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Application of variational calculus to parameter
estimation in a real hydrological system ?

Van Tri NGUYEN, Didier GEORGES, Gildas BESANÇON

Univ. Grenoble Alpes, CNRS, Grenoble INP??, GIPSA-lab, 38000 Grenoble, France.

Abstract

This paper presents an estimation study based on calculus of variations for
parameters in a real hydrological system, namely Tondi-Kiboro catchment, in
Niger. The considered dynamical representation for this system is first given,
from the well-known Saint-Venant equations under some simplifying assump-
tions. A cost function is then defined based on the gap between measured
and predicted water discharges at the real sensor position, and the calculus of
variations along with the first order optimality condition are used to find the
gradients of Lagrangian objective functional with respect to the parameters to
be estimated. Depending on the infiltration model used in the system model,
two applications of this adjoint-based approach are finally presented: the first
one only estimates the friction coefficient, with the assumption that infiltration
is described by the physical so-called Green-Ampt model, while the second one
additionally estimates the parameters of an alternative infiltration representa-
tion called Horton model. Some simulation-based validation and robustness
discussion concludes the paper.

Keywords: Parameter estimation; Adjoint method; Overland flow;
Green-Ampt infiltration model; Horton infiltration model; Saint-Venant model

1. Introduction

1.1. Environmental challenges at Tondi-Kiboro catchment

In recent decades, scientists have observed a serious problem of hydrological
changes, with strong rainfall decrements and significant modifications in the land
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use noted all around the world (see [1]). This is in particular what happens in the
Tondi-Kiboro catchment of the Sahelian desert area in Niger. The water cycle is
indeed strongly modified there, and the related natural changes, like vegetation
clearing and topsoil debasement [2] at this location create a lot of difficulties
for the population, especially in agricultural productivity and crops. One of the
main components in those phenomena is the overland flow which is generated by
the rainfall and plays an essential role in natural water cycle. Mathematically, its
dynamics can be modeled by hyperbolic partial differential equations of Saint-
Venant type [3]. More details about considered water dynamics will be discussed
in section 2.1.

Figure 1: Location of Tondi Kiboro catchment [4].

As for geometric and hydrological characteristics of Tondi-Kiboro catchment,
they can be briefly described as follows [4]: the catchment is located near Tondi
Kiboro village, 70 km east of the Niamey region, southwest Niger (as shown in
Fig. 1). It consists of three small basins. Two of them are nested as illustrated
in Figure 2 with surfaces of 46 800 m2 and 63 720 m2 for the upper and lower
basins, respectively. Only the upper basin is taken into account in this paper.
Its length is about 600 m approximately, between upstream and downstream
ends, and its bed slope S0 is about 3.5%. The components of the top soil are
approximately 10% of silt and clay, 90% of sands. They play an important
role on vegetation, crop growth, infiltration and overland processes. They also
contribute significantly to fix the value of the so-called Manning coefficient in
friction.

2



Figure 2: Overview of Tondi Kiboro basins [4].

1.2. State-of-the-art and paper contribution

Tondi Kiboro catchment has been attracting attention of scientists in hy-
drology for several years, with studies like [5] (investigating land use change
and its hydrogeomorphological consequences) or [2] (providing analysis about
the effect of water discharge on land use change). In those references, there is
no dynamical model of water flow, and some of the parameters which are used
- including Manning roughness coefficient of the soil, characterizing the friction
of water flow on the soil surface, or coefficients of infiltration process - are in
general not easily, nor accurately, known. Roughness is for instance usually
chosen empirically (from Chow’s Manning table in [3]) and adjusted to adapt
to the specific context if necessary, or obtained from some empirical calcula-
tions applied to measured data. Its value normally depends on a lot of factors
such as soil surface characteristics, water topology, vegetation and crop. On
the other hand, infiltration process in a real catchment is usually complicated,
and can be seen as an empirical process. Some quantities of infiltration can be
measured by sensor (e.g. infiltration rate, cumulative infiltration rate) and from
these measurements, the dynamics of infiltration may be recovered by using fit-
ting techniques. The aim of the present paper is to propose a direct estimation
method, on the basis of calculus of variations, to identify Manning coefficient
and infiltration parameters.

