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Prethermalization and wave condensation in a nonlinear disordered Floquet system

Periodically-driven quantum systems make it possible to reach stationary states with new emerging properties. However, this process is notoriously dicult in the presence of interactions because continuous energy exchanges generally boil the system to an innite temperature featureless state.

Here, we describe how to reach nontrivial states in a periodically-kicked Gross-Pitaevskii disordered system. One ingredient is crucial: both disorder and kick strengths should be weak enough to induce suciently narrow and well-separated Floquet bands. In this case, inter-band heating processes are strongly suppressed and the system can reach an exponentially long-lived prethermal plateau described by the Rayleigh-Jeans distribution. Saliently, the system can even undergo a wave condensation process when its initial state has a suciently low total quasi-energy. These predictions could be tested in nonlinear optical experiments or with ultracold atoms.

Introduction. The nonequilibrium dynamics of periodically driven quantum systems has been under intensive scrutiny over the past few years [START_REF] Mikael C Rechtsman | Photonic oquet topological insulators[END_REF]. It has been shown that interesting stationary states could emerge after appropriate Floquet engineering [619]. However, the interplay between interactions and temporal driving generally induces heating processes which force the system into a featureless state of innite temperature [2022].

Dierent strategies have been discussed to prevent this detrimental heating, e.g. many-body localization [23 28], or coupling to a bath [START_REF] Karthik | Controlled population of oquet-bloch states via coupling to bose and fermi baths[END_REF][START_REF] Iadecola | Occupation of topological oquet bands in open systems[END_REF]. An alternate route is to use high-frequency driving to maintain the system in a long-lived metastable state before heating to innite temperature takes over. Known as prethermalization, this strategy works for both quantum [8,[START_REF] Bukov | Prethermal oquet steady states and instabilities in the periodically driven, weakly interacting bose-hubbard model[END_REF]3338] and classical systems [3942].

In this Letter, we consider a variant of the quantum kicked rotor (QKR), a paradigmatic model of quantum chaos [START_REF] Haake | Quantum Signatures of Chaos[END_REF][START_REF] Felix | Simple models of quantum chaos: Spectrum and eigenfunctions[END_REF], in the presence of a weak nonlinear Gross-Pitaevskii (GP) interaction term. In the absence of interactions, the QKR shows dynamical localization [START_REF] Casati | Stochastic behavior of a quantum pendulum under a periodic perturbation[END_REF], a phenomenon analogous to Anderson localization [START_REF]50 Years of Anderson Localization[END_REF] but in momentum (p) space [START_REF] Grempel | Quantum dynamics of a nonintegrable system[END_REF] which has been observed in a number of cold atom experiments [4852]. The presence of GP interaction terms challenges dynamical localization: transport is no longer frozen and anomalous diusion rules the spreading of wavepackets [5,[START_REF] Dl Shepelyansky | Delocalization of quantum chaos by weak nonlinearity[END_REF][START_REF] Gligori¢ | Interactions destroy dynamical localization with strong and weak chaos[END_REF][START_REF] Lellouch | Dynamics of the mean-eld-interacting quantum kicked rotor[END_REF].

Analogous observations have been made in disordered nonlinear Schrödinger chains, see e.g. [5762].

On the other hand, it is known that the propagation of a random initial wave in a nonlinear medium can give rise to Rayleigh-Jeans (RJ) thermalization and wave condensation phenomena as observed in nonlinear optics [7,[START_REF] Sun | Observation of the kinetic condensation of classical waves[END_REF][START_REF] Aschieri | Condensation and thermalization of classical optical waves in a waveguide[END_REF] and explained by wave turbulence theory [1,[START_REF] Nazarenko | Wave turbulence[END_REF][START_REF] Nazarenko | Wave turbulence[END_REF]. A similar situation happens when an initial plane wave propagates in a disordered nonlinear medium, disorder inducing the required wave randomization [4]. This conguration is particularly interesting because (i) it is the natural setting to observe the coherent backscattering (CBS) [7073] and coherent forward scattering (CFS) eects [7480] when interactions are absent and (ii) it allows to control the initial energy of the wave and thus the route to wave condensation in nonlinear systems.

In this Letter, we study RJ thermalization and wave condensation phenomena for the nonlinear QKR and establish when they happen in this Floquet system: the quasi-energies of the system should form suciently narrow bands as compared to their separation. This happens when the kick and disorder strengths are smaller than a characteristic threshold. In this case, heating processes associated to inter-band transitions are strongly suppressed and the system can reach an exponentially long-lived prethermal plateau where RJ thermalization takes place. Moreover, wave condensation at the bottom of the fundamental Floquet band is observed. Ultimately, at exponentially large times, the system heats up to the innite-temperature state.

