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METHODOLOGY Open Access

Increasing the power of interpretation for
soil metaproteomics data
Virginie Jouffret1,2,3, Guylaine Miotello1, Karen Culotta1, Sophie Ayrault2, Olivier Pible1 and Jean Armengaud1*

Abstract

Background: Soil and sediment microorganisms are highly phylogenetically diverse but are currently largely under-
represented in public molecular databases. Their functional characterization by means of metaproteomics is usually
performed using metagenomic sequences acquired for the same sample. However, such hugely diverse
metagenomic datasets are difficult to assemble; in parallel, theoretical proteomes from isolates available in generic
databases are of high quality. Both these factors advocate for the use of theoretical proteomes in metaproteomics
interpretation pipelines. Here, we examined a number of database construction strategies with a view to increasing
the outputs of metaproteomics studies performed on soil samples.

Results: The number of peptide-spectrum matches was found to be of comparable magnitude when using public
or sample-specific metagenomics-derived databases. However, numbers were significantly increased when a
combination of both types of information was used in a two-step cascaded search. Our data also indicate that the
functional annotation of the metaproteomics dataset can be maximized by using a combination of both types of
databases.

Conclusions: A two-step strategy combining sample-specific metagenome database and public databases such as
the non-redundant NCBI database and a massive soil gene catalog allows maximizing the metaproteomic
interpretation both in terms of ratio of assigned spectra and retrieval of function-derived information.

Keywords: Bioinformatics, Cascaded search, Database, Interpretation, Metagenomics, Metaproteomics, Microbiome,
Soil, Tandem mass spectrometry

Background
Soil hosts complex microbial ecosystems which are cru-
cial for numerous ecosystem services, including plant
growth and animal life [71]. These ecosystems can be af-
fected by anthropogenic pressure and climate change
[29]; therefore, it is important to understand their struc-
ture and how they function [6]. Due to the broad diver-
sity of components they include and their dynamic
relationships, soil microbial ecosystems are complex by
nature [17]. Indeed, soils are open systems exposed to
highly variable environmental parameters such as

temperature, hygrometry, gas, metal, and chemical con-
taminants, which can influence microbial populations
and their functions. Thanks to improved meta-omics
technologies, the number of in-depth molecular studies
of soil environments is increasing [58]. Since the pio-
neering metagenomics works almost two decades ago,
molecular phenotyping approaches such as metatran-
scriptomics, metaproteomics, and meta-metabolomics
have emerged and been used to attempt to understand
how these systems function at various levels. Specifically,
metaproteomics allows the identification and quantifica-
tion of proteins, which are the workhorses of the cells,
and can be used to monitor more integrated levels, such
as pathways and general functions [56, 70]. Humic acids
and potential contaminants may interfere with protein
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extraction, thus metaproteomics methods must be spe-
cifically developed to suit each soil type [32, 63]. Despite
these difficulties, several pioneering studies have been
performed on soils extracted from forests [40, 74], arid
environments [7], agricultural areas [39, 50], permafrost
[27], and from mining drainage [53]. Sediments —
deposited material arising from weathering, erosion, and
transport processes — also contain complex microbial
ecosystems [19, 64].
Metaproteomics involves protein extraction and tryp-

sin proteolysis, detection of the resulting peptides by
tandem mass spectrometry, interpretation of MS/MS
spectra to assign peptide identities, and higher-level in-
terpretation in terms of taxonomy and function [34, 49].
MS/MS spectra acquired in metaproteomics studies are
interpreted by comparison to a database listing the se-
quences of all the proteins potentially present in the
sample. To create such a database, the most appropriate
strategy is to perform metagenomics or metatranscrip-
tomics on the same sample. These databases can then be
translated (in six- or three-frames) to derive the theoret-
ical protein sequences. Alternatively, protein sequences
from the organisms identified in similar samples can be
compiled for complementing metagenomics information
[27, 75]. Another alternative is to assemble a specific
database based on the organisms identified after 16S
rRNA amplicon sequencing and taxonomical assignment
[73] or potentially present in the habitat where the sam-
ple was obtained [9]. The choice made between read- or
contig-based databases may influence the identification
rate. For animal metaproteomics, a contig-based data-
base has been shown to be the most productive strategy
[62]. However, if the necessary metagenomics informa-
tion is not available, generalist databases such as NCBInr
or UniProtKB/Swiss-Prot can also be used [24]. Despite
these multiple options, the large diversity and dynamic
range of taxa contained in some samples, such as soils
and sediments, represents a true challenge for metapro-
teomics interpretation and limits protein identification
[58, 70]. Indeed, this diversity results in a search space
for metaproteomics databases that is naturally much lar-
ger than that required for single-organism proteomics.
To counteract the negative effects of an inflated database
size on sensitivity and accuracy of peptide-to-spectrum
matching (PSM), several strategies have been proposed.
These include database reduction using a two-step
search [28], where matches derived from the first search
— performed without false discovery rate (FDR) thresh-
old — are used for a second search round, during which
a stringent threshold is applied. This type of cascaded
search was successfully implemented to define the meta-
proteome of the gut microbiota from a sentinel, non-
sequenced animal [20], and lichen-associated bacterial
communities [11]. These databases are protein-centric,

i.e., focused on the main proteins across all clades, and
can thus successfully highlight the main functions at
play within the most abundant microbial organisms
from the ecosystem sampled.
Soil/sediment metaproteomics is currently challenging

because a large proportion of organisms in soil samples
have yet to be taxonomically characterized [47] and only
a small fraction of reference genome sequences are avail-
able in public data repositories. Furthermore, the com-
munity structure of such samples may vary dramatically
over time and space. Although numerous large-scale
metagenomics studies have been performed on soil sam-
ples [5, 51], the contribution of specific soil gene cata-
logs to improving metaproteomics interpretation has not
yet been estimated. In this study, we recorded metapro-
teomics data from a soil core consisting of the annual
sediment deposit in a floodplain which provides long-
term records of particle-bound pollutants (metals, radio-
nuclides, pharmaceuticals, and numerous persistent or-
ganic pollutants) released by the Seine River (France),
including effluents from the Parisian megacity [1]. We
tested several strategies when interpreting the metapro-
teomics data acquired for this soil sample. These strat-
egies included sample-specific metagenomics data, a
topsoil gene catalog constructed from a large diversity of
sites [5], and genome sequences from reference microor-
ganisms. We found that a significant increase in the
numbers of MS/MS spectra interpreted and functionally
annotated was obtained when a combination of all types
of information was used in an appropriate cascaded
search strategy. The results substantially improved our
understanding of the soil microbiota.