The application of calculus of variations technique, or adjoint state method,
for both state and estimation has been addressed by various studies in the do-
main of hydrology. One can cite here for instance: [6] (estimating the bottom
friction coefficient and the water depth in the tidal flow model), [7] (provid-
ing some aspects of stability to validate the estimated result and a survey on
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the use of calculus of variations for inverse problems in oceanography and me-
teorology), [8] (proposing a gradient-based approach to identify the spatially
distributed Manning coefficient in the shallow water equations), [9] and [10]
(using the same approach for estimating also the Manning roughness but on the
Asahi River in Japan during flooding in 2011 and for flood hydrograph modeled
by shallow-water equations). Work [11] applied the adjoint method on the three-
dimensional cohesive sediment transport model of Hangzhou Bay to estimate
both parameters and states of the system and [12] shared the same approach
but using the data from the Lower Yellow River in China. In [13], the adjoint
method was also applied on a two-dimensional tidal model to estimate the spa-
tially varying bottom friction coefficient of the Bohai Sea, the Yellow Sea and
the East China Sea (with data provided by the TOPEX/Poseidon altimeter).

More specially, the work of Castaings et al. in [14], where the applicability
of variational calculus for parameter estimation in distributed overland flows
is analyzed and illustrated by a numerical example, shares the same idea as
the one of parameter estimation in an overland flow investigated in the present
study. However, in addition to be limited to a simulation study, the estima-
tion method proposed in [14] addresses the different Thoré catchment, and uses
Saint-Venant equation only considering Green-Ampt model for infiltration.

In the present paper, the adjoint method is considered again, but in such a
way that it allows to deal with parameter estimation in different cases of in-
filtration model, for the Tondi-Kiboro catchment: physical Green-Ampt model
and empirical Horton model. The estimated results in those two cases help to
compare the applicability of these models on the considered catchment. No-
tice that the adjoint approach for state and parameter estimation was already
investigated in some of our former works [15, 16, 17, 18], but with synthetic
measurements taken from simulations only. Notice also that some inverse prob-
lems on this basin were previously considered in two publications of ours as
well: [19], dealing with Manning roughness estimation only, and [20] addition-
ally handling parameters of an infiltration model, but considering Horton case
only. The present study thus recasts those former ones in a single frame, and
extends them, with: 1) an appropriate general development of adjoint-based
parameter estimation method for a class of 1-D hyperbolic system, allowing to
handle identification of Manning coefficient for two cases of infiltration model -
Green-Ampt and Horton ones, in overland flow dynamics; 2) an application on
experimental data from a real catchment, considering and comparing the two
cases of infiltration models; 3) a discussion on robustness issues.

The paper goes on as follows: Section 2 provides the mathematical modeling of
the system, and states the related estimation problem. Section 3 presents the
full development of variational calcululs for the considered estimation problem,
and section 4 gives corresponding application results with real data and some
robustness analysis. Section 5 finally concludes the paper.
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2. System dynamics and estimation problem

2.1. System dynamics

S0

i(x,t)

h(x,t)

r(x,t)

Figure 3: Illustration of overland flow model [17].

The water flow caused by rainfall in Tondi-Kiboro catchment can be illus-
trated by Figure 3 and its dynamics can be characterized by so-called Saint
Venant equations [3], which belong to a class of distributed flow routing. They
are classically made of two partial differential equations, a continuity one, and
a momentum one, but owing to characteristics of the basin under consideration,
the momentum equation will here be omitted (see [20, 16] for more details about
this approximation). The resulting model is recalled as follows:

∂h(x, t)

∂t
+
∂f(h(x, t), x)

∂x
= r(t)− i(t)

h(x, 0) = hi0(x)

h(0, t) = hb0(t)

