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A Generalized Nash Equilibrium analysis of the
interaction between a peer-to-peer financial market

and the distribution grid
Ilia Shilov 1,2,∗ Hélène Le Cadre 2 Ana Bušić 1

Abstract—We consider the interaction between the distribution
grid (physical level) managed by the distribution system operator
(DSO), and a financial market in which prosumers optimize their
demand, generation, and bilateral trades in order to minimize
their costs subject to local constraints and bilateral trading reci-
procity coupling constraints. We model the interaction problem
between the physical and financial levels as a noncooperative
generalized Nash equilibrium problem. We compare two designs
of the financial level prosumer market: a centralized design and
a peer-to-peer fully distributed design. We prove the Pareto
efficiency of the equilibria under homogeneity of the trading
cost preferences. In addition, we prove that the pricing structure
of our noncooperative game does not permit free-lunch behavior.
Finally, in the numerical section we provide additional insights
on the efficiency loss with respect to the different levels of
agents’ flexibility and amount of renewables in the network.
We also quantify the impact of the prosumers’ pricing on the
noncooperative game social cost.

Index Terms—Pricing, Generalized Nash Equilibrium, Peer-to-
Peer Market

I. INTRODUCTION

The large-scale integration of Distributed Energy Resources
(DERs), the increasing share of Renewable Energy Source
(RES) - based generators in the energy mix and the more
proactive role of prosumers, have led to the evolution of
electricity markets from centralized pool-based organizations,
in which all the operations were managed by a central market
operator (MO) to more decentralized peer-to-peer market
designs [5]. Within this peer-to-peer electricity market, agents
(prosumers) negotiate with their peers their energy procure-
ment seeking to minimize their costs with respect to both
individual and trading reciprocity coupling constraints taking
into account trading cost preferences.

Many studies focus on the financial modeling of peer-
to-peer energy trading market. Game theoretic approaches
integrating the prosumers’ strategic behaviors in the peer-to-
peer trading are considered in [3]. The economic dispatch in
energy communities under different structures of communica-
tions is analysed in e.g. [4] using optimization approaches. An
increasing amount of attention is brought to the determination
of suitable pricing mechanisms in the peer-to-peer market
that reflect the contribution of the prosumers to the state of
the distribution grid. Several studies investigate distribution
locational marginal pricing (DLMP), e.g. [1], [3], [6], [7]
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and provide an insight on impact on the market (efficiency,
individual rationality, incentive compatibility), and regulatory
properties (transparency, fairness, etc.), and computational
cost.

Practical problem for peer-to-peer implementation is related
to the feasibility of the power flows corresponding to the
bilateral trades negotiated on the financial market, regarding
distribution grid network constraints. In case of infeasibility,
some trades might be curtailed and the resulting loss allo-
cated to the agents. Another important aspect which justifies
the need for financial and physical level decoupling is the
information sharing between prosumers and the DSO, as
the latter might be reluctant to share the sensitive power
grid related information with the former. This research topic
has been addressed by several studies, e.g. [1] proposes a
methodology to assess the impact of peer-to-peer transactions
on the physical network and ensures that the physical network
constraints are not violated. [11], [10] investigate multi-agent
simulation framework and a consensus-based approach for
peer-to-peer electricity trading in a microgrid respectively.
Cooperative or noncooperative Stackelberg games are studied
in [12], [13], with an assumption that the distribution system
operator (DSO) acts as the leader and prosumers, as followers.

In our model we focus on the interaction between (i) the
financial level, in which the agents minimize the sum of their
generation flexibility cost and bilateral trading costs minus
their usage benefit, and (ii) the physical level, in which the
DSO minimizes the total generation flexibility cost taking into
account the physics of the distribution network, which we
model through a linear DC power-flow approximation. The
interactions between the two levels are modeled as general-
ized Nash equilibrium problems (GNEP), i.e., noncooperative
games which endogenized shared coupling constraints within
the agents’ parametrized optimization problems. We analyze
generalized Nash equilibrium (GNE) [2], [9], and a refinement
of it, called variational equilibria (VE) [2], assuming that
the shadow variables associated with the shared coupling
constraints are aligned among the agents.

