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Abstract
Clustering coins with respect to their die is an important component of numismatic research and crucial for understanding
the economic history of tribes (especially when literary production does not exist, in celtic culture). It is a very hard task that
requires a lot of times and expertise. To cluster thousands of coins, automatic methods are becoming necessary. Nevertheless,
public datasets for coin die clustering evaluation are too rare, though they are very important for the development of new
methods. Therefore, we propose a new 3D dataset of 2 070 scans of coins. With this dataset, we propose two benchmarks,
one for point cloud registration, essential for coin die recognition, and a benchmark of coin die clustering. We show how
we automatically cluster coins to help experts, and perform a preliminary evaluation for these two tasks. The code of the
baseline and the dataset will be publicly available at https://www.npm3d.fr/coins-riedones3d and https:
//www.chronocarto.eu/spip.php?article84&lang=fr.

1. Introduction

Coins are a testimony of old civilizations, and their study is cru-
cial for understanding economic history, especially when literary
production is not consistent. In this regard, die study is very im-
portant for numismatic research [GT20, Gru81, CAL95]. A die is a
stamp that allows an image to be impressed upon a piece of metal
for making a coin. Usually, the matrix of the die is bigger than
the coin itself. Coin die clustering can greatly help specialists: it
will allow the estimation of the number of coins that were emitted
at a larger scale (Esty explains the process to estimate the num-
ber of produced coins from the clustering of dies [EST86]). Coin
die clustering will also allow for establishing the chronology of the
production of these coins. However, coin die recognition is diffi-
cult and it demands a lot of times and great expertise for experts in
numismatics. The most ambitious die study to date is from Wolf-
gang Fischer-Bossert and is based on 8 000 coins (silver didrachms,
510—280 BC.) and it took him around 10 years to complete the
study [FB99]. There exist some hoards with more than 100 000
coins to study. Moreover, it requires a trained eye to recognize the
dies, because of rust, wear or damage. Some coins are too worn,
so it is not possible to perceive the differences with other coins.
Because die recognition takes a lot of time and requires expertise,
automatic methods are all the more necessary, especially to scale-
up on the size of the study: it would allow for the processing of
coins from museums that have not been analysed yet.

Some works have tried to automate this work using photos, but
the results were not satisfying. The problem is also computation-

Figure 1: Proposed tasks on Riedones3D dataset: rigid registration
between two coins and die clustering

ally expensive, because for x coins, algorithms need to compare
every pairs so there are x(x−1)

2 comparisons; for 1000 coins, there
are around 500 000 comparisons to do. According to [AZ20], "Die
matching is an unexplored challenge in the realm of automated
ancient coin analysis." It can be explained by the fact that public
datasets of coins labeled by die are too rare. Some coin datasets
exist that are based on photos [AZ20, AAZP21, ZK13]. However,
none of them are labeled by die. Contrary to high-level coin recog-
nition, die matching requires details of the coin. That is why, in
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this paper, we propose a new dataset of 3D scans of celtic coins.
Indeed, 3D scans from a structured light scanner can capture the
fine geometry of the pattern. Moreover, photos are altered by rust or
lighting conditions [Mar14], whereas 3D scanners can capture only
the geometry of the pattern. Not only will this dataset be useful for
experts in order to study coins with high-quality virtual data, but
it is also an interesting dataset for the computer vision community
in order to develop powerful new algorithms for very fine-grained
pattern clustering.

We propose a comparison of different registration algorithms be-
tween coins on this dataset (see Figure 1). Registration of the pat-
tern of two coins is a difficult problem but a necessary step for die
clustering. Many elements in the coin, such as edges or cracks, per-
turb the registration. We will also provide a baseline for die cluster-
ing on this dataset (see Figure 1). Coin die clustering is challenging
because the number of classes can be arbitrary and highly irregular.
It is similar to a fine-grained clustering.

Our contributions are:

• A curated dataset of high-quality 3D scans of coins labeled fol-
lowing their die by experts in numismatics.
• Strong baselines for registration and fine-grained clustering on

that dataset.