(1)

where h is the water flow depth, (m); x is the space variable, (m); t is the time,
(s); r is the rainfall intensity, (m/s); i is the infiltration intensity, (m/s); f is
the flow of water per unit width m2/s. It is a function of water depth h(x, t)
and spatial variable x due to the distributed Manning coefficient n(x) in some

cases. It is calculated by equation f(h(x, t), x) = S
1/2
0 h(x, t)5/3/n(x) where S0
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denotes the bed slope, (m/m). Two terms hi0(x) and hb0(t) are respectively the
initial condition and boundary condition. Due to the small size of the considered
Tondi-Kiboro basin, the rain fall rate and infiltration rate can be considered to
be uniform all over the area. Manning coefficient n is also constant because the
soil characteristics do not vary spatially.
Depending on empirical or physical points of view, there are different ways
to characterize the infiltration process, such as Horton model or Green-Ampt
model. Due to its simplicity and good physical meaning preservation, Green-
Ampt model is used in a lot of studies. In the case of unsteady rain, as in Tondi
Kiboro, a modified version has to be considered, the full details of which can
be found in [21] and [22], together with entire formula and a calculation valida-
tion. Based on those formulas, and some knowledge on soil characteristics, the
infiltration rate is calculated offline.
An alternative is to adopt the more empirical representation called Horton
model. Being empirical, this model is used to describe the dynamics of in-
filtration process after the rainfall intensity exceeds the infiltration capacity of
soil. With the meaning of fitting equation to data, Horton model does not de-
pend on rainfall or soil properties and is described by a function of time rather
than of rainfall rate, as:

i(t) = ic + (i0 − ic)e−kt (2)

where i(t) is the infiltration rate at time t, (m/s); k some exponential decay,
(1/s); ic the equilibrium infiltration rate, (m/s); i0 the initial infiltration ca-
pacity, (m/s).

2.2. Estimation problem

In dynamical equation (1) of Tondi-Kiboro’s water flow, the initial state
function hi0(x) and boundary function hb0(t) are supposed to be equal to zero
at the beginning of rainfall process. This assumption is reasonable because this
region is generally dry between two rain events.
In the case of using Green-Ampt model, only Manning coefficient is considered
to be unknown, and to be estimated. The infiltration rate is calculated offline
from rainfall data and some soil knowledge.
In Horton infiltration case, the estimation problem is more complicated, with 4
parameters to be estimated, including Manning coefficient n, equilibrium infil-
tration rate ic, initial infiltration rate i0 and exponential rate k.
The only available measurement for parameter estimation is the water discharge
during all rainfall events at the downstream end of the basin, provided by stream
flow sensor on this basin, with locations presented in Figure 4, in the measure-
ment campaign of 2012. Each observed water discharge is associated to the
corresponding measurements of rainfall rate provided by 1 day rain gauge (see
again Figure 4 for corresponding locations). Notice that only the lower basin is
taken into account in this paper, and thus that the water discharge data which
are used only come from measurements at observation station called ’bodo’ in
Figure 4.
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Figure 4: Observation stations on Tondi-Kiboro catchment [4].

This measurement allows to define the problem of parameters estimation as
an optimization one related to some cost function J . This function is defined
as a least square error between real data and model-predicted value of water
discharge as follows:

J =
1

2

T∫
0

{ L∫
0

4(x− xmeas)Q(x, t)dx−Qmeas(xmeas, t)

}2

dt (3)

where Q(x, t) is the calculated value of water discharge at position x and time
t, obtained as

Q(x, t) = Wf(h, x) = W
S

1/2
0

n
h5/3; (4)

T is the optimization horizon (hours); L is the considered spatial length where
the system takes place (m); Qmeas(xmeas, t) is the measured value of water
discharge at observation position xmeas; 4(x− xmeas) is a continuous approx-
imation of Delta-Dirac function representing the sensor spatial accuracy. It is
described by a Gaussian function with a very small variance σ2 with equation

4(x− xmeas) =
1

Λ(xmeas)
e−(x−xmeas)2/σ2

where the coefficient Λ(xmeas) is defined at sensor location xmeas by equation:

Λ(xmeas) =

L∫
0

e−(x−xmeas)2/σ2

dx (5)

Playing the role of space observation window, the value of σ must be chosen to
keep the balance between good accuracy of observation operator (small enough
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but not too small) and stiffness of the gradients which will be presented in the
next section. The value of σ is selected manually after several trials.