Our paper key contributions can be summarized as follows:
(1) We formally define the optimization problems for financial
market and DSO, and formulate the interaction between the
financial and physical levels as a GNEP (see Fig. 1, inspiration
from [8]). We consider a two-player GNEP, in which the
financial level is operated in a centralized fashion by a Market
Operator (MO). We compare the two-player GNEP outcome



Fig. 1: Simplified example of the two-level interaction

to a N+1 GNEP outcome, in which the financial level made
of N prosumers is operated in a fully distributed peer-to-peer
fashion to the GNEP in which the financial level is operated
in a fully distributed peer-to-peer fashion. We show that the
resulting GNEs are Pareto efficient under certain conditions.
(2) We characterize the solution of the GNEPs and discuss the
effects of the prosumers’ pricing mechanism, which captures
the interaction between the financial and physical levels. We
provide an illustrative example that demonstrates that in case
the two levels are uncoupled, there might be a free-lunch
behaviors, i.e. agents increasing their trades up to infinity to
minimize their costs. On the contrary, we prove that there
is no such possibility in our model. (3) To illustrate our
results, we show that our problem is a generalized potential
game (GPG) and implement the Gauss-Seidel best response
algorithm, which converges to a solution of the two-level
game. In addition, we investigate the impact of RES-based
generation on the market social cost and DSO’s activation
cost under the different levels of the generation flexibility
and flexible demand available. We also consider the impact
of functional dependence of the congestion cost term in the
agents’ trading costs functions, on the market social cost.

A. Notations

Bold symbol x denotes a vector and capital italic symbol
X denotes a set. Exclusion of a set is denoted by X \ A :=
{x|x ∈ X , x /∈ A}. x ⊥ y, means x ≥ 0, y ≥ 0 and xy = 0.
Πn denotes a cost function of agent n. To make a presentation
concise, we sometimes omit the dependence of Πn on the
decision variables.

II. DESCRIPTION

We consider a single-settlement market for energy trading
made of a set N of N agents (prosumers) – each one of
them being located in a node of the distribution grid. On
top of the physical level network, the agents form a trading
network which is modeled as a connected undirected graph
GM := (N , EM ) where EM ⊆ N ×N is the set of trading
links between the players, which reflects the financial level
network structure. We denote Γn to be the set of neighbors of

n in this trading network, that reflects the agents she wants
to trade with. In this financial level agents make the decisions
about their demand Dn, generation flexibility Gn and bilateral
financial trades qnm ∀m ∈ Γn \ {n}. If qnm ≥ 0, then n
buys qnm from m, otherwise (qnm < 0) n sells −qnm to
m. Inequality means that we allow for the surplus during the
electricity trading. The surplus is handled by an aggregator,
who can sell it on the wholesale market. The modelling of the
aggregator’s optimization problem is out of the scope of the
current work.

On the physical level, we consider a distribution grid, which
is represented by an undirected graph GDSO := (N , EDSO),
where EDSO ⊆ N × N is a set of the distribution lines
between agents. Let Ωn be the set of the agents with whom
agent n is connected in the distribution grid (note that Ωn
does not necessary coincide with Γn). DSO makes a decision
about power flows Fnm, voltage angles θn and coefficient ρn
for the fraction of the generation flexibility to be used.

To model the interaction between the two levels, we assume
that the decision variables Dn and Gn of the agents act as the
parameters in the DSO optimization problem. DSO’s decision
variable ρn and the Lagrangian multiplier γn, which can be
interpreted as the congestion price, are used as parameters in
the agent n’s optimization problem. This interaction model
implies that each agent n chooses the level of the generation
flexibility she is willing to utilize, while the DSO chooses
the share of this generation flexibility to use. Supply-demand
balance constraint should hold both on the financial and
physical levels. Moreover, the coupling between the two levels
appears explicitly through the congestion price, a function of
which is a component of the bilateral trading costs of the
agents.

A. Financial level

1) Feasibility sets: For each agent n ∈ N , we introduce
Dn := {Dn ∈ R+|Dn ≤ Dn ≤ Dn} as agent n’s demand
set, with Dn and Dn being the lower and upper-bounds on
demand capacity and Gn := {Gn ∈ R+|Gn ≤ Gn ≤ Gn}
be agent n’s generation flexibility set, where Gn and Gn are
the lower and upper-bounds on activation capacity. Let ∆Gn
denote the RES-based generation at node n.