Results
Benchmarking databases created from sample-specific
metagenomics data
Different databases built from metagenomics data
acquired on a sediment sample were evaluated for meta-
proteomics based on the number of PSMs as main cri-
terion. For this, a soil core was collected from the Seine
River floodplain at the Bouafles site (France) located
downstream of Paris. The 1-m core was cut up into 3-
cm slices. A shotgun metagenome sequencing dataset
comprising ~ 87 million Illumina paired-end reads was
acquired for the slices corresponding to 17–28-cm depth
in the soil core after extracting DNA from a pool of the
five corresponding slices. Figure 1 shows the five options
used to construct the sequence databases: (i) reads were
assembled with MEGAHIT and the resulting contigs
were translated in the six possible reading frames (MGF-
6RF), (ii) selected based on coding gene sequences pre-
dicted by FragGeneScan tool (MGH-FGS), (iii) reads
were assembled directly at the protein level using PLASS
assembler (PLASS), (iv) coding sequences were selected
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from reads by FragGeneScan without assembly step
(FGS), or (v) selected only tryptic peptides capable of
undergoing tandem mass spectrometry, as intended by
sixgill (sixgill). Table 1 indicates the number of se-
quences and size of the resulting databases. First, reads
were directly assembled using the MEGAHIT tool,
which has been benchmarked as one of the best assem-
blers [69], resulting in 972,629 contigs with 60.8% GC
content, 939 N50, and 101,728 L50. The largest contig
length was 48,284. A systematic six-reading-frame trans-
lation was used to produce the MGH-6RF database,
which comprises almost 22 million possible protein se-
quences and a billion amino acid residues. To decrease
the size of the database and remove erroneous polypep-
tide sequences, the FragGeneScan tool was then used to
select predicted protein-coding sequences (CDS). The

resulting MGH-FGS database is much more focused,
retaining only 17% of the information contained in
MGH-6RF. A third database was created by assembling
reads at the protein level using the PLASS assembler.
This strategy bypasses silent single nucleotide sequen-
cing errors and compresses the possible single nucleo-
tide polymorphisms that could occur across closely
phylogenetically related strains present in the sample. It
should be noted, however, that this tool may lead to
chimeric assemblies between similar protein sequences.
Application of the PLASS assembler resulted in a data-
base containing 16 million proteins with a mean length
of 112 amino acids, which is a significant increase in size
(+ 80%) compared to the proteins listed in MGH-6RF.
To avoid possible bias due to assembly of metagenome
reads either at the nucleotide sequence level or at the

Fig. 1 Workflows assessed for metaproteomics analysis of environmental samples. The left (green) and top (blue) arrows show the experimental
steps tested to obtain MS/MS spectra and metagenomics reads. The dashed-line panel presents the bioinformatics analysis, with, at the top,
database construction either from metagenomics data with or without assembly step, or from generic databases. The bottom part shows the
process used to refine and enhance the attribution rate through multiple search rounds. A first analysis on full databases was used to select
protein-based subsets at various p-values. New searches on these subsets then identified the databases performing best

Jouffret et al. Microbiome           (2021) 9:195 Page 3 of 15



amino acid sequence level, small truncated polypeptide
sequences can be directly predicted from the short reads.
The FragGeneScan tool performs this type of prediction
and was used to produce the FGS database, which is
three times larger than MGH-6RF. Finally, the sixgill al-
gorithm was applied to directly produce a list of putative
tryptic peptides amenable to tandem mass spectrometry
which are well represented in at least two reads. The
resulting sixgill database was rather small, representing
only 8% of the size of MGH-6RF.
Proteins were extracted from three equal aliquots of

the same section of the soil sample (slice 20–23 cm of
the sampled soil core). The peptides derived from the
biological triplicates after trypsin proteolysis were ana-
lyzed by nanoLC-MS/MS, producing 59,501, 59,917, and
59,141 MS/MS spectra. These three datasets were subse-
quently used separately to estimate search variability
across the different databases even if the biological sam-
ples taken for metagenomics and metaproteomics do
not match perfectly. Figure 1 shows the two strategies
used to interpret MS/MS signals with the five databases.
First, databases were queried at the same 1% FDR in a
one-step search strategy. Because decoy database
searches are problematic for large database [15, 26] with
increased occurrence of reversed peptide sequences cor-
responding to true peptide sequences and variability de-
pending on how the decoy is constructed, we used a
decoy-free FDR evaluation for this. As recommended by
Jagtap et al. [28], a two-step database search strategy was
also conducted. The first search round selected protein
sequences at low stringency, whereas the second search
performed with this sub-database validated the most
relevant hits. In this case, several p-value thresholds
(0.01, 0.05, 0.10, 0.20, 0.30, 0.50, 0.70, 0.80, 0.90, 0.99)
were tested for the first-round search to estimate the im-
pact of this parameter on the final results. The second
search was performed at decoy-free 1% FDR. Figure 2
presents the results obtained following application of the
two strategies, in terms of PSM attribution rate. The X-
axis represents the size of the databases used in the final
step of the cascaded search. Notably, for all conditions

