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Abstract
In the framework of the EUMETSAT Polar System–Second Generation (EPS-SG)
preparation, a new generation of the Infrared Atmospheric Sounding Inter-
ferometer (IASI) instrument has been designed. The IASI-New Generation
(IASI-NG) will measure radiances at a doubled spectral resolution compared to
its predecessor and with a signal-to-noise ratio improved by a factor of 2. The
large amount of data arising from IASI-NG will present many challenges for
data transmission, storage and assimilation. Moreover, the full set of measured
radiances will not be exploitable in an operational numerical weather prediction
(NWP) context. For these reasons, an appropriate IASI-NG channel selection in
needed, aiming to select the most informative channels for NWP models. There-
fore, the standard iterative channel selection methodology, based on the optimal
linear estimation theory and assuming spectrally correlated errors, has been
applied to a set of simulated data of the IASI-NG spectrum. The entire simulated
IASI-NG spectrum has been first investigated, while finally focusing the channel
selection procedure on the most interesting wavelength ranges for the assimila-
tion. Through this process, a total of 500 channels have been chosen to serve as
a basis for future channel selections to be provided to NWP centres – 277 tem-
perature, 23 surface-sensitive and 200 water vapour channels. One-dimensional
variational (1D-Var) assimilation experiments show that using this selected set
of channels leads to a reduction of the standard deviation of the error in tem-
perature (up to 30%) and water vapour (up to 50%) profiles with respect to the
a priori information.
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1 INTRODUCTION

Since 2007, the hyper-spectral Infrared Atmospheric
Sounding Interferometer (IASI), a key payload element
of the European Meteorological Operational Satellite
(MetOp) series, has provided a huge contribution to
numerical weather prediction (NWP), pollution monitor-
ing and climate research (Hilton et al., 2012). Together
with the Atmospheric Infrared Sounder (AIRS; Aumann
et al., 2003) and Cross-track Infrared Sounder (CrIS;
Glumb et al., 2003), it paved the way to the 21st cen-
tury class of advanced infrared (IR) sounders. These
instruments have changed the way IR satellite data are
assimilated, radically increasing the amount of available
meteorological information compared to the previous
generation.

The IASI instrument is a Fourier-Transform Spec-
trometer (FTS). It is able to acquire atmospheric emis-
sion spectra in the IR range within 645 and 2760 cm−1

(3.6–15.5𝜇m), with a spectral apodized resolution of
0.5 cm−1 and a spectral sampling of 0.25 cm−1. Conse-
quently, it collects information in a total of 8,461 wave-
lengths (or channels). From these spectra, it is possible to
derive temperature and humidity profiles with a vertical
resolution of 1 km and a 1 K and 10% accuracy respectively
(Siméoni et al., 1997;Chalon et al., 2001; Blumstein et al.,
2004; Crevoisier et al., 2014).

The main purpose of this atmospheric sounder was
originally to profile atmospheric temperature and humid-
ity for meteorological applications. However, IASI has
represented over time a significant technological and sci-
entific step forward for measuring atmospheric composi-
tion including chemistry and air quality (e.g., Clerbaux
et al., 2009). Over the years, a potentially good impact of
O3 and CO on air quality forecasts has been highlighted.
Thanks to the instrument’s excellent signal-to-noise ratio,
reactive chemical species which were previously consid-
ered not to be measurable from space (i.e., ammonia) have
been measured. Other major atmospheric events, such
as volcanic eruptions, fires, dust or pollution, can also
be monitored thanks to the data acquired through this
IR sounder (George et al., 2009; Karagulian et al., 2010;
Capelle et al., 2014).

Given its high potential demonstrated over the years, a
new generation of the IASI instrument has been designed
within the framework of the preparation for the next Euro-
pean polar-orbiting program. The IASI-New Generation
(IASI-NG), to be launched on board the MetOp-Second
Generation (MetOp-SG) series in 2022, will be character-
ized by improved spectral and radiometric characteristics
relative to IASI. It will measure at 16,921 wavelengths
(or channels) with each sounding pixel benefiting from
a spectral sampling of 0.125 cm−1, a spectral resolution

of 0.25 cm−1 after apodization and a signal-to-noise ratio
improved by a factor of 2 compared to its predeces-
sor (Crevoisier et al., 2014; Bermudo et al., 2014). Mea-
surement precision will also be improved compared to
IASI. IASI-NG characteristics will lead to further improve-
ments in detection and retrieval of numerous chemical
species and aerosols, and in temperature and water vapour
retrievals.

The large amount of data resulting from IASI-NG will
present many challenges for data transmission, storage
and assimilation. Moreover, the total number of channels
will not be exploitable in an operational NWP context and
the choice of an optimal data subset is needed. On the
other hand, data compression using a principal compo-
nent (PC) analysis is already used as one way of dissemi-
nating IASI data. Nevertheless, no NWP centre currently
assimilates PC scores despite many investigations (Matri-
cardi and McNally 2014). This means that spectra would
need to be reconstructed from PC scores before assimila-
tion. For all these reasons, an appropriate IASI-NG chan-
nel selection must be undertaken, aiming to select the
most informative channels to be used in NWP models.

Several channel selection methods have been devel-
oped in the last two decades. Some of them are based on
statistical analysis and information content theory (Rabier
et al., 2002; Fourrié and Thépaut 2003; Collard 2007; Ven-
tress and Dudhia 2014; Noh et al., 2017). Some others rely
on evaluating the radiances’ response to the perturbation
of specific chemical species and atmospheric variables,
which allows the detection of spectral sensitivity features
(Susskind et al., 2003; Gambacorta and Barnet 2012).

The objective of the present study is both to present a
methodology to select channels using modern tools and
to propose a first IASI-NG channel selection in an NWP
context. Such a selection could be used either for dissem-
ination purposes or as a basis for further channel extrac-
tion for assimilation. On the other hand, the methodology
developed here could be exploited in other future studies
on IASI-NG or other instruments.

Our work has been carried out on an observation
database of simulated radiances for IASI and IASI-NG
(Andrey-Andrés et al., 2018), using a method based on
information content theory (Rodgers 1996). Additionally,
one-dimensional variational (1D-Var) assimilation experi-
ments have been carried out in order to evaluate the impact
of the channel selection on temperature and humidity
retrievals.

The paper is arranged as follows. Section 2 presents
the future IASI-NG instrument and Section 3 summarizes
the methodology. A case-study is described in Section 4.
The need to take into account the error correlations among
channels has required a study for the evaluation of a
full covariance matrix of the observation errors; this is
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F I G U R E 1 IASI-NG swath on MetOp-SG plus a zoom on a
nadir Field of View (FOV) [Colour figure can be viewed at
wileyonlinelibrary.com]

presented in Section 5. Finally, relying on the data thus
obtained, a first selection of channels was performed by
assessing the contribution of each individual channel to
improving the analysis errors over the background ones.
The results obtained are illustrated in Section 6. The rel-
evance of the resulting channel selection is assessed by
comparison to a random selection and the results are
shown in Section 7. Finally conclusions and perspectives
are discussed in Section 8.

2 IASI-NG CONTEXT

2.1 Instrument technical specification

IASI-NG is a space-borne FTS, based on the concept of
the Mertz interferometer, which measures IR radiation
emitted from the Earth.

The first satellite of the MetOp-SG series on which the
instrument will be boarded is expected to be launched in
2022 on the same orbit and sensing time as MetOp, which
is a late-morning orbit crossing the Equator at 09:30 UTC.
The overpass frequency is twice a day at midlatitudes.

In order to achieve a global coverage, the instrument
will perform 14 views per scan line across the satellite
track (Figure 1). Every swath will cover approximately
2 × 1,000 km, whereas the surface acquired on each view

will cover a square of side length 100 km at nadir. Each
instrument single Field of View (FOV) will consist of 4×4
pixels with a 12 km size at nadir. The scanning process will
acquire the 14 aforementioned views pointing to calibra-
tion targets and then return to the starting position. The
total duration of the whole process will be 8 s (Bermudo
et al., 2014).

The instrument will cover the same spectral range as
IASI. However, the spectral sampling will be improved
to a resolution of 0.25 cm−1 after apodization (Crevoisier
et al., 2014). As a consequence, the spectral samples will be
doubled to 16,921.

2.2 Spectral area pre-selection

Although the spectral coverage will remain unchanged,
the IASI-NG spectrum will be split into four bands,
compared to three bands for IASI. The limits of the first
two bands will be slightly modified, whereas the IASI
band 3 will be split into two new bands for the new gen-
eration instrument. Limits and characteristics of these
four different spectral areas are displayed in Table 1. For
IASI-NG, in order to compute the wave number 𝜈 having
the channel number n, the following formula can be used:

𝜈 = 0.125(n − 1) + 645.000. (1)

For this study, we focused on bands 1 and 2. Band 1
is mainly affected by the influence of CO2, surface tem-
perature and O3. In band 2, among the other gases, water
vapour absorption predominates. These features make
them the most relevant bands for operational data assimi-
lation in an NWP context.

We selected the first 2,448 contiguous channels of
band 1 (from 645.000 to 950.875 cm−1) and the last 3,601
contiguous channels of band 2 (from channel 6,841 up
to 10,441, namely from 1,500.000 to 1,950.000 cm−1). The
total number of channels considered is 6,049. This choice
excludes from the study the ozone-related part of band 1,
since the minimisation of this quantity is not yet per-
formed in the operational assimilation at Météo-France.
However some NWP centres already have ozone in their
control variables, as at ECMWF for instance. On the other
hand, the second half of band 2 has been preferred to the

T A B L E 1 IASI-NG band characteristics

Band Wave numbers (cm−1) Channels Atmospheric information
1 645.000 − 1,150.000 1 − 4,041 Temperature, surface properties, clouds, CO2 and O3

2 1,150.125 − 1,950.000 4,042 − 10,441 H2O, CH4 and N2O
3 1,950.125 − 2,300.000 10,442 − 13,241 N2O, CO and CO2

4 2,300.125 − 2,760.000 13,242 − 16,961 Surface properties and CO2

http://wileyonlinelibrary.com
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F I G U R E 2 Example of a simulated IASI-NG spectrum. The spectrum is divided into four spectral bands, which are here depicted
together with the sensitivity of the different spectral regions. The blue boxes highlight the preselected areas to be examined during this study.
More specifically, the first 2,448 consecutive channels of band 1 and the last 3,601 consecutive channels of band 2 (from channel 6,841 up to
10,441) have been chosen (for a total of 6,049 channels). The corresponding spectral areas span from 645.000 to 950.875 cm−1 and from
1,500.000 to 1,950.000 cm−1, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

first half since it will provide good information about water
vapour, without being affected by the influence of trace
gases (e.g., N2O or CH4). Moreover, this spectral area will
be consistent with the one that the Infrared Sounder (IRS),
which will fly on board the Meteosat Third Generation
(MTG), will provide in the next few years. One can note
that, having channels selected on almost the same spectral
area that will soon be covered by a geostationary satel-
lite such as MTG-IRS, could have positive side-effects for
future studies. The areas just described are highlighted on
the spectrum of Figure 2.

3 METHODOLOGY

3.1 Data assimilation

The data assimilation process aims at finding an optimal
representation of the atmospheric state, by using the infor-
mation provided by a background model state and by a set
of observing systems. In other words, the best compromise
between these different data groups is found knowing their
respective accuracies (given by error covariance matrices).

The statistically optimal state can be obtained through
the minimisation of cost function J(x):

J(x) = 1
2
(x − xb)TB−1(x − xb)

+ 1
2
[
y − H(x)

]TR−1 [y − H(x)
]
, (2)

where x represents the model state vector, xb the a priori
background state vector estimated before the analysis is

carried out, y the vector of the observations and H the
observation operator. The background-error covariance
matrix B and the observation-error covariance matrix R
provide the error characteristics for the two counterparts.
As a result, they define the weight to be attributed to each
term in the aforementioned process of minimisation. The
state that minimizes the cost function is written as xa (i.e.,
the analysis state).

Since the simulated data are vertical profiles, we will
use the cost function from Equation 2 in the context of
1D-Var assimilation experiments. The state vector x, on the
other hand, will consist of the temperature profile (54 lev-
els over the whole atmosphere), the humidity profile (29
tropospheric levels) and surface temperature.

3.2 Observation-error estimation

The observation errors consist of instrument noise, error
in the observation operator, and representativeness and
pre-processing errors. They can be split into systematic and
random components. Systematic errors are usually biases
that are corrected before the data are assimilated. As a con-
sequence, the observation errors contained in the R matrix
are the random ones.

Most of the channel selection methods employed for
the previous generation of the atmospheric sounders pri-
marily used matrices containing only the instrument
noise, which was often roughly inflated in order to take the
other errors into account. These matrices were diagonal

http://wileyonlinelibrary.com
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ones (e.g., Rabier et al., 2002; Collard 2007). Moreover,
in the case of IASI, the measurements are apodized.
This introduces inter-channel correlation and produces a
matrix with non-zero covariance bands. To be able to still
use a diagonal matrix while avoiding the effects of apodiza-
tion, the selected channels were chosen not to be adjacent.
Since these approaches can be unrealistic, over the last
decade most of the NWP centres started using correlated
observation errors in the operational assimilation process
(e.g., Bormann et al., 2009).

With this in mind, for the present study we decided to
use a full covariance matrix of the observation errors. Fur-
thermore, our aim is rather to perform a selection among
all the available channels in our pre-selected spectral area,
without excluding a priori neighbouring channels.

The diagnostic procedure introduced by Desroziers
et al. (2005) has been chosen to estimate the structure of
a full R matrix. This method allows us to obtain variances
and covariances of observation errors from observation-
minus-background [y − H(xb)] and observation-minus-
analysis [y − H(xa)] statistics. The B matrix projected onto
the observation space HBHT can also be diagnosed, using
the difference between the analysis and the background
in the observation space. These matrices are given by the
following expressions:

R = E
{
[y − H(xa)][y − H(xb) ]T}, (3)

HBHT = E
{
[H(xa) − H(xb)][y − H(xb) ]T}, (4)

where E is the statistical expectation operator.

3.3 Optimal selection

The methodology applied for the channel selection is the
one suggested by Rodgers (1996) and has proved to be a
good a priori method for the determination of an optimal
channel set by Rabier et al. (2002). This method relies on
evaluating the impact of the addition of one channel at a
time on a scalar figure of merit reflecting the improvement
of the analysis error over the background error. Compared
to the original methodology, however, as mentioned in the
previous subsection, the R matrix to be used will not be
diagonal.

The figure of merit we chose to iterate the selection pro-
cess is the Degrees of Freedom for Signal (DFS), which can
be defined as:

DFS ∶= Tr (I − AB−1) (5)

where I is the identity matrix and A the analysis-error
covariance matrix.

It is known that the A matrix in the linear case can be
expressed as:

A = (B−1 + HTR−1H)−1, (6)

with H the Jacobian matrix, which is the linearized version
of the observation operator, and HT is its transpose.

This means that the AB−1term becomes:

AB−1 = (B−1 + HTR−1H)−1B−1

= [B (B−1 + HTR−1H) ]−1

= [I + BHTR−1H ]−1. (7)

Consequently, Equation 5 can also be written as

DFS = Tr[I − (I + BHTR−1H)−1]. (8)

More to the point, the DFS parameter used in the
selection will be determined by the contribution of tem-
perature, humidity and skin temperature. It will be named,
from now on, Total DFS:

DFSTot = DFSTem + DFSHum + DFSSkTem. (9)

Each one of these contributions is computed as the
sum of the 54 diagonal elements corresponding to temper-
ature, 29 for humidity (1D-Var performs the minimization
for humidity only on the 29 lowest levels) and one for skin
temperature.

The first step in selecting channels with this method
will consist of computing the DFSTot for every single chan-
nel among the C pre-selected channels (C = 6,049 in this
study). The one with the highest value of DFSTot will repre-