We impose an inequality on the trading reciprocity:

qnm + qmn ≤ 0, (1)

which couples agents’ bilateral trading decisions 1. We denote
ζnm the corresponding dual variable. It means that, in the case
where qnm > 0, the quantity that n buys from m can not be
larger than the quantity qmn that m is willing to offer to n.

Local supply and demand balance leads to the following
equality in each node n in N :

Dn = Gn + ∆Gn +
∑
m∈Γn

qmn = Gn + ∆Gn +Qn, (2)

1Inequality means that there might be an energy surplus in the system.
Surplus might be handled by a third party player (aggregator) who is part of
the game and who would compensate the consumers for the energy surpluses.



where Qn is defined as the net import at node n. Correspond-
ing dual variable is denoted as λn

2) Objective function: In each node n we model the gener-
ation flexibility cost as a quadratic function of local activated
flexibility, using three positive parameters an, bn and dn:

CGn
(
ρnGn

)
=

1

2
an(ρnGn)2 + bnρnGn + dn, (3)

where ρn ∈ [0, 1] is a decision variable of the DSO, which
represents the the fraction of the flexibility offered by agent n
that is activated by the DSO.

The usage benefit perceived by agent n is modeled as
a strictly concave function of node n demand, using two
positive parameters ãn, b̃n and a target demand D∗n, defined
exogenously for agent n:

Un
(
Dn

)
= −ãn(Dn −D∗n)2 + b̃n (4)

The total trading cost function of agent n is denoted by:

C̃n(qn) =
∑

m∈Γn,m 6=n

qnm(cnm + f(γn)), (5)

where parameters cmn > 0 can model taxes for energy trading
or agents’ preferences regarding trade characteristics [3]. In
real systems, DSO does not reveal γn explicitly, but some
function f(γn) as a function of congestion price, computed
by the DSO.

Then, we write prosumer n’s cost function as follows:

Πn = CGn
(
ρnGn

)
+ C̃n

(
qn
)
− Un

(
Dn

)
(6)

B. Physical level

On the physical, the DSO solves the Optimal Power Flow
(OPF) problem. The original power flow equations for AC
systems are non-linear equations of complex numbers, having
a quadratic relationship between power and voltage, bringing
non-convexity to the problem. We use the DC-OPF lineariza-
tion of the original problem, which is classical in the OPF
literature. DC-OPF formulation is used to represent distribu-
tion grids when it is important to obtain the analytical results
and interpretation of the dual variables corresponding to the
different prices in the electricity market [6], [7].

1) Constraints: In DC-OPF approximation, power flow on
the line nm can be expressed as

Fnm =
1

xnm
(θn − θm), (7)

with the dual variable τnm associated to it, where xnm is
the line reactance. We include the upper and lower bounds
Fnm ≤ Fnm ≤ Fnm for which we use dual variables
φ
nm
, φnm correspondingly. In order to approximate the angles,

we impose limits on the angle difference between connected
buses:

−π
3
≤ θn − θm ≤

π

3
. (8)

with the corresponding dual variables αn, αn. For each node,
DSO ensures that local supply and demand balance holds:

Dn = ρnGn + ∆Gn +
∑
m∈Ωn

Fnm (9)

with γn as a dual variable.
2) Optimization problem: Denote the joint strategy vec-

tor for the market level decision variables as sMO :=
(sn)N1 . We denote feasibility set for a DSO operator as
SDSO(sMO) := {sDSO = (ρn, θn,Fn)1,...,N |Fnm ≤ Fnm ≤
Fnm, (7), (8), (9) hold ∀n ∈ N}. The DSO takes demand
Dn as the parameter and minimizes the sum of generation
flexibility costs CGn (ρnGn) subject to power flow equations
(7), node balance (9) and upper and lower bounds on angles
and power flows constraints:

min
ρn∈[0,1],θn,Fnm

ΠDSO :=
∑
n

CGn (ρnGn) (10a)

s.t. sDSO ∈ SDSO(sMO) (10b)