2. Related works and datasets

2.1. Coins recognition

According to [AZ20], the challenges of computer vision applied
to numismatics are not correctly addressed. Indeed, most of the
works of computer vision on numismatics are in a controlled envi-
ronment and cannot be applied to real-world conditions. We think
that it is because public datasets with labeled data are still rare
in this domain, and the code is not always open-source. Because
data acquisition takes time and 3D scanners are expensive, few
researchers work on 3D data [TER17, ZSKM09]. Their datasets
contain only dozens of coins. Hence, there are few methods for
analysing 3D data. Because it is easier to get images, most of the
methods in the literature uses images [Sal16,SA17,ZK13,ZKK13,
AAZP21], and datasets can be up to 24 000 coins [AAZP21].
There are datasets from museum websites or auction websites
[SA17, AAZP21, ZK13]. Nevertheless, these datasets are not la-
beled by die, because it requires a lot of expertise to label coins by
die. Moreover, when coins are very worn, it is difficult to see cor-
rectly the details of the patterns just with photos, even though such
pattern details are important for coin die recognition. Hence, most
of these coin photo datasets are not made for coin die recognition.
Usually, these datasets are used to classify high-level properties of
the coins (which class, style, which emperor, etc.). The problem is
different from ours. For coin die recognition, datasets and meth-
ods are very rare [AZ20, AM15]. Moreover, most of the methods
are semi-automatic [TER17,Lis19]. For example, [TER17] worked
on coin die study for Roman coins. They have also scanned coins
with a high-quality scanner. However, they only worked with 37
coins. [HGD∗20] propose an automatic method for coin die recog-
nition for 3D data, and showing promising results. It can be used as
a baseline for our dataset. Our dataset consists of 2 070 high-quality
3D scans of coins labeled by die, and is public.

2.2. Datasets for pattern recognition

For pattern clustering, metric learning (or similarity learning) plays
an important role. Metric learning can be used for pattern cluster-
ing, but datasets for metric learning have different applications. The
applications of metric learning are usually face recognition, ob-
ject retrieval or few-shot learning, so many datasets exist for these
tasks, especially 2D image datasets. In 3D, there are datasets from
SHREC challenges (SCHREC 2018 and SCHREC 2021 for cul-
tural heritage). Especially SHREC 2021 dataset [SLL21] is based
on 3D textured models of objects (jar, bowls, figurine, etc.) and
the challenges are to find similar objects by shape or by cul-
ture. However, it is different from the Riedones3D dataset. The
Riedones3D dataset and SHREC2021 have the same dataset size
but Riedones3D has much more classes, and the classes are highly
unbalanced. Moreover, Riedones3D is a dataset of coins with fine-
grained patterns (dies), which is very different from bowls or jars.

2.3. Datasets for point cloud registration

As Horache et al. [HGD∗20] highlight, 3D coin clustering can be
decomposed into two steps: a registration step to align patterns,
then, pair similarity computation in order to cluster data. Therefore,
we propose to evaluate point cloud registration on Riedones3D be-
cause it is an important step for pattern clustering. Point cloud reg-
istration is applied in many domains, so a lot of datasets are avail-
able. We can divide registration datasets into two types:

• object-centric
• indoor and outdoor scene

For object-centric, the most famous dataset is The Stanford 3D
scanning repository [CL96], with the bunny, widely used for ex-
periments in the Computer Graphics community. However, the
main problem is that the dataset is rather small for evaluation. Re-
searchers add synthetic noise or outliers to test their registration
algorithm, but it is not necessarily realistic. Recently, a lot of deep
learning methods have emerged to improve point cloud registra-
tion. Stanford 3D scanning repository is too small for training deep
learning methods, therefore researchers use ModelNet [WSK∗15]
even though ModelNet was designed for point cloud classifica-
tion. ModelNet is a synthetic dataset of CAD objects: it contains
40 classes and 12 311 shapes. Because it is a synthetic dataset,
it is not representative enough of real-world data. The geometry
is too simple in comparison with the fine patterns of the coins of
Riedones3D. And these benchmarks contains only small-size point
clouds. So some methods developed on these datasets do not work
on real world datasets such as scans of indoor scenes (see experi-
ment section of [CDK20]).

Due to the increasing number of 3D scanners, a lot of differ-
ent datasets exist for example, indoor scans of RGB-D frames
(3DMatch [ZSN∗17], TUM [SEE∗12]) or outdoor scenes acquired
by a LiDAR such as ETH [PLCS12], KITTI [GLU12] or WHU-
TLS [DYL∗17]. These real-world datasets are huge, have point
clouds with massive numbers of points, and are more challeng-
ing than object-centric datasets. Usually, registration algorithm are
used for 3D reconstruction or SLAM. However, these datasets are
very different from datasets such as Riedones3D. They don’t have
the same challenges for registration. Coins are rather flat structures,
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Figure 2: The Riedones hoard. We can see that coins are not neces-
sarily in good condition, and that is why 3D scans help a lot.

and coins have elements such as cracks or edges that can perturb the
registration.