Model. Our model features the nonlinear QKR with a GP interaction term in p-space [START_REF] Dl Shepelyansky | Delocalization of quantum chaos by weak nonlinearity[END_REF]:

i∂ t ψ(p, t) = H(t)ψ(p, t) + gN a |ψ(p, t)| 2 ψ(p, t) (1) 
where H(t) = p2 /2 -K cos θ j δ(t -j) ( = 1, moment of inertia I = 1). Here, θ ∈ [-π, π) is the rotor angle, p = -i∂ θ the momentum, K the kick strength, g the nonlinear strength, and N a the number of atoms. Because ψ(θ + 2π, t) = ψ(θ, t), we have Nonlinearity quickly erases these CBS-CFS interference effects. For suciently small W and K, W + K < ∼ π/2, the system reaches a prethermal equilibrium when t > τeq, with a quasi-stationnary neq(θ). Ultimately, after a time τ boil which can be exponentially large, Floquet heating brings the system to an innite temperature state with uniform n∞(θ). 

ψ - n+1 (p) = e -iα(p) e -igN |ψ + n (p)| 2 ψ + n (p), (2) 
ψ + n+1 (θ) = e iK cos θ ψ - n+1 (θ). (3) 
Here, we have replaced the quasi-random phases induced by the kinetic term p2 /2 by true random phases α(p). Usually, they are taken from a uniform distribution within [-π, π] [START_REF] Grempel | Quantum dynamics of a nonintegrable system[END_REF][START_REF] Birkho | Proof of the ergodic theorem[END_REF]. In our study, we crucially consider smaller intervals [-W, W ], where W ≤ π is the disorder strength. The motivation for choosing local interactions in p is now clear: First, it transposes to p-space the usual case where disorder and interactions are local in position (see e.g. [4]). Second, the associated quantum map Eq.( 3) allows to evolve systems of large sizes N ∼ 10 5 up to large times t ∼ 10 6 at low numerical cost. Without interaction, localization occurs in p-space and CBS and CFS take place in θ-space [START_REF] Lemarié | Coherent backscattering and forwardscattering peaks in the quantum kicked rotor[END_REF]. Starting from an initial rotor angle θ 0 , ψ + 0 (p) = Following the analogy with thermalization and condensation predicted in disordered nonlinear systems [4], we consider the eect of interactions on these peaks. Hereafter, we set the GP interaction and disorder strengths to g = 0.1 and W = 0.4 respectively and we study the role of the kick strength K and initial rotor angle θ 0 on the dynamics of the system. Depending on K and θ 0 , we nd 3 dierent dynamical behaviors: (i) the system quickly adopts a uniform θ-distribution n ∞ (θ) = 1 ("innite temperature" featureless state); (ii) the system transits through a long-lived metastable state characterized by a nontrivial θ-distribution n eq (θ) centered at θ = 0 and related to the thermal RJ distribution [START_REF] Baudin | Classical rayleigh-jeans condensation of light waves: Observation and thermody-namic characterization[END_REF] before eventually going to n ∞ (θ); and (iii) the system enters a condensation regime and develops a peak structure at θ = 0 on top of n eq (θ) before, again, eventually going to n ∞ (θ). Crucially, the life time of the metastable state can be made exponentially large, allowing for the observation of thermalization or condensation.

Characteristic time scales. The dierent characteristic time scales are illustrated in Fig. 1. First, the CBS and CFS peaks quickly decay over a characteristic time τ g ∝ g -1 (see Supplementary Material (SM) and [5,6]), signaling that the GP interaction term is indeed wiping out disorder-induced interference eects.

Meanwhile, the GP term redistributes the energy over the dierent Floquet modes and the system reaches a socalled prethermalization plateau after some equilibration time τ eq ∼ g -2 (see SM and [4]) where it stabilizes in a metastable state with distribution n eq (θ). The system gets eventually boiled, around time τ boil , to the innite temperature state n ∞ (θ) = 1. The lower panel of Fig. 1 clearly shows the equilibration, metastable and heating regimes by plotting the variance σ 2 θ (t) = θ 2 -θ 2 of n(θ, t) as a function of time (σ 2 θ (t → ∞) = π 2 /3 for n ∞ (θ) = 1). Hereafter, we focus on the parameter sector τ g τ H and τ eq τ B , τ g . In this case, interference eects are negligible and multiple scattering randomizes the wave much faster than the system equilibrates.

Floquet-Boltzmann kinetic equation. The noninteracting system is characterized by the Floquet .

(𝑎𝑎) (𝑏𝑏)
Hamiltonian H F ≡ H(t) -i∂ t . Its linear modes |φ α (t) solve H F |φ α (t) = ε α |φ α (t) , ε α being called a quasi- energy. H(t)
and |φ α (t) have the same time-periodicity and ε α is dened modulo the driving frequency Ω = 2π

here.

