Lorenzo A Mariano 
  
Bess Vlaisavljevich 
  
Roberta Poloni 
email: roberta.poloni@grenoble-inp.fr
  
  
  
Improved Spin-State Energy Differences of Fe(II) molecular and crystalline complexes via the Hubbard U -corrected Density

We recently showed that the DFT+U approach with a linear-response U yields adiabatic energy differences biased towards high spin [Mariano et al. J. Chem. Theory Comput. 2020, 16, 6755-6762]. Such bias is removed here by employing a density-corrected DFT approach where the PBE functional is evaluated on the Hubbard U -corrected density. The adiabatic energy differences of six Fe(II) molecular complexes computed using this approach, named here PBE[U], are in excellent agreement with coupled cluster-corrected CASPT2 values for both weak-and strong-field ligands resulting in a mean absolute error (MAE) of 0.44 eV, smaller than the recently proposed Hartree-Fock density-corrected DFT (1.22 eV) and any other tested functional, including the best performer TPSSh (0.49 eV). We take advantage of the computational efficiency of this approach and compute the adiabatic energy differences of five molecular crystals using PBE[U] with periodic boundary conditions. The results show, again, an excellent agreement (MAE=0.07 eV) with experimentally-extracted values and a superior performance compared with the best performers TPSSh (MAE=0.08 eV) and M06-L (MAE=0.31 eV) computed on molecular fragments.

The accurate description of spin-state energetics of transition metal complexes represents a great challenge for electronic structure ab initio methods. [START_REF] Wilbraham | Multiconfiguration Pair-Density Functional Theory Predicts Spin-State Ordering in Iron Complexes with the same Accuracy as Complete Active Space Second-Order Perturbation Theory at a Significantly Reduced Computational Cost[END_REF][START_REF] Domingo | Spin Crossover in Fe(II) Complexes: An Ab Initio Study of Ligand σ-Donation[END_REF][START_REF] Radoń | Benchmarking Quantum Chemistry Methods for Spin-State Energetics of Iron Complexes Against Quantitative Experimental Data[END_REF][START_REF] Cirera | Theoretical Prediction of Spin-Crossover Temperatures in Ligand-Driven Light-Induced Spin Change Systems[END_REF][5][START_REF] Swart | Accurate Spin-State Energies for Iron Complexes[END_REF][START_REF] Droghetti | Assessment of Density Functional Theory for Iron(II) Molecules Across the Spin-Crossover Transition[END_REF][START_REF] Cirera | Benchmarking Density Functional Methods for Calculation of State Energies of first Row Spin-Crossover Molecules[END_REF] Yet, the accurate prediction of spin-state energy differences are of critical importance for the understanding of spin crossover phenomena relevant for example for spintronics, molecular elecronics and sensors [START_REF] Kumar | Emerging Trends in Spin Crossover (SCO) Based Functional Materials and Devices[END_REF][START_REF] Molnár | Molecular Spin Crossover Materials: Review of the Lattice Dynamical Properties[END_REF][START_REF] Resines-Urien | A switchable iron-based coordination polymer toward reversible acetonitrile electro-optical readout[END_REF][START_REF] Resines-Urien | Covalent post-synthetic modification of switchable iron-based coor-dination polymers by volatile organic compounds: a versatile strategy for selective sensor development[END_REF] and for the catalytic reactivity of biological systems. [START_REF] Shaik | Exchange-enhanced reactivity in bond activation by metal-oxo enzymes and synthetic reagents[END_REF] This challenge stems from the lack of error cancellation when computing energy differences, using approximate electronic structure methods, between spin states exhibiting different types and amounts of electronic correlations (dynamic and non-dynamical). [START_REF] Flãűser | Detailed Pair Natural Orbital-Based Coupled Cluster Studies of Spin Crossover Energetics[END_REF] Because Hartree-Fock (HF) only treats exchange correlations, for example, it tends to stabilize high-spin states over low spin states due to the absence of dynamical correlation that would stabilize doubly occupied orbitals. [START_REF] Swart | Accurate Spin-State Energies for Iron Complexes[END_REF][START_REF] Rehier | Reparameterization of Hybrid Functionals Based on Energy Differences of States of Different Multiplicit[END_REF] On the contrary, local and semilocal functionals within DFT tend to overstabilze low spin states [START_REF] Swart | Validation of Exchange-Correlation Functionals for Spin States of Iron Complexes[END_REF][START_REF] Fouqueau | Comparison of Density Functionals for Energy and Structural Differences Between the High-[ 5 T2g : (t2g) 4 (eg) 2 ] and Low-[ 1 A1g : (t2g) 6 (eg) 0 ] Spin States of Iron(II) Coordination Compounds. II. More Functionals and the Hexaminoferrous Cation, [Fe(NH3) 6 ] 2+[END_REF][START_REF] Mortensen | Spin Propensities of Octahedral Complexes from Density Functional Theory[END_REF][START_REF] Ioannidis | Towards Quantifying the Role of Exact Exchange in Predictions of Transition Metal Complex Properties[END_REF][START_REF] Ganzenmüller | Comparison of Density Functionals for Differences Between the High-( 5 T2g) and Low-( 1 A1g) Spin States of Iron(II) Compounds. IV. Results for the Ferrous Complexes [Fe(L)(NHS4)][END_REF][START_REF] Salomon | Assertion and Validation of the Performance of the B3LYP* Functional for the First Transition Metal Row and the G2 Test Set[END_REF] and by adding a fraction of exact exchange one can, in most cases, [START_REF] Radoń | Revisiting the Role of Exact Exchange in DFT Spin-State Energetics of Transition Metal Complexes[END_REF] reduce such overstabilization. [START_REF] Pinter | Conceptual Insights into DFT Spin-State Energetics of Octahedral Transition-Metal Complexes through a Density Difference Analysis[END_REF][START_REF] Prokopiou | Spin-State Energetics of Fe Complexes from an Optimally Tuned Range-Separated Hybrid Functional[END_REF] Thus, global hybrids can provide a reasonable decription of spin-state energetics depending on the system of choice and the amount of exact exchange. [START_REF] Rehier | Reparameterization of Hybrid Functionals Based on Energy Differences of States of Different Multiplicit[END_REF], [START_REF] Prokopiou | Spin-State Energetics of Fe Complexes from an Optimally Tuned Range-Separated Hybrid Functional[END_REF] Song at al. showed that a HF density-corrected DFT approach can yield adiabatic energy differences in good agreement with diffusion Monte Carlo (DMC) calculations. [START_REF] Song | Benchmarks and Reliable DFT Results for Spin Gaps of Small Ligand Fe(II) Complexes[END_REF] The DFT+U approach has also been investigated in this respect in a few studies and we refer the reader to the introduction of Ref. 27 for a recent summary on the topic. The present authors have shown and discussed the bias towards high spin states imposed by the Hubbard term in the total energy and how it can be mitigated by adopting values of U smaller than the computed self-consistent value, U sc. [START_REF] Mariano | Biased Spin-State Energetics of Fe(II) Molecular Complexes within Density-Functional Theory and the Linear-Response Hubbard U Correction[END_REF] Despite the energetics being pathologically wrong for strong-field ligands, the electronic density exhibits a systematic improvement with respect to local and semilocal functionals for both low spin and high spin states and for all systems when adopting a self-consistent U . [START_REF] Mariano | Biased Spin-State Energetics of Fe(II) Molecular Complexes within Density-Functional Theory and the Linear-Response Hubbard U Correction[END_REF] In this work we merge the above ideas and adopt a new approach consisting of a Hubbard U density-corrected DFT where the PBE functional is evaluated on the Hubbard U density, using a linear-response U 28 computed selfconsistently. [START_REF] Kulik | Density Functional Theory in Transition-Metal Chemistry: A Self-Consistent Hubbard U Approach[END_REF] We show that this method allows one to obtain adiabatic energy differences for a series of six Fe(II) molecular complexes in excellent agreement with the chosen reference set. The molecular complexes include varying ligand field strengths from the weak H2O ligand, whose reference ∆EH-L is -1.83 eV, to the strong CNH one, whose ∆EH-L is 2.87 eV (see Tab. 1), thus allowing for a better assessment of the validity of this approach. Although the choice of the reference method is still matter of debate, we choose the coupled-cluster corrected CASPT2 approach proposed by Pierloot and coworkers. [START_REF] Pierloot | Spin State Energetics in First-Row Transition Metal Complexes: Contribution of (3s3p) Correlation and its Description by Second-Order Perturbation Theory[END_REF][START_REF] Phung | Toward highly Accurate Spin State Energetics in First-Row Transition Metal Complexes: A Combined CASPT2/CC Approach[END_REF] This approach reduces the overstabilization of high spin state by treating the 3s and 3p semicore electrons using CCSD(T) and can be used in principle in systems with non-negligible multiconfigurational character such as the strong-ligand field molecules studied here. Its accuracy has been recently further validated by Radoń by comparing with ∆EH-L values extracted from experiments. [START_REF] Radoń | Benchmarking Quantum Chemistry Methods for Spin-State Energetics of Iron Complexes against Quantitative Experimental Data[END_REF] We show that for Fe(II) complexes exhibiting a weak ligand strength, our result compare very well also with CCSD(T) 2 and recent DLPNO-CCSD(T) results. [START_REF] Flãűser | Detailed Pair Natural Orbital-Based Coupled Cluster Studies of Spin Crossover Energetics[END_REF] Larger deviations are found with respect to DMC results (vide infra).