3. Construction of Riedones3D

The Riedones were a Gallic tribe from the Armorican Peninsula
(modern Brittany). Little is known about the Riedones: there are
too few written sources. In the book Commentarii de Bello Gallico
(commentaries on the gallic War) of Julius Ceasar, the Riedones are
briefly mentioned. Around the city of Rennes, many Riedones ar-
tifacts have been found especially hoards. The coins from the pro-
posed dataset were found in the town of Liffré (near the city of
Rennes) and are conserved in the Museum of Brittany in Rennes.
This hoard (see Figure 2) is exceptional, probably because these
coins have not circulated so much, this is why, in this hoard, a lot
of coins have the same die.

In order to annotate the coins quickly, we built a tool that will au-
tomatically pre-label coins based on an improvement of the method
of [HGD∗20]. We bring some significant modifications: notably,
we show that deep learning can be effective for the registration
step. The whole process can be summarized into three steps (see
Figure 5):

1. data acquisition
2. automatic pairwise similarity estimation
3. automatic clustering and manual correction

The following subsections will detail each step.

3.1. Data acquisition

Contrary to photos, 3D scans from high-quality scanners can high-
light very fine details of the pattern, which can be crucial for die
studies. For a coin of 2 cm diameter, a resolution has to be an or-
der of magnitude of 10−1 mm in order to perceive some important
details. Moreover, with photos, it is very hard to see the geometry
of a pattern. We can see photos of coins in Figure 4: some pat-
terns are stained by rust, and are not very visible. Also, 3D data
can be used by experts to reconstruct a virtual version of the die

Figure 3: Photo of the acquisition process. The scanner is a
SmartScan AICON, which uses structured blue light in order to
acquire 3D geometry.

Figure 4: Top, photos of Riedones coins. Bottom, 3D scans of the
same coins. From left to right, an example of obverse with beard,
obverse without beard, and reverse.

and manipulate it virtually. That is why we decided to use a high-
quality scanner (see Figure 3). The coins have been acquired using
AICON SmartScan. This scanner can scan objects with a resolution
of 0.04 mm. Moreover, we need to scan the two faces of the coin:
the obverse and the reverse. To be more efficient, we scanned coins
4 by 4 (see Figure 3). With the scanner software Optocat, some
pre-processing has been done (hole filling, better alignment, outlier
removal). Then, we obtained a dense mesh of the coin. We used
the vertices of the mesh as our input point cloud and kept the nor-
mals per point (computed from the mesh). To scan and pre-process
4 coins, so 8 faces (obverses and reverses), it takes around 10 min-
utes.

3.2. Pairwise similarity estimation

In order to cluster coins by die, we need to compute a similarity
between coins. To compute a similarity between a pair, we first
align the patterns using a registration algorithm. Then, we compute
the cloud-to-cloud distance and next, the probability that the coins
were struck by the same die using the histogram of distances (see
also Figure 5).
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Figure 5: Summary of the proposed method. I) Data acquisition with a 3D scanner (in blue). II) Pairwise similarity estimation (in red): the
goal is to estimate the probability that two coins were struck by the same die. First, we align patterns using a registration algorithm. Then, we
compute the cloud-to -cloud distance (c2c distance) and its histogram. Then, we estimate the probability that two coins are from the same die
using logistic regression. For the color of the probabilities, green is that the coins are from the same die (red is the contrary). III) Clustering
(in green): with the graph of pairwise similarity, we can apply a threshold to remove low probabilities (represented by thin links). Clusters
are connected components.

3.2.1. Point Cloud Registration

In order to know whether two coins were struck by the same die, we
need to align the coins. If we can align patterns at least partially, it
means that the patterns come from the same die. Rigid registration
is the task of finding the rotation and translation that best align two
point clouds (in our case, patterns of coins). Let X = {x1,x2 . . .xn}
and Y = {y1,y2 . . .ym} be point clouds represented by a set of 3D
points. Mathematically, registration can be described as:

(R∗, t∗,M∗) = argmin
R∈SO(3),t∈R3,M∈M

∑
(i, j)∈M

||Rxi + t− y j||2 (1)

SO(3) is the set of rotations andM is the set of set of matches. If
we know the correct matches, computing the rotation and trans-
lation is possible using the Kabsch algorithm. However, we do
not know which matches are correct. A well-known algorithm for
point cloud registration is Iterative Closest Point (ICP) [BM92].
ICP [BM92] has two steps:

1. estimate matches searching for the closest point
2. use the Kabsch algorithm to estimate the transformation

These two steps are repeated iteratively. In the case of coins,
ICP [BM92] has two major drawbacks. First, it is a local algo-
rithm which means that using the closest point as a match is a good
heuristic only when we are not too far from the right solution. Sec-
ondly, even if we are close to the right solution, we will have a lot of
false matches because of some points on cracks or edges. In other
words, the edges or cracks can perturb ICP.