tested, the result variability estimated on the three ex-
perimental metaproteomic datasets was quite low, at less
than 0.5% in most cases. The one-step search method
allowed between 2.2 and 6.5% of MS/MS spectra to be
assigned, with the maximum reached using the PLASS
database. The sixgill database search performed poorly
(only 2.2% MS/MS spectra assigned) even though it was
the smallest, and theoretically the best-adapted to the
proteomic data format. The two-step database search
method significantly increased the proportion of MS/MS
spectra assigned, with 3-fold higher values recorded for
most conditions. Although this increase was expected,
the results reveal that the improvement ratio depends
strongly on the stringency of protein selection during
the first identification round. Here, optimal p-values
could clearly be identified for each database: 0.10 for six-
gill, 0.20 for MGH-6RF and PLASS, and 0.30 for MGH-
FGS and FGS. Using the two-step search method, higher
numbers of confident PSMs were assigned, reaching at
best 7.3% for sixgill, 13.0% for MGH-FGS, 14.1% for
MGH-6RF, 17.3% for PLASS, and 20.5% for FGS. As
with the one-step search, the two-step search strategy
performed better with the FGS and PLASS databases,
but a clear advantage was noted for the FGS database.
Unexpectedly, among the sequencing-read-assembly
strategies, a better attribution rate was obtained for
PLASS compared to MEGAHIT. This result highlights
the power and reliability of a strategy based on assembly
of peptide sequences rather than nucleic acid sequences
and demonstrates the added value of retaining variants
that are discarded by the MEGAHIT algorithm. These
results also show that predicting coding sequences after
assembly (MGH-FGS) does not provide significant ad-
vantages over six-frame translation (MGH-6RF) in the
two-step search method, as these databases allowed
13.0% and 14.1% MS/MS assignment, respectively. This
result directly contrasted with that of the one-step
search strategy, where 6.1% and 4.5% of MS/MS spectra
were assigned, respectively. In conclusion, the highest at-
tribution rate (20.5%) and coverage of the microbial
metaproteome was obtained with the FGS database

Table 1 Sample-specific metagenomic databases and generic databases

Databases Tools used/database origin Computational timea (hours) Size of the database (in residues) Number of protein entries

MGH-6RF MEGAHIT + six-frames translation 13 1,028,880,437 21,883,653

MGH-FGS MEGAHIT + FragGeneScan 13 168,662,946 1,269,322

PLASS PLASS 6 1,784,677,737 16,004,028

FGS FragGeneScan 43b 2,939,955,188 72,130,656

sixgill Sixgill 5.5 82,314,892 2,577,349

NCBI Non-redundant NCBI - 41,817,980,956 108,307,546

SGC Soil gene catalog - 21,962,323,955 159,657,012
aComputer used: 10 CPU, 240 Gb RAM memory
bSingle thread
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when queries were performed at p-value 0.30 in the first
search round, using a large database with only short se-
quences (mean length, 40.7 amino acids).

Assessing the potential of generic databases
As shown in Fig. 1, two generic databases were also used
to interpret the three MS/MS datasets: the giant NCBInr
database, totaling 41.8 billion residues and comprising
the protein sequences from 27,137 species; and the Soil
Gene Catalog (SGC) database compiling an extensive
catalog of genes established by metagenomics of numer-
ous topsoil samples [5]. This SGC database is twofold
smaller than the NCBInr database. Figure 3 shows the
results of the one-step and two-step search methods.
The proportion of MS/MS spectra assigned at decoy-
free FDR 1% with these two databases was low when
used directly: 0.9% for NCBInr and 2.8% for SGC. Such
a result was expected with the two generic databases, as
the first one is not specifically representative of microor-
ganisms likely to be present in soil samples, but also due
to the huge size of the two generic databases, which

hinders correct FDR estimates. Using the two-step
search method, the ratio of assigned spectra increased
significantly (Fig. 3). At the optimal p-value thresholds,
SGC performed better than NCBInr, with 19.5% versus
15.5% of MS/MS spectra assigned to peptide sequences.
Because the two databases could be complementary in
terms of environmental sequence coverage, we also
assessed the effect of merging SGC and NCBI sub-
databases at various p-values (SGC+NCBI). As indicated
in Fig. 3, the proportion of MS/MS spectra assigned was
increased to 23.8% when using this combined database,
for which the optimal p-value threshold was 0.30. Inter-
estingly, this assignment ratio was higher than that ob-
tained with the classical approach, consisting in nucleic
acid sequence assembly and protein sequence prediction
(MGH-FGS). These results suggest that, in the future,
generic databases — which are continuously expanding
to include new environmental metagenomics projects
and NCBInr updates — could perform as well as
sample-specific metagenomics databases, even when
treating difficult environmental samples. This prospect

Fig. 2 Attribution rates for MS/MS spectra, obtained with sample-specific metagenomics databases. Databases were generated using the
following workflows: FragGeneScan only (FGS), MEGAHIT and FragGeneScan (MGH-FGS), MEGAHIT and six-frame translation (MGH-6RF), sixgill, and
PLASS. The results obtained when using the complete databases are indicated on the right (one-step search), whereas the results obtained on
refined databases containing proteins selected at distinct p-values during the first-round search are shown on the left. Searches were performed
at decoy-free FDR 1% and results are ordered based on the database size, using a logarithmic X-axis. The small numbers indicate the p-value
threshold used for each search. Three biological replicates were used to calculate the mean and standard deviation values.
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would decrease the per-sample cost of metaproteomics
analyses.