III. MARKET DESIGNS

A. Centralized financial market operation

We consider two designs of the financial market level,
a centralized and a decentralized (peer-to-peer) ones. Under
centralized market design, the, where global Market Operator
minimizes social cost of the agents on the financial level. We
denote the feasibility set of agent n as Sn(s−n) := {sn =
(Dn, Gn, qn)|Dn ∈ Dn, Gn ∈ Gn, (1), (2) hold ∀n ∈ N},
where s−n denotes is a vector that contains the concatenation
of all the agents’ actions excluding agent n.

min
Gn,Dn,qnm

ΠMO :=
∑
n

Πn (11a)

s.t. sMO ∈ SMO :=
∏
n

S−n(s−n) (11b)

We formulate the interaction between DSO and a local
MO as a two-player generalized Nash equilibrium game:
G := {I, (Si)i∈I , (Π)i∈I}, where I is the set of agents, which
in this framework is defined as I := {MO,DSO}, for each
i ∈ I , Si is the strategy set and Πi is the cost function. We
denote the systems of the KKT conditions for the financial
and physical levels as KKTMO, KKTDSO respectively.

B. Peer-to-peer financial level market design

In this section we consider peer-to-peer setting on the
financial level, in which each agent n ∈ N selfishly optimizes
her demand (Dn), energy generation (Gn) and bilateral trades
(qn) with other agents in her neighborhood under constraints
on demand, generation and trading capacity so as to minimize
her costs. Formally, each agent in node n ∈ N solves:

min
Dn,Gn,qn

Πn, (12a)

s.t. sn = (Dn, Gn, qn) ∈ Sn(s−n) (12b)

We formulate the interaction between the DSO and the
agents as an N+1-player generalized Nash equilibrium game:
Gp := {I, (Si)i∈I , (Π)i∈I}, where I is the set of agents, which
in this framework is defined as I := N

⋃
{DSO}, for each

i ∈ I , Si is the strategy set and Πi is the cost function of agent
i. We consider the KKT conditions of the game as a system
given by KKTp which is the concatenation of KKTDSO and



KKTn for all n = 1 . . . N , where KKTn denotes the KKT
conditions for (12).

IV. EQUILIBRIUM ANALYSIS

In our analysis we rely on Generalized Nash Equilibria
and Variational Equilibria; both of them exist under mild
conditions [2], [9].

Definition 1 ( [2]): A Generalized Nash Equilibrium (GNE)
of the game G (Gp) with coupling constraints, is a vector
(xMO, xDSO) that solves the system given by KKTMO ∨
KKTDSO (KKTp).

Definition 2: We say that GNE of Gp is induced by the
Variational Equilibrium (VE) of the financial level problem if
it is a GNE of Gp s.t.

ζnm = ζmn, ∀n ∈ N ,∀m ∈ Γn (13)

We denote such euilibria as GNEV E .
As it was stated above, ζnm for n ∈ N ,∀m ∈ Γn can be

interpreted as bilateral energy trading prices [3]. In general,
ζnm 6= ζmn, thus leading to non-symmetric energy trading
prices between couple of agents. Relying on VE as solution
concepts enforces a natural symmetry in the bilateral energy
price evaluation between any couple of agents [3].

We note that (s1, . . . , sn) that solve ∨Nn=1KKTn are de-
fined by exactly the same KKT system as the social cost
minimizer of the market level problem - KKTMO. Therefore,
we obtain the following result:

Proposition 3: GNE given in two-player game G coincides
with GNEV E of Gp.

1) Pareto-efficiency of GNE: A strategy is a Pareto efficient
outcome if no joint strategy is both a weakly better outcome
for all players and a strictly better outcome for some player.
Formally, if SGNE denotes the set of the joint equilibrium
strategies, then s ∈ SGNE is Pareto efficient if 6 ∃ s′ ∈ SGNE
s.t.