3.2.1.1. Point cloud registration using deep learning To solve
the problems above, we can use registration with descriptor match-
ing and especially we use deep learning (see Figure 6) to com-
pute descriptors. We use Fully Convolutional Geometric Feature
(FCGF [CPK19]) to compute descriptors: it is a deep learning
method that compute descriptors per point. FCGF uses a U-Net
architecture [RFB15] (widely used in 3D semantic segmenta-
tion [TQD∗19, CGS19, QYSG17]), which is composed of an en-
coder and a decoder. FCGF allows to compute compact descrip-
tors of dimension 32. To deal with large point clouds, FCGF uses
sparse convolutions [CGS19]. Therefore, FCGF is adapted to the
Riedones3D dataset. In order to train descriptors, FCGF uses a con-
trastive loss L with hard negative sampling.

L = ∑
(i, j)∈M+

{[‖FXi −FYj‖−m+]
2
+ (2)

+
1
2
[m−− min

k|(i,k)∈M−
‖FXi −FYk‖]

2
+ (3)

+
1
2
[m−− min

k|(k, j)∈M−
‖FXk −FYj‖]

2
+} (4)

where [.]+ = max(.,0), M+ is the set of positive matches, and M−

is the set of negative matches. FX = {FX1 . . .FXn} (rest FY ) is the
set of descriptors computed on X (resp. Y ) using FCGF. m+ and
m− are hyper parameters of the contrastive loss. The goal is to
minimize L with respect to the parameters of the neural network.

Intuitively, descriptors computed by FCGF will have a small eu-
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Figure 6: Registration using deep learning. First, we compute features using FCGF [CPK19]. Then, we compute matches with the features.
Finally, we use TEASER, a robust algorithm to estimate the transformation. Features are visualized with colors using Principal Component
Analysis.

clidean distance when it corresponds to the same part of the pattern.
Thus, FCGF allows to compute descriptors invariant to rigid trans-
formation, some small deformations, cracks and wear. However,
training FCGF requires annotated data.

3.2.1.2. Manual registration and labeling of 200 coins To train
FCGF, we need pairs of coins with positive matches (we can sam-
ple negative matches on the fly). To get positive matches, we com-
puted ground truth transformations by manually picking pairs of
points between pairs of coins. 200 coins were registered manually
(only obverses without beard). It took two months to do the man-
ual registration of these 200 coins and label them by their die. We
trained FCGF on these coins using the ground truth. We found that
FCGF can generalize on different obverse patterns (with and with-
out beard) but it can also generalize on reverse patterns (with a
horse and a wheel). In other words, we found that registration us-
ing FCGF works well on different patterns, even if the training set
is small and not diverse. Training FCGF on Riedones3D tooks 4
days with an Nvidia RTX 1080Ti.

3.2.1.3. Descriptor matching and robust estimation With
FCGF, we have a descriptor for each point of the point cloud.
We then take a random number n of points (with their descrip-
tors) on the two point clouds and try to find the matches between
them for the computation of the rigid transformation. In our exper-
iments, we tested with n = 250 and n = 5000. For each descriptor
FXi ∈ FX , we searched the closest descriptor in FY ; we performed
the opposite with the closest searched descriptor and kept only sym-
metric matches. But this method of matching does not guarantee
that the match will be correct. Outliers can be numerous. There-
fore, we cannot directly use the Kabsch algorithm and we need
a robust estimator instead. RANSAC [FB81] and TEASER algo-
rithms [YSC20] are adapted for a robust estimation of the transfor-
mation. We used TEASER in our experiments because it is as good

as RANSAC but faster. Also, after estimating the transformation
robustly, we can apply an ICP on point clouds around the positive
matches in order to refine the registation.

3.2.2. Pairwise similarity

With the methods described above, we can correctly align the pat-
terns of two coins. However, we need a method to measure similar-
ity between aligned patterns. The proposed solution is to compute
the cloud-to-cloud distance between point clouds of coins (c2c dis-
tance).

Suppose X and Y are aligned (X is the source, and Y is the target),
the sample set of point-to-point distances D = {d1,d2 . . .dm} and
D′ = {d′1,d′2 . . .d′n} is defined as:

di = min
k=1...m

||xi− yk||, d′i = min
k=1...n

||xk− yi|| (5)

with n the number of points in X , m the number of points in Y , t the
number of samples taken from each point cloud.