Combining sample-specific metagenomics data and
generic databases
We next went on to test the effect of a combination of
sample-specific metagenomics databases and generic da-
tabases on the attribution rate for MS/MS spectra. The
best-performing reduced databases from the two-step
search strategy were selected: FGS_0.30, PLASS_0.30,
MGH-6RF_0.30, NCBI_0.30, and SGC_0.30 (at the most
common optimal p-value of 0.30). Table 2 reports the
number of sequences and residues contained in these re-
duced databases. In addition, we created two new data-
bases comprising only the peptides detected in the two-
step search performed with the generalist databases,
resulting in the NCBIp_0.30 and SGCp_0.30 databases.
Table 2 shows the 16 combinations of databases tested
in this new round of MS/MS interpretation, their sizes,
and the assignment rate obtained at decoy-free FDR 1%.
Combining the reduced FGS_0.30 and NCBI_0.30 data-
bases for a single search resulted in an average of 24.9%

of MS/MS spectra assigned for the three metaproteomic
datasets. This proportion represents a significant in-
crease compared to the optimal FGS_0.30 database
(20.5%). Reduced FGS_0.30 and NCBIp_0.30 also per-
formed well, with 24.8% spectra assigned, but a greater
variability was noted. Use of the reduced SGC_0.30 and
FGS_0.30 databases also resulted in a higher number of
PSMs (25.9%) compared to FGS_0.30 alone. Concaten-
ation of the FGS_0.30, SGC_0.30, and NCBI_0.30 sub-
databases slightly improve results (26.2% MS/MS assign-
ment). The same trend was observed with combinations
of PLASS_0.30 and general sub-databases. Indeed,
PLASS_0.30+SGC_0.30 (24.8%) performed better than
PLASS_0.30+NCBI_0.30 (22.4%) and PLASS_0.30+SGC_
0.30+NCBI_0.30 (24.6%). MGH-FGS_0.30+SGC_0.30
(24.4%) performed less than MGH-FGS_0.30+SGC_
0.30+NCBI_0.30 (24.8%). The alternative MGH-6RF
database performed slightly less with 23.4% combined
with SGC_0.30 and 23.6% with SGC_0.30+NCBI_0.30.
Decreasing the size of the merged database by selecting
only the peptide sequences detected in a two-round
search did not systematically increase the assignment

Fig. 3 Attribution rates for MS/MS spectra when using generic databases. The results obtained with SGC and NCBI are shown as a function of the
database size using a logarithmic X-axis. The results obtained with the whole databases are presented on the right (one-step search), whereas the
results obtained on refined databases containing proteins selected at distinct p-values during the first-round search are indicated on the left
(two-step search). The SGC+NCBI databases were obtained by merging the reduced NCBI and SGC protein databases at each p-value cutoff.
Searches were performed at decoy-free FDR 1%. The small numbers indicate the p-value threshold used for each search. Three biological
replicates were used to calculate the mean and standard deviation values.
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rate, as shown when comparing PLASS_0.30+NCBIp_
0.30 (22.1%) and PLASS_0.30+NCBI_0.30 (22.4%). In
conclusion, our results demonstrated that, for experi-
mental soil metaproteomics data, the assembly of meta-
genomics reads at either the nucleic acid (MGH) or the
polypeptide level (PLASS) could be detrimental to the
MS/MS spectrum assignment rate compared to direct
use of reads (FGS). Here, the highest MS/MS spectral
assignment rate was obtained when a sample-specific
metagenomics database was combined with generalist
databases in a two-round search strategy.

Functional annotation with the optimal combined
databases
As the aim of metaproteomics is to analyze the function
of the proteins identified, we next assessed the levels of
functional annotation obtained with the four databases
performing best in terms of attribution rates, when used
alone or in combination. Figure 4 shows the functional an-
notation obtained following three processes. First, pep-
tides identified at FDR 1% using the FGS_0.30, PLASS_
0.30, SGC_0.30, and NCBI_0.30 databases, and combined
databases were annotated by applying the Unipept tool
which is based on the lowest common ancestor approach.
This peptide-based functional annotator returns molecu-
lar function (MF) and biological process (BP) Gene Ontol-
ogy (GO) terms, and enzyme commission (EC) numbers.
In parallel, identified proteins were annotated using GO
slim level and KEGG Orthology (KO) terms by the Dia-
mond BLASTP and GhostKOALA tools, respectively.

Notably, here, Unipept annotation produced less anno-
tated MS/MS spectra than Uniref50 BLASTP searches,
suggesting that protein level functional annotation is more
powerful than peptide level. In terms of databases,
PLASS_0.30 and FGS_0.30 performed well, as judged
using the Uniref50-based GO BP annotation, with 13.2%
and 13.1% of MS/MS spectra functionally annotated, re-
spectively (Fig. 4). Interestingly, PLASS_0.30 performed
better at the functional level than at the attribution rate
level. SGC_0.30 database performed better than NCBI_
0.30 database with 15.3% and 11.3% of MS/MS spectra
functionally annotated, respectively. For the four data-
bases, between 64 and 81% of PSMs were functionally an-
notated. SGC_0.30+NCBI_0.30 performed better than
individual metagenomics databases, with 19.7% of spectra
annotated. The combination of metagenomics and generic
databases was very efficient to improve the functional at-
tribution rate compared to the standalone databases: the
combinations of each standalone MGH-FGS_0.30,
PLASS_0.30, and FGS_0.30 databases with SGC_0.30 and
NCBI_0.30 databases allowed 20.6%, 20.3%, and 20.0% of
spectra to be functionally annotated, respectively. Regard-
ing the GhostKOALA-based KO annotation (Fig. 4), the
same trend was observed, with maximized functional an-
notation obtained when using databases combining meta-
genomics and generic information. Thus, MGH-FGS_
0.30+SGC_0.30+NCBI_0.30 and PLASS_0.30+SGC_0.30+
NCBI_0.30 provided 13.4% and 13.1% of functionally an-
notated spectra, respectively, with a slightly higher contri-
bution from soil gene catalog database. With the reduced