The support of the quasi-energy spectrum is

ε α ∈ [-E D , E D ] with E D = K + W for E D ≤ π.
Expanding the state of the interacting system over the Floquet modes, 

|ψ(t) = 1 √ N N α=1 c α (t)|φ α (t) ,
f ε (t) ≡ 1 N N α=1 δ(ε -ε α )|c α (t)| 2 /ν(ε), where ν(ε) = 1 N α δ(ε -ε α ) is the density of states of the linear kicked rotor. It satises π -π dε ν(ε)f ε (t) = 1 since α |c α (t)| 2 = N .
In the limit τ g τ H and τ eq τ B , the θ-distribution at time t ∈ N reads [4]:

n(θ, t) ≈ π -π dε A ε (θ)f ε (t), (4) 
where

A ε (θ) = 1 N α δ(ε -ε α )|φ α (θ, 0)| 2 is the spectral function.
For time-independent systems, a kinetic equation for f ε (t) can be derived under certain approximations [1,[START_REF] Wang | Wave-turbulence origin of the instability of anderson localization against many-body interactions[END_REF][START_REF] Nazarenko | Wave turbulence[END_REF],

∂ t f ε = 4πg 2 dε 2 dε 3 dε 4 R(ε, ε 2 , ε 3 , ε 4 ) ν(ε 2 )ν(ε 3 )ν(ε 4 ) [f ε f ε3 f ε4 + f ε2 f ε3 f ε4 -f ε f ε2 f ε3 -f ε f ε2 f ε4 ]. (5)
The 4-wave mixing collision kernel R imposes energy conservation for each energy-exchange process (ε + ε 2 = ε 3 + ε 4 ). We can generalize this description to Floquet systems by expanding the time-periodic Floquet modes in Fourier series φ (m) [ [START_REF] Bilitewski | Scattering theory for oquet-bloch states[END_REF][START_REF] Genske | Floquetboltzmann equation for periodically driven fermi systems[END_REF], thereby incorporating the so-called Umklapp processes [START_REF] Kittel | Introduction to solid state physics[END_REF] describing inter-band transitions:

α (p) = 1 0 dt φ α (p, t) exp(-2iπmt) (𝑎𝑎) (𝑏𝑏)
R = m∈Z R (m) (ε, ε 2 , ε 3 , ε 4 )δ(ε+ε 2 -ε 3 -ε 4 +2πm), (6) 
see SM and [2,4]. The kernels R (m) relate to an overlap between four Fourier Floquet mode amplitudes.

Prethermalization. Following this approximate approach, the collision kernel (6) predicts a suppression of heating when Umklapp processes m = 0 are forbidden. This condition is met when the Floquet bandwidth

2E D is suciently narrow, E D = K + W < π/2.
In this case, we eectively recover the kinetic equation ( 5) of time-independent systems and the total linear contribution of the quasi-energy per mode of the system [7], is conserved. An equilibrium distribution is then obtained by canceling the bracketed term in Eq. ( 5). One nds the RJ distribution

E tot = π -π dε ε ν(ε) f ε (t), see
f RJ (ε) = T ε-µ [1, 2, 4]
where T and µ play respectively the role of temperature and chemical potential. Note τ eq t τ boil . These observations conrm the Floquet-Boltzman approach. However, at times t > ∼ τ boil , we observe heating: f ε (t), n(θ, t), E tot and σ 2 θ vary rapidly with time (see Figs. 1,4 and SM). Note that f ε (t) can still be tted by a RJ distribution, with time-dependent T (t) → +∞, µ(t) → -∞ and T (t)/µ(t) → -1 when t → ∞ (see SM). While Eqs. ( 5)-( 6 Phase diagram. We check the Onsager-Penrose criterion for condensation [10,11] by computing the time coarse-grained 1-body density matrix given by θ|ρ (1) 

that µ ≤ -E D since f RJ (ε) > 0.
(t)|θ = 1 ∆t + 1 t+∆t t =t ψ * (θ , t )ψ(θ, t ) (7) 
with ∆t = 30. This coarse-graining emulates a mixed state from the pure state ψ(θ, t) [11,[START_REF] Góral | Thermodynamics of an interacting trapped bose-einstein gas in the classical eld approximation[END_REF]. Writing ρ (1) (t) = n P n (t)|Φ n (t) Φ n (t)|, normalization implies n P n (t) = 1 and P n represents the occupation probability of the mode |Φ n . Sorting the probabilities by descending order P 1 ≥ P 2 ≥ P 3 ≥ •••, a 'macroscopic' probability P 1 P 2 signals condensation of the system into the eigenmode |Φ 1 . In the left panel of Fig. 4, we plot the population gap ∆P = P 1 -P 2 obtained at t = 10 4 in the (K, θ 0 ) plane. We see that condensation occurs below the threshold E D = K + W = π/2 (i.e. K below the black dashed line in Fig. 4a) where the approximate Eqs. ( 5)-( 6) predict a suppression of heating. Furthermore, as mentioned above, condensation indeed occurs (𝑎𝑎) (𝒃𝒃) for θ 0 below the θ c 0 (K) critical line (red dots in Fig. 4a).