∀i ∈ I : Πi(s
′) ≤ Πi(s), ∃i ∈ I : Πi(s

′) < Πi(s)

Proposition 4: If the coefficients cnm in the trading
costs C̃n(qn) of the agents are homogeneous, i.e. cnm =
cn′m′∀n,m, n′,m′, then GNE of G and GNEV E of Gp are
Pareto-efficient.
Proof. Denote c := cnm ∀n,m. Then, we can rewrite the
trading cost of the agents using the supply-demand balance
equality:

C̃n(qn) = cQn = c(Dn −Gn −∆Gn), (14)

thus the objective function Πn doesn’t depend on qn. Note that
Πn is strictly convex in Dn, Gn and the feasibility set of the
financial level optimization problem is convex. Then, solution
of the financial level problem given by the KKTMO (or the
∨N1 KKTn s.t. ζnm are equal) is unique w.r.t. Dn, Gn. Now
we consider the strategies of the DSO. Objective of the DSO
doesn’t depend on θn and Fnm is strictly convex in ρn. The
feasible set is convex. Thus, we have a unique ρn that solves
the KKT conditions. It follows that there’s no other GNE that
can decrease the costs of the agents.

2) Pricing: In this section we focus on the Lagrangian
multipliers that can be interpreted a market prices. From
KKTDSO conditions, we obtain the expression for the γn:

γn = φnm − φnm + (αn − αn)xnm (15)

Note that the angles θn, θm unambiguously define Fnm, thus,
for the pair of the agents n,m there can be only one active
constraint out of the power flow bounds Fnm ≤ Fnm ≤ Fnm
and the angles bounds (8). It follows that the dual variable
γn represents the congestion price on the physical level. From
the KKTMO conditions for the financial level we have that
the nodal price λn associated with the supply and demand
balancing constraint in node n can be expressed as the sum
of the bilateral trade price ζn offered by n to m associated
with the trading reciprocity constraint (1), the coefficient cnm
and the function f(γn) of congestion price γn on the physical
level:

λn = cnm + f(γn) + ζnm (16)

From the balance equations (9) and (2), we have that

Gn(1− ρn) =
∑
m∈Γn

Fnm −
∑
m∈Ωn

qnm

Since ρn ∈ [0, 1], 1− ρn ≤ 0 we consider three cases:
1) Gn ≥ 0, then

∑
m∈Γn

qnm ≤
∑
m∈Ωn

Fnm
2) Gn ≤ 0, then

∑
m∈Γn

qnm ≥
∑
m∈Ωn

Fnm
3) Gn = 0 or ρn = 1, then

∑
m∈Γn

qnm =
∑
m∈Ωn

Fnm

If node n is injecting power in the grid, i.e. Gn ≥ 0, then
the trading cost allocated to this agent is less than the total
congestion cost f(γn)

∑
m∈Ωn

Fnm caused by this agent on
the physical level and vice versa.

3) No free lunch behavior: Term
∑
m∈Γn

f(γn)qnm is
crucial in the trading costs of the agents. In the absence of
f(γn) in the trading costs, we might observe the free lunch
behavior - situation in which the financial trades are increasing
up to infinity in order to decrease the trading costs C̃n(qn).
We illustrate this in the following example:

Example: Consider 3-node network, which is represented
by a complete graph. Assume that the trading costs of the
agents are given by C̃n(qn) =

∑
n∈Γn

cnmqnm and the
coefficients cnm are (c12, c13) = (1, 1), (c21, c23) = (1, 3),
(c31, c32) = (2, 1). Let (q1, q2, q3) be a feasible vector of the
trading decisions s.t. q13, q21, q32 < 0 and q31, q12, q23 > 0.
Then, w.l.o.g. pick node 3 and assume that it increases amount
of energy she sells to node 1: q′31 = q31− ε. Then, it also has
to buy the same additional amount from node 2: q′32 = q32+ε.
Then, new trading cost C̃3(q′3) = 2∗(q31−ε)+1∗(q32 +ε) =
C̃3(q3)− ε. Similarly, for node 2, C̃2(q′2) = C̃2(q2)− 2ε and
for node 1: C̃1(q′1) = C̃1(q1). Note, that all the bilateral trade
constraints (1) remain feasible and that Qn do not change.
Thus, by increasing ε, agents are able to decrease their costs
without violating any constraint.

The following result states, that adding the term f(γn)Qn
in the trading costs of the agents prohibits the free-lunch
behavior.