Table 2 Combining sample-specific metagenomic databases and generic databases

Combined databases Size of the database (in residues) Number of sequence entries Attribution rate (%)

Mean sd (%) Mean sd (%) Mean sd (%)

SGC_0.30 +NCBI_0.30 5,849,545 1.9 15,340 2.1 23.76 0.2

SGCp_0.30 +NCBIp_0.30 220,207 8.8 18,644 8.8 23.73 6.9

FGS_0.30 +NCBI_0.30 4,670,124 2.3 17,101 2.4 24.98 0.6

FGS_0.30 +SGC_0.30 1,990,818 1.7 18,073 2.5 25.94 0.4

FGS_0.30 +SGC_0.30 +NCBI_0.30 6,275,438 1.9 25,298 2.3 26.21 0.9

FGS_0.30 +NCBIp_0.30 525,294 2.6 18,878 2.5 24.84 1.1

FGS_0.30 +SGCp_0.30 +NCBIp_0.30 646,100 1.9 28,603 4.8 27.24 5.8

PLASS_0.30 +NCBI_0.30 5,351,198 2.1 15,541 2.0 22.42 1.2

PLASS_0.30 +SGC_0.30 2,673,152 1.8 16,512 2.2 24.83 0.6

PLASS_0.30 +SGC_0.30 +NCBI_0.30 6,957,772 1.8 23,738 2.1 24.62 0.5

PLASS_0.30 +NCBIp_0.30 1,206,368 2.2 17,318 2.2 22.05 0.7

PLASS_0.30 +SGCp_0.30 +NCBIp_0.30 1,327,067 1.2 27,042 5.2 25.42 4.7

MGH-FGS_0.30 +SGC_0.30 3,158,743 1.8 15,862 2.1 24.40 0.4

MGH-FGS_0.30 +SGC _0.30 +NCBI_0.30 7,443,363 1.7 23,088 2.0 24.83 0.8

MGH-6RF_0.30 + SGC _0.30 2,629,015 2.0 15,664 1.9 23.43 0.8

MGH-6RF_0.30 + SGC _0.30 +NCBI_0.30 6,913,635 1.9 22,890 1.9 23.58 0.4

Mean and standard deviation (sd) were calculated based on the three biological replicates
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SGC_0.30 and NCBI_0.30 databases, 9.9% and 5.8% of
spectra were functionally annotated, respectively. When
combined as SGC_0.30+NCBI_0.30, 13.0% of spectra were
functionally annotated, representing 55% of PSMs for the
database, with a higher contribution of SGC. In conclu-
sion, the best result in terms of functional annotation was
obtained when a sample-specific metagenomics database
was combined with a generalist database and soil-specific
database in a two-round search strategy. Remarkably,
combined generic databases allowed 55% of PSMs to be
functionally assigned when the different procedures tested
were merged.

Consistency of functional and taxonomic annotations
Metagenomics and metaproteomics results were com-
pared in terms of functional annotation based on KO.
For this comparison, metagenomics reads obtained for
the soil sample were analyzed using the MG-RAST pipe-
line [44] to produce KO annotations. These results were
compared to those obtained following GhostKOALA
functional annotation for the metaproteomics dataset,
which grouped together the three biological replicates,
and was interpreted using the FGS_0.30+SGC_0.30+
NCBI_0.30 database. Figure 5A shows three main func-
tional groups: “metabolism”, “genetic information

Fig. 4 Functional annotation of peptides and proteins identified at FDR 1%. The databases used to identify proteins are indicated on the left. For
each database, the percentage of PSMs annotated are indicated in terms of GO_BP, GO_MF terms, and EC numbers obtained either by Unipept
or using Diamond BLASTp queries on Uniref50. In the latter case, the GO OWL tools were used to retrieve GO slim annotations; EC numbers and
KO entries were retrieved using the GhostKOALA web-service. The grey squared areas on the EC lines represent the KEGG KO annotation level,
from which EC numbers were extracted
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processing”, and “environmental information process-
ing”. Remarkably, the different activities within each of
these groups were relatively consistent when assessed by
the two methodologies, even though they do not rely on
the same molecules or measurements. In this soil sam-
ple, “amino acid metabolism”, and “carbohydrate metab-
olism” and “energy metabolism” were the most
abundant functional categories according to metage-
nomics and metaproteomics data. Interestingly, meta-
proteomics allows us to descend deeper into the
functional category “signaling molecules and interaction
pathway”, as proteins classified as “signaling molecules
and interaction” are identified. In contrast, this category
is under-represented by the metagenomics analysis (Fig.
5A).
Metagenomics and metaproteomics datasets were also

interpreted at the taxonomic level. As shown in Fig. 5B,
the phyla identified and their ratios were consistent. At
the domain level, both methodologies indicated a vast
predominance of bacteria in the sample. Within this
superkingdom, Proteobacteria and Actinobacteria are
the most abundant phyla, but a large diversity of phyla
were represented. Remarkably, both methodologies can
highlight the presence of a candidatus phylum, namely
Candidatus Rokubacteria, which was previously reported

to predominate in Amazonian rainforest soil [35]. Some
discrepancies were noted for the estimated Eukaryote ra-
tio. Clearly, metagenomics underestimated the presence
of eukaryotic cells compared to metaproteomics. How-
ever, this underestimation is expected as the volume of
these cells is much higher than the volume of bacteria,
whereas their nucleic acid molecule content is similar,
leading to a higher ratio when protein biomass is mea-
sured compared to nucleic acid estimation. The
eukaryotic phyla identified and their respective quan-
tities are consistent between the two technologies, al-
though the huge diversity present in the sample could
have been a source of bias.