Saliently, the duration of this prethermal plateau can be made exponentially large, as shown in Fig. 4b where we plot τ boil (K, θ 0 ) (see SM). This key observation should allow for an observation of RJ prethermalization and wave condensation in experiments with Floquet systems.

Note that we have veried that the measured quantities did not show signicant nite-size eects (see SM).

Conclusion.

We have studied the nonequilibrium dynamics of a disordered Floquet system subjected to a nonlinear Gross-Pitaevskii interaction. When Floquet quasi-energy bands are suciently narrow and well separated, inter-band transitions are forbidden and heating is strongly suppressed. This condition generalizes to disordered Floquet system the fast-driving condition for clean Floquet systems [8,9]. It allows the system to reach a prethermal plateau where it stays for an exponentiallylong time before heating processes ultimately boil it to an innite-temperature featureless state. In the prethermal plateau, low-energy physics takes place in the form of Rayleigh-Jeans prethermalization, and wave condensation at low quasi-energies.

Our predictions are based on a variant of the kicked rotor already realized with ultracold atoms and could therefore be tested in such experiments. It was argued that GP interaction in p is a good description of the spatial interaction at weak nonlinearities [START_REF] Gligori¢ | Interactions destroy dynamical localization with strong and weak chaos[END_REF][START_REF] Lellouch | Dynamics of the mean-eld-interacting quantum kicked rotor[END_REF]. Narrow Floquet bands can be experimentally achieved by working in the vicinity of quantum resonances [START_REF] Izrailev | Quantum resonance for a rotator in a nonlinear periodic eld[END_REF][START_REF] Wimberger | Quantum resonances and decoherence for δ-kicked atoms[END_REF]. Very recently, the many-body kicked rotor has been the subject of experimental [START_REF] Cao | Prethermal dynamical localization and the emergence of chaos in a kicked interacting quantum gas[END_REF] and theoretical [START_REF] Vuatelet | Eective thermalization of a many-body dynamically localized bose gas[END_REF] studies on prethermalization. Our study proposes new regimes and dierent characterizations of this physics. The Gross-Pitaevskii equation also appears in nonlinear optics.

Experiments with disordered photonic lattices [98100] could also address the prethermalization properties we have discussed. Future work could address superuid or turbulent transport in such Floquet systems [START_REF] Albert | Breakdown of the superuidity of a matter wave in a random environment[END_REF][START_REF] Paul | Anderson localization of a weakly interacting one-dimensional bose gas[END_REF].

φ α (p, t) = φ α (p, t + 1) [H(t) -i∂ t ]φ α (p, t) = ε α φ α (p, t) p∈Z φ * α (p, t)φ β (p, t) = δ αβ (S1)
with a continuum of quasi-energies ε α ∈ [-π, π]. In our numerical simulations, we have however considered a nite-size momentum basis set restricted to N states, -N/2 ≤ p ≤ N/2 -1, with periodic boundary conditions. The Hilbert space of the system having dimension N , we also need to consider N linear Floquet modes φ α (p, t) (1 ≤ α ≤ N ) and expand ψ(p, t) over these N Floquet modes

ψ(p, t) = 1 √ N N α=1 c α (t) φ α (p, t), (S2) 
with the updated nomalisation conditions

N/2-1 p=-N/2 φ * α (p, t)φ β (p, t) = δ αβ N/2-1 p=-N/2 |ψ ( p, t)| 2 = 1. (S3)
In turn, these two conditions imply the normalisation condition N α=1 |c α | 2 = N . From the nonlinear Schrödinger equation (1) of the manuscript, it is easy to see that the modal coecients c α satisfy the following equation of motion

i dc α dt = ε α c α + g βγδ W αβγδ c * β c γ c δ , (S4) 
featuring the 4-point Floquet modes correlator

W αβγδ (t) = 1 N p φ * α (p, t)φ * β (p, t)φ γ (p, t)φ δ (p, t). ( S5 
)
At this stage, Eqs.(S4)-(S5) are exactly Eqs.(148-149) in [S1] and Eqs. (6)(7) in [S2] with the salient dierence that our correlator is time-dependent and, most importantly, time-periodic W αβγδ (t + 1) = W αβγδ (t) since the Floquet modes themselves are time-periodic. We thus expand W in Fourier series:

W αβγδ (t) = m∈Z W (m) αβγδ e -2iπmt . (S6)
Now, changing variables c α → cα = c α exp(iε α t) and dropping the tilde to ease the notation, Eq.(S4) rewrites

i dc α dt = g mβγδ e i(εα+ε β -εγ -ε δ +2πm)t W (m) αβγδ c * β c γ c δ . ( S7 
)
At this point, one can follow the usual steps of the derivation of the irreversible kinetic equation by using the random phase approximation developed in [S3] and by taking the continuum limit (large N assumption) as detailed in pages 51-57 and Appendix A7 of [S1] and in [S2]. By doing so in our case, the discrete sums become integrals over quasi-energies between -π and π and introduce products of the disorder-averaged density of states per unit volume ν( ) = 1 N α δ(ε -ε α ). After tedious calculations, one gets Eqs. (4)(5) in the main text with R (m) = |W (m) | 2 . Do note that the large-N limits of sums are obtained through:

1 N θ (• • •) → π -π dθ 2π (• • •) 1 N α (• • •) → π -π dε ν(ε) (• • •) (S8)
A remark is in order here. In the usual wave turbulence (WT) approach [S1], the free Hamiltonian does not generate any randomness in the evolution of the system: One starts with an initial state with static random phases and uses averages over these initial random phases to derive the kinetic equation. Here, we instead start with a perfectly phase-coherent initial state and it is the subsequent dynamics generated by the disordered Floquet evolution operator that brings in phase randomness. In this case, as argued in [S4] for weakly nonlinear spatially disordered systems, one has just to replace the averages over the static initial random phases in the WT approach by disorder conguration averages (the number of disorder congurations used in our numerical simulations is denoted by N d ).

This prescription is at least valid as long as the Boltzmann time τ B associated to disorder is much smaller that the equilibration time τ eq associated to the nonlinear couplings. In other words, disorder quickly isotropizes the system before nonlinearity starts to signicantly modify the energy distribution.

It is crucial to note that the Floquet kinetic equation does conserve particle number but does not conserve necessarily the total initial quasi-energy. Indeed, the δ(ε α + ε β -ε γ -ε δ + 2πm) term coming along with each collision kernel R (m) shows that Floquet systems exhibit collision processes satisfying energy conservation up to nonzero multiples of the driving frequency Ω = 2π (in Eq. ( 1) the kicking period is T = 1) in addition to the strictly resonant energy transfer term m = 0. For periodically-driven systems, these m = 0 processes are the equivalent of Umklapp scattering processes in space-periodic systems, where "colliding" wavevectors are folded back to the rst Brillouin zone through appropriate reciprocal lattice vector translations. Note that these Umklapp processes heat and boil the system. In this approximate description, it is only when these m = 0 processes are forbidden (i.e. when E D < π/2) that the total energy of the system is conserved, in which case the system can reach and stay in the Rayleigh-Jeans (RJ) thermal equilibrium and, if appropriate conditions are met, undergo the classical wave condensation scenario (see below).

However, the heating observed at long times t τ boil for E D < π/2 goes beyond this Floquet kinetic description.

SCALING OF THE CBS AND CFS DECAY TIME AND EQUILIBRATION TIME WITH INTERACTION STRENGTH

As seen in Fig. 1 of the main text, when nonlinearity is switched on, the CBS and CFS peaks quickly die o over some characteristic decay time τ g for the chosen system parameters. Meanwhile, the nonlinearity term also redistributes the energy over dierent Floquet modes and the system reaches either the RJ distribution or wave condensation after a larger time scale τ eq . Then the system may stay at the prethermal plateau until τ boil . For our system with an interaction term local in p, it was argued that the nonlinear time scale τ g corresponds to the interaction energy stored in a localization volume, hence τ g ∝ g -1 [S5] (see however [S6] where τ g ∝ g -2 is predicted at very small g), and the equilibration time τ eq ∝ g -2 [S4]. In Fig. S1 left panel, we characterize τ eq by the time at which the θ-variance σ 2 θ (t) reaches a given threshold value (indicated by the horizontal black line in Fig. S1) between its initial value and its quasi-stationary value in the prethermal plateau. On the other hand, we dene τ g by tting the early time dynamics of the CBS and CFS peaks by an exponential decay n(±θ 0 , t) ∼ n(±θ 0 , t = 0) exp(-t/τ g ).

In Fig. S2, we have plotted the extracted inverse decay rates τ -1 g and τ -1 eq as a function of g and g 2 . As one can see, the agreement with the conjectured scaling relations, τ g ∝ g -1 and τ eq ∝ g -2 , is pretty good. Note however that the data presented in this paper correspond to values of the nonlinear interaction strength signicantly larger than those considered in [S6]. Data (not shown) for τ g with g ∈ [10 -3 , 10 -2 ] seem compatible with the prediction τ g ∝ g -2 of [S6]. On the other hand, Fig. S1 right panel shows that the curves of σ 2 θ (t) for dierent values of g all collapse onto each other in the transition regime between the initial stage and the prethermal plateau when plotted as a function of tg 2 . This again validates τ eq ∝ g -2 .