Then we compute an histogram of D and D′, and finally, we
compute the mean of the two histograms. We discard distances that
are too big. The final histogram will be the input of a logistic re-
gression that will estimate the probability that the coins were struck
by the same die. We used the 200 manually labeled obverses (ex-
plained above), in order to train the logistic regression. With this
method, we can obtain good accuracy for the binary classification
(two coins comes from the same die or not) and display good clus-
tering results (97% accuracy for the obverses). However, there may
still be errors. It took a few days to compute similarities between
all pairs of coins for the whole Riedones3D dataset.

For each pair, the pairwise similarity estimation method (reg-
istration + c2c distance + probability estimation) takes 4.4 s (see
Table 1).

© 2021 The Author(s)
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Pair registration Probability estimation Total

Time (in s) 3.8 0.6 4.4

Table 1: Time (in s) for each operation of the pairwise similarity
estimation pipeline (for one pair of scans). FCGF is computed on
the GPU. The other operations are computed on the CPU. Each pair
can be processed independently.

3.3. Clustering and Correction

3.3.1. Clustering

Pairwise similarities can be represented as an undirected weighted
complete graph, where each node represents a point cloud repre-
senting a face, and the link represents the probability that the pair
of coins was struck by the same die. To obtain clusters, we remove
links that have a probability below a threshold τ and then we com-
pute the clusters by connected components. The choice of τ is dif-
ficult: if τ is too low, we obtain false positives (two coins not from
the same die in the same cluster); if τ is too high, we remove true
positives (coins from the same die not in the same cluster). There-
fore, the choice of this parameter depends on the data: we will show
how to fix it (from a small-size dataset labeled by an expert). It is
also handy for the expert to try out different parameters, so that he
can check manually which pairs are close.

3.3.2. Manual correction

An expert is necessary to check whether the coins have been well
clustered or not. Sometimes, the machine can make errors because
the pattern is worn out or the coin is bent. In that case, the expert
must verify whether the clustering is correct quickly. Hopefully,
verification is easier. First, thanks to registration, we don’t need
much expertise to see whether two coins come from the same die
or not. Pair verification is faster with registration, because we can
quickly see whether the pattern is aligned or not, and whether the
algorithm made a mistake.

Moreover, we implemented an interactive graph of association.
Each node represents a coin and each link weight represent the
probability that two coins are from the same die (a screen capture
is available in Figure 7). The graph is automatically obtained us-
ing the method above, but the user can specify the threshold for
the clustering. Also, the expert can quickly search a coin and can
quickly see the connections with the other coins. This graph is a
powerful tool for visualization, but also for edition. The expert can
also edit the graph (add and remove links) and export the clusters.
Thus, verification is faster than with manual clustering, because we
do not need to check every link. With this tool, it took few weeks
to verify and correct the different clusters of coins for our whole
dataset. We also corrected registration manually when it failed.

3.4. Implementation details

For FCGF [CPK19], we use the implementation of Pytorch
Point3D [CNHL20] (the sparse convolution is implemented using
Minkowski Engine library [CGS19]). The sparse voxel size is set
at 0.1 mm. To train FCGF, as it has been said earlier, we used 200

Figure 7: Interactive graph of similarities between coins (grouped
by die). The user can quickly and seamlessly add new link or cut
a wrong link. The user can also save the new graph and export the
clusters.

manually labeled obverses: it makes a training set of 2 132 pairs
(only coins of the same die can be used for the training). We train
the model during 380 epochs using a stochastic gradient descent
with a learning rate of 0.1, a momentum of 0.8, a weight decay
of 0.0001 and an exponential scheduler of 0.99 for the learning
rate. Data augmentation is random rotation (between -25 and +25
degrees for the x and y axis and between -180 and +180 for the
z axis). We also performed a small random scale on point clouds
(between 0.9 and 1.2). The input feature is ones, as in the original
paper. For the loss, we use a contrastive loss with a positive mar-
gin m+ = 0.1 and a negative margin m− = 1.4. For the clustering
part, we needed to compute a histogram of distances: we used 70
bins. To compute the histogram, we discarded points with distance
above 0.6 mm. Before computing the point to point distance, we
down-sample the source point cloud with a voxel size of 0.1 mm,
and we down-sample the target point cloud with a voxel size of
0.05 mm.