Discussion
The aim of this study was to determine the database
construction and search approach that would maximize
the information extracted by metaproteomics analysis of
soil sampled from a floodplain along the Seine River,
downstream of Paris (France). Through the list of pro-
teins it provides, and their abundances, metaproteomics
brings a new dimension to the study of microbiota by
delivering the list of organisms present in a sample and
their respective biomasses [52], and by providing
information on how the microbial community functions

Fig. 5 KO and taxonomical annotation of soil metagenomics data and metaproteomics data. Metagenomics data were annotated using the MG-
RAST pipeline, with KO and taxonomic analysis. Peptides and sequences attributed at FDR 1% of the combined reduced sample-specific and
generic database FGS_0.30+SGC_0.30+NCBI_0.30 were analyzed using Unipept and GhostKOALA to retrieve taxonomic and functional
annotations, respectively. The PSMs for the three biological replicates were cumulated. A Functional annotation of three KEGG categories:
metabolism (left), genetic information processing (center), and environmental information processing (right). A total of 16% of reads and 72% of
PSMs were annotated in terms of function. B Taxonomic annotation of metagenomics data (MetaG) and metaproteomics data (MetaP) at
Kingdom (left), Bacterial phyla (center), and Eukaryotic phyla (right) levels. Phyla represented less than 1% of the total were merged under “Other
phyla”. A total of 17% of reads and 21% of PSMs were unequivocally annotated in terms of taxonomy
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[12, 34]. Most metaproteomics interpretation pipelines
up until now have been evaluated using human micro-
biome samples such as saliva [28] or feces [48, 62, 67] or
laboratory-assembled microbial mixtures [61, 67]. As
shown previously with these samples, the choice of the
workflow in metaproteomics is critical as it controls the
peptide identification. An average of 21% of attribution
rate at FDR 1% was obtained with human fecal samples
using a combination of the search algorithms X!Tandem
and OMSSA against a customized protein sequence
database containing 6 millions of proteins from different
sources such as metagenomes, bacterial, and human ge-
nomes [49]. In comparison, less than 3% of spectra were
assigned in our study with the SGC database which
comprises 159 million of sequences. The sample prepar-
ation and mass spectrometry acquisition parameters are
also critical as they may impact the attribution rate.
Based on the same bioinformatics workflows, identifica-
tion rates varying in the range 12 to 35 % were obtained
at FDR 1% on a fecal sample using the same reference
database (van der Bossche, Kunath et al. 2021). Because
of its inherent characteristics, soil is a difficult matrix to
work with for metagenomics and metaproteomics [58].
The extent of the diversity of microorganisms in soils is
considered a significant bottleneck for the interpretation
of omics data in general.
To construct the most appropriate database for use

when interpreting metaproteomics data, it is generally
recommended to use metagenomics data acquired for
the same sample. From the sampled soil, ~ 87 million
Illumina paired-end reads were recorded, corresponding
to 13 Gbp of sequenced nucleotides. Whether this se-
quencing effort comprehensively represents the micro-
bial community found in the sample is a key question.
In some soil studies, the cumulated efforts made to
analyze a large collection of samples is considerably
greater. For example, a total of 730 Gbp of sequenced
nucleotides were obtained for the analysis of soil com-
munities in phosphorus-deficient and phosphorus-rich
tropical soils [74]. Similarly, a total of 250 Gbp of se-
quenced nucleotides were recorded when reconstructing
the microbial metabolic network in a host geological nu-
clear waste repository [4]. For the present study, we as-
sumed that the depth of metaproteomics achieved with
a standard analysis (here, a 90-min nanoLC-MS/MS
run) would be relatively limited, and that the metage-
nomics information obtained should be sufficient to ef-
fectively represent the most abundant microorganisms.
If the objective was to analyze the whole 1-m soil core,
the metagenomics efforts would have to be multiplied,
along with the monetary costs of nucleic acid sequen-
cing, to produce a database representative of the whole
core. Sequencing depth directly influences the outcome
of any attempt to assemble metagenomics data, but

more importantly, the use of short-read next-generation
sequencing combined with long-read technology should
also be taken into account in such projects [23]. Once
again, the corresponding costs will be the main factor
driving the implementation of these combined sequen-
cing technologies for soil analysis, but we are confident
that a combined approach could boost metagenomics-
based metaproteomics.
The metagenomics reads obtained in this study were

treated either with MEGAHIT, FragGeneScan, or sixgill.
Our results using the five constructed databases con-
firmed that a strategy with two query rounds, as recom-
mended for unusually large databases [28], performs
better than direct assignment, whatever the database
used. However, at least in our set-up, an optimum
should be considered to select the entries used to create
the sub-database. Indeed, a proteomics approach was re-
cently used to assess the quality of transcriptomics data
and their assembly [14], and metaproteomics data could
be used in a similar way to assess the quality of metage-
nomics data assemblies.
With the datasets considered here, the best PSM attri-

bution rate was obtained for the FragGeneScan CDSs
predicted directly from trimmed reads (20.5%). As ex-
pected, this attribution rate was lower than those ob-
tained with similar instruments when studying single
organisms for which a well-annotated genome is avail-
able. For example, a rate of 61% PSM assignment was
reported for the Microbacterium oleivorans A9 strain
[18]. However, our rate it is quite similar to that re-
ported for an animal proteogenomics study (21% [66];.
The complexity of soil samples in terms of strains means
that many possible peptide co-elutions and thus
chimeric MS/MS spectra can be produced. We therefore
expect that the rate of assignment would be further im-
proved using higher-performance acquisition
instruments.
The high quality of theoretical proteomes from isolates