3. Estimation methodology

The estimation method is here presented for a case general enough to cover at
least the two infiltration models discussed before. Equation (1) is thus rewritten
under the form of a general 1-D hyperbolic system of variable h(x, t), flow f
function of h(x, t), and source term g as follows:

∂h(x, t)

∂t
+
∂f(h(x, t), α)

∂x
= g(x, t, p) (6)

where the flow function is supposed to have the form f(h, α) =
N∑
i=1

αiϕi(h) for

some known functions ϕi(h) and some unknown parameters αi gathered in a
vector α. Similarly, the source term g also contains unknown parameters in a
vector called p, and of size M . This means that in this formulation, N + M
parameters are to be estimated.

In the case of Tondi Kiboro model, since f(h(x, t), x) = S
1/2
0 h(x, t)5/3/n where

bed slope S0 is known, vector α reduces to a single parameter representing

unknown Manning coefficient, of the form S
1/2
0 /n. Notice that with Green Ampt

model, p reduces to an empty vector, while with Horton model, it contains
3 parameters: k, i0, ic. Notice also that from equation (4), in this problem
statement the measured variable is also a function of some unknown parameter,
in addition to state variable h:

Q = Q(h, α) (7)

At this point, the parameter estimation considered hereby, or inverse problem, is
to estimate the value of some unknown parameters of Tondi-Kiboro catchment,
whose dynamical equation is generalized as equation (6). With cost function
J of equation (3), this estimation problem becomes a minimization issue to be
solved under equality constraints (6)-(7). This is a popular problem in varia-
tional calculus, and the Lagrangian formulation can then be a powerful tool to
combine the system equation and the cost function.
Even though some variants of this problem have been formerly presented in
previous papers, for instance in [15], but without unknown parameter in source
term g, or for more general switched dynamics in [18], but with no unknown
parameter in measurement function, let us, for the sake of completeness, recall
here the main lines of this methodology for the specific problem under study.

3.1. Calculus of variations

In the Lagrangian formulation, a new variable λ(x, t) is first introduced, the
so-called Lagrangian multiplier, giving rise to a modified objective functional L
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as follows:

L(h(x, t), α, p) = J +

T∫
0

L∫
0

λ

[
∂h(x, t)

∂t
+
∂f(h(x, t), α)

∂x
− g(x, t, p)

]
dxdt (8)

The first order necessary condition for functional optimality is the basic idea
to solve this optimization problem. This condition and the calculus of varia-
tions (see [23] for more details) are used to cancel the first order variation of
L(h(x, t), α, p). The candidates for optimal solutions of the cost functional are
found at the point where its variations with respect to the variations of param-
eters vanish. Firstly, it is necessary to take the first variation of the left part
of equation (8) with respect to h(x, t), α and p. These variations exist because
of the continuity of the first partial derivative of cost function J and system
equations. The variation of cost functional L with respect to all possible varia-
tion directions can be written under the form of Gâteaux derivative of L. The
Gâteaux derivative of J in all variation directions π = [δh δα δp] reads:

δL = 〈∇L, π〉 (9)

where ∇L is the weak form of gradient of L with respect to h(x, t), α and p and
notation 〈, 〉 stands for the inner product defined on the space L2([0, T ], [0, L])×
RM × RN → R as

〈∇L, π〉 =

T∫
0

L∫
0

∇Lh(x,t)δh(x, t)dxdt+∇Lαδα+∇Lpδp (10)

where ∇L is a vector of 3 elements ∇L = [∇Lh(x,t) ∇Lα ∇Lp]. The first-
order necessary condition for optimality means that the first variation δL must
be equal to zero for all admissible variation vectors π. As a result the weak form
of gradients ∇L must satisfy:

∇L = 0 (11)