4. Baseline for automatic registration and clustering

4.1. Dataset description

In total, there are 2070 scans: 968 obverses and 1102 reverses. For
obverses, there are 887 obverses without beard, and 81 obverses
with beard. We make a distinction between obverses with and with-
out beard, because the classification of obverses with beard is ob-
vious compared to obverses without beard: it does not need any
expertise and it has been processed separately in this study. Each
scan corresponds to only one face (obverse or reverse) of a coin: it
has a unique ID, which is LxD or LxR. L means Liffré (the place
the treasure has been found), x is a number, and D means obverse, R
reverse (for example L0001D or L0145R). The coins from L0001D
to L0081D are beard, the others are not beard. Each file is repre-
sented by a point cloud in ply binary format which contains the
point positions, the normals and colors (artificial colors computed
from the normals for visualization). Normals are computed from
the mesh. The original meshes are also available.

These coins come from 293 dies: 81 obverses (74 obverses with-
out beard, 7 obverses with beard) and 212 reverses. For the reverses,
there are more dies because the dies have worn out more quickly.

© 2021 The Author(s)
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Each die has an ID with Rx for the reverse, Dx for the obverse with-
out beard and DBx for the obverse with a beard (R11 means the die
11 of reverses).

For the different tasks presented, the dataset has been split into
training sets and test sets.

4.2. Point cloud registration

4.2.1. Dataset

We present a benchmark to compare different registration algo-
rithms based on our dataset. For a pair of coins, the goal is to find
the right transformation with translation and rotation. As pointed
out by [HGD∗20], the problem is challenging because the coin
edges perturb the registration. This kind of problem is rather rare in
other registration datasets. Therefore, very few works are robust to
this problem. In each die of the test set for registration, each pair is
evaluated.

The registration benchmark is based on part of the Riedones3D
dataset: the test set is composed of 160 obverse faces (80 faces
without a beard and 80 faces with a beard) and 79 reverse faces.
We use 27 dies in total for the evaluation. The benchmark has 2158
pairs with generated random rotations (for axis x and y between -
25 and 25 degrees and for axis z between -180 and 180 degrees).
For every method, we downsample the point cloud with a grid
size of 0.1 mm. For deep learning methods, a training set of 200
obverse coins is available. We only train on the obverse without
beard pattern to see if methods work on unseen obverse patterns
but also if they generalize well on reverse patterns. For evalua-
tion, we measure the Scaled Registration Error (SRE) as defined
in [FCB∗21]. Let X = {x1, . . .xn} and Y = {y1, . . .ym} two point
clouds. Let R(gt) ∈ SO(3), t(gt) ∈ R3 be the ground truth transfor-
mation between X and Y and let R∗ ∈ SO(3), t∗ ∈R3 the estimated
transformation. The SRE between X and Y is defined as:

SRE(X ,Y ) =
1
n

n

∑
i=1

||R(gt)xi + t(gt))− (R∗xi + t∗)||
||(R(gt)xi + t(gt))− (R(gt)x̄+ t(gt))||

(6)

x̄ =
1
n

n

∑
i=1

xi (7)

For each pair of coins from the same die, we compute the SRE.
Then, to aggregate the results for each die, we use the median in-
stead of the mean (the mean is sensitive to outlier results and is not
representative of the results, as explained in [FCB∗21]).

4.2.2. Methods

For this benchmark, we decided to compare several methods: a
classical method such as ICP [BM92] and feature matching meth-
ods with hand-crafted features such as Fast Pair Feature Histogram
(FPFH [RBB09]) and with features from deep learning methods
like FCGF [CPK19] and Distinctive 3D local deep descriptors
(DIP [PP21]). For each die, we compute the median of SRE as
explained above (reported in Table 3), and in Table 2, we report
the average of SRE over the different dies in reverses and ob-
verses. ICP [BM92] is very dependant on the initialization. To over-
come this drawback, [HGD∗20] performs random initializations.
We tested using the same strategy. FPFH [RBB09] uses pair point

(a) Example of successful registration (R5 die).

(b) Example of failure for registration (R11 die).

Figure 8: Registration on a pair of coins using FCGF [CPK19] on
the die R5 between L0020R and L0061R (success) and a pair on
the die R11 between L0053R and L0059R (failure).

feature and normals in order to compute compact local descriptors.
FCGF [CPK19] is the deep learning method we used to build the
Riedones3D dataset. It uses a U-Net achitecture to compute de-
scriptors on every point. DIP [PP21] computes descriptors on local
patches using a PointNet architecture. Deep learning methods are
said to be only effective with large training datasets, but our results
are a counter-example for DIP and FCGF. We can see in Table 2 that
deep learning based methods outperform other methods. It shows
that a small dataset is enough to learn meaningful features. DIP and
FCGF have satisfying results on obverse and reverse. However, DIP
has lower results than FCGF in R8 and R5 (see Table 3). It shows
that it is harder for DIP to generalize on unseen patterns, whereas
usually DIP has better generalization capabilities. It is because in
registration scenes such as ETH or 3DMatch, patterns are not as
sophisticated as in Riedones3D.

If we look at the R11 die, every method seems to fail (see
Table 3). It is because the coin L0059R has a flaw (see Fig-
ure 8 for the registration result and see Figure 4 to see the coin
L0059R). It shows that Riedones3D is a challenging dataset. There-
fore, progress needs to be made to deal with defects in coins.

4.3. Fine-grained clustering

We present the dataset and a baseline for the die clustering on
Riedones3D. For this task, we use more data for training and test-
ing for a proper evaluation. For the obverses, the training set has

© 2021 The Author(s)
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Methods Reverses (R) Obverses w beard (DB) Obverses w/o beard (D) All Time (in s)

Random Search ICP [HGD∗20] 512.9 70.7 7.2 302.2 70.7

FPFH (5000) + TEASER 492.0 448.1 358.6 452.6 2.1
FPFH (5000) + TEASER + ICP 501.5 378.1 616.6 499.6 2.3
DIP (5000) + TEASER 370.4 46.1 21.9 220.9 61.2
DIP (5000) + TEASER + ICP 281.4 73.4 9.3 174.7 62.9
FCGF (250) + TEASER 126.0 42.6 19.3 83.8 0.6
FCGF (5000) + TEASER 96.7 21.4 10.3 60.8 2.1
FCGF (250) + TEASER + ICP 101.0 11.0 9.3 60.6 1.2
FCGF (5000) + TEASER + ICP 68.2 8.7 9.3 41.9 3.8

Table 2: SRE (x1000) on Riedones3D dataset for coin registration. For FCGF, we tried FCGF (250) and FCGF (5000): 250 and 5000 are the
number of descriptors kept for the transformation estimation step. It helps to go faster in the transformation estimation. We use TEASER to
estimate the transformation in a robust way. + ICP means an additional ICP step after the registration algorithm to refine the transformation.
For deep learning methods (FCGF and DIP), training is done on obverses without beard only.

Methods R1 R10 R11 R12 R14 R16 R17 R2 R3 R4 R5 R6 R7 R8 R9 DB1a DB2a DB3a DB1b DB2b DB3b D1 D2 D5 D10 D15 D33 Average

Random Search ICP [HGD∗20] 115.8 1559.7 1803.5 27.5 54.8 1.5 258.3 101.0 24.1 12.7 399.4 7.2 5.4 1595.3 1727.1 24.2 337.1 13.5 5.8 22.7 21.1 6.6 1.5 12.6 9.7 7.6 4.9 302.2

FPFH (5000) + TEASER 66.6 155.4 1591.2 38.2 69.1 48.3 27.9 740.8 1324.0 59.3 1504.7 39.7 23.6 1670.4 20.9 166.1 57.6 25.4 1268.7 1145.9 25.0 1233.1 548.6 103.4 56.0 180.0 30.6 452.6
FPFH (5000) + TEASER + ICP 11.2 14.4 1518.5 20.9 42.8 10.1 738.1 10.4 1321.6 21.7 1578.2 18.3 10.0 2194.6 11.2 81.4 5.4 7.5 1123.2 1043.8 7.5 1305.2 980.1 100.6 13.5 1295.7 4.6 499.6
DIP (5000) + TEASER 29.7 43.0 1395.8 32.6 55.4 30.6 63.0 28.8 33.0 34.3 2027.7 27.6 15.4 1705.3 33.7 30.5 25.4 23.1 140.7 31.1 25.6 22.7 26.2 22.7 21.6 30.5 7.9 220.9
DIP (5000) + TEASER + ICP 8.8 11.6 1546.9 24.2 47.3 9.3 24.3 10.4 11.5 9.0 595.3 10.8 9.6 1892.7 8.8 11.6 10.7 7.2 389.2 14.3 7.6 10.4 8.6 12.2 9.9 11.2 3.3 174.7
FCGF (250) + TEASER 47.1 59.7 858.6 41.8 72.0 53.8 108.7 77.3 64.2 59.8 133.8 54.0 85.0 102.7 71.6 53.5 42.3 41.5 48.9 35.5 33.8 22.8 21.7 24.5 22.1 16.6 8.3 83.8
FCGF (5000) + TEASER 18.5 23.4 1053.9 18.0 49.5 15.8 35.4 18.4 22.3 24.2 41.6 17.4 42.6 53.7 16.3 23.4 29.4 18.8 24.7 17.1 15.0 10.6 7.3 9.8 10.5 12.5 11.0 60.8
FCGF (250) + TEASER + ICP 10.6 12.7 869.4 24.3 82.7 8.9 66.8 9.4 10.8 13.7 93.1 9.7 8.4 281.5 12.6 14.9 7.9 11.1 4.9 14.4 12.6 10.5 7.4 12.5 10.0 11.2 4.4 60.6
FCGF (5000) + TEASER + ICP 9.8 9.5 731.4 20.6 61.6 10.4 32.1 10.1 9.2 8.7 70.9 8.4 9.6 22.1 8.0 10.7 6.5 9.0 4.8 12.9 8.1 10.5 8.3 11.3 9.7 11.2 5.0 41.9

Table 3: Detailed results with SRE (x1000) on Riedones3D dataset for coin registration. Results are presented for each die separately.

418 coins (200 have been used for registration), the validation set
has 181 coins, and the test set has 288 coins. For the reverses, the
training set has 510 coins, the validation set has 299 coins, and the
test set has 293 coins. For the obverse with beard, we do not have
enough data, so it will only be used as a test set.

Figure 9 shows a synthetic view of the test set for die clustering.
It shows that the number of coins per die is highly unbalanced.
Indeed, each die does not give the same number of coin: some dies
are more resistant and some are more fragile.

We propose a baseline for clustering the coins, based on the
method used to build the Riedones3D dataset (registration + pair-
wise similarity estimation + clustering). For the registration step,
we use the results from FCGF [CPK19]. After the alignment, we
compute the pairwise similarity from the c2c distance histogram,
compute the graph, and extract the clusters with the threshold τ (as
explained above for the dataset construction). On the validation set
of obverses without beard, we found that the best threshold τ was
0.95.

As a metric to evaluate the clustering, we use the Fowlkes-
Mallows Index (FMI) [FM83]. The FMI is defined as followed:

FMI =
T P√

(T P+FP)(T P+FN)
(8)

TP is the True Positive (the number of pairs of coins that have the
same predicted die and are effectively from the same die). TN is
the True Negative (the number of pairs of coins that do not have
the same predicted die and are not from the same die). FN is the
False Negative (the number of pairs of coins that have a different
predicted die but are from the same die). FP is the False Positive
(the number of pairs of coins that have the same predicted die but
are not from the same die).

We also report the Adjusted Rand Index (ARI) [HA85]:

RI =
T P+T N

T P+FP+T N +FN
(9)

ARI =
RI−E[RI]

max(RI)−E[RI]
(10)

RI is the Rand Index (T P, T N, FP, and FN are defined above).
E[RI] is the expected Rand Index for a random variable, and
max(RI) is the maximum index we have.

These two metrics are classical metrics for clustering. We can
see in Table 4 that ARI and FMI give close results on the test set
of Riedones3D. The results are satisfying for the obverses, but for
the reverses, there are still room for improvements. The proposed
method is a good baseline for our dataset. For the clustering of the

Reverses Obverses (w beard) Obverses (w/o beard)

FMI 0.87 0.99 0.98
ARI 0.86 0.99 0.97

Table 4: Measure of die clustering using FMI and ARI metrics for
test sets of Riedones3D (training is done on obverses without beard
only).

obverses without beard, we obtained 16 clusters with the evaluated
method, whereas there are 14 clusters in the ground truth. For the
clustering of the obverses with beard, there is only one mistake:
one coin not associated to the right die. For the clustering of the
reverses, we obtain 35 clusters (there are 30 clusters in the ground
truth). Therefore, the algorithm could correctly identify the main
groups, but still some coins are misclassified.

© 2021 The Author(s)
X Proceedings © 2021 X.
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Figure 9: Synthetic view of the test set of Riedones3D for the fine-grained clustering (30 dies for reverses, 7 dies for obverses with beard and
14 dies for obverses without beard).

5. Conclusion

We propose a new challenging dataset of 3D scans of coins for die
recognition. We also propose a strong baseline for 3D scan regis-
tration and die clustering. We showed that, for registration, we can
use deep learning methods. However, more investigation needs to
be done in order to improve die clustering. In future research, we
will investigate End-to-End deep learning methods for die cluster-
ing on Riedones3D.
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