available in generic databases such as NCBInr and their
large numbers advocate for use of these resources in
metaproteomics interpretation pipelines. Indeed, the use
of selected annotated genomes has previously been ex-
plored [13, 27, 50, 75], as has the use of the Uniref100
database [55] or the NCBInr database [30, 68, 72]. Here,
two generic databases were assessed for their usefulness
in interpreting the soil metaproteomics data: NCBInr
and the SGC soil gene catalog. The two databases were
complementary in terms of environmental sequence
coverage, and the spectrum attribution rate of the com-
bined database was 23.8%, which is higher than with a
search against a sample-specific metagenomics database,
but without the cost. Therefore, this strategy could be
advantageous whenever numerous samples of diverse or-
igins are to be analyzed.
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Previous studies indicated that merging protein se-
quence databases from several samples might improve
the peptide identification rate [59, 62]. Here, we com-
bined metagenomics data analyzed with FragGeneScan,
SGC, and generic database such as NCBI in a two-step
search strategy. This approach produced the best assign-
ment rate, with 26.2% of MS/MS spectra assigned. We
therefore recommend this approach for use with other
experimental metagenomics and metaproteomics data-
sets. Another previous study indicated that combining
Uniprot with sample-specific metagenomics data could
improve the number of peptides identified for samples
from a biogas plant [25]. We found that the dedicated
SGC database performed better than the generalist
NCBInr database in the present study. Combining meta-
genomics sequencing data with data from a generic data-
base could be performed while applying taxonomical
constraints, as proposed previously [73]. However, this
strategy is highly dependent on the presence of the iden-
tified organisms in the generic database and will conse-
quently be sample-specific. Defining the optimal strategy
in metaproteomics may depend on the research question
to tackle as the objective may be either a focus on a few
microorganisms with interesting metabolism, or the
overall picture. In the first case, the design of a dedicated
database emphasizing the genomes or metagenome-
assembled genomes (MAGs) of interest may be well
worth the effort required. In this vein, using the most
abundant proteins identified by metaproteomics as
guides to derive the taxonomic composition of the mi-
crobial community and expanding the search database
with the genomes from the identified abundant species
appears a promising two-stage strategy [57]. However,
missing the identification of accessory proteins not
present in the database could impact the understanding
of the functionality of the microbial system. In the latter
case, sequencing data allows MAGs binning, but a more
globalized approach is often applied, either imposed by
insufficient sequencing depth or preferred for speed,
cost, sample, or resource availability. Taxonomical and
functional assignation is then often performed at family
or phylum levels using peptides, proteins, reads, genes,
contigs, or scaffolds taxonomical and functional map-
ping. In that case, the assessment of metaproteomic da-
tabases can be performed using the PSM attribution
yield.
Two significant criteria to consider when assessing the

power of metaproteomics is how many of the peptides/
proteins identified have taxonomy- and function-derived
annotations. In metaproteomics, the taxonomical anno-
tation is commonly performed with taxon-specific pep-
tides using the lowest common ancestor approach, such
as with the Unipept tool [21]. However, functional anno-
tation works best at the protein level for

metaproteomics, as shown here. The length of the se-
quences used to find a GO or KO has an impact on the
percentage of PSMs functionally annotated. As shown
here, peptide level functional annotation is improved
using a sequence-based search for functional homologs
at protein level, which both allows to annotate peptides
missing in large protein databases (e.g., NCBI, Uniprot)
and to enlarge the pool of proteins functionally associ-
ated with a given peptide, and thus the probability to
gather GO or KEGG annotated proteins. Here, we found
the optimal strategy in terms of both MS/MS attribution
ratio and functional annotation ratio to be a combin-
ation of FGS, SGC, and NCBInr databases with 26.2%
and 20.0% respectively. Combining SGC and NCBI data-
bases results in a MS/MS attribution ratio of 23.8% and
a functional annotation ratio of 19.7%. Therefore, this
later strategy represents an interesting alternative for soil
samples in the absence of sample-specific metagenomics
sequencing data.

Conclusions
In conclusion, combining sample-specific metagenomics
data and generic databases in a two-step database search
performed best for the soil sample analyzed in the
present study, both in terms of ratio of assigned spectra
and retrieval of function-derived information. Amalgam-
ing a massive soil gene catalog and the generalist
NCBInr database resulted in almost the same outcome.
This result opens up broad prospects for the application
of metaproteomics to soil samples, which includes a
highly challenging matrix, as well as broad microbial di-
versity, and extensive complexity.

Materials and methods
Soil material
A soil core was sampled on May 23 2018 from a flood-
plain at Bouafles near the Seine River (France). The site
has already been well characterized in terms of sedimen-
tation and chemicals [2, 3, 37, 41]. The section of the
core between 17 and 28 cm depth was sliced into five
layers. Two grams of each layer were pooled and ho-
mogenized for DNA extraction. The mid-layer (20–23
cm depth) was used for protein extraction.

DNA extraction from soil and sequencing
Soil DNA was extracted and sequenced by GenoScreen
(Lille, France) from 1 g of lyophilized sample using an
optimized protocol [65]. Briefly, soil was mixed with
100 mM Tris-HCl (pH 8), 100 mM EDTA (pH 8), 100
mM NaCl, 2% (w/v) polyvinylpyrrolidone (40 g/mol),
and 2% (w/v) sodium dodecyl sulfate and subjected to
bead-beating. DNA was precipitated with isopropanol,
washed with 70% ethanol, and further purified using the
MP Biomedials GeneClean Turbo kit (Fisher scientific).
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DNA libraries were constructed with the Nextera XT
DNA Library Preparation kit (Illumina) and sequenced
on a HiSeq 4000 Illumina run in 2 × 150 bp. Raw reads
have been deposited in the Sequence Read Archive
under dataset identifier SRX8818139, as part of Biopro-
ject PRJNA648365. Reads were analyzed using the
phylogenetic MG-RAST pipeline [44].