We then apply this approach to compute the spin crossover energies of seven compounds, either crystalline or molecular, for which the adiabatic energy differences have been extracted from experiments and we find again very good agreement. In light of this accuracy, this approach can be adopted to study molecular crystals very efficiently with any DFT code including a DFT+U implementation thus avoiding the use of hybrid functionals. We recall that the DFT+U total energy can be written as:

EDFT+U[ρ(r)] = EDFT[ρ(r)] + EU[n] (1) 
In the above formula the term EDFT represents the unperturbed DFT energy functional and the EU is the Hubbard term containing the Hubbard correction for the electronic repulsion within a given subshell and a double-counting term that removes the interactions that are already counted within the DFT term via mean-field. For a clear review we refer the reader to Ref. 38. The EU depends on the density through the occupation numbers n computed from the projection of the occupied Kohn-Sham eigenfunctions onto a localized basis set. For projection numbers close to 1/2 the summation term that enters EU and that mutliplies U is the largest. In our recent work we showed that the DFT+U energy yields a systematic bias towards high spin due to the EU term being systematically larger for low spin states thus resulting in a destabilization of the latter with respect to the former. This bias increases as a function of the ligand field strength: for stronger field ligands the more covalent bonding between Fe and the ligand yields more fractional occupations thus resulting in larger penalizing summation terms. [START_REF] Mariano | Biased Spin-State Energetics of Fe(II) Molecular Complexes within Density-Functional Theory and the Linear-Response Hubbard U Correction[END_REF] While this penalizing term is necessary to recover the localization of electrons and stabilize the insulating phase in Mott physics, here it results in a systematic unphysical overstabilization of high spin which further increases for molecular complexes with larger covalent character, such as the CO and CNH strong field ligands.