Proposition 5: Free lunch behavior is not possible in the
GNEV E if the trading costs of the agents are given by (5),
i.e. 6 ∃sn s.t. sn ∈ Sn and C̃n → −∞.

Proof. To consider free-lunch behavior, it is sufficient to
investigate the cycles in graph G. Consider a cycle of length k:
GCk

:= ((n1, . . . , nk), ECk
). We consider a part of the trading

cost function of agent i is that corresponds to the trades made
inside this cycle:

C̃
GCk
i (qi) = ci,i−1qi,i−1 + ci,i+1qi,i+1 + f(γi)(qi,i−1 + qi,i+1)

= λi(qi,i−1 + qi,i+1)− ζi,i−1qi,i−1 − ζi,i+1qi,i+1

Assume that one agent changes her trades by adding ε to the
amount she buys and subtracting ε from the amount she sells.
In order to have free-lunch behavior, it is necessary that all
the changes in the trading costs of the agents in GCk

induced
by this change are non-positive with one agent having strictly
decreased cost. Thus, the change in the sum of the total costs
of all agents in GCk

should be negative. Note, that the first
term λi(qi,i−1 + qi,i+1) does not change, so it is sufficient to
consider the last. Taking the sum over all the nodes in GCk

−
∑
i∈GCk

[
ζi,i−1qi,i−1 + ζi,i+1qi,i+1

]
=

= −
[
ζ2,1q2,1 + ζ1,2q1,2 + . . . ζ1,kq1,k + ζk,1qk,1

]
= −

[
ζ1,2(q2,1 + q1,2) + · · ·+ ζ1,k(q1,k + qk,1)

]
= 0

Where the equivalence to zero follows from the complemen-
tarity conditions for the bilateral trading constraints (1). We
finish the proof by noting that it contradicts the necessary
condition for the free-lunch behavior.

V. NUMERICAL RESULTS

We consider the 18-node distribution network [17], for
which all the parameters and the scheme are provided in [16].
Each node is a consumer with Dn > 0 and some nodes are
generators (RES or conventional), therefore producing energy
that can be consumed locally to meet demand Dn and exported
to the other nodes to meet the unsatisfied demand.

We are interested in two aspects of the interaction between
financial and physical levels: (i) how does the penetration of
RES generation affect the efficiency and performance of the
two-level noncooperative game, (ii) how does the form of the
trading cost affect the efficiency of the market, more precisely,
what is the effect of the different functions f(·) that we apply
to the congestion price γn.

1) Potential form of the game: Computing GNE in the
general case might be a challenging task. For a specific type
of GNEP, which is called Generalized Potential Games (GPG)
there are established approaches in the literature that compute
both GNE [14] and VE [15]. A GNEP is a Generalized Exact
Potential Game if (i) the feasible set of the game is non empty,
(ii) there exists a continuous function P (x) : RN → R such
that for all n, for all s−n (such that Sn(s−n) is not empty),
and for all sn, zn ∈ Sn(s−n)

Πn(sn, s−n)−Πn(zn, s−n) = P (sn, s−n)− P (zn, s−n)
(17)

Fig. 2: Flexible generation Fig. 3: Flexible demand

Proposition 6: Problem Gp is a is a Generalized Exact
Potential Game (GPG) with a potential function given by

P =
∑
n

[
CGn
(
ρnGn

)
+ C̃n

(
qn
)
− Un

(
Dn

)]
(18)

Proof. Indeed, the feasible set of the problem is nonempty and
we can check directly that (17) holds.

Algorithm 1 Regularized Gauss-Seidel BR algorithm [14]

1: Choose a feasible starting point x0 = (x0
1, . . . , x

0
N ) ,

a positive regularization parameter τ > 0 and set k := 0.
2: If xk satisfies a suitable termination criterion: STOP.
3: For n = 1, . . . , N , compute a solution xk+1

n of:

min
xn

Πn(xk+1
1 , . . . , xk+1

n−1, xn, x
k
n+1, . . . , x

k
N )+

+ τ ||xn − xkn||2,
s.t. xn ∈ Sn(xk+1

1 , . . . , xk+1
n−1, x

k
n+1, . . . , x

k
N ).

