − 𝐹𝐴 ˜̂

𝑖
(𝑥)

��� = 0. We conclude that

in this case, for any 𝑥 , we also obtain

���𝐹𝐴^
𝑖
(𝑥) − 𝐹𝐴 ˜̂

𝑖
(𝑥)

��� < O(𝛿). In a similar manner, we have���𝐹𝐵^
𝑖
(𝑥) − 𝐹𝐵 ˜̂

𝑖
(𝑥)

��� < O(𝛿).
Case 1.4: We consider the case where 𝑖 ∈ 𝐼+

1
(^𝐴, ^𝐵) ∩ 𝐼+

2
( ˜̂

𝐴, ˜̂
𝐵), i.e., when 𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖 ≤ 0 <

𝑞𝑖𝑤𝑖 ˜̂
𝐵 − 𝑝𝑖 ≤ 𝑤𝑖 ˜̂

𝐴
(this might happen since ^𝐴 ≤ ˜̂

𝐴
). In this case, if 𝑥 ∈ 𝑞𝑖𝑤𝑖 ˜̂

𝐵 − 𝑝𝑖 , we have:���𝐹𝐴^
𝑖
(𝑥) − 𝐹𝐴 ˜̂

𝑖
(𝑥)

��� = ����1 − 𝑝𝑖

𝑞𝑖𝑤𝑖 ˜̂
𝐵
− 𝑥

𝑞𝑖𝑤𝑖 ˜̂
𝐵

���� ≤ 𝛿

˜̂
𝐵
.

Moreover, when 𝑥 > 𝑞𝑖𝑤𝑖 ˜̂
𝐵 − 𝑝𝑖 , we have

���𝐹𝐴^
𝑖
(𝑥) − 𝐹𝐴 ˜̂

𝑖
(𝑥)

��� = 0. Therefore, we conclude that���𝐹𝐴^
𝑖
(𝑥) − 𝐹𝐴 ˜̂

𝑖
(𝑥)

��� ≤ O(𝛿) for any 𝑥 . A similar proof can be done for

���𝐹𝐵^
𝑖
(𝑥) − 𝐹𝐵 ˜̂

𝑖
(𝑥)

��� ≤ O 𝛿 .
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Case 1.5: The case where 𝑖 ∈ 𝐼+
1
(^𝐴, ^𝐵) ∩ 𝐼+

3
( ˜̂

𝐴, ˜̂
𝐵) can be done similar to Case 1.4.

Case 1.6: The case where 𝑖 ∈ 𝐼+
2
(^𝐴, ^𝐵) ∩ 𝐼+

3
( ˜̂

𝐴, ˜̂
𝐵), we have:

𝐹𝐴^
𝑖
(𝑥) =

{ 𝑝𝑖

𝑞𝑖𝑤𝑖^
𝐵 + 𝑥

𝑞𝑖𝑤𝑖^
𝐵 ,∀𝑥 ∈

[
0, 𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖
]
,

1 ,∀𝑥 > 𝑞𝑖𝑤𝑖^
𝐵 − 𝑝𝑖 ,

and 𝐹𝐴 ˜̂

𝑖
(𝑥) =

{
1 − ˜̂

𝐴

𝑞𝑖 ˜̂
𝐵 + 𝑥

𝑞𝑖𝑤𝑖 ˜̂
𝐵 ,∀𝑥 ∈

[
0,𝑤𝑖 ˜̂

𝐴
]
,

1 ,∀𝑥 > 𝑤𝑖 ˜̂
𝐴,

First, if 𝑥 ≤ min

{
𝑞𝑖𝑤𝑖^

𝐵 − 𝑝𝑖 ,𝑤𝑖 ˜̂
𝐴
}
, we have:���𝐹𝐴^

𝑖
(𝑥) − 𝐹𝐴 ˜̂

𝑖
(𝑥)

��� = ���� 𝑝𝑖

𝑞𝑖𝑤𝑖^
𝐵
+ 𝑥

𝑞𝑖𝑤𝑖^
𝐵
− 1 + ˜̂

𝐴

𝑞𝑖 ˜̂
𝐵
− 𝑥

𝑞𝑖𝑤𝑖 ˜̂
𝐵

����
=

����𝑝𝑖 + 𝑥 − 𝑞𝑖𝑤𝑖^
𝐵

𝑞𝑖𝑤𝑖^
𝐵

+ 𝑤𝑖 ˜̂
𝐴 − 𝑥

𝑞𝑖𝑤𝑖 ˜̂
𝐵

����
=

���� 1

𝑞𝑖𝑤𝑖

(
𝑝𝑖 − 𝑞𝑖𝑤𝑖^

𝐵

^𝐵
+ 𝑤𝑖 ˜̂

𝐴

˜̂
𝐵

+ 𝑥 ( ˜̂
𝐵 − ^𝐵)
˜̂
𝐵^𝐵

)����
≤ O(𝛿).

Therefore, we conclude thatwhen𝑝𝑖 ≥ 0, for any𝑥 , we can always prove that

���𝐹𝐴^
𝑖
(𝑥) − 𝐹𝐴 ˜̂

𝑖
(𝑥)

��� < 𝛿

and

���𝐹𝐵^
𝑖
(𝑥) − 𝐹𝐵 ˜̂

𝑖
(𝑥)

��� < 𝛿 .

Now, for the case where 𝑝𝑖 < 0, we can do similarly to the analysis when 𝑝𝑖 ≥ 0 by simply

exchanging the roles of A and B, then replace 𝑞𝑖 = 1/𝑞𝑖 , 𝑝𝑖 = −𝑝𝑖
𝑞𝑖
. We conclude the proof.

□
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