Cococcioni and coworkers implemented an extended Hubbard model in DFT through the inclusion an inter-site effective interaction V within the Hubbard energy. Such a generalized scheme, named DFT+U+V, [START_REF] Jr | Extended DFT+U+V Vmethod with on-site and inter-site electronic interactions[END_REF] aims at an improved treatment of electronic correlations. The new Hubbard potential includes two terms of opposite sign: the first on-site term is attractive for Kohn-Sham states that exhibit a localized character (the standard on-site U term) whereas the second inter-site term stabilizes hybridized states. Thus, a competition between these two opposing behaviors should allow for a more balanced description of electronic correlations and thus improved structural and electronic properties. [START_REF] Jr | Extended DFT+U+V Vmethod with on-site and inter-site electronic interactions[END_REF][START_REF] Ricca | Self-consistent DFT + U + V study of oxygen vacancies in SrTiO3[END_REF] For the six Fe(II) molecular complexes computed here, i.e.

[Fe(H2O)6] +2 , [Fe(NH3)6] +2 , [Fe(NCH)6] +2 , [Fe(PH3)6] +2 , [Fe(CNH)6] +2 and [Fe(CO)6] +2 , the geometries optimized using the TPSSh functional are taken from Ref. 27 and used for all calculations, i.e. DFT, CCSD(T) and CASPT2. All DFT calculations, except for the DFT+U, were performed using ORCA. [START_REF] Neese | The ORCA Program System[END_REF][START_REF] Neese | Software Update: The ORCA Program System, Version 4.0[END_REF] The DFT+U and DFT+U+V calculations were performed using Quantum ESPRESSO [START_REF] Giannozzi | QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials[END_REF][START_REF] Giannozzi | Advanced capabilities for materials modelling with Quantum ESPRESSO[END_REF] by adopting a linear-response approach [START_REF] Cococcioni | Linear Response Approach to the Calculation of the Effective Interaction Parameters in the LDA+U Method[END_REF] for the self-consistent calculation of U , 30 i.e. U sc, and U +V , [START_REF] Timrov | Parameters From Density-Functional Perturbation Theory[END_REF] i.e. U sc+V sc, respectively. We stress that in what follows, DFT+U or DFT+U+V always refer to self-consistent calculations, unless otherwise specified (e.g. in the results discussed later in Fig. 4). See SI for more details. Unlike our recent work where a few geometrical optimizations were performed upon calculation of the linear-response U to yield a structurally consistent U , 27 here U and U +V are computed on the TPSSH geometries for LS and HS separately. Because in what follows we report errors computed as deviations from the reference values, we intend to avoid including effects arising from different geometries. The effect of the employed geometry on the ∆EH-L=EHS-ELS has also been investigated and will be discussed below. The projections for the Hubbard term are performed using orthonormalized atomic wavefunctions. This yields ∆EH-L systematically smaller than those computed with non-orthogonal non-normalized atomic projectors (as those we employed previously [START_REF] Mariano | Biased Spin-State Energetics of Fe(II) Molecular Complexes within Density-Functional Theory and the Linear-Response Hubbard U Correction[END_REF] ), as shown in Tab. 1 and Tab. S2.

Extended multi-state CASPT2 calculations were performed employing BAGEL [START_REF] Shiozaki | Brilliantly Advanced General Electronic-Structure Library Modular and Open-Source Software Project for Quantum Simulations of Materials[END_REF]47 using an active space of 10 electrons in 12 orbitals, (10e,12o). This includes the 3d electrons of Fe(II), the two ligand-eg molecular orbitals plus the Fe 4d double-shell, [START_REF] Wilbraham | Multiconfiguration Pair-Density Functional Theory Predicts Spin-State Ordering in Iron Complexes with the same Accuracy as Complete Active Space Second-Order Perturbation Theory at a Significantly Reduced Computational Cost[END_REF]5 and their corresponding electrons. Density fitting was used for all calculations by employing the fitting basis set cc-pV5Z-JKFIT and no symmetry constraints were imposed. The CASPT2 calculations used for the reference set were performed without any ionisation potential-electron affinity (IPEA) shift to the zeroth-order Hamiltonian. Because of the well established slow convergence of the CASPT2 energy with respect to basis set size, we perform the extrapolation of the spin-state energies to the complete basis set (CBS) limit. This is done separately for CASSCF and the CASPT2 energies, by adopting the three-point extrapolation method described in Refs. 48-50. The cc-pVTZ-DK, cc-pVQZ-DK, and cc-pV5Z-DK basis sets were used for this and the corresponding CASPT2 ∆EH-L are reported in Tab. S1. For [Fe(H2O)6] +2 we were unable to converge a (10e,12o) active space where the two ligand-eg orbitals remained in the active space for LS. The Fe 3s orbital consistently rotated into the active space replacing one of the ligand eg orbitals. This implies that for this particular molecule using the smaller active space should not impact the HS-LS energy splitting significantly, as reported by Gagliardi and co-workers 1 who reported CASPT2 values of -2.14 eV with (6e,10o) and -2.15 eV with (10e,12o). Differences of the or-Table 1. ∆E H-L (in eV) computed using different DFT approaches (upper left table). These are reported in order of descreasing total MAE computed with respect to the CASPT2/CC reference (see text). The MAE computed separately for weak-, strong-ligand and for the whole set (total) are also reported (upper right table). The ∆E H-L computed using varying wavefunction methods and taken from the literature are also reported (lower table). a refers to the CASPT2/CC values computed in this work. -0.85,-0.95 37 der of 0.1 eV are reported in Ref. 5. Thus, for water the extrapolation to CBS is performed using a (6e,10o) active space. See computational methods in the SI for more details.