10 0 10 1 10 2 

VARIATION OF THE TOTAL QUASI-ENERGY WITH INITIAL POSITION

The linear contribution to the total quasi-energy per mode of the system, E tot = π -π dε ε ν(ε) f ε (t), see [S7], depends on the initial rotor angle θ 0 through the initial state ψ(p, t = 0) = 1 √ N exp(-ipθ 0 ). The other system parameters being xed, low values of θ 0 correspond to low quasi-energies E tot . Indeed, for our system, θ corresponds to wave-vector k in spatially disordered systems. It is worth mentioning that E tot is symmetric in θ 0 because the kicked rotor Hamiltonian is symmetric in θ.

In the right panel of Fig. S3, we plot E tot as a function of θ 0 at 3 dierent times (t = 0, t = 10 3 and t = 10 4 ) and for 2 dierent kick strengths (K = 1 and K = 1.3). The interaction and disorder strengths are xed at g = 0.1, W = 0.4. For K = 1.3, the Umklapp processes m = 0 are present (E D = K + W ≥ π/2) and E tot increases fast with time. On the other hand, the Umklapp processes m = 0 are suppressed for K = 1 (E D = K + W < π/2) and E tot is almost conserved and independent of time in the range t ∈ [0, 10 4 ]. Note that E tot at t = 0 reads 

E tot (θ 0 , t = 0) = π -π dε ε A ε (θ 0 ) (S10)
(t = 0) = φ * α (θ 0 , t = 0) and ν(ε)f ε (t = 0) = 1 N N α=1 δ(ε -ε α )|c α (t = 0)| 2 = 1 N N α=1 δ(ε -ε α )|φ α (θ 0 , t = 0)| 2 is the spectral function A ε (θ 0 ).
Moreover, we observe that the quasi-energy distribution f ε (t) can be tted by a Rayleigh-Jeans distribution not only in the prethermal regime but also in the heating regime t > ∼ τ boil . In the left and middle panels of Fig. S3, we show the extracted temperature T (t) and chemical potential µ(t) at dierent times for the same values of K as in the right panel. Both T and µ stay essentially constant if the system resides in the prethermal plateau τ eq t τ boil (case K = 1 in Fig. S3 where E D = K + W < π/2). On the contrary, in the heating regime (K = 1.3 in Fig. S3) T (t) → +∞ and µ(t) → -∞, while T (t)/µ(t) → -1 when t → ∞. In other words, the system reaches an innite temperature state with at distributions f ε (t) and n(θ, t) when t τ boil .

DETERMINATION OF τ boil FROM THE DYNAMICS OF THE SPATIAL DISTRIBUTION

As discussed in the manuscript, after a time scale τ eq , the system reaches a quasi-stationary state well described by a Rayleigh-Jeans thermal distribution or showing signatures of wave condensation, up to a characteristic time τ boil after which the system heats up rapidly. Here we demonstrate that the duration of the prethermal plateau (τ boil -τ eq ) scales exponentially with the parameter K. To extract τ boil , we plot σ 2 θ (t) and its logarithmic derivative as a function of log 10 t, see Figure S4. There are two clear peaks in the logarithmic derivative curve: The rst one corresponds to τ eq (see Fig. S1 for a more precise numerical determination) while the second one gives τ boil . One can then study the dependence of (τ boil -τ eq ) on the dierent parameters of the system, in particular K.

The upper panels of Fig. S5 show that all curves σ 2 θ (t) obtained for dierent values of K almost collapse onto each other up to a timescale ∼ 10 2 . This agrees with the expectation that τ eq ∼ g -2 (g = 0.1 in the plot) does not strongly depend on K. The lower panels of Fig. S5 show τ boil as a function of K. For θ 0 = 1.09 (lower left panel), we observe that τ boil scales exponentially with K, validating a very long prethermal plateau in our system (τ boil -τ eq ) ≈ τ boil when E D = K +W < ∼ π/2. Moreover, when θ 0 is suciently small (as shown in the lower right panel where θ 0 = 0.01), τ boil decreases an order of magnitude faster with K after the heating threshold E D = π/2 given by the Floquet kinetic equation, Eqs ( 5)-( 6) in the main text, is crossed. This is a clear signature of the heating eect generated by the Umklapp terms m = 0.