4: Set xk+1 := (xk+1
1 , . . . , xk+1

N ), k ← k+ 1 and go to (2).

First, we investigate the efficiency loss caused by the peer-
to-peer equilibrium computation with respect to centralized
solution. Formally, we compute the ratio of the total cost of
the system computed at an optimum and the total cost of the
system at a GNE:

Rcost :=
Cost(s1,...,sN ,sDSO)∈SC(s1, . . . , sN , sDSO)

Cost(s1,...,sN ,sDSO)∈GNE(s1, . . . , sN , sDSO)

2) RES penetration and flexibility: Define the percentage
of the RES-based generation penetration in the system as

Rres =

∑
n∈N ∆G∑
n∈N Gn

There are two important points to consider when we increase
the amount of RES in the system: (i) how much does it
increase the efficiency loss of the system, (ii) what is the
maximum amount of RES that we can inject so that the
problem remains feasible.

Figure 2 illustrates how increasing RES generation percent-
age in the system we can approach the social cost optimum in
the different settings of the generation flexibility availability.
Low GF and High GF correspond to the low and high values
of the Gn∀n ∈ N respectively. On the horizontal axis we
put the percentage Rres of the RES-based generation in the
network, which varies in the intervals that ensure that the



Fig. 4: Agents’ cost changes Fig. 5: DSO cost changes

problem is feasible in all settings considered. For the Low GF
framework, the problem becomes infeasible for Rres > 23%
(or Rres > 27%) as there is not enough flexible resource in the
nodes to avoid congestion. First, note, that the efficiency of the
GNE in the High GF is lower, which is caused by the bigger
feasible sets, thus, the increased ability of the agents to act
selfishly and deviate more from the SC optimum. Increasing
the amount of RES generation available affects the Low GF the
most: as soon as the RES generation of the agents increases,
agents obtain more freedom and are able to better adjust their
generation/trades, which leads to the increase in the efficiency
with a high growth rate. High GF efficiency growth is much
less affected by the RES injection, because the agents already
have had a lot of freedom for their actions even on the low
values of Rres.

Similar behavior is observed when we investigate the effects
of the demand flexibility on the efficiency of the system. Figure
3 shows the changes in the efficiency for the High DF and Low
DF settings w.r.t. Rres. Again, more flexibility in the decisions
of the agents leads to the lowest values of the efficiency of the
system and lower level of the flexibility induces the highest
efficiency growth rate w.r.t. Rres.

3) RES penetration and pricing functions: We investigate
how the form of the function f(·) affects the total cost of the
agents. For our experiments we choose f(·) to be monoton-
ically increasing, continuous function: we take f(x) =

√
x

and f(x) = x. Figures 4 and 5 illustrate how the total costs
of all agents and DSO change when we increase the RES
penetration. On the y-axis we put the ratio between the costs
at the given value of Rres, divided by the first entry, i.e. the
cost at a value Rres = 20%.

The decrease of the agents’ and DSO costs shows the same
tendency for both of the functions f(x) =

√
x and f(x) = x

on Figures 4 and 5. While the decrease rate of the DSO cost
is higher for f(x) =

√
x it is the opposite for the agents’ cost.

In this example f(x) =
√
x seems to be a good choice for

the DSO, while bringing some disadvantages for the agents.
As it is illustrated in this example, it is important to design
a suitable f(·) which would benefit both layers of the model,
thus calling for a further research.

VI. CONCLUSION

We formulate a generalized Nash equilibrium problem
which models the interaction between the financial peer-to-
peer electricity market level and the physical level (distribution
grid) operated by the DSO. We provide characterization of the

GNE under different designs of the financial level prosumers’
market. We discuss the effects of the trading cost form on the
equilibria, focusing on properties such as Pareto efficiency,
no free-lunch behavior and Lagrangian multipliers pricing
interpretation.

As a future research direction, we will investigate formally
the impact of the functions used to compute the modified nodal
prices that the DSO uses to charge the prosumers. Another
interesting direction is to consider the different physical layer
models, e.g. second cone order programming (SOCP). It is
interesting to provide the bound on the Price of Anarchy to
evaluate the efficiency loss caused by the decentralization of
the decisions in the financial level.
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