∆EH-L

The Fe semicore 3s3p correlation energy is computed using CCSD(T) by including and freezing the 3s3p electrons, 32 using ORCA. This correction is then added to the CASPT2 energy difference to yield the CASPT2/CC energy difference. The aug-cc-pwCVTZ-DK and cc-pVDZ basis sets were used for Fe and the ligand atoms, respectively (see details in SI). Extrapolation to the CBS limit is not required here as demonstrated by Pierloot and coworkers. [START_REF] Phung | Toward highly Accurate Spin State Energetics in First-Row Transition Metal Complexes: A Combined CASPT2/CC Approach[END_REF] The adiabatic energy differences, ∆EH-L, computed using several choices of DFT functionals including the DFT+U and DFT+U+V approaches are shown in Fig. 1 together with the CASPT2/CC set. The PBE+U energies show an almost constant behavior throughout the molecular series [START_REF] Mariano | Biased Spin-State Energetics of Fe(II) Molecular Complexes within Density-Functional Theory and the Linear-Response Hubbard U Correction[END_REF] due to the penalizing Hubbard term being larger for LS and for strong-field ligands. [START_REF] Mariano | Biased Spin-State Energetics of Fe(II) Molecular Complexes within Density-Functional Theory and the Linear-Response Hubbard U Correction[END_REF] A minor improvement of DFT+U+V as compared to DFT+U is found, possibly due to the values of V being too low to correct for the bias towards HS (see Tab. S3). For [Fe(PH3)6] +2 , we were unable to converge the DFT+U+V calculations for HS and thus the corresponding ∆EH-L is omitted. Despite yielding erroneous spin-state energetics for the molecular series reported here, the DFT+U with a linearresponse U approach systematically improves the electronic density, regardless of the spin state, with a reduction of the energy bowing as a function of fractional occupations which is a manifestation of self-interaction error. [START_REF] Mariano | Biased Spin-State Energetics of Fe(II) Molecular Complexes within Density-Functional Theory and the Linear-Response Hubbard U Correction[END_REF][START_REF] Cococcioni | Linear Response Approach to the Calculation of the Effective Interaction Parameters in the LDA+U Method[END_REF][START_REF] Zhao | Global and Local Curvature in Density Functional Theory[END_REF] Song at al. [START_REF] Song | Benchmarks and Reliable DFT Results for Spin Gaps of Small Ligand Fe(II) Complexes[END_REF] discuss the case of spin gaps in Fe(II) octahedrallycoordinated complexes in terms of calculations affected by large errors in the density: the error that arises from the approximation of the exchange-correlation functional is comparable or smaller than the error introduced by the use of the approximate density. [START_REF] Sim | Quantifying Density Errors in DFT[END_REF] In this respect, the densitycorrected DFT approach, discussed in detail in Refs. 52,53, consists in employing approximate density functionals on a density different than the self-consistent one and possibly closer to the exact one. This approach implemented using the Hartree-Fock density has been shown to improve over the self-consistent DFT results the description of many properties such as reaction barriers, [START_REF] Janesko | Hartree-Fock Orbitals Significantly Improve the Reaction Barrier Heights Predicted by Semilocal Density Functionals[END_REF][START_REF] Verma | Increasing the Applicability of DFT I: Non-variational Correlation Corrections from Hartree-Fock DFT for Predicting Transition States[END_REF] weak intermolecular forces, [START_REF] Gordon | Theory for the Forces between Closed-Shell Atoms and Molecules[END_REF] bond energies [START_REF] Kim | Halogen and Chalcogen Binding Dominated by Density-Driven Errors[END_REF] and the binding properties of anions. [START_REF] Kim | Communication: Avoiding Unbound Anions in Density Functional Calculations[END_REF][START_REF] Kim | Ions in solution: Density Corrected Density Functional Theory (DC-DFT)[END_REF] The authors of Ref. 26 showed systematically improved results for spin-state splittings of fours Fe(II) molecular complexes computed using the DFT[HF] approach. Our working hypothesis is that the Hubbard U -corrected density should yield more accurate results compared to a HF density, since the latter only includes exchange correlations while neglecting dynamic and non-dynamical correlations.