Metagenomics analysis
Paired-reads were processed using the MEGAHIT work-
flow into the ASaiM Galaxy framework [8]. They were
quality controlled and trimmed using FastQC and Trim
Galore v0.4.3.1 with a Phred quality score cutoff of 20.
MEGAHIT v1.1.2 [38] was used to assemble trimmed
paired-reads into contigs with default parameters with a
minimum kmer size of 21, maximum kmer size of 141,
k-step of 12, and merge complex bubbles with length up
to 20,098. The estimation of the assembly quality statis-
tics was done with MetaQUAST [45] and the identifica-
tion of potential assembly error signature with VALET.
The percentage of unmapped reads were determined
with Bowtie2 [36] and combined with MultiQC [16].
The MGH-6RF database was obtained by six-frame
translation of the assembly, retaining only tryptic peptide
sequences composed of at least five residues. PLASS
[59, 60] was used with default parameters. Sixgill v0.2.4
[42] was used with the following parameters: minlength
10, minqualscore 30, minorflength 40, minlongesttryppe-
plen 7, and minreadcount 2. The paired-reads were
processed with WHORMSS (Genoscreen) workflow con-
sisting in demultiplexing and removing indexes in reads.
The reads were trimmed and a Phred quality score cut-
off of 30 was applied. The reads with a length lower than
75 bases were removed. Paired-reads were reassembled
and low complexity sequences were removed as well as
various contaminants including Homo sapiens se-
quences. FragGeneScan v1.3 [54] was applied with Illu-
mina sequencing reads with about 0.01% error rate
model to construct the FGS database.

Soil gene catalog and NCBInr databases
The soil gene catalog [5] was downloaded from http://
vm-lux.embl.de/~hildebra/Soil_gene_cat/ (accessed on
22 March 2021). NCBnr was downloaded from https://
www.ncbi.nlm.nih.gov/ on 3 January 2018).

Protein extraction and proteolysis
The proteins from 5 g of soil were extracted using the
NoviPure Soil Protein Extraction Kit (Mo-Bio) as recom-
mended by the supplier. After centrifugation, proteins
from the 10-ml supernatant were precipitated by adding
2.5 ml trichloroacetic acid (50% w/v). Proteins were col-
lected by centrifugation for 10 min at 6000×g. The
resulting pellet was resuspended in 40 μL LDS 1X

(Invitrogen) containing 5% beta-mercaptoethanol, soni-
cated for 5 min in an ultra sound bath and then heated
to 99 °C for 5 min. Soluble proteins (25 μL per well)
were subjected to SDS-PAGE gel electrophoresis on
NuPAGE 4–12% Bis-Tris gel (Invitrogen) for 5 min at
200 V in MES/SDS 1X running buffer (Invitrogen). Pro-
teins were stained for 15 min with Coomassie Simply-
Blue SafeStain (Thermo Fisher Scientific), and then in-
gel proteolyzed with trypsin gold (Promega) for 1 h at
50 °C, as recommended [22].

NanoLC-MS/MS and interpretation
Peptides were analyzed on a Q-Exactive HF mass spec-
trometer (Thermo) coupled to an Ultimate 3000 nano
LC system (Thermo), as described previously [33].
Tryptic peptides (8 μl) were desalted on a reverse-phase
PepMap 100 C18 μ-precolumn (5 μm, 100 Å, 300 μm
i.d. × 5 mm, Thermo) before separating peptides on a
nanoscale PepMap 100 C18 nanoLC column (3 μm, 100
Å, 75 μm i.d. × 50 cm, Thermo) at a flow rate of 0.2 μL
min−1 using a 90-min gradient of mobile phase A (0.1%
HCOOH/100% H2O) and phase B (0.1% HCOOH/80%
CH3CN). The gradient used was developed from 4 to
25% B in 70 min and then from 25 to 40% B in 20 min.
The mass spectrometer was operated in Top20 data-
dependent acquisition mode. Full MS scans were ac-
quired from 350 to 1800 m/z at a resolution of 60,000
and the 20 most abundant precursor ions were sequen-
tially selected for fragmentation with a dynamic exclu-
sion time of 10 s. The resolution for the fragment scans
was 15,000. Only ions with 2 or 3 positive charges were
selected for fragmentation. MS/MS spectra were inter-
preted using Mascot Daemon software (version 2.6.1;
Matrix Science) indicating 5-ppm tolerance for the par-
ent ion and 0.02-Da tolerance for secondary fragments,
2+ and 3+ as possible peptide charges, a maximum of
two missed cleavages, carbamidomethylation of cysteine
as fixed modification, oxidation of methionine as vari-
able modification, and trypsin as proteolytic enzyme.
The FDR threshold was set at 0.01 using a decoy-free
FDR method based on a mixture-model of four beta dis-
tributions which has been shown well adapted for hand-
ling large proteogenomics and metaproteomics datasets
and databases [52]. The two-step database search strat-
egy was initiated using several Mascot p-value thresholds
(0.01, 0.05, 0.10, 0.20, 0.30, 0.50, 0.70, 0.80, 0.90, 0.99)
for the first search round to select the protein sequences.
The most time-consuming search (13 h) was noted for
the first step NCBI database interrogation.

Functional and taxonomic annotation and gene ontology
Functional annotation of identified proteins was based
on sequence similarity searches carried out with Dia-
mond BLASTP (v0.8.22.84) [10] against the Uniref50
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[46] database (release August 24, 2018). The following
parameters were applied: top five hits, e-value threshold
10, and percentage identity above 50%. The GOSlim
terms (release January 30, 2017) associated with the Uni-
prot accession number were retrieved for each protein.
KEGG annotation was performed using the Ghost-
KOALA [31] web server. Peptides identified at FDR 1%
were functionally annotated using the Unipept [43]
desktop application version 1.2.1, activating the “equate
I and L” and “advanced missing cleavage handling” op-
tions. Unipept peptide taxonomical information was
used to calculate kingdom and phylum abundances.
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