For the sake of simplicity, notations h(x, t), f(h(x, t), α), g(x, t, ) andQ(h(x, t), α)
are shortly denoted by h, f , g and Q. By gathering all variation terms of each
element of π appearing in δL and applying the optimization condition of the
weak gradient in all directions of π, one can obtain the adjoint equation of vari-
able λ(x, t) (equation (12)), and weak forms of gradient of L with respect to α
(equation (13)) and p (equation (14)).
−∂λ
∂t
− ∂f

∂h

∂λ

∂x
+
∂Q

∂h
4 (x− xmeas)

[ L∫
0

4(x− xmeas)Qdx−Qmeas
]

= 0

λ(x, T ) = 0 and λ(L, t) = 0

(12)
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∇Lα =

T∫
0

[
λ
∂f

∂α

]∣∣∣∣∣
L

0

dt−
T∫

0

L∫
0

∂f

∂α

∂λ

∂x
dxdt+

T∫
0

L∫
0

4(x− xmeas)
∂Q

∂α

×

[ L∫
0

4(x− xmeas)Qdx−Qmeas
]
dxdt

(13)

∇Lp =

T∫
0

L∫
0

λ
∂g

∂p
dxdt (14)

By applying these general calculations on the considered estimation problem of
overland flow on Tondi-Kiboro, the adjoint system has the same form as equation
(12) with the partial derivatives ∂f/∂h = 5αh2/3/3 and ∂Q/∂h = 5Wαh2/3/3.
The gradient of parameter α is obtained by replacing the derivatives ∂f/∂α =
h5/3 and ∂Q/∂α = Wh5/3 in equation (13). In the case of estimation of Horton
parameters, the gradient for p are is obtained as follows:

∇Lk = −
T∫

0

L∫
0

λt(i0 − ic)e−kt dxdt; ∇Li0 =

T∫
0

L∫
0

λe−kt dxdt

∇Lic =

T∫
0

L∫
0

λ(1− e−kt) dxdt

(15)

3.2. Numerical implementation

3.2.1. Numerical schemes

To solve the equations of direct system (1) and adjoint system (12), a dis-
cretization is applied here based on the explicit Lax-Wendroff scheme. Because
the direct system is defined by specifying the initial condition at time t = 0
and boundary condition at position x = 0, it will be solved forward in time
and space. The development of the forward Lax-Wendroff scheme is already
presented in our previous works (details of this scheme can be found in [15] for
instance). Due to its conditions specified at the boundary of x − t plane, the
adjoint equation is to be simulated backward in time-space plane.

3.2.2. Optimization algorithm

The gradient vector ∇L is the input of the optimization algorithm which is
a gradient-based one. More clearly, the interior point method is used as the
optimization algorithm, through fmincon function of Matlab [24]. The gradi-
ents obtained by calculus of variations are fed to this function. Their role is
to give the directions to update the current estimated values and to be used to
approximate the Hessian matrix (by Broyden-Fletcher-Goldfarb-Shanno algo-
rithm [25]). Some bounds are also specified in the optimization tool in order to
preserve the meaning of the estimated parameters. Physics-preserving bounds
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of the Manning coefficient are loosely chosen according to the top soil charac-
teristics of Tondi-Kiboro catchment (see Table 1 of [26]). Numerically, lower
and upper bounds are [0.005, 0.04].

4. Estimation results

4.1. Real data

The approach is applied to real measurements available for the Tondi-Kiboro
catchment. Two sets of data are used here: one for optimization and one
for validation (verification of estimated model consistency). Each data set in-
cludes the measurement of rainfall rate r(t) and corresponding water discharge
Qmeas(xmeas, t) at sensor position xmeas for a rainfall event over t ∈ [0, T ]. The
first data set, called DS1, is taken on 2012/06/21 from 08:12 to 09:17 universal
time, and the second one, called DS2, is taken on 2012/08/03 from 20:33 to
21:09. The rainfall rate is recorded at 1/10 Hz by the rain gauge. The temporal
resolution 4t and spatial resolution 4x of the discretization scheme should be
chosen to respect the CFL condition [15]. 4t is set to 10s, being equal to the
temporal resolution of the rainfall rate measurement. The original sampling fre-
quency of the water discharge Qmeas(xmeas, t) is 1/60 Hz. Its values are then
linearly interpolated to 1/10 Hz in order to be consistent with the discretization
scheme.
The estimation process is firstly carried out in the case of estimation of Manning
coefficient, while infiltration is modeled by Green-Ampt representation. Then,
Horton model is used in the second estimation problem, where Manning rough-
ness is again estimated, along with the parameters of infiltration equation.
In those two applications, geometric characteristics of Tondi-Kiboro and numer-
ical parameters are set to the same values, and summarized in Table 1.