We employ a density-corrected DFT by adopting a standard semilocal functional, such as PBE, evaluated on the Hubbard U density. By doing so, we remove the energy bias introduced by the EU term discussed above while keeping an improved electronic density. Practically, we perform self-consistent DFT+U calculations by computing U using linear-response theory and then remove the EU term from the total energy to compute ∆EH-L. This is not, strictly speaking, a non-self consistent, density-corrected DFT calculation as the kinetic term is computed using the DFT+U orbitals. However, our assumption is that the kinetic energy computed using DFT orbitals matches closely the DFT+U case so that this approach can be seen as a non-self consistent density-corrected DFT method. This assumption is motivated by a recent study employing Kohn-Sham inversion schemes to show that the Kohn-Sham kinetic energy and the Hartree-Fock one are negligibly different when computed on the same HF density. [START_REF] Nam | Measuring Density-Driven Errors Using Kohn-Sham Inversion[END_REF] The results of the Hubbard U sc-corrected density employed using a PBE functional are shown in Fig. 1 Thus, we do compute the ∆EH-L using a few DFT functionals in order to establish a comparison for the performance of DFT[U], however, we refer the reader to these articles for a more detailed discussion. GGA functionals overstabilize the LS state, although BLYP does so to a lesser extent compared to PBE and PW91. Excellent results have been reported in the past 6,61 using the optimized OPTX exchange proposed by Handy and Cohen. [START_REF] Handy | Left-right Correlation Energy[END_REF] By adopting global hybrids with increasing admixtures of exact exchange HS is systematically stabilized. PBE0 and B3LYP with a 25% and 20% admixture of exact exchange added respectively to PBE and BLYP functionals [START_REF] Mortensen | Spin Propensities of Octahedral Complexes from Density Functional Theory[END_REF] show an overcorrection and overall overstabilize HS. Among the meta-GGAs, M06-L performs well in comparison to other meta-GGA functionals as already observed in previous studies. [START_REF] Ioannidis | Towards Quantifying the Role of Exact Exchange in Predictions of Transition Metal Complex Properties[END_REF][START_REF] Flöser | Detailed Pair Natural Orbital-Based Coupled Cluster Studies of Spin Crossover Energetics[END_REF][START_REF] Ioannidis | Ligand-Field-Dependent Behavior of Meta-GGA Exchange in Transition-Metal Complex Spin-State Ordering[END_REF][START_REF] Cirera | Assessment of the SCAN Functional for Spin-State Energies in Spin-Crossover Systems[END_REF] Among the studied functionals, the smallest error is found for the meta-hybrid TPSSh (15% of exact exchange) in agreement with several recent studies. [START_REF] Cirera | Theoretical Prediction of Spin-Crossover Temperatures in Ligand-Driven Light-Induced Spin Change Systems[END_REF][START_REF] Cirera | Benchmarking Density Functional Methods for Calculation of State Energies of first Row Spin-Crossover Molecules[END_REF][START_REF] Cirera | Theoretical Modeling of Spin Crossover in Metal-Organic Frameworks: [Fe(pz)2Pt(CN)4] as a Case Study[END_REF] Climbing up the DFT Jacob's ladder other functionals like double-hybrid [START_REF] Wilbraham | Communication: Evaluating non-empirical double hybrid functionals for spin-state energetics in transition-metal complexes[END_REF][START_REF] Alipour | Appraising Spin-State Energetics in Transition Metal Complexes Using Double-Hybrid Models: Accountability of SOS0-PBESCAN0-2(a) as a Promising Paradigm[END_REF] and range-separated hybrid functionals [START_REF] Prokopiou | Spin-State Energetics of Fe Complexes from an Optimally Tuned Range-Separated Hybrid Functional[END_REF] The role of the geometry on the computed ∆EH-L was also investigated. For each of the 11 functionals tested above we compute the ∆EH-L using the geometries optimized with PBE+U, PBE, TPSSh, B3LYP and PBE0. We do this for [Fe(NH3)6] 2+ and [Fe(CO)6] 2+ . The PBE+U geometry is optimized using a procedure that iteratively computes U and then relaxes the geometry with this U until convergence is achieved. Overall, a non-negligible effect of the geometry on the ∆EH-L is found (see Tabs. S4 and S5). The ∆EH-L change at most by 0.08 eV for [Fe(NH3)6] 2+ , and 0.25 eV for [Fe(CO)6] 2+ , if the PBE+U geometry is excluded. When the PBE+U geometry is considered, the largest deviation is 0.18 eV and 0.78 eV for the weak-and strong-field ligand molecules, respectively. Specifically, regardless of the functional used to compute ∆EH-L, the PBE+U geometry always yields the largest decrease in ∆EH-L. This is consistent with the fact that the PBE+U geometry computed using a structurally consistent approach deviates the most from the TPSSh optimized geometry as shown in Tabs. S6 and S7. Because the effect of U is larger for LS [START_REF] Mariano | Biased Spin-State Energetics of Fe(II) Molecular Complexes within Density-Functional Theory and the Linear-Response Hubbard U Correction[END_REF] due to the larger values of EU as compared to HS, any other functional would destabilize LS more than HS. For stronger-field molecules this effect is more pronounced as confirmed by the larger increase in metal-ligand bond distances in the PBE+U LS geometry with respect to PBE (Tabs. S6 and S7).

To understand why the Hubbard U -corrected PBE density yields significantly improved results compared with the PBE density and the HF density, we compare densities from PBE, PBE+U, PBE+U+V (again computed with U sc and V sc), and Hartree-Fock density with that obtained from the relaxed CASPT2 spin-density matrix in BAGEL. [START_REF] Shiozaki | Hyperfine Coupling Constants from Internally Contracted Multireference Perturbation Theory[END_REF] The relaxed spin-density matrix is obtained by adding orbital and configurational relaxation contributions due to dynamical correlation to the unrelaxed density matrix using the CASPT2 Lagrangian. [START_REF] Shiozaki | Hyperfine Coupling Constants from Internally Contracted Multireference Perturbation Theory[END_REF] We study the LS case of [Fe(NH3)6] 2+ , [Fe(NCH)6] 2+ , [Fe(CO)6] 2+ and [Fe(CNH)6] 2+ . In Fig. 2 we plot the difference δρx(r) = ρx(r) -ρCASPT2(r) between the electronic density obtained with x=[PBE, PBE+U, HF], and the CASPT2 relaxed density, for [Fe(CO)6] 2+ . The same qualitative result is obtained for NCH and the corresponding plots are reported in Fig. S1. A limitation of this analysis is that large density differences are found in the spatial region near the ligand for PBE and PBE+U, while negligible ones are found for the HF density, consistent with a CASSCF active space mostly involving states associated with the Fe, and only marginally associated with the ligand, i.e. the two eg ligand states. Thus, the CASPT2-relaxed density resembles closely the Hartree-Fock one near the ligand, which is the reference method used to get the CASSCF wavefunction. Due to this limitation, in what follows we limit our considerations to the spatial region near the iron. When PBE density is used, the δρPBE(r) is negative within the spatial region associated with the eg orbitals and positive within for the t2g one indicating charge depletion and accumulation, respectively, for PBE compared with CASPT2. We note that CASPT2 calculations with the inclusion of bonding metal-ligand eg states and the 4d double shell have been shown to account for non-dynamical correlation. 5,70-72 DFT does not account for non-dynamical correlation, however the self-interaction error arising from the implementation of approximate density-functionals yields an overdelocalization of the charge density along the chemical bonds (and less charge near the atom) and a more diffuse character of the electron cloud around the nuclei, as shown in Fig. 2, that can actually mimic these effects [START_REF] Polo | Some Thoughts about the Stability and Reliability of Commonly Used Exchange-Correlation Functionals -Coverage of Dynamic and Nondynamic Correlation Effects[END_REF][START_REF] Gräfenstein | The impact of the selfinteraction error on the density functional theory description of dissociating radical cations: Ionic and covalent dissociation limits[END_REF][START_REF] Harvey | On the accuracy of density functional theory in transition metal chemistry[END_REF] sometimes called left-right and radial correlations, respectively. As shown in Fig. 2, and as discussed in the literature, these effects are exaggerated in PBE. The PBE+Usc density is qualitatively similar to the PBE density but with a smaller deviation from the reference one within the Fe region. We chose not plot the PBE+U+V density because it yields a plot visually identical to the PBE+U one. The Hartree-Fock density exhibits the opposite behavior near the Fe, i.e. charge density accumulates and depletes with the eg and t2g orbitals, respectively. This is consistent with the lack of explicit non-dynamical correlations and absence of selfinteraction error. Thus, the effect of the Hubbard U term on the density is qualitatively similar to the case found when increasing the exact exchange admixture in global hybrid functionals. [START_REF] Pinter | Conceptual Insights into DFT Spin-State Energetics of Octahedral Transition-Metal Complexes through a Density Difference Analysis[END_REF] In what follows we attempt to quantify the error on the density by considering, again, only the region around the Fe. For each method, we extract the electronic charge density distribution around the iron centre, ρ F e x (r), by employing the Bader scheme. [START_REF] Henkelman | A Fast and Robust Algorithm for Bader Decomposition of Charge Density[END_REF][START_REF] Sanville | Improved Grid-Based Algorithm for Bader Charge Allocation[END_REF][START_REF] Tang | A Grid-Based Bader Analysis Algorithm Without Lattice Bias[END_REF][START_REF] Yu | Accurate and Efficient Algorithm for Bader Charge Integration[END_REF] We evaluate the error on the density, ∆ρx, as a deviation from the reference, ρ F e CASPT2 (r), within the Bader region (see SI for more details), as follows:

∆ρx = ρ F e,Bader x (r) -ρ F e,Bader CAS (r) dr (2) 
The charge density difference, ρ F e,Bader x (r) -ρ F e,Bader CAS (r), is plotted in Fig. 3 for a weak and a strong-field ligand case, i.e. NCH and CO. For each molecule the opposite behavior of HF and PBE density is clearly visible, together with a reduced deviation from the reference density of PBE+Usc, in agreement with Fig. 2 and the above considerations. The ∆ρx computed for the four molecules is plotted in the right panel of Fig. 3. This metric gives a constant error throughout the molecular series for PBE. The error associated with the HF density is smaller compared to PBE, and significantly smaller for weak-field molecules. This result is consistent with the reasonable prediction of ∆EH-L found when employing PBE[HF] for weak-field ligands and with the larger MAE of PBE for both weak-and strong-field ligands (see Tab. 1). The ∆ρx increase for molecules with increasing ligand-field strengths when x=HF and the opposite is found for x=[PBE+U, PBE+U+V]. This behavior is consistent with the DFT+U approach correcting the density more for strong-field ligand molecules, as shown and discussed previously. [START_REF] Mariano | Biased Spin-State Energetics of Fe(II) Molecular Complexes within Density-Functional Theory and the Linear-Response Hubbard U Correction[END_REF] The trend along the four molecules correlates with trends in non-dynamical correlations. In agreement with previous studies, 2,5,70 we find that moving along the spectrochemical series non-dynamical correlation becomes more important. The configuration interaction weight of the dominant electronic configuration computed from the CASSCF calculation decreases from 94% to 89% going from NH3 to CNH (see lower panel of Fig. 3). This analysis is in line with our results showing HF to perform better for molecular complexes with weak-field ligands and lower nondynamical correlation. One would thus expect that HF density would overstabilize HS compared to LS more for strong field molecules, which is indeed the case here (see Fig. 1 and Tab. 1). PBE+U (with U sc) systematically improves the electronic density for both weak and strong-field ligand puted using the PBE functional evaluated on the PBE+U density, for increasing values of U . We only show the results for four complexes for clarity. Higher values of Hubbard U stabilize HS more compared to LS, as expected, and the deviation of ∆EH-L from the reference value (shown as an horizontal line on the right y-axis) systematically decreases as U increases.