The prethermal properties that we observe in our disordered Floquet system can be seen as a generalization of those of clean Floquet systems in the fast-driving regime [S8, S9]. In fact, changing the driving frequency would amount in our case to multiplying W and g by a certain factor, which is also equivalent to changing the value of K. ∼ 1024 collapse onto each other, implying that τ boil does not suer from signicant system size eects. The system parameters are K = 1, W = 0.4, θ0 = 0.32 and g = 0.1. Fig. S6, left panel. We see that ∆P remains almost constant as the system size N increases, at least up to N = 10 5 . This suggests that wave condensation survives in the thermodynamic limit N → ∞.

We have also studied the system size dependence of τ boil . As shown in the right panel of Fig. S6, the curves for the θ-variance σ 2 θ (t) as a function of time for increasing system size collapse onto each other for N > ∼ 1024 which indicates that τ boil does not suer from strong nite size eects.

Figure 1 .

 1 Figure 1. Nonequilibrium dynamics of the nonlinear disordered Floquet system (1). (a) θ-distribution n(θ, t) obtained when interaction is switched on after dynamical localization, signalled by the CBS-CFS peaks at ±θ0, is achieved (see text).

  (b) The variance σ 2 θ (t) of n(θ, t) clearly shows the 3 dynamical regimes. The parameters are K = 1.0, W = 0.4, g = 0.1, θ0 = 1.05, N = 1024 and N d = 1200. ψ(θ, t) = p ψ(p, t) e ipθ where momentum states are labeled by integers p ∈ Z. Our normalization reads π -π |ψ(θ, t)| 2 dθ/(2π) = p |ψ(p, t)| 2 = 1. In our numerical simulations, we have considered a nite-size momentum basis set to |p| ≤ N/2 with periodic boundary conditions in p-space, and an atomic density equal to unity, i.e. N a = N . Dening ψ ± n (•) = ψ(•, t = n±0 + ), the Floquet dynamics associated to Eq. (1) is obtained by iterating the nonlinear map

1 √N

 1 exp(-ipθ 0 ), a CBS peak appears at -θ 0 on top of a diusive background over the Boltzmann transport time τ B . The CFS peak emerges at θ 0 when dynamical localization sets in, i.e. after the Heisenberg time τ H . Denoting disorder average by (• • •) and the number of disorder congurations considered by N d , the angle distribution n(θ, t) = |ψ(θ, t)| 2 becomes stationary at times t τ H and consists of twin CBS and CFS peaks over a diusive background.

Figure 2 .

 2 Figure 2. Prethermal state obtained at t = 10 4 for large θ0 = 1.05 and K + W < π/2. (a) Quasi-energy distribution fS(ε) (upper blue dots) and density of states ν(ε) (lower green dots). The Rayleigh-Jeans distribution fRJ (ε) with T = 1.17 and µ = -1.58 (red dashed line) ts very well the data. Inset: time dependence of T and µ. (b) θ-distribution nS(θ) (blue dotted curve) and neq(θ) Eq. (4) (red dashed curve) corresponding to fRJ (ε). The parameters are K = 1.0, W = 0.4, g = 0.1, N = 1024 and N d = 1200.

  the term gN |ψ(p)| 2 in Eq. (3) redistributes populations among the Floquet modes. The central quantity is therefore the quasi-energy distribution

Figure 3 .

 3 Figure 3. Wave condensed state obtained at t = 10 4 for small θ0 = 0.32 and K + W < π/2. (a) fS(ε) (upper blue dots) is compared to the best t fRJ (ε) (red dashed line) obtained at temperature T = 0.23 and computed at the maximal value µ = -ED. fRJ (ε) fails to reproduce the data at low ε. Lower green dots represent ν(ε). Inset: time dependence of the population gap ∆P of the 1-body density matrix. (b) nS(θ) (blue dotted curve) is the sum of the Rayleigh-Jeans component neq(θ) (red dashed curve) and a condensed component nc(θ) (orange curve). Its bimodal structure is typical of condensation (see text). The parameters are K = 1.0, W = 0.4, g = 0.1, N = 1024 and N d = 1200.

Fig. 2 (

 2 Fig.2(a)shows the disorder-averaged quasi-energy distribution f S (ε) obtained numerically by iterating Eq. (3) for t = 10 4 periods for the parameters used in Fig.1(E D = 1.4 < π/2). As one can see, f S (ε) is very well tted by f RJ (ε) with µ = -1.58 and T = 1.17. The corresponding n S (θ) is shown in Fig.2(b). It agrees very well with the predicted n eq (θ) obtained from f RJ (ε) using Eq. (4). Moreover, both T and µ, shown in the inset of Fig.2(a), stay essentially constant for long times

Fig. 3 ,

 3 Fig.3, the quasi-stationary n S (θ) deviates largely from n eq (θ) = TE D -E D dε 2π A(ε,θ) ε+E Din the vicinity of θ = 0, which corresponds precisely to the location of the lowest energy states. It can be decomposed into thermal and condensed components, leading to a bimodal θ-distribution reminiscent of the celebrated Bose-Einstein condensation signature[START_REF] Anderson | Observation of boseeinstein condensation in a dilute atomic vapor[END_REF][START_REF] Davis | Bose-einstein condensation in a gas of sodium atoms[END_REF], n S (θ) = n c (θ) + n eq (θ). To our knowledge, wave condensation happening in the prethermal plateau of a Floquet system had never been observed before.