Parameters Value Unit

Length of basin L 600 m
Simulation time T 3960 second
Space step 4x 60 m
Time step 4t 10 second
Bed slope S0 3.5% m/m
Surface flow width at position xmeas, W 78 m

Table 1: Geometric characteristics and discretization parameters for Tondi-Kiboro catchment.

4.2. Case of Green-Ampt infiltration model

In this first case, as mentioned in subsection 2.1, the infiltration is obtained
offline. In fact, as also mentioned, rainfall rate in Tondi Kiboro is unsteady,
meaning that infiltration cannot be represented by classical Green Ampt model
(as we considered it for instance in our simulated example of [18]): in a steady
rain case, infiltration process begins with an unponded surface, and when be-
coming ponded, it remains so till the end of rainfall event. But in the case
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of unsteady rain, there are more than one ponding times, because the rainfall
rate exceeds the infiltration rate at several moments, and the infiltration pro-
cess can shift back to original stage from the current one. To overcome this
difficulty, S.T. Chu [21] proposed modifications to Green Ampt model: in short,
the infiltration rate is no longer determined by an explicit formula (as in the
case of steady rainfall), but by an iteration technique. This is why it is here
established offline using the procedure described in [21], and independently of
the optimization process.
The soil parameters which are needed in this process are presented in Table A.3
of the appendix.

After estimation of parameter α by the methodology of section 3, Manning

coefficient is recalculated by simple equation n = S
1/2
0 /α. Its value converges to

the value of 0.0151, as illustrated by Figure 5. The corresponding minimal cost
function value is reached after less than10 iterations of optimization algorithm,
and is equal to J ∗ = 0.3288, as it can also be seen on Figure 5.
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Figure 5: Estimation of Manning coefficient and cost function J .

Notice that the obtained Manning coefficient estimate clearly falls within
the reference range of [0.012, 0.026] for natural channels whose bed material is
sand (see Table 1 of [26] for more details), which is pretty consistent with the
considered soil (containing 90% of sand).
After the optimization procedure, the estimated value of n is checked by simulat-
ing again system equation (1) with this value of n and comparing the discharge at
the end of watercourse with the measured data (already used for optimization).
The results are shown in Figure 6a, where the standard deviation (std) value of
estimation error (between simulated and measured discharge) is 0.0512(m3/s).
This allows to conclude that the model simulates pretty well the characteristics
of overland flow on Tondi-Kiboro catchment.
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Figure 6: Simulated discharge and measured discharge with two data sets.

The consistency of the numerical model and effectiveness of the optimization
approach is further checked by simulating again system equation (1) with this
value of n under new rainfall condition of data set DS2, and comparing the
simulated discharge with that of DS2. The simulated water discharge at position
xmeas again follows the measured value fairly well, with an error of 0.067(m3/s),
as shown in Figure 6b. The small bias which can be seen may come from
measurement errors or model simplicity. Moreover, the changes of soil surface
and cultivated plant over the time can also be a part of the reason. This test
allows to consider that equation (1) with mentioned parameter and estimated
Manning coefficient as a validated numerical model for overland flow taking
place on Tondi-Kiboro basin.