The effect of U -corrected density on the spin energetics is qualitatively similar to the effect observed when adopting densities computed with increasing amounts of exact exchange. [START_REF] Pinter | Conceptual Insights into DFT Spin-State Energetics of Octahedral Transition-Metal Complexes through a Density Difference Analysis[END_REF][START_REF] Song | Benchmarks and Reliable DFT Results for Spin Gaps of Small Ligand Fe(II) Complexes[END_REF][START_REF] Radoń | Revisiting the Role of Exact Exchange in DFT Spin-State Energetics of Transition Metal Complexes[END_REF] It must be noted, however, that the change in ∆EH-L reported here is significantly larger than those computed with a density-corrected approach using hybrid functionals. [START_REF] Pinter | Conceptual Insights into DFT Spin-State Energetics of Octahedral Transition-Metal Complexes through a Density Difference Analysis[END_REF][START_REF] Radoń | Revisiting the Role of Exact Exchange in DFT Spin-State Energetics of Transition Metal Complexes[END_REF] To further test the validity of PBE[U], we compute ∆EH-L for a set of seven Fe(II) compounds for which the HS-LS energy differences have been extracted from experimental data. The first five compounds, Fe(phen)2(NCS)2 [START_REF] Gallois | Structural changes associated with the spin transition in bis(isothiocyanato)bis(1,10-phenanthroline)iron: a singlecrystal x-ray investigation[END_REF] The other two are molecular complexes, [Fe(tacn)2] +2 (tacn= 1,4,7triazacyclononane) and [Fe(bpy)3] +2 (bpy=2,2'-bipyridine). The ∆EH-L of [Fe(tacn)2] +2 has been extracted by Radoń 33 using an approach similar to Ref. 66. The spin gap of [Fe(bpy)3] +2 has been extracted by Casida et al. from the light-induced population of the high-spin state. [START_REF] Daku | Assessment of Density Functionals for the High-Spin/Low-Spin Energy Difference in the Low-Spin Iron(II) Tris(2, 2'-bipyridine) Complex[END_REF] For all these complexes we first adopt a molecular model to compute the ∆EH-L. For the five molecular crystals, this is done by carving a structure from the fully optimized geometry using periodic boundary conditions, similarly to the procedure adopted in Ref. 66. The geometrical optimization is performed using Quantum Espresso using the PBE functional together with the semiempirical Grimme's D3 correction [START_REF] Grimme | A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu[END_REF] combined with the Becke-Johnson (BJ) damping scheme. [START_REF] Smith | Revised Damping Parameters for the D3 Dispersion Correction to Density Functional Theory[END_REF] The Hubbard U sc is then computed on the optimized geometry, using periodic boundary conditons. More details are reported in the SI. For [Fe(tacn)2] +2 and [Fe(bpy)3] +2 the structure is optimized using TPSSh with ORCA. The gas phase calculations of ∆EH-L computed using PBE[U ], PBE[HF], TPSSh, and M06-L are reported in Tab. 2 together with the experimentally-extracted reference value. For the five crystals, the TPSSh and M06-L results are taken from Ref. 66. For the rest of the calculations (i.e. PBE[HF] and PBE[U] on the seven molecules and TPSSh and M06-L on the last two) we add the D3 correction (similar to Vela et al. [START_REF] Vela | Thermal Spin Crossover in Fe(ii) and Fe(iii). Accurate Spin State Energetics at the Solid State[END_REF] ) with the BJ damping scheme, except for M06-L for which this is not implemented. We note the use of four significant digits in Tab. 2, compared to three in Tab. 1: the choice in Tab. 1 was made for consistency with the approximation reported in the values taken from the literature. We choose however to add a significant figure in Tab. 2 because the reported values are closer. PBE[U] and M06-L are the best performers with a MAE of 0.12 eV and 0.08 eV, respectively. They both slightly underestimate the ∆EH-L resulting in negative values of the mean signed error (MSE). TPSSh systematically overestimates the adiabatic energy differences with a MAE and MSE of 0.31 eV. PBE[HF] yields the largest error with a MAE of 1.06 eV. Consistent with the study of the six molecular complexes reported above, PBE[HF] systematically underestimate the ∆EH-L for these intermediate-/strong-field molecules resulting in the wrong prediction of the ground state for the whole set under study. The five molecular crystals were also studied using a full periodic approach using PBE[U] within the D3+BJ approximation for the dispersion forces. Compared to the gas phase calculations, the only difference is the molecular versus periodic model because the energy functional and the U computed on the LS and HS periodic geometries (vide supra) are the same. PBE[U] with periodic boundary conditions represents the best performers with a MAE of 0.07 eV, i.e. slightly smaller compared to the same calculation performed on molecular fragments. This results confirms the good performance of PBE[U] established above using ab initio data as reference, and it shows its potential for the effecient calculation of adiabatic energy differences in crystalline complexes.

In conclusion, we show that the PBE[U] approach consisting of adopting the PBE functional evaluated on the PBE+U density, with a self-consistent approach for the calculation of U , represents a reliable and computationally efficient method for the calculation of spin gaps of both molecu-lar complexes and molecular crystals. We show that for the six Fe(II) molecular complexes ranging from weak-(H2O) to strong-field ligands (CNH) the MAE associated with the PBE[U] is the smallest among all the studied DFT approaches, including the TPSSh and M06-L functionals. The MAE is computed using the CASPT2/CC calculations as reference values. The performance of the PBE[U] approach is further validated by the good agreement with CCSD(T) energy differences computed for weak-field molecules and reported in the literature. The PBE[HF] approach that uses the PBE functional on the HF density shows a reasonable agreement with reference values for weak-field molecules but a poor performance for strong-field molecules. The calculations performed on five periodic crystals and two additional molecules for which experimentally extracted values are available confirm all these findings.

Figure 2 .

 2 Figure 2. Density difference plot, δρx(r), for [Fe(CO) 6 ] +2 between x=PBE, PBE+Usc, and Hartree-Fock and the relaxed CASPT2 density; green and blue correspond to positive and negatives values, respectively. The plot shows values between -0.005 e/bohr 3 and 0.005 e/bohr 3 .
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 3 Figure 3. Left figure: charge density difference, ρ F e,Baderx

Fig. 4 Figure 4 .

 44 Figure 4. Adiabatic energy differences, ∆E H-L , computed with PBE[U] as function of Hubbard U . On the right y-axis the CASPT2/CC reference values are shown by horizontal vertical dashes.

  (phen=1,10phenanthroline), Fe(abpt)2(NCS)2, and Fe(abpt)2(NCSe)2 from Ref. 83 with abpt=4-amino-3,5-bis(pyridin-2-yl)-1,2,4triazole, Fe[HB(pz)3]2 84 (pz=pyrazolyl), and FeL2[BF4]2 85 (L=2,6-di(pyrazol-1-yl)pyridine), are molecular crystals for which Vela et al. 66 have extracted the experimental ∆EH-L by removing the (computed) vibrational contribution from the the measured total enthalpy change.