Figure 4 .

 4 Figure 4. Phase diagram of the system in the (K, θ0) plane. (a) Population gap ∆P of the 1-body density matrix at t = 10 4 . The black dashed line represents the heating threshold ED = K + W = π/2 of Eq. (5)-(6). The red dots show the predicted onset θ c 0 (K) for wave condensation (the line is a guide to the eye). (b) Heating time scale τ boil after which the innite-temperature state is reached. The parameters are W = 0.4 and g = 0.1, N = 1024 and N d = 400.

  Figure S1. θ-variance σ 2 θ (t) as a function of time for dierent values of the Gross-Pitaevskii strength g. Left panel: σ 2 θ (t) is plotted against t for dierent g. Right panel: the same σ 2 θ (t) is now plotted against tg 2 for dierent g. All curves collapse in the intermediate region. The horizontal black line shows the threshold value σ 2 θ = 1.65 used to extract τeq for dierent g (see text). The parameters are K = 1, W = 0.4, θ0 = 1.09 N = 1024 and N d = 500.

Figure S2 .

 S2 Figure S2. Dependence of the characteristic CBS and CFS decay time τg and of the equilibration time τeq on the Gross-Pitaevskii strength g. Left panel: plot of τ -1 g versus g for K = 1, W = 0.4, θ0 = 1.57, N = 1024 and N d = 500. τg is extracted from an exponential t of the time decay of the CBS and CFS peaks. The red dashed line is a linear t to the data. Right panel: Equilibration time τeq versus g 2 for K = 1, W = 0.4, θ0 = 1.09 N = 1024 and N d = 500. τeq is dened by the time at which the θ-variance σ 2 θ (t) reaches the threshold value σ 2 θ = 1.65. The orange dashed line is a linear t to the data.

Figure S3 .

 S3 Figure S3. Time dependence of the temperature T (left panel) and chemical potential µ (middle panel) obtained for the initial state θ0 = 1.05 at K = 1 (blue) and K = 1.3 (red). Both T and µ are extracted by tting fε(t) with the Rayleigh-Jeans distribution. Right panel: Graph of the total quasi-energy per mode Etot as a function of θ0 at 3 dierent times t for the same two K values. For all panels, the other system parameters are xed at g = 0.1, W = 0.4, N = 1024 and N d = 1000 disorder congurations. With W = 0.4, the Umklapp processes m = 0 are active for K = 1.3 (ED = K + W > π/2) and suppressed for K = 1.0 (ED = K + W < π/2). As one can see, there is almost no heating in the absence of Umklapp processes: Both T , µ and Etot stay essentially the same in the considered time range t ∈ [0, 10 4 ]. The situation is markedly dierent when Umklapp processes are present: Both T , µ and Etot change signicantly.

Figure S6 .

 S6 FigureS6. Left panel: Population gap ∆P of the time coarse-grained 1-body density matrix, obtained at t = 10 4 for dierent system sizes N . ∆P stays constant up to N = 10 5 suggesting that wave condensation is robust in the thermodynamic limit N → ∞. Right panel: θ-variance σ 2 θ (t) as a function of time for dierent values of N . The curves for dierent N > ∼ 1024 collapse onto each other, implying that τ boil does not suer from signicant system size eects. The system parameters are K = 1, W = 0.4, θ0 = 0.32 and g = 0.1.

  Figure S1. θ-variance σ 2 θ (t) as a function of time for dierent values of the Gross-Pitaevskii strength g. Left panel: σ 2 θ (t) is plotted against t for dierent g. Right panel: the same σ 2 θ (t) is now plotted against tg 2 for dierent g. All curves collapse in the intermediate region. The horizontal black line shows the threshold value σ 2 θ = 1.65 used to extract τeq for dierent g (see text)
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SYSTEM SIZE DEPENDENCE OF THE ONSAGER-PENROSE CRITERION FOR CONDENSATION AND OF τ boil

In the main text, we have checked the Onsager-Penrose criterion for condensation [S10, S11] by computing and diagonalizing the time coarse-grained 1-body density matrix θ|ρ (1) (t)|θ , see Eq. ( 7), for N = 1024. Condensation is signalled by the existence of a "macroscopic" population gap between the largest and second largest eigenvalues of ρ (1) (t). Here, we consider this population gap ∆P = (P 1 -P 2 ), obtained at t = 10 4 , for dierent system sizes N , see