4.3. Case of Horton infiltration model

The data used in this second case are the same ones as in the preceding ex-
ample, with the single observation value of water discharge, provided by stream
flow sensor at position xmeas = L. Parameter estimation is achieved on the first
data set DS1, whose rainfall intensity is depicted in the upper part of Figure
7a, and 4 parameters are estimated here, providing Manning coefficient together
with the 3 parameters of Horton infiltration model.
The proposed optimization approach is again used, with initial guesses for
those 4 unknown parameters chosen in a physically admissible range (various
trials give rise to similar estimation results), and for instance, starting with
[n0; i0c ; i

0
0; k0] = [0.006; 1 × 10−8; 4 × 10−7; 3 × 10−3], parameter estimates

converge after 44 iterations to the optimal values [0.0119; 9.3 × 10−8; 9.995 ×
10−6; 0.0017]. The estimated friction coefficient in this example (equal to
0.0119) is slightly different from the one obtained in the former approach (0.0151).
But both of these two values are consistent with the characteristics of the basin
soil, and their difference may come from differences in infiltration models. The
cost function J decreases from 13.0643 and reaches the minimum value of
0.9833.
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Similarly to the previous case, it is interesting to compare the water discharge
measurement with the simulated one obtained with estimated parameters. This
comparison is shown in Figure 7b, where it can be seen that the difference is
very small (std of estimation error is 0.042(m3/s)), confirming the correctness
of estimation result in this case again. Moreover, the obtained result is very
similar to the one already obtained in subsection 4.2.

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4
x 10

−5 Rainfall intensity

Time (s)

r(
t)

(m
/s
)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1
x 10

−5 Estimated infiltration rate

Time (s)

i(
t)

(m
/s
) Estimated infiltration rate

(a) Rainfall intensity and infiltration rate.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Comparison of simulated and measured discharge

Time (s)
D
is
ch
a
rg
e
(m

3
/
s)

Estimated discharge

Measured discharge

(b) Estimated and measured discharge
and Horton infiltration model.

Figure 7: Estimation result of Horton model using DS1.

The role of the second rainfall data set DS2 (taken on 2012/08/03 from 20:33 to
21:09 universal time) is again to verify the consistency of estimated values. The
rainfall and infiltration rate (simulated with estimated parameters) are given in
Figure 8a. As observed in Figure 8b, the simulated discharged again fits pretty
well the measurements provided by the sensors. By comparing it with Figure
6b, one can notice that the simulation of water discharge using estimated values
of Horton model follows the measured data better than in the case when using
Green-Ampt model (std of estimation error in this case is 0.046(m3/s)).
Those results tend to show that estimation of infiltration parameters can provide
a more accurate dynamical model of Tondi-Kiboro’s water flow. This compari-
son is discussed further in next subsection.
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Figure 8: Validation results for Horton model using DS2.

4.4. Robustness discussion

• Green Ampt sensitivity to soil parameters. From results of the previous sub-
sections, using Horton empirical model may give better results in Manning co-
efficient estimation. This can be further confirmed by the fact that Green Ampt
approach is very sensitive to the prior knowledge used to generate infiltration
data offline: in this approach indeed, various soil parameters must be known be-
forehand (Table A.3), and it appears that small changes in such values can turn
into large deviations in Manning coefficient estimates. In order to illustrate
it, uncertainties on saturated water content (SWC) are considered: the opti-
mization process presented in subsection 4.2 is carried out with different sets
of soil parameters. In each set, only the value of SWC is modified, consider-
ing variations of 1%, 3%, 5%, 7% with respect to its reference value of Table A.3.

The resulting Manning coefficient estimates are then compared to the value
obtained with the reference set of soil parameters, namely 0.0151 (see subsec-
tion 4.2), and Table 2 illustrates how a small variation of SWC value, e.g. 1%,
can cause a large variation of the friction coefficient, here 32.2%.

SWC variation (%) Manning coeff. estimate variation (%)

1 32.2
3 53.4
5 59.2
7 63.2

Table 2: Variation of estimated Manning coefficient versus variation of SWC.

The use of Green-Ampt offline model to describe infiltration rate can be
efficient, but is also very sensitive to the knowledge on soil parameters.
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• Robustness to measurement conditions. The objective of this part is to com-
plete estimation results of previous subsections with longer measurements in
time, and to test the robustness of proposed estimation algorithm against mea-
surement noise, and in front of arbitrary (admissible) values of Manning coeffi-
cient, or rainfall rates. To that end, Monte-Carlo simulation method is used.
For the Green-Ampt model, 450 rainfall rate and Manning coefficient profiles
are generated. Similarly, the same number of random sets of three infiltration
parameters and Manning coefficient are generated in the case of Horton model.
All those parameters are considered as white Gaussian noises. The random
values of the Manning coefficient are in the range [0.01 0.1] corresponding to
typical characteristics of natural streams (from the Chow’s Manning table in
[3]). The observed water discharged is accordingly obtained by simulating the
Tondi-Kiboro dynamical model with given randomly generated rainfall rate.
The duration of rainfall event in this simulation is 5 hours.
To represent the additive measurement noise in the simulation, a white Gaus-
sian noise is added to the observed water discharged with 40 dB signal-to-noise
ratio per sample.
Other parameters in the simulations are identical to the ones of Tondi-Kiboro
catchment.

Figure 9 presents the relative estimation error between the estimated Manning
coefficient and the ones generated in the 450 random profiles with (exact) Green
Ampt infiltration model. The mean value of estimation error is 0.79% and the
variance is 0.74%, showing a pretty good robustness of the approach.
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Figure 9: Estimation relative errors of 450 scenarios with Green-Ampt model.

As for the second case, the average and variance of average estimated errors
over the 450 profiles of Manning coefficient and Horton infiltration parameters
are respectively 0.7% and 0.71%, as shown in Figure 10, which are similar to

16



the previous case of Green-Ampt model. Regarding the noise level added to
the simulated measurement, the estimation errors are pretty low. It is worth
recalling that all three infiltration parameters of Horton model are estimated
together with friction coefficient n, with no need of further prior knowledge on
soil characteristics, making Horton model a good candidate for a robust and
complete way to represent infiltration process in Tondi-Kiboro catchment.
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Figure 10: Estimation relative errors of 450 random scenarios with Horton model.

5. Conclusion

In this paper, an optimal estimation approach, based on calculus of varia-
tions, have been proposed, and validated, to estimate constant Manning coef-
ficient, and even some infiltration parameters, in an overland flow dynamical
description. The whole methodology has been presented from mathematical de-
velopments to numerical implementation, and it has been successfully applied
to real data taken from Tondi-Kiboro catchment in Sahel region.
In fact two data sets have been used: a first one to solve for the identification
problem and a second one to validate the results, while two infiltration mod-
els have been tested and compared. A robustness simulation study has finally
been proposed to confirm the effectiveness of the approach, and if the dynamical
model with estimated parameters finally seems to give a realistic representation
of the real behavior of the Tondi-Kiboro catchment in both cases of infiltration
models, Horton one appears to be more robust in this study.
Applications to more general cases or problems, such as optimal control of over-
land flows will be part of future works.
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Appendix A. Infiltration parameter of modified Green-Ampt

Parameters Value Unit

Effective hydraulic conductivityKi 0.0479 cm/s

Average suction at the wetting front Ψ 28.5 cm

Saturated water content 0.1 cm3/cm3

Initial water content at start of the rainfall event 0.01 cm

Soil surface storage 10 cm

Table A.3: Infiltration parameter of modified Green-Ampt model on Tondi Kiboro catchment.
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et changements planétaires/Sécheresse 22 (1) (2011) 13–24.

[3] V. Te Chow, Open channel hydraulics, McGraw-Hill Book Company, Inc;
New York, 1959.

[4] L. Descroix, M. Esteves, K. Souley Yéro, J.-L. Rajot, M. Malam Abdou,
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method for estimating manning-strickler coefficientl in Tondi Kiboro catch-
ment, in: Control Applications (CCA), 2015 IEEE Conference on, Sydney,
Australia, 2015, pp. 551–556.

[20] V. T. Nguyen, D. Georges, G. Besançon, I. Zin, Parameter estimation
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