  Adiabatic energy differences, ∆E H-L , computed using varying DFT approaches, together with the reference CASPT2/CC energies computed in this work. The values are also reported in Tab. 1 for clarity.
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  a systematically improved description of ∆EH-L compared with PBE[HF]. Specifically, PBE[HF] yields a reasonable prediction for weak-field ligands but it performs poorly for strong field ligands. Our computed values of PBE[HF] energies are similar to those reported in Ref.26 on the same molecular complexes (i.e. [Fe(H2O)6] +2 , [Fe(NCH)6] +2 , [Fe(NH3)6] +2 and [Fe(CO)6] +2 ), however, our conclusion on the accuracy of DFT[HF] is somehow different owing to the difference in the corresponding reference values. In particular, the DMC values in Ref.26 are systematically lower compared to CASPT2/CC values and the largest deviation is found for the CO and NCH. See Tab. 1 for the whole list of ∆EH-L computed either here or in previous studies using wavefunction methods. We note the reasonably good agreement between our CASPT2/CC reference values and published CCSD(T)[START_REF] Domingo | Spin Crossover in Fe(II) Complexes: An Ab Initio Study of Ligand σ-Donation[END_REF][START_REF] Daku | Accurate Spin-State Energetics of Transition Metal Complexes. 1. CCSD(T), CASPT2, and DFT Study of [M(NCH)6] 2[END_REF] and DLPNO-CCSD(T)[START_REF] Flãűser | Detailed Pair Natural Orbital-Based Coupled Cluster Studies of Spin Crossover Energetics[END_REF] values for weak-field molecules (see Tab. 1). The performance of varying DFT functionals for the calculation of adiabatic energy differences has been reported in the literature by several authors.[START_REF] Wilbraham | Multiconfiguration Pair-Density Functional Theory Predicts Spin-State Ordering in Iron Complexes with the same Accuracy as Complete Active Space Second-Order Perturbation Theory at a Significantly Reduced Computational Cost[END_REF][START_REF] Cirera | Theoretical Prediction of Spin-Crossover Temperatures in Ligand-Driven Light-Induced Spin Change Systems[END_REF][5][START_REF] Swart | Accurate Spin-State Energies for Iron Complexes[END_REF][START_REF] Cirera | Benchmarking Density Functional Methods for Calculation of State Energies of first Row Spin-Crossover Molecules[END_REF][START_REF] Swart | Validation of Exchange-Correlation Functionals for Spin States of Iron Complexes[END_REF][START_REF] Mortensen | Spin Propensities of Octahedral Complexes from Density Functional Theory[END_REF][START_REF] Ioannidis | Towards Quantifying the Role of Exact Exchange in Predictions of Transition Metal Complex Properties[END_REF][START_REF] Pinter | Conceptual Insights into DFT Spin-State Energetics of Octahedral Transition-Metal Complexes through a Density Difference Analysis[END_REF][START_REF] Prokopiou | Spin-State Energetics of Fe Complexes from an Optimally Tuned Range-Separated Hybrid Functional[END_REF][START_REF] Song | Benchmarks and Reliable DFT Results for Spin Gaps of Small Ligand Fe(II) Complexes[END_REF][START_REF] Radoń | Benchmarking Quantum Chemistry Methods for Spin-State Energetics of Iron Complexes against Quantitative Experimental Data[END_REF][START_REF] Flöser | Detailed Pair Natural Orbital-Based Coupled Cluster Studies of Spin Crossover Energetics[END_REF][START_REF] Droghetti | Assessment of Density Functional Theory for Iron(II) Molecules Across the Spin-Crossover Transition[END_REF][START_REF] Pierloot | Relative Energy of the High-( 5 T2g) and Low-( 1 A1g) Spin States of the Ferrous Complexes [Fe(L)(NHS4)]: CASPT2 Versus Density Functional Theory[END_REF][START_REF] Ioannidis | Ligand-Field-Dependent Behavior of Meta-GGA Exchange in Transition-Metal Complex Spin-State Ordering[END_REF][START_REF] Wilbraham | Communication: Evaluating non-empirical double hybrid functionals for spin-state energetics in transition-metal complexes[END_REF][START_REF] Alipour | Appraising Spin-State Energetics in Transition Metal Complexes Using Double-Hybrid Models: Accountability of SOS0-PBESCAN0-2(a) as a Promising Paradigm[END_REF][START_REF] Cirera | Theoretical Modeling of Spin Crossover in Metal-Organic Frameworks: [Fe(pz)2Pt(CN)4] as a Case Study[END_REF][START_REF] Vela | Thermal Spin Crossover in Fe(ii) and Fe(iii). Accurate Spin State Energetics at the Solid State[END_REF][START_REF] Cirera | Assessment of the SCAN Functional for Spin-State Energies in Spin-Crossover Systems[END_REF] 

and are named PBE[U] henceforth. In the same figure we also show the PBE[HF] results, i.e. using the Hartree-Fock density. We stress that the PBE+U and the PBE values are slightly different compared to those reported in our previous work 27 because of the different geometries employed and the atomic basis used for the projections. The PBE[U] results are in excellent agreement with the reference CASPT2/CC set and provide

Table 2 .

 2 Adiabatic energy difference (eV), mean signed error (MSE) and mean absolute error (MAE) (in eV) computed with different DFT methods. The reference values are extracted from experimental (exp.) data. a : Ref. 66; b : Ref. 80; c : Ref. 33. The reference value used to calculate MSE and MAE for [Fe(bpy) 3 ] 2+ is 0.589 eV.

	Complex	∆EH-L / Periodic exp. PBE[Usc]	exp.	∆EH-L / Gas phase PBE[Usc] TPSSh M06-L PBE[HF]
	Fe(phen)2(NCS)2	0.155 a	-0.065	0.093 a	-0.117	0.372 a	-0.151 a	-0.887
	Fe(abpt)2(NCS)2	0.137 a	0.086	0.156 a	-0.032	0.433 a	0.121 a	-1.006
	Fe(abpt)2(NCSe)2 0.150 a	0.159	0.184 a	-0.009	0.491 a	0.115 a	-0.950
	Fe[HB(pz)3]2	0.223 a	0.179	0.363 a	0.251	0.722 a	0.428 a	-0.757
	FeL2[BF4]2	0.198 a	0.196	0.208 a	0.191	0.574 a	0.150 a	-0.671
	[Fe(tacn)2] 2+			0.165 c	0.166	0.443	0.171	-0.727
	[Fe(bpy)3] 2+			0.434-0.744 b	0.466	0.858	0.513	-0.626
	MSE		-0.062		-0.120	0.305	-0.059	-1.055
	MAE		0.065		0.121	0.305	0.079	1.055
	molecules thus yielding an improved description of the spin-				
	state energetics throughout the spectrochemical This				
	is further shown in							
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