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On Hyperbolic Generalized Metrics Spaces

Generalized metric spaces are natural and interesting geometric objects, which were firstly studied in depth by H. Busemann. In this paper, we are interested in the formulation and the study of hyperbolic generalized metric spaces. We construct some examples of this kind of spaces, which have infinite reversibility. Therefore, they cannot be quasi-isometrically embedded into any metric space. We define and study the boundary at infinity of hyperbolic generalized metric spaces, by sticking together their natural forward and backward boundaries. Finally, via a concrete example, we show that in some cases the boundary admits a couple of natural and non-equivalent quasi-conformal structures, which seems worthy of further study.

Preliminaries

1.1 Some definitions and Hopf-Rinow theorem Following H. Busemann [2], a generalized metric space is defined as follows.

Definition 1.1. A generalized metric space is a pair (X, d), where X is a set and d : X × X → [0, +∞) is a generalized metric (or generalized distance), i.e. d satisfies the following conditions:

(1) For all x, y ∈ X, d(x, y) = 0 if and only if x = y.

(2) For all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

(3) For each sequence {x n } in M and x ∈ M , lim n→∞ d(x n , x) = 0 if and only if lim n→∞ d(x, x n ) = 0. 1

If d is in addition symmetric, i.e. d(x, y) = d(y, x) for all x, y ∈ X, then (X, d) is just a metric space. If Condition (3) is not satisfied, d is said to be a quasi-metric. Therefore, the generalized metric is a geometric object that is between metric and quasi-metric, which is more natural than metric and is topologically easier than quasi-metric. We note that historically, generalized metrics were simply called metrics (see [START_REF] Busemann | Recent synthetic differential geometry[END_REF]), while the nowadays metrics were considered rather as a kind of special metrics, because of the additional symmetry condition. Moreover, because of the increasing importance of asymmetry in applied mathematics, it seems that an in-depth study of generalized metric spaces is well motivated.

Let (X, d) be a generalized metric space, the reversed generalized metric d r is defined as d r (x, y) = d(y, x) for all x, y ∈ X. Following [START_REF] Busemann | Local metric geometry[END_REF], we define σ : X × X → [0, +∞) such that σ(x, y) = max{d(x, y), d(y, x)}, which is a metric over X. We have for all x, y ∈ X, d(x, y) ≤ σ(x, y).

Let x ∈ X and A be a subset of X. We define d(x, A) = inf a∈A d(x, a), d(A, x) = inf a∈A d(a, x) and σ(x, A) = inf a∈A σ(x, a). We also define d max (x, A) = max{d(x, A), d(A, x)}. 

We have d H (A, B) ≤ σ H (A, B).

There are two kinds of balls, namely, forward and backward open balls, respectively defined by

B + (x, r) = {y ∈ X | d(x, y) < r}, B -(x, r) = {y ∈ X | d(y, x) < r},
for each x ∈ X and r > 0. The balls with respect to σ are called symmetric open balls, denoted by B(x, r). It is clear that B(x, r) = B + (x, r)∩B -(x, r). These three families of balls generate three topologies over X that we call respectively forward, backward and symmetric topologies, denoted by τ + , τ -, and τ . The condition (3) in Definition 1.1. is equivalent to the fact that τ + = τ -= τ . Therefore, given a sequence {x n } in X, it converges to some x ∈ X with respect to the topology τ , if and only if lim n→∞ d(x n , x) = 0, and if and only if lim n→∞ d(x, x n ) = 0. Note that for quasi-metrics, these three topologies are generally quite different.

We also define the forward and backward closed balls as

D + (x, r) = {y ∈ X | d(x, y) ≤ r}, D -(x, r) = {y ∈ X | d(y, x) ≤ r},
for each x ∈ X and r > 0.

Example 1. Let a > 0. Then d : R × R → [0, +∞) defined by d(x, y) = y -x if x ≤ y, a(x -y) if x > y is a generalized metric on R. Note that τ + and τ -are the usual topology on R.

Proposition 1. The function d : X × X → [0, +∞) is continuous.

Proof. We suppose that lim n→+∞ d(x n , x) = 0 and lim n→+∞ d(y n , y) = 0, which implies that lim n→+∞ d(x, x n ) = 0 and lim n→+∞ d(y, y n ) = 0. We We deduce that lim n→+∞ d(x n , y n ) = d(x, y).

Proposition 2. The forward and backward closed balls are closed with respect to the topology τ .

Proof. Let {x n } be a sequence in D + (x, r), which converges to y ∈ X. Thus for any > 0, there exists N ∈ N such that for any n ≥ N , d(x, y) ≤ d(x, x n ) + d(x n , y) ≤ r + .

We deduce that d(x, y) ≤ r, i.e. y ∈ D + (x, r).

Note that in general D + (x, r) is not the closure of B + (x, r). A set S ⊂ X is said to be forward bounded, respectively backward bounded, if there exists x ∈ X and r > 0 such that S ⊂ B + (x, r), respectively S ⊂ B -(x, r). We say that S is compact if every sequence in S has a convergent subsequence with limit in S. The space (X, d) is said to be locally compact is for any x ∈ X there exists r > 0 such that D + (x, r) is compact. We say that a sequence {x n } ⊂ X is forward Cauchy, respectively backward Cauchy, if for every > 0 there exists N ∈ N such that for p ≥ q ≥ N , d(x q , x p ) < , respectively d(x p , x q ) < . We say that (X, d) is forward (resp. backward) complete, if every forward (resp. backward) Cauchy sequence is convergent. Finally, (X, d) is said to be complete if it is both forward and backward complete.

Proposition 3. Let {x n } be a convergent sequence in X. Then it is both forward and backward Cauchy.

Proof. We firstly note that for quasi-metrics this proposition is in general not true. We suppose that the sequence converges to x ∈ X. Then for any > 0 there exists N ∈ N such that for p ≥ q ≥ N , σ(x q , x) < 2 and σ(x, x p ) < 2 . Thus σ(x q , x p ) ≤ σ(x q , x) + σ(x, x p ) < . We deduce that d(x q , x p ) ≤ σ(x q , x p ) < and d(x p , x q ) ≤ σ(x p , x q ) < . where the supremum is taken over all possible partitions of [a, b]. If l(c) is finite we say that c is rectifiable. If c is rectifiable of length l, then by similar arguments as in [START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF], p.13, the function λ :

[a, b] → [0, l] defined by λ(t) = l(C | [a,t]
) is a continuous increasing function. Thus there exists a unique curve c : [0, l] → X such that c • λ = c and l(c | [0,t] ) = t. This curve c is called the reparameterization by arc length of c. More generally, a curve c is said to be parametrized proportional to arc length if there exist α > 0 and β such that for any

t ∈ [a, b], λ(t) = αt + β. Given x, y ∈ X, a geodesic joining x to y is a curve c : [a, b] → X such that c(a) = x, c(b) = y and for all t 1 , t 2 ∈ [a, b] satisfying t 1 ≤ t 2 , d(c(t 1 ), c(t 2 )) = t 2 -t 1 . If a curve c : [a, b] → X satisfies d(c(a), c(b)) = l(c), then it is clear that its reparametrization c is a geodesic.
We say that d is length (or inner) if for all x, y ∈ X, d(x, y) is equal to the infimum of the lengths of rectifiable curves joining x to y. By [START_REF] Busemann | Recent synthetic differential geometry[END_REF], p.3, if d is length then for each x ∈ X and r > 0, D + (x, r) (resp. D -(x, r)) is the closure of B + (x, r) (resp. B -(x, r)). In [START_REF] Busemann | Local metric geometry[END_REF], p.204, the following proposition about local reversibility was proved. Proposition 4. Let (X, d) be a complete and locally compact length generalized metric space. Let A be a forward bounded or backward bounded subset of X. For any > 0 there exists δ > 0 such that for all a, b ∈ A, if d(a, b) < δ then d(b, a) < .

In [START_REF] Busemann | Recent synthetic differential geometry[END_REF], p.5, the following important theorem of Hopf and Rinow was proved.

Theorem 1.2. Let (X, d) be a locally compact length generalized metric space. The following two conditions are equivalent: (1) (X, d) is complete.

(2) every closed forward bounded or backward bounded subset of X is compact. If one of these conditions is satisfied, then (X, d) is a geodesic space, i.e. for all x, y ∈ X, there exists a geodesic joining x to y. Corollary 1. Let (X, d) be a locally compact and complete length generalized metric space. Let x ∈ X and {x n } ⊂ X such that lim n→+∞ d(x, x n ) = +∞. Then for any K a backward bounded subset of X, there exists N ∈ N such that for all n ≥ N , x n ∈ K.

Proof. We suppose on the contrary that there exists a subsequence {x ϕ(n) } such that for all n ∈ N, x ϕ(n) ∈ K. By the Hopf-Rinow theorem above, the closure of K is compact. Therefore, this subsequence contains a convergent subsequence, which we suppose to be simply {x ϕ(n) }. Let y = lim n→+∞ x ϕ(n) . Thus by Proposition 1, lim n→+∞ d(x, x ϕ(n) ) = d(x, y), which is a contradiction since by hypothesis, lim n→+∞ d(x, x n ) = +∞.

Arzelà-Ascoli theorem

Let (X, d X ) and (Y, d Y ) be two generalized metric spaces. A sequence of maps f n : X → Y is said to be equicontinuous if for each > 0 there exists δ > 0 such that for every

n ∈ N, if d X (x 1 , x 2 ) < δ then d Y (f n (x 1 ), f n (x 2 )) < . We say that {f n } converges to a map f : X → Y if for all x ∈ X, lim n→+∞ d Y (f n (x), f (x)) = 0.
We say that the convergence is uniform on compact subsets if for any K a compact subset of X,

lim n→+∞ sup x∈K d Y (f n (x), f (x)) = 0.
Proposition 5. Let (X, d X ) be a generalized metric space and (Y, d Y ) be a locally compact and complete length generalized metric space. We suppose that a sequence of maps {f n } converges to a continuous map f . Then the convergence is uniform on compact subsets if and only if for any K a compact subset of X,

lim n→+∞ sup x∈K σ Y (f n (x), f (x)) = 0.
Proof. We suppose that {f n } converges uniformly on compact sets to a continuous map f . Since f is continous, then f (K) is compact in Y . Thus f (K) is forward bounded and backward bounded in Y . Since {f n } converges uniformly on compact subsets to f , then there exist N ∈ N and a backward bounded subset K in Y such that for any n ≥ N , f n (K) ⊂ K . We take > 0, by Proposition 4, there exists δ > 0 such that for all a, b ∈ K ,

d Y (a, b) < δ implies d Y (b, a) < . Since lim n→+∞ sup x∈K d Y (f n (x), f (x)) = 0, then there exists N such that for each n ≥ N and each x ∈ K, d Y (f n (x), f (x)) < min{δ, }. Thus d Y (f (x), f n (x)) < . We deduce that for each n ≥ max{N, N } and each x ∈ K, σ Y (f n (x), f (x)) ≤ . Therefore, lim n→+∞ sup x∈K σ Y (f n (x), f (x)) = 0.
The classical Arzelà-Ascoli theorem for metric spaces can be generalized to generalized metric spaces. Note that in [START_REF] Collins | An asymmetric Arzelà-Ascoli theorem[END_REF] a similar theorem is proved for quasi-metric spaces under some additional and topological assumptions.

Theorem 1.3. (Arzelà-Ascoli) Let (X, d X ) and (Y, d Y ) be two generalized metric spaces. We suppose that X is separable, i.e. admitting a countable dense subset, and Y is compact. Then every sequence of equicontinous maps f n : X → Y has a subsequence that converges uniformly on compact subsets to a continous map f : X → Y .

Proof. We consider the associated metric spaces (X, σ X ) and (Y, σ Y ). Since X is separable, i.e. admitting a countable dense subset S ⊂ X, then for each x ∈ X, there exists a sequence {x n } contained in S such that lim n→+∞ d(x n , x) = 0. We deduce that lim n→+∞ σ(x n , x) = 0. Therefore, (X, σ X ) is also separable. Since (Y, d Y ) is compact, it is clear that (Y, σ Y ) is also compact. By hypothesis, the sequence of maps {f n } is equicontinuous, i.e. for every > 0 there exists δ > 0 such that for every n ∈ N,

if d X (x 1 , x 2 ) < δ then d Y (f n (x 1 ), f n (x 2 )) < . If σ X (x 1 , x 2 ) < δ then d X (x 1 , x 2 ) < δ and d X (x 2 , x 1 ) < δ. Therefore, d Y (f n (x 1 ), f n (x 2 )) < and d Y (f n (x 2 ), f n (x 1 )) < , which implies that σ Y ((f n (x 1 ), f n (x 2 )) < .
Thus the sequence {f n } is also equicontinuous from (X, σ X ) to (Y, σ Y ). Therefore, the proof is complete by the classical Arzelà-Ascoli theorem for metric spaces (see [START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF], p. 36).

Corollary 2. Let (X, d) be a locally compact and complete geodesic generalized metric space, and {c n } be a sequence of geodesics which are all defined on [a, b]. We suppose that {c n (a)} are contained in some forward (or backward) bounded subset of X, then there exists a subsequence {c ϕ(n) } that converges uniformly to a geodesic c : [a, b] → X.

Proof. Since {c n } are geodesics defined on [a, b] and {c n (a)} are contained in some forward bounded subset of X, then there exists a forward closed ball D + (x, r) such that for each n ∈ N, Im(c n ) ⊂ D + (x, r). Moreover, by the Hopf-Rinow theorem, D + (x, r) is compact. Thus by Proposition 4, for each > 0, there exists δ > 0 such that for all y, z ∈

D + (x, r), d(y, z) < δ implies d(z, y) < . Let t 1 , t 2 ∈ [a, b] such that | t 2 -t 1 |< min{ , δ}. If t 1 ≤ t 2 then d(c n (t 1 ), c n (t 2 )) = t 2 -t 1 <
min{ , δ}, which implies that d(c n (t 2 ), c n (t 1 )) < . Therefore, {c n } is equicontinuous. So by the Arzelà-Ascoli theorem, there exists a subsequence {c ϕ(n) } that converges uniformly to a curve c :

[a, b] → X. Moreover, for all t 1 , t 2 ∈ [a, b] such that t 1 ≤ t 2 , d(c(t 1 ), c(t 2 )) = lim n→+∞ d(c n (t 1 ), c n (t 2 )) = t 2 -t 1 , thus c is a geodesic.

Quasi-isometry and Reversibility

Let (X, d X ) and (Y, d Y ) be two generalized metric spaces. A bijective map f :

X → Y is an isometry if for all x 1 , x 2 ∈ X, d Y (f (x 1 ), f (x 2 )) = d X (x 1 , x 2 )
. A bijective map f : X → Y is said to be a bi-Lipchitz equivalent if there exists α > 0 such that for all x, y ∈ X,

1 α d X (x, y) ≤ d Y (f (x), f (y)) ≤ αd X (x, y).
For any α ≥ 1 and ≥ 0, a map f : X → Y is called a (α, )-quasi-isometrc embedding if for all x 1 , x 2 ∈ X,

1 α d X (x 1 , x 2 ) -≤ d Y (f (x 1 ), f (x 2 )) ≤ αd X (x 1 , x 2 ) + .
If, in addition, there exists L ≥ 0 such that for any y ∈ Y , σ(y, f (X)) ≤ L, then f is called a (α, )-quasi-isometry. When such a map exists, X and Y are said to be quasi-isometric. Proposition 6. Let (X, d X ) and (Y, d Y ) be two generalized metric spaces, and f : X → Y be a (α, )-quasi-isometry. Then there exist a constant L and g : Y → X a (α, )-quasi-isometry such that for all x ∈ X and all y ∈ Y ,

d X (g • f (x), x) ≤ L and d Y (f • g(y), y) ≤ L.
Proof. For any y ∈ Y , there exists x ∈ X such that σ(f (x), y) ≤ D. Thus we define g : Y → X such that g(y) = x. It is then straightforward to verify that g satisfies the conditions above.

It is well-known that quasi-isometries are the appropriate morphisms for the large-scale study of metric spaces. It seems that it is equally the case for generalized metric spaces.

Let (X, d) be a generalized metric space. Following [START_REF] Rademacher | A sphere theorem for non-reversible Finsler metrics[END_REF], the reversibility (or uniformity constant) of (X, d) is defined by C = sup x,y∈X,x =y d(x,y) d(y,x) , which belongs to [1, +∞]. Obviously, (X, d) is a metric space if and only if its reversibility is equal to 1. Proposition 7. Let (X, d) be a locally compact and complete length generalized metric space. Then the reversibility of (X, d) is finite if and only if the generalized metric d is bi-Lipchitz equivalent to a length metric on X.

Proof. If d is bi-Lipchitz equivalent to some metric d on M , there exists α > 0 such that for all x, y ∈ X,

1 α d (x, y) ≤ d(x, y) ≤ αd (x, y).
We deduce that the reversibility C of (X, d) verifies C ≤ α 2 , thus finite. Conversely, we suppose C < +∞. Thus for all x, y ∈ X, we have 1 C d(x, y) ≤ d(y, x) ≤ Cd(x, y). Therefore, d(x, y) ≤ σ(x, y) ≤ Cd(x, y).

Let σ be the length metric associated to σ, i.e. for all x, y ∈ X, σ(x, y) is the infimum of the σ-length of continuous curves joining x to y (see [START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF]). Since d is length, we have d(x, y) ≤ σ(x, y) ≤ Cd(x, y).

Thus the identity map

Id : (X, d) → (X, σ) is a bi-Lipchitz equivalence.
If the reversibility of (X, d) is infinite, then the associated length metric σ defined above is even not necessarily quasi-isometric to d. In fact, we will prove below that on a large class of infinite graphs, there exist lots of locally compact and complete geodesic generalized metrics with infinite reversibility, which cannot be quasi-isometrically embedded into any metric space.

2 Finsler manifolds and generalized metric graphs

Finsler manifolds

Let M be a C ∞ manifold, π M : T M → M be the tangent bundle, and T M 0 = T M -{0}. A Finsler metric on M is a function F : T M → R + that has the following properties : (a) F (tv) = tF (v) for any v ∈ T M and t ≥ 0; (b) F 2 is strictly positive and C ∞ on T M 0 ; and (c) in standard local coordinates (x i , y i ) on T M , the matrix of partial derivatives

∂ 2 F 2 ∂y i ∂y j is positive-definite. A Finsler mamifold (M, F ) is said to be reversible if F (-u) = F (u) for all u ∈ T M . Otherwise, (M, F ) is said to be irreversible. Let c : [a, b] → M be a piecewise C 1 curve in M . Since F is positively homogeneous of degree one, the length of c is well-defined as L(c) = b a F (c (t))dt.
For a pair of points p, q ∈ M we define d(p, q) = inf c L(c), where the infimum is taken over all piecewise C 1 curves c joining p to q. It is well-known that (M, d) is a generalized metric space (see [START_REF] Chern | Riemannian-Finsler geometry[END_REF]). Moreover, we can deduce from the following proposition that (M, d) is a metric space if and only if (M, F ) is reversible.

Proposition 8. Let (M, F ) be a complete Finsler metric and d be its associated generalized metric. Then the reversibility of (M, d) is given by

C = sup v∈T M 0 F (-v) F (v) . Proof. Let C 1 = sup v∈T M 0 F (-v) F (v)
. Since (M, F ) is supposed to be complete, then for any x, y ∈ M , there exists a geodesic c : [a, b] → M joining y to x such that L(c) = d(y, x) (see [START_REF] Chern | Riemannian-Finsler geometry[END_REF]). We suppose that x = y. Let c be the reversed curve of c defined as c(t) = c(-t). Thus we have

L(c) ≤ C 1 • L(c). We deduce that d(x,y) d(y,x) ≤ L(c) L(c) ≤ C 1 , which implies that C ≤ C 1 . Conversely, let x ∈ M and v ∈ T x M 0 such that F (-v) = 1. Let γ : [0, 1] → M be a unit speed C ∞ geodesic such that γ (1) = -v. For any t ∈ [0, 1], let γ t = γ | [t,1] . Then we get for any t ∈ [0, 1], d(γ(t), x) = L(γ t ). Therefore, L(γt) L( γt) ≤ d(γ(t),x) d(x,γ(t)) ≤ C. Moreover, we have lim t→1 L(γt) L( γt) = 1 F (v) . We deduce that C 1 ≤ C. Thus C = C 1 .

Generalized metric graphs

The generalized metric graphs defined below can be considered as the 1dimensional CW-complex version of Finsler manifolds. Let us firstly recall the definition of a combinatorial graph: a combinatorial graph G is defined as G = (V, E, ∂ 0 , ∂ 1 ), where V is the set of vertices, E is the set of edges, and the maps ∂ 0 : E → V and ∂ 1 : E → E respectively indicate the departing point and the ending point of the edges. We say that G is infinite if either V or E is an infinite set.

The topological graph X associated to G is the quotient of E × [0, 1] by the equivalence relation given by (e, i) ∼ (e , i ) if ∂ i (e) = ∂ i e , where e, e ∈ E and i, i ∈ {0, 1}. Let p : E × [0, 1] → X be the quotient map. We identify V with the image in X of E × {0, 1}. For each e ∈ E, we denote by f e : [0, 1] → X the map defined as f e (t) = p(e, t). We assume that X is connected with respect to its quotient topology. Moreover, we suppose that X is locally finite, i.e. for each v ∈ V, the set {e ∈ E | ∂ 0 e = v or ∂ 1 e = v} is finite.

Let λ + : E → (0, +∞) and λ -: E → (0, +∞) be two functions that are bounded away from 0, which means that there exists a > 0 such that λ + ≥ a and λ -≥ a. Then we can define as follows a generalized metric on X : for all x, y ∈ X, a piecewise linear path joining x to y is a continuous map c : [0, 1] → X such that c(0) = x, c(1) = y, and for which there is a partition 0

= t 0 ≤ t 1 ≤ • • • ≤ t n = 1 such that each c | [t i ,t i+1 ] is of the form f e i • α i , where e i ∈ E and α i is an affine map from [t i , t i+1 ] into [0, 1]. The length of c | [t i ,t i+1 ] is defined as follows : if α i is increasing, then l(c | [t i ,t i+1 ] ) = λ + (e i ) | α i (t i ) -α i (t i+1 ) |; If α i is decreasing, then l(c | [t i ,t i+1 ] ) = λ -(e i ) | α i (t i ) -α i (t i+1 ) | . The length of c is defined to be l(c) = n-1 i=0 l(c | [t i ,t i+1 ]
). Given two piecewise linear paths c 1 and c 2 , if they are geometrically the same, i.e. c 1 ([0, 1]) = c 2 ([0, 1]), then it is easy to see that l(c 1 ) = l(c 2 ). We define a function d : X × X → [0, +∞) by setting d(x, y) equal to the infimum of the length of piecewise linear paths joining x to y. Proposition 9. Under the notations above, let X be a connected and locally finite topological graph. Let λ + : E → (0, +∞) and λ -: E → (0, +∞) be two functions that are bounded away from 0. Then with respect to the function d defined above, (X, d) is a locally compact complete geodesic generalized metric space.

Proof. By the definition of d, it is straightforward to see that d(x, y) = 0 if and only if x = y, and for all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z). Since X is locally finite, and λ + and λ -are bounded away from 0 , then locally the length of a piecewise linear path and that of its reversed path are comparable. Therefore, for any x ∈ X, there exists a small open neighborhood U x of x and a positive constant C x such that for all y, z ∈ U x ,

1 C x d(y, z) ≤ d(z, y) ≤ C x d(y, z).
We deduce that lim n→+∞ d(x n , x) = 0 if and only if lim

n→+∞ d(x, x n ) = 0. So (X, d) is a generalized metric space. Let x ∈ X. If x ∈ E, since X is locally finite, then the neighborhood p({(e, t) | t ∈ [0, 1], ∂ 0 e = x or ∂ 1 e = x})
is the quotient of a finite number of segments. So it is compact. If x ∈ E, since λ + and λ -are bounded away from 0, then a small segment containing x and contained in a certain edge is compact. Therefore, (X, d) is locally compact.

Let x, y ∈ X. Let {c n } be a sequence of piecewise linear paths joining x to y such that lim n→+∞ l(c n ) = d(x, y). Since λ + and λ -are bounded away from 0, then all the points in these paths cannot be too far from x and y. Therefore, there exists necessarily a compact subset K ⊂ X which contains all these paths. Moreover, since X is locally finite, then geometrically, there exist only a finite number of paths contained in K and joinging x to y. We deduce that there exists a piecewise linear path c joining x to y such that l(c) = d(x, y). Therefore, (X, d) is a geodesic space.

Again, because X is locally finite and the functions λ + and λ -are bounded away from 0, then any forward (resp. backward) bounded subset of X is contained in the quotient of a finite number of segments. We deduce that any closed forward (resp. backward) bounded subset of X is compact. Therefore, by the theorem of Hopf and Rinow, (X, d) is complete. Definition 2.1. Let G = (V, E, ∂ 0 , ∂ 1 ) be an infinite combinatorial graph such that its associated topological graph X is connected and locally finite. Let λ + : E → (0, +∞) and λ -: E → (0, +∞) be two functions that are bounded away from 0. Then the generalized metric space (X, d) defined above is said to be a generalized metric graph.

Generalized metric graphs with infinite reversibility

Let (X, d) be a generalized metric graph. We define

D = sup{ λ + (e) λ -(e) , λ -(e) λ + (e) | e ∈ E}.
If D is finite, then for all x, y ∈ X, d(x, y) ≤ Dd(y, x). Therefore, the reversibility C of (X, d) is bounded by D, thus finite.

Proposition 10. If the constant D is infinite, then the reversibility of (X, d) is also infinite.

Proof. Since D = +∞, there exists a sequence of edges {e n } such that either lim n→+∞ λ + (en)

λ -(en) = +∞ or lim n→+∞ λ -(en)
λ + (en) = +∞. We firstly suppose that lim n→+∞ λ + (en)

λ -(en) = +∞. For any n ∈ N, let λ + (e n ) = a n and λ -(e n ) = b n .
We naturally identify the edge p(e n × [0, 1]) with the segment [0, 1]. Let t n ∈ (0, 1) which is close to 0. Since a n is much more bigger than b n , then d(t n , 0) must be equal to b n • t n . Let us prove that if t n is well-chosen, then d(0, t n ) = a n • t n : in fact, any piecewise linear path c joining 0 to t n , other than the segment [0, t n ], must contain the part of the edge e n from 1 to

t n . Thus l(c) ≥ b n • (1 -t n ). So we will get d(0, t n ) = a n • t n if a n • t n < b n (1 -t n ), which is equivalent to t n < bn an bn an +1
. We just need take for example λ + (en) = +∞, we can take for example t n = 1 -2 an bn , which similarly implies that the reversibility of (X, d) is infinite.

t = b n a n (1 -2 b n a n ), so that d(0, t n ) = a n • t n .
Proposition 11. Let G be an infinite combinatorial graph such that its associated topological graph X is connected and locally finite. Then over X, there exists a locally compact complete geodesic generalized metric with infinite reversibility, which cannot be quasi-isometrically embedded into any metric space.

Proof. Since G is infinite and X is connected, then the set of edges E must be infinite. Let {e n } be a sequence of edges such that e i = e j for all i = j. Let {a n } and {b n } be two sequences of strictly positive numbers which have the following properties: they are both bounded away from 0 ; there exists c > 0 such that b 2 n an ≥ c for each n ∈ N, and lim n→+∞ an bn = +∞. We can take for example a n = n and b n = √ n. We define λ

+ = λ -= 1, except λ + (e n ) = a n and λ -(e n ) = b n for all n ∈ N.
Then by the proposition above, (X, d) is a locally compact complete geodesic generalized metric space with infinite reversibility. We suppose on the contrary that there exists a quasi-isometric embedding f from (X, d) into a metric space (Y, d Y ). As in the proof of the proposition above, we identify the edge e n with the segment [0, 1], and let t n = bn an (1 -2 bn an ). Then we have

1 α d(0, t n ) -≤ d Y (f (0), f (t n )) = d Y (f (t n ), f (0)) ≤ αd(t n , 0) + .
Therefore, 1 α a n t n -≤ αb n t n + . 

Generalized Cayley graphs and generalized metric trees

Given a group Γ generated by a finite subset A, the Cayley graph of (Γ, A) is defined as follows : let

V = Γ, E = {(γ, a) | γ ∈ Γ, a ∈ A}, ∂ 0 (γ, a) = γ and ∂ 1 (γ, a) = γa.
Since Γ is supposed to be finitely generated, the corresponding topological graph X is locally finite. The metric of X corresponding to λ + = λ -= 1 is called the word metric.

A combinatorial graph is called a tree if its associated topological graph X is connected and simply connected. For example, for any integer n ≥ 2, the Cayley graph of the free group with n generators is a infinite and locally finite tree. Definition 2.2. Let (X, d) be a generalized metric graph. If X is a tree, then we call (X, d) a generalized metric tree.

Proposition 12. Let (X, d) be a generalized metric tree. If the constant D is infinite, then (X, d) cannot be quasi-isometrically embedded into any metric space.

Proof. If D is infinite, then by Proposition 10, the reversibility C of (X, d) is also infinite. We suppose on the contrary that there exists a (α, )-quasiisometric embedding f from (X, d) into a metric space (Y, d Y ). Since D is infinite, we can suppose that there exists a sequence of edges {e n } such that lim n→+∞ λ + (en) λ -(en) = +∞. Let x n = ∂ 0 e n and y n = ∂ 1 e n . Since Γ is a tree, then any path joinging x n to y n must go through e n . Thus d(x n , y n ) = λ + (e n ). Similarly, we have d(y n , x n ) = λ -(e n ). Moreover, since λ -is bounded away from 0, there exists c > 0 such that λ -≥ c. Therefore,

1 α d(x n , y n ) -≤ d Y (f (x n ), f (y n )) = d Y (f (y n ), f (x n )) ≤ αd(y n , x n ) + , which implies 1 α λ + (e n ) λ -(e n ) ≤ α + 2 c .
But it is impossible.

3 Hyperbolicity of generalized metric spaces

Let (X, d) be a locally compact and complete geodesic generalized metric space. For x, y ∈ X, we denote by [x, y] a geodesic joining x to y, which is parametrized by arc length. Sometimes, we also use (1) For α ≥ 1 and ≥ 0, we say that a map c : I → X, where I is an interval of R, is a (α, )-quasi-geodesic if for all t, t ∈ I such that t < t ,

1 α (t -t) -≤ d(c(t), c(t )) ≤ α(t -t) + .
We note that a quasi-geodesic is not necessarily a quasi-isometric embedding.

( where R is a positive constant depending only on α and .

It is well-known that for a metric space, if it is δ-slim for some δ > 0, then it necessarily has the Morse property. More generally, if (X, d) be a generalized metric space with finite reversibility, it is still possible to prove that if (X, d) is δ-slim, then it also has the Morse property. However, for general generalized metric spaces with infinite reversibility, it seems very difficult, if possible, to prove that the fact to be δ-slim necessarily implies the Morse property. Therefore, we give the following definition of hyperbolicity for generalized metric spaces. Definition 3.3. Let (X, d) be a locally compact and complete geodesic generalized metric space. We say that (X, d) is hyperbolic if (X, d) is δ-slim for some δ and has the Morse property. Proof. (1) Let f be a (α, )-quasi-isometric embedding and c : [a, b] → X be a (α 1 , 1 )-quasi-geodesic in X. Then for t, t ∈ [a, b] such that t < t , we have (

d(f (c(t)), f (c(t ))) ≤ αd(c(t), c(t )) + ≤ αα 1 (t -t) + α 1 + and 1 α 1 (t -t) -1 ≤ d(c(t), c(t )) ≤ α(d(f (c(t)), f (c(t ))) + ). We deduce that f •c is a (αα 1 , α 1 + )-quasi-geodesic in Y . Let c : [a , b ] → X be
) We need just to prove that if (Y, d Y ) is hyperbolic, then (X, d X ) is also slim. Let A, B, C ∈ X, c 1 = [A, B], c 2 = [B, C], and c 3 = [C, A]. As we have seen above, f (c i ) is a (α, )-quasi-geodesic in Y for i ∈ {1, 2, 3}. Since (Y, Y d ) is δ-slim for some δ, then d H ([f (C), f (A)], [f (A), f (B)] ∪ [f (B), f (C)]) < δ. 2 
By the Morse property of (Y, d Y ), we have

d H (Im(f (c 3 )), Im(f (c 1 )) ∪ Im(f (c 2 ))) < 2R + δ.
Therefore,

d H (Im(c 3 ), Im(c 1 ) ∪ Im(c 2 )) < α(2R + δ + ).
So (X, d X ) is also slim.

Proposition 15. Any generalized metric tree is hyperbolic.

Proof. Let (X, d) be a generalized metric tree. We have seen that it is 0-slim. So we need just prove that it also has the Morse property. Let c : [a, b] → X be a (α, )-quasi-geodesic. We need to prove that there exists a positive constant R(α, ) such that the Hausdorff distance

d H (c([a, b]), [c(a), c(b)]) < R(α, ).
Firstly, we will follow a classical argument to construct another quasigeodesic c which is continuous and Hausdorff close to c. 

Let Σ = {a, b} ∪ (Z ∩ (a, b)). We suppose that Σ = {t i | t 0 = a, t n = b, t i < t i+1 , ∀0 ≤ i ≤ n -1}. We define c : [a, b] → X as the concatenation of geodesic segments {[c(t i ), c(t i+1 )] | 0 ≤ i ≤ n -1}
i ∈ {0, • • • n -1} such that t ∈ [t i , t i+1 ]. Since c is a (α, )-quasi-geodesic, we have d(c(t), c (t i+1 ) = d(c(t), c(t i+1 )) ≤ α(t i+1 -t i ) + = α + ; We similarly get d(c (t i ), c(t)) ≤ α + .
We deduce that d max (c(t), c ([a, b])) ≤ α + . On the other hand, we have

d(c (t), c(t i+1 )) = d(c (t), c (t i+1 )) ≤ d(c(t i ), c(t i+1 )) ≤ α + .
We similarly get d(c(t i ), c (t i )) ≤ α + .

We deduce that d max (c (t), c([a, b])) ≤ α + . Therefore,

d H (c([a, b]), c ([a, b])) ≤ α + .
Secondly, let us prove that there exist two positive constants C 1 and C 2 such that for all t, t ∈ [a, b], t < t , we have l(c

| [t,t ] ) ≤ C 1 d(c (t), c (t )) + C 2 . Let t, t ∈ [a, b] such that t < t . If there exists i ∈ {0, • • • , n -1} such that t, t ∈ [t i , t i+1 ], then l(c | [t,t ] ) ≤ d(c (t i ), c (t i+1 )) ≤ α + .
Otherwise, there exist t i and t j such that t ≤ t i ≤ t j ≤ t , t i -t < 1 and t -t j < 1. Thus

l(c | [t,t ] ) = l(c | [t,t i ] ) + l(c | [t i ,t j ] ) + l(c | [t j ,t ] ) ≤ 2(α + ) + i≤k<j d(c (t k ), c (t k+1 )) ≤ 2(α + ) + (j -i)(α + ) ≤ (α + )(t -t) + 2(α + ).
On the other hand, there exist t k and t l such that t k ≤ t < t ≤ t l , t -t k < 1 and t l -t < 1. Thus

d(c (t k ), c (t l )) ≤ d(c (t k ), c (t)) + d(c (t), c (t )) + d(c (t ), c (t l )) ≤ 2(α + ) + d(c (t), c (t )).
Therefore,

d(c (t), c (t )) ≥ d(c (t k ), c (t l )) -2(α + ) = d(c(t k ), c(t l )) -2(α + ) ≥ 1 α (t l -t k ) --2(α + ) ≥ 1 α (t -t) -(2α + 3 ).
We deduce that

l(c | [t,t ] ) ≤ α(α + )d(c (t), c (t )) + [α(α + )(2α + 3 ) + 2(α + )].
We denote by C 

d(x, c (b )) ≤ l(c | [a ,b ] ) ≤ C 1 d(c (a ), c (b )) + C 2 = C 2 . Similarly we have d(c (a ), x) ≤ C 2 . Thus d H (c ([a, b]), [c (a), c (b)]) ≤ C 2 . We deduce that d H (c([a, b]), [c(a), c(b)]) ≤ α + + C 2 = R(α, ).
The above Propositions 14 and 15 show that the thickened versions of generalized metric trees are hyperbolic. Therefore, we deduce from Proposition 12 that there exist lots of hyperbolic generalized metric spaces with infinite reversibility, which cannot be quasi-isometrically embedded into any metric space.

Boundary of slim generalized metric space

Let (X, d) be a locally compact and complete geodesic generalized metric space. A geodesic (or quasi-geodesic) defined on [0, +∞) is said to be a positive geodesic (or quasi-geodesic) ray. A geodesic (or quasi-geodesic) defined on (-∞, 0] is said to be a negative geodesic (or quasi-geodesic) ray.

Proposition 16. There exists at least one positive geodesic ray in X if and only if there exist x ∈ X and {x n } ⊂ X such that lim n→+∞ d(x, x n ) = +∞; similarly, There exists at least one negative geodesic ray in X if and only if there exist y ∈ X and {y n } ⊂ X such that lim n→+∞ d(y n , y) = +∞.

Proof. If (X, d) admits a positive geodesic ray c, then d(c(0), c(n)) = n, ∀n ∈ N, thus lim n→+∞ d(c(0), c(n)) = +∞. Inversely, we suppose that there exist x ∈ X and {x n } ⊂ X such that lim n→+∞ d(x, x n ) = +∞. By the Hopf-Rinow theorem, there exists a geodesic c n joining x to x n . Let r n = d(x, x n ). We suppose that c n is defined on [0, r n ] and without loss of generality, we suppose that r n ≥ n, ∀n ∈ N. By Corollary 2, the sequence {c n | [0,1] } n≥1 contains a subsequence that converges to a geodesic defined on [0, 1]. We consider the restrictions on [0, 2] of the geodesics of this subsequence, which again by Corollary 2 contains a subsequence that converges on [0, 2] , etc. Therefore, by using the classical diagonal trick, we obtain a subsequence {c ϕ(n) } such that for any n ∈ N, {c ϕ(n) | [0,n] } converges uniformly to a geodesic defined on [0, n]. Thus the pointwise limit of this subsequence is a well-defined positive geodesic ray. The proof for the existence of negative geodesic ray is similar. Definition 4.1. Two positive geodesic rays c 1 and c 2 are said to be equivalent if d H (Im(c 1 ), Im(c 2 )) is finite. For any positive geodesic ray c, its equivalent class is denoted by [c]. The set of equivalent classes, noted by ∂ + X, is said to be the forward boundary of (X, d). By using the negative geodesic rays, we similarly define the backward boundary of (X, d), noted by ∂ -X. Similarly, the set of equivalent classes of positive (resp. negative) quasi-geodesic rays is noted by ∂ + q X (resp. ∂ - q X).

For any x ∈ X, we denote by ∂ +,x X (resp. ∂ -,x X) the set of equivalent classes of postive geodesic rays whose departing (resp. ending) point is x.

Proposition 17. Let (X, d) be a locally compact and complete δ-slim geodesic generalized metric space. Then for any x ∈ X, ∂ + X = ∂ +,x X and ∂ -X = ∂ -,x X.

We deduce that for any t ≥ T , d max (c (t), Im(c)) ≤ 3δ. Since c ([0, T ]) is compact then there exists a constant L such that for any t ∈ [0, T ],

d max (c (t), Im(c)) ≤ L.
Therefore, for any t ∈ [0, +∞),

d max (c (t), Im(c)) ≤ max{3δ, L}.
On the other hand, by considering geodesic triangles with sides c n , [c(0), x] and c | [0,n] , we can prove as above that there exists T > 0 such that for any t ≥ T , there exists t n such that d(c n (t n ), c(t)) < 2δ for any n large enough. Thus {c n (t n )} is contained in the compact subset D -(c(t), 2δ), which implies by Corollary 1 that the sequence {t n } is bounded. Moreover, since {c n } converges uniformly on compact subsets to c , then there exists w ∈ Im(c ) such that d(w, c(t)) < 3δ. Similarly, we can prove that there exists w ∈ Im(c ) such that d(c(t), w ) < 3δ. Therefore, there exists a constant L such that for all t ∈ [0, +∞),

d max (c(t), Im(c )) ≤ L . We deduce that d H (Im(c), Im(c )) is finite, thus ∂ + X = ∂ +,x X. We similarly prove that ∂ -X = ∂ -,x X.
Proposition 18. Let (X, d) be a locally compact and complete δ-slim geodesic generalized metric space. Then for any negative (resp. positive) geodesic ray c, there exists a positive (resp. negative) geodesic ray c such that d H (Im(c), Im(c )) ≤ 2δ.

Proof. Let c be a negative geodesic ray. For all n ∈ N, let c n be a geodesic defined on [0, n] that joins x to c(-n). We can view c | [-n,0] and c n as a geodesic triangle. Therefore, since (X, d) is δ-slim, we have

d H (c([-n, 0]), Im(c n )) < δ.
We can prove as in Proposition 16 that there exists a subsequence of {c n }, that converges uniformly on compact subsets to a positive geodesic ray c . Then by similar arguments as in the proposition above, we obtain that d H (Im(c), Im(c )) ≤ 2δ. Definition 4.2. Let (X, d) be a locally compact and complete δ-slim geodesic generalized metric space.

(1) We define P + -:

∂ + X → ∂ -X such that P + -([c]) = [c ],
where c and c are respectively positive and negative geodesic rays such that d H (Im(c), Im(c )) is finite. We similarly define the map P - + : ∂ -X → ∂ + X. It is clear that P + -• P - + = Id and P - + • P + -= Id, thus P + -and P - + are both bijections, which are said to be the coupling maps.

(2) The Boundary of (X, d), noted by ∂X, is defined to be the set

{(η, β) | η ∈ ∂ + X, β ∈ ∂ -X, P + -(η) = β}.
Let pr 1 : ∂X → ∂ + X and pr 2 : ∂X → ∂ -X be respectively the projections onto the first and the second factor. It is clear that pr 1 and pr 2 are both bijections. Thus with respect to pr 1 and pr 2 , we can identify ∂X to ∂ + X and to ∂ -X.

Proposition 19. Let (X, d) be a locally compact and complete δ-slim geodesic generalized metric space. Then for all ξ 1 , ξ 2 ∈ ∂X such that ξ 1 = ξ 2 , there exists a geodesic line c, i.e. a geodesic defined on R, such that

[c | (-∞,0] ] = ξ 1 and [c | [0,+∞) ] = ξ 2 .
Proof. For i = 1, 2, we suppose that

ξ i = (η i , β i ) with η i ∈ ∂ + X and β i ∈ ∂ -X. Let [c 1 ] = β 1 and [c 2 ] = η 2 . Since ξ 1 = ξ 2 , then d H (Im(c 1 ), Im(c 2 )) = +∞. We deduce that there exists A ∈ Im(c 1 ) (or Im(c 2 )) such that d max (A, Im(c 2 )) ≥ 2δ (or d max (A, Im(c 1 )) ≥ 2δ
). Without loss of generality, we can suppose that A ∈ Im(c 1 ) and A = c 1 (-T ) for some T > 0. For each n ∈ N such that n > T , we consider the geodesic triangle with sides

c 1 | [-n,0] , c 2 | [0,n] and [c 1 (-n), c 2 (n)]
. By Proposition 13, we have

d max (c 1 (-T ), [c 1 (-n), c 2 (n)]) < 2δ.
Therefore, there exists

B n ∈ [c 1 (-n), c 2 (n)] such that d(c 1 (-T ), B n ) < 2δ or d(B n , c 1 (-T )) < 2δ. Thus for each n, B n ∈ D + (c 1 (-T ), 2δ) ∪ D -(c 1 (-T ), 2δ
), which is compact. Therefore, by Corollary 2, there exists a subsequence {[B ϕ(n) , c 2 (ϕ(n))]} of {[B n , c 2 (n)]}, which converges uniformly on compact subsets to a positive geodesic ray c 2 . Again by Corollary 2, the sequence {[c 1 (-ϕ(n)), B ϕ(n) ]} also contains a subsequence which converges to a negative geodesic ray c 1 . Thus it is easy to see that c 1 ∪ c 2 is in fact a geodesic line. Moreover, by similar argument as in the proof of Proposition 17, we can see that d H (Im(c 1 ), Im(c 1 )) and

d H (Im(c 2 ), Im(c 2 )) are both finite, i.e. [c | (-∞,0] ] = ξ 1 and [c | [0,+∞) ] = ξ 2 .
The following proposition is a generalization of Corollary 3 to geodesic rays.

Proposition 20. Let (X, d) be a locally compact and complete δ-slim geodesic generalized metric space. Let c and c be two positive (or negative) geodesic rays such that c(0

) = c (0) and [c] = [c ] in ∂ + X (or ∂ -X). Then we have d H (Im(c), Im(c )) ≤ 2δ.
Proof. We suppose that d H (Im(c), Im(c )) = C. Fix t ∈ [0, +∞) and take t 1 such that t 1 > t+2δ+C. There exists t 1 ≥ 0 such that d(c (t 1 ), c(t 1 )) ≤ C. We consider the geodesic triangle with sides c | [0,t 1 ] , [c (t 1 ), c(t 1 )] and c | [0,t 1 ] . If there exists x 1 ∈ [c (t 1 ), c(t 1 )] such that d(c(t), x 1 ) ≤ 2δ, then we get

d(c(t), c(t 1 )) ≤ d(c(t), x 1 ) + d(x 1 , c(t 1 )).
Thus t 1 -t ≤ 2δ + C, which is impossible. We deduce that there exists

x 2 ∈ Im(c ) such that d(c(t), x 2 ) ≤ 2δ. Since (X, d) is complete, then d(c(t ), c(t)) → +∞ as t → +∞.
So by taking t large enough and considering a similar geodesic triangle, we can see that there exists x 2 ∈ Im(c ) such that d(x 2 , c(t)) ≤ 2δ. We deduce that d max (c(t), Im(c )) ≤ 2δ. We similarly prove that for each t ∈ [0, +∞),

d max (c (t), Im(c)) ≤ 2δ. Therefore, d H (Im(c), Im(c )) ≤ 2δ.
5 Topology on the boundary Definition 5.1. Let (X, d) be a locally compact and complete δ-slim geodesic generalized metric space. Let x ∈ X be a basepoint. We define the convergence in ∂ + X as follows: let η ∈ ∂ + X and {η n } be a sequence in ∂ + X. Then lim n→+∞ η n = η if and only if there exists a sequence of positive geodesic rays {c n } such that c n (0) = x, [c n ] = η n and each subsequence of {c n } contains a subsequence that converges uniformly on compact subsets to a certain positive geodesic ray c such that [c] = η. A subset V ⊂ ∂ + X is said to be closed if the limit of any convergent sequence in V is contained in V . In this way, we obtain a topology on ∂ + X, noted by O + . We similarly define the topology on ∂ -X, noted by O -. Therefore, there exist two natural topologies on ∂X, still noted by O + and O -. Proposition 21. Let {c n } be a sequence of positive geodesic rays such that c n (0) = x and lim n→+∞ [c n ] = η in (∂ + X, O + ). Then each subsequence of {c n } contains a subsequence that converges uniformly on compact subsets to a positive geodesic ray c such that [c ] = η.

Proof. Since lim n→+∞ [c n ] = η, then by the definition above, there exists a sequence of positive geodesic rays

{c n } such that c n (0) = x, [c n ] = [c n ],
and each subsequence of {c n } contains a subsequence that converges uniformly on compact subsets to a positive geodesic ray c with [c] = η. We need to prove that this is also true for {c n }. Let {c ϕ(n) } be a subsequence of {c n }. By Proposition 16, this subsequence contains a subsequence, say {c ψ(n) }, that converges uniformly on compact subsets to a positive geodesic ray c . The corresponding subsequence {c ψ(n) } also contains a subsequence that converges uniformly on compact subsets to a positive geodesic ray c with [c] = η. Without loss of generality, we suppose that this subsequence is just {c ψ(n) }. By Proposition 20, we have d

H (Im(c ψ(n) ), Im(c ψ(n) )) ≤ 2δ, which implies that d H (Im(c ), Im(c)) ≤ 4δ. Thus [c ] = η.
Corollary 4. Let {η n } be a convergent sequence in ∂ + X (or ∂ -X). Then its limit is unique.

Proposition 22. On ∂X, O + = O -.
Proof. Let {[c n ]} be a sequence in ∂ + X, which converges to η with respect to the topology O + . We suppose that for each n ∈ N, c n (0) = x, ∀N ∈ N, and every subsequence of {c n } contains a subsequence that converges uniformly on compact subsets to a certain positive geodesic ray c such that [c] = η. By Proposition 18, there exist negative geodesic rays c n such that c n (0) = x and d H (Im(c n ), Im(c n )) ≤ 2δ. We need just to prove that every subsequence of {c n } admits a subsequence that converges uniformly on comptact subsets to a certain negative geodesic ray c such that [c ] = P + -(α): let {c ϕ(n) } be a subsequence that converges uniformy on compact subsets to c. By Proposition 16, the subsequence {c ϕ(n) } contains a subsequence that converges uniformly on compact subsets to a certain negative geodesic ray c . Without loss of generality, we suppose that it is simply {c ϕ(n) }. We just need to prove that d H (Im(c ), Im(c)) is finite. For any t > 0 and n large enough, we have d(c (-t), c ϕ(n) (-t)) ≤ δ. By Proposition 18, there exists t n > 0 such that d(c ϕ(n) (-t), c ϕ(n) (t n )) ≤ 2δ. We deduce that c ϕ(n) (t n ) is contained in D + (c (-t), 3δ) which is compact. Therefore, {t n } is bounded. Thus for n large enough, d(c ϕ(n) (t n ), c(t n )) ≤ δ. We deduce that d(c (-t), c(t n )) ≤ 4δ. Similarly, there exists t > 0 such that d(c(t ), c (-t)) ≤ 4δ. Thus d max (c (-t), Im(c)) ≤ 4δ. We similarly prove that d max (c(t), Im(c )) ≤ 4δ. Therefore, d H (Im(c), Im(c )) ≤ 4δ. Proposition 24. Let (X, d) be a locally compact and complete geodesic generalized metric space that has the Morse property. Then we have

∂ + X = ∂ + q X and ∂ -X = ∂ - q X.
Proof. Let c be a positive (α, )-quasi-geodesic ray in X. We need to prove that that exists a positive geodesic ray c such that d H (Im(c), Im(c )) is finite: for each n ∈ N, let c n be a geodesic joining x to c(n). Then by the Morse property, there exists a constant R(α, ) such that

d H (c([0, n]), Im(c n )) ≤ R.
By Proposition 16, there exists a subsequence of {c n }, which converges uniformly on compact subsets to a positive geodesic ray c . We deduce that d H (Im(c), Im(c )) ≤ R.

Let (X, d X ) and (Y, d Y ) be two locally compact and complete hyperbolic geodesic generalized metric spaces. If f : X → Y is a quasi-isometric embedding, then we define f

+ : ∂ + X → ∂ + Y such that f + ([c]) = [f • c],
where we have identified ∂ + q Y with ∂ + Y by the proposition above. We similarly define the induced map f -: ∂ -X → ∂ -Y . It is easy to see that

P + -• f + = f -• P + -and P - + • f -= f + • P - + .
Therefore, the following map f : ∂X → ∂Y is well-defined: for each (η, β) ∈ ∂X,

f (η, β) = (f + (η), f -(β)).
Proposition 25. Let (X, d X ) and (Y, d Y ) be two locally compact and complete hyperbolic geodesic generalized metric spaces. If f : X → Y be a quasi-isometric embedding, then f : ∂X → ∂Y is an injective continuous map. Moreover, if f is a quasi-isometry, then f is a homeomorphism.

Proof. For all subsets

V 1 and V 2 of X, d H (V 1 , V 2 ) is finite if and only if d H (f (V 1 ), f (V 2 )
) is finite. We deduce that the map f is injective. Let {c n } be a sequence of positive geodesic rays in X such that c n (0) = x, and the sequence {[c n ]} converges to η ∈ ∂ + X. We need just to prove that {[f • c n ]} converges to f (η): we suppose that every subsequence of {c n } admits a subsequence that converges uniformly on compact subsets to a certain positive geodesic ray c such that [c] = η. If f is a (α, )-quasi-isometric embedding, then for any n, f • c n is a (α, )-quasi-geodesic. Moreover, for each T > 0, if n is large enough, then σ(f

•c n (t), f •c(t)) ≤ αδ+ , ∀t ∈ [0, T ].
By Proposition 24, there exists a sequence of positive geodesic rays

{c n } such that d H (Im(f •c n ), Im(c n )) ≤ R(α, )
. By Proposition 16, each subsequence {c ϕ(n) } contains a subsequence that converges uniformly on compact subsets to a positive geodesic ray c . Thus by similar arguments as in the proof of Proposition 20, we can see that

d H (Im(c ), Im(f • c)) ≤ δ + R(α, ) + αδ + . Therefore, [c ] = f (η), i.e. {[f • c n ]} converges to f (η).
If f is a quasi-isometry, then by Proposition 6, there exists a contant L and a quasi-isometric embedding g : Y → X such that for all x ∈ X and all y ∈ Y ,

d X (g • f (x), x) ≤ L and d Y (f • g(y), y) ≤ L.
Therefore, f • ḡ = Id and ḡ • f = Id, which implies that f is a homeomorphism.

Measures of separation on the boundary

In the special case of metric spaces, we usually use the so-called Gromov product to measure the separation of points on the boundary. For generalized metrics spaces, we define the following functions p + and p -, which can be considered as a kind of generalizations of the Gromov product.

Definition 5.2. Let (X, d) be a locally compact and complete δ-slim geodesic generalized metric space.

(1) Let x ∈ X and a ≥ 2δ. Let c and c be two positive geodesic rays such that c(0) = c (0) = x. We note by p + (c, c ) the following element in [0, +∞]:

sup{T ∈ [0, +∞) | ∀t ∈ [0, T ], d max (c(t), Im(c )) ≤ a, d max (c (t), Im(c)) ≤ a}.
We define p

+ : ∂ + x X × ∂ + x X → [0, +∞] such that for all η 1 , η 2 ∈ ∂ + x X, p + (η 1 , η 2 ) = sup{p + (c, c ) | [c] = η 1 , [c ] = η 2 }.
For each > 0, we define ρ

+ : ∂ + X × ∂ + X → [0, 1] such that ρ + (η 1 , η 2 ) = e -•p + (η 1 ,η 2 ) ,
where we have identified ∂ + X with ∂ + x X. (2) Similarly, for two negative geodesic rays c and c , let p -(c, c ) be the following element in [0, +∞]:

sup{T ∈ [0, +∞) | ∀t ∈ [-T, 0], d max (c(t), Im(c )) ≤ a, d max (c (t), Im(c)) ≤ a}.
We similarly define p

-: ∂ -X × ∂ -X → [0, +∞] and ρ -: ∂ -X × ∂ -X → [0, 1] . ( 3 
) Since ∂X is naturally identified with ∂ + X and ∂ -X, we can consider ρ + and ρ -as functions on ∂X × ∂X.

Proposition 26. For all η 1 , η 2 ∈ ∂ + X, ρ + (η 1 , η 2 ) = ρ + (η 2 , η 1 ); ρ + (η 1 , η 2 ) = 0 if and only if η 1 = η 2 .
Proof. The symmetry of ρ + is clear. Let η ∈ ∂ + X and c be a positive geodesic ray such that [c] = η. It is obvious that p + (c, c) = +∞. Thus p + (η, η) ≥ p + (c, c) = +∞. Conversely, we suppose that p + (η 1 , η 2 ) = +∞. then there exist two sequences of positive geodesic rays {c n } and Therefore, for any t > 0, there exists t n ≥ 0 such that d(c (t), c n (t n )) ≤ 2δ. Since {c n (t n )} is contained in the compact set D + (c (t), 2δ), {t n } is necessarily bounded by some T . Thus there exists N such that for each n ≥ N , p + (c n , c n ) > T , which implies that d max (c n (t n ), Im(c n )) ≤ a. Therefore, there exists A ∈ Im(c n ) such that d(c n (t n ), A) ≤ a. We deduce that there exists B ∈ Im(c ) such that d(c (t), B) ≤ a + 4δ.

{c n } such that c n (0) = c n (0) = x, [c n ] = η 1 , [c n ] = η 2 and p + (c n , c n ) → +∞.
We similarly prove that there exists B ∈ Im(c ) such that d(B , c (t)) ≤ a + 4δ. Thus d max (c (t), Im(c )) ≤ a + 4δ. Similarly, for each t > 0, d max (c (t), Im(c )) ≤ a + 4δ. We deduce that d H (Im(c ), Im(c )) is finite, i.e. η 1 = η 2 .

For each η ∈ ∂ + X and each r > 0, we define

U + (η, r) = {η | ρ + (η, η ) < r}.
We can define a topology, noted by O + , on ∂ + X as follows: a subset U is said to be open if for any η ∈ U , there exists r > 0 such that U + (η, r) ⊂ U . We similarly define a topology, noted by O -, on ∂ -X. These two topologies can both be considered as defined on ∂X.

Proposition 27. On ∂X, O + = O -= O. Therefore, in particular, O + and O -are independent of the choice of a and .

Proof. Let {η n } be a sequence in (∂ + X, O + ) that converges to η. This means that there exists a sequence of positive geodesic rays {c n } such that c n (0) = x, and each subsequence contains a subsequence that converges uniformly on compact subsets to a positive geodesic ray c with [c] = η. Let {c ψ(n) } be such a convergent subsequence. Then by Proposition 5, for any T > 0, there exists N such that for all n ≥ N , σ(c

ψ(n) (t), c(t)) ≤ a, ∀t ∈ [0, T ]. We deduce that p + (η ψ(n) , η) ≥ p + (c ψ(n) , c) ≥ T.
Therefore, any subsequence {η n } contains a subsequence, say {η ψ(n) }, that verifies p + (η ψ(n) , η) → +∞ as n → +∞. We deduce that in fact By Proposition 16, any subsequence {c ϕ(n) } contains a subsequence, say {c ψ(n) }, that converges uniformly on compact subsets to a positive geodesic ray c. Since p + (c ψ(n) , c ψ(n) ) → +∞, then for any t > 0, there exists Corollary 5. For all η, η ∈ ∂ + X such that η = η , there exists s > 0 such that U + (η, s) ∩ U + (η , s) = ∅.

N such that for each n ≥ N , p + (c ψ(n) , c ψ(n) ) > 2t. This means that d max (c ψ(n) (t), Im(c ψ(n) )) ≤ a and d max (c ψ(n) (t), Im(c ψ(n) )) ≤ a.
Proof. We suppose on the contrary that for any s > 0, U + (η, s)∩U + (η , s) = ∅. Then for each n ∈ N * , there exists

η n ∈ U + (η, 1 n ) ∩ U + (η , 1 n )
. By Propositions 23 and 27, (∂ + X, O + ) is compact, so {η n } contains a convergent subsequence {η ϕ(n) }. We suppose that its limit is η . On the other hand, since ρ + (η, η n ) → 0 as n → +∞, we have lim n→+∞ η n = η. Therefore, by Corollary 4, η = η . We similarly obtain η = η . Thus η = η , which is a contradiction.

If (X, d) is a metric psace, we obviously have p + = p -and ρ + = ρ -. We will show below, via a concrete example, that for generalized metric spaces, ρ + and ρ -are even not necessarily quasi-conformally equivalent. In this way, we get a combinatorial graph (V, E, ∂ 0 , ∂ 1 ), which is a tree. This means that its associated topological graph, say X, is connected and simply connected. For example, if M contains three elements, then the tree obtained in this way is a subgraph of the Cayley graph of the free group with two generators.

An example of generalized metric tree

Let {α n } be a sequence of strictly positive real numbers such that α n → +∞ as n → +∞. We define λ + : E → (0, +∞) such that λ + (ϕ) = α n , ∀n ∈ N * and ϕ ∈ F n . We define λ -: E → (0, +∞) such that λ + (ϕ) = 1, ∀ϕ ∈ E. Therefore, via the constructions in Section 2.2, we obtain a generalized metric space (X, d). By Propositions 9, 12 and 15, (X, d) is a locally compact and complete hyperbolic geodesic generalized metric space with infinite reversibility. Moreover, (X, d) cannot be quasi-isometrically embedded into any metric space. We can use this tree to model a situation where it becomes harder and harder to go ahead, but it is relatively easy to go backward.

Let (M ∪ {O}) N be the space of applications from N to M . Thus the boundary ∂X can be considered as the following subset of (M ∪ {O}) N :

∂X = {ω ∈ (M ∪ {O}) N | ω(0) = O}.
For each ω = (O, a 1 , a 2 , • • • ) ∈ ∂X, the corresponding positive geodesic ray is the piecewise linear path (see Section 2.2) starting at O, and passing through a 1 , a 2 , etc; while the corresponding negative geodesic ray is just the reversed piecewise linear path (see Section 2.2) from ω to O. Let O be the basepoint and a = 0 in Definition 5.2, since (X, d) is 0-slim. We define the function l : ∂X × ∂X → N as follows: for all ω 1 , ω 2 ∈ ∂X,

l(ω 1 , ω 2 ) = min{n ∈ N | ω 1 (n) = ω 2 (n)}.
Thus it is easy to see that for all ω 1 , ω 2 ∈ ∂X, Therefore, for all ω 1 , ω 2 , ω 3 ∈ ∂X, p + (ω 1 , ω 3 ) ≥ min{p + (ω 1 , ω 2 ), p + (ω 2 , ω 3 )}.

The similar formula for p -is true. We deduce that for each > 0, the functions ρ + and ρ -(see Definition 5.2) are both metrics on ∂X. They define the same topology on ∂X, but since we have supposed that lim n→+∞ α n = +∞, then they are not bi-Lipchitz equivalent.

It is even more interesting to note that ρ + and ρ -are not quasi-conformally equivalent in the sense of [START_REF] Gromov | Rigidity of lattices: an introduction[END_REF]. Let us firstly recall the following definition. Definition 6.1. Let (X, d) be a metric space. For each s ≥ 1, a s-ring of d in X is a pair of closed balls (D(x, r), D(x, sr)) for some x ∈ X and r > 0.

Two metrics d 1 and d 2 on X are said to be quasi-conformally equivalent if there exist functions f 1 and f 2 such that for each s-ring (D 1 , D 2 ) of d 1 (resp. d 2 ), there is a f 1 (s)-ring of d 2 (resp. f 2 (s)-ring of d 1 ) (D 1 , D 2 ) such that

D 1 ⊆ D 1 ⊆ D 2 ⊆ D 2 .
A quasi-conformal structure on X is a class of metrics which are equivalent in this sense.

Proposition 28. Under the notations above, the metrics {ρ + } >0 (resp. {ρ -} >0 ) are quasi-conformally equivalent.

Proof. For all 1 , 2 > 0, we have ρ

+ 1 = (ρ + 2 ) 1 2
. Therefore, we can take f 1 and f 2 such that for each s ≥ 1, f 1 (s) = s Proposition 29. Under the notations above, the metrics ρ + and ρ -are not quasi-conformally equivalent.

Proof. Let us suppose on the contrary that ρ + 1 and ρ - 1 are quasi-conformally equivalent. Let a ∈ M . We consider the following element in ∂X: We suppose that the radius of D 1 and D 2 are respectively r 1 and r 2 . Since D 1 ⊆ D 1 , then r 1 ≤ e -n m=1 αm . Since D 2 ⊆ D 2 , then r 2 ≥ e -n-1 m=1 αm . Therefore, f (e) = r 2 r 1 ≥ e αn .

But this is impossible, because lim n→+∞ α n = +∞.

Therefore, the boundary ∂X has a unique topology, but two different natural quasi-conformal structures.

Let

  A and B be two subsets of X. The Hausdorff distance of A and B is defined by d H (A, B) = max{sup a∈A d max (a, B), sup b∈B d max (b, A)}. The strong Hausdorff distance of A and B is defined by σ H (A, B) = max{sup a∈A σ(a, B), sup b∈B σ(b, A)}.

  have d(x, y) ≤ d(x, x n ) + d(x n , y n ) + d(y n , y) and d(x n , y n ) ≤ d(x n , x) + d(x, y) + d(y, y n ).Therefore,-d(x, x n ) -d(y n , y) ≤ d(x n , y n ) -d(x, y) ≤ d(x n , x) + d(y, y n ).

A

  curve in (X, d) is a continuous map c from a compact interval [a, b] to X. The image of c is denoted by c([a, b]) or Im(c). The length l(c) of c is defined by l(c) = sup a=t 0 ≤t 1 ≤•••≤tn=b n-1 i=0 d(c(t i ), c(t i+1 )),

  Therefore, lim n→+∞ d(0,tn) d(tn,0) = lim n→+∞ an bn = +∞. So the reversibility of (X, d) is infinite. In the case that lim n→+∞ λ -(en)

  ≤ α + 2 bntn . Since lim n→+∞ bn an = 0 and b 2 n an ≥ c, then for n large enough, b n t n ≥ 1 2 c. We deduce that 1 α an bn ≤ α + 4 c , which is impossible.

Definition 3 . 1 .Corollary 3 .

 313 [x, y] to denote the image of such a geodesic, when no confusion is possible.Given three points A, B, C ∈ X, there are two types of geodesic triangles: the geodesic triangle with sides [A, B], [B, C] and [C, A], which is said to be of type I; the geodesic triangle with sides [A, B], [B, C] and [A, C], which is said to be of type II. Motivated by the classical definition for metric spaces, we say that (X, d) is slim if each geodesic triangle in X of type I is slim in the following sense: there exists δ > 0 such that for all A, B, C ∈ X and each x ∈ [C, A], we haved max (x, [A, B] ∪ [B, C]) < δ.Recall that for any subset S of X, d max (x, S) = max{d(x, S), d(S, x)}.Proposition 13. Let (X, d) be a locally compact and complete geodesic generalized metric space. If (X, d) is slim, then each geodesic triangle in X of type II is also slim. More precisely, for all A, B, C ∈ X, we consider the geodesic triangle with sides [A, B], [B, C] and [A, C]. Then for each x contained in one of these three sides, the d max -distance from x to the union of the other two sides is strictly less than 2δ. Proof. We choose D ∈ [C, A], then we have [C, A] = [C, D] ∪ [D, A]. We consider the geodesic triangle with sides [C, D], [D, A] and [A, C], which is of type I. Since (X, d) is δ-slim, then for each x ∈ [A, C], d max (x, [C, A]) < δ. We deduce that there exist x 1 , x 2 ∈ [C, A] such that d(x, x 1 ) < δ and d(x 2 , x) < δ. Now we consider the geodesic triangle with sides [A, B], [B, C] and [C, A], which is also of type I. Since (X, d) is δ-slim, then for i ∈ {1, 2}, d max (x i , [A, B] ∪ [B, C]) < δ. We deduce that there exists x 3 , x 4 ∈ [A, B] ∪ [B, C] such that d(x 1 , x 3 ) < δ and d(x 4 , x 2 ) < δ. Therefore, d(x, x 3 ) < 2δ and d(x 4 , x) < 2δ, which implies that d max (x, [A, B] ∪ [B, C]) < 2δ. For any x contained in one of others sides, the proof is similar. Let (X, d) be a locally compact and complete geodesic generalized metric space, which is δ-slim. Let A, B ∈ X and c 1 and c 2 be two geodesics joining A to B. Then we have d H (Im(c 1 ), Im(c 2 )) ≤ 2δ. If (X, d) is a generalized metric tree, then for all A, B, C ∈ X, the geodesic [C, A] is necessarily contained in [A, B] ∪ [B, C]. Therefore, (X, d) is 0-slim. Definition 3.2. Let (X, d) be a locally compact and complete geodesic generalized metric space.

  ) We say that (X, d) has the Morse property if for any (α, )-quasi-geodesic c : [a, b] → X, and for any geodesic joining c(a) to c(b), say [c(a), c(b)], we have d H (c([a, b]), [c(a), c(b)]) < R,

Proposition 14 .

 14 Let (X, d X ), (Y, d Y ) be two locally compact and complete geodesic generalized metric spaces, and f : (X, d X ) → (Y, d Y ) be a quasiisometric embedding. (1) If (Y, d Y ) has the Morse property, then (X, d X ) also has the Morse property. (2) If (Y, d Y ) is hyperbolic, then (X, d X ) is also hyperbolic.

  a geodesic in X joining c(a) to c(b), which can also be considered as a (α 1 , 1 )-quasi-geodesic. Since (Y, d Y ) has the Morse property, then there exists a positive function R depending on α 1 and 1 such thatd H (f (c([a, b])), [f (c(a)), f (c(b))]) ≤ Rand d H (f (c ([a , b ])), [f (c(a)), f (c(b))]) ≤ R. Therefore, d H (f (c([a, b])), f (c ([a , b ]))) ≤ 2R. We deduce that d H (c([a, b]), c ([a , b ])) ≤ α(2R + ).

  which are linearly reparametrized. Thus c : [a, b] → X is a continuous path joining c(a) to c(b), and verifies c (t i ) = c(t i ) for all 0 ≤ i ≤ n. Let us prove that the Hausdorff distance between c([a, b]) and c ([a, b]) is bounded. For each t ∈ [a, b], there exists

1 and C 2

 2 the constants α(α + ) and [α(α + )(2α + 3 ) + 2(α + )]. Now let us prove that the Hausdorff distance d H (c ([a, b]), [c (a), c (b)]) is bounded. Since X is a tree and c : [a, b] → X is a continuous path, then the image of c necessarily contains the image of the unique geodesic in X joining c (a) to c (b). Moreover, for each x ∈ c ([a, b]) such that x ∈ [c (a), c (b)], there necessarily exists v ∈ V ∩ [c (a), c (b)], an interval [a , b ] ⊂ [a, b] such that x ∈ c ([a , b ]) and c (a ) = c (b ) = v. Therefore,

Proposition 23 .

 23 Let O be the topology O + on ∂X. (1) The topological space (∂X, O) is compact. (2) The topology O is independent of the choice of basepoint. Proof. (1) Let {c n } be a sequence of positive geodesic rays such that c n (0) = x. By Proposition 16, this sequence contains a subsequence, say {c ϕ(n) }, that converges uniformly on compact subsets to a positive geodesic ray c. Then it is clear that {[c ϕ(n) ]} converges to [c] in the topological space (∂X, O). (2) Let y be another point in X. Let {c n } be a sequence of positive geodesic rays such that c n (0) = x, and the sequence {[c n ]} converges to η in the topology O + defined via the basepoint x. By the proof of Proposition 17, there exist a constant L and a sequence of positive geodesic rays {c n } such that c n (0) = y and d H (Im(c n ), Im(c n )) ≤ L. Then by Proposition 16, each subsequence {c ϕ(n) } contains a subsequence that converges uniformly on compact subsets to a positive geodesic ray c . Thus by similar arguments as in the proof of Proposition 20, we obtain d H (Im(c ), Im(c)) ≤ C + 2δ. Therefore, [c ] = η, which implies that {[c n ]} converges to η in the topology O + defined via the basepoint y.

  Fix two positive geodesic rays c and c such that c (0) = c (0) = x, [c ] = η 1 and [c ] = η 2 . Then by Proposition 20, d H (Im(c n ), Im(c )) ≤ 2δ, d H (Im(c n ), Im(c )) ≤ 2δ.

  lim n→+∞ p + (η n , η) = +∞, i.e. η n → η with respect to the topology O + . Conversely, we suppose that lim n→+∞ p + (η n , η) = +∞. Then there exist two sequences of positive geodesic rays {c n } and {c n } such that c n (0) = c n (0) = x, [c n ] = η n , [c n ] = η and p + (c n , c n ) → +∞. Fix a positive geodesic ray c such that c (0) = x and [c ] = η. Then by Proposition 20, we have for each n, d H (Im(c n ), Im(c )) ≤ 2δ.

  Therefore, as in the proof of Proposition 20, we can see thatd H (Im(c), Im(c )) ≤ a + 3δ.Thus [c] = [c ] = η. We deduce that {η n } converges to η with respect to the topology O + .

  Let k ∈ N * and M = {e 1 , • • • , e k } be a set containing k elements. For each n ∈ N * , let F n be the set of applications from {1, • • • , n} into M . An element ϕ ∈ F n will be denoted by (a 1 , • • • , a n ), which means that ϕ(i) = a i ∈ M, ∀i ∈ {1, • • • , n}. We note by F 0 the set containing just one element {O}.Let V = ∪ ∞ n=0 F n and E = ∪ ∞ n=1 F n . Let ∂ 1 : E → V be just the identity map. We define ∂ 0 : E → V as follows: for each ϕ ∈ F 1 , ∂ 0 (ϕ) = O; for each n ≥ 2 and (a 1 , • • • , a n-1 , a n ) ∈ F n , ∂ 0 ((a 1 , • • • , a n-1 , a n )) = (a 1 , • • • , a n-1 ).

p

  + (ω 1 , ω 2 ) = l(ω 1 ,ω 2 ) m=1 α m and p -(ω 1 , ω 2 ) = l(ω 1 , ω 2 ).

1 2

 1 and f 2 (s) = s 2 1 .

ω

  = (O, a, a, • • • ).With respect to ρ - 1 , for each integer n ≥ 2, we consider the following balls:D 1 = D(ω, e -n ) = {ω | ω (i) = a, ∀1 ≤ i ≤ n} and D 2 = D(ω, e -(n-1) ) = {ω | ω (i) = a, ∀1 ≤ i ≤ n -1}. Therefore, (D 1 , D 2 ) is a e-ring of ρ - 1 . Let (D 1 , D 2 ) be a f 2 (e)-ring of ρ + 1 such that D 1 ⊆ D 1 ⊆ D 2 ⊆ D 2 .

Proof. Let c be a positive geodesic ray in X. We need to prove that there exists a positive geodesic ray c such that c (0) = x and [c] = [c ]. For any n ∈ N, let c n be a geodesic joining x to c(n) defined on [0, d(x, c(n))]. Then Proposition 16, {c n } contains a subsequence which converges uniformly on compact subsets to a positive geodesic ray, say c . Without loss of generality, we suppose that this convergent subsequence is simply {c n }. Let l = σ(c(0), x). By Corollary 1, there exists T > 0 such that for each t ≥ T , d(c (t), x) ≥ l + 3δ. Let T = max{T, l + 2δ}. For any fixed t ≥ T , by Proposition 5, there exists n ∈ N such that σ(c n (t), c (t)) ≤ δ. We consider the geodesic triangle with sides c n , [x, c(0)] and c | [0,n] . Since (X, d) is δ-slim, then by Proposition 13, for each A ∈ Im(c n ),

which is impossible since t ≥ T . We deduce that y ∈ Im(c) and d(y, c n (t)) < 2δ, thus we get 

which implies that l+2δ ≤ d(c n (t), x), a contradiction. Therefore, we deduce that z ∈ Im(c) and d(c n (t), z) < 2δ. Thus we get d(c (t), z) ≤ d(c (t), c n (t)) + d(c n (t), z) ≤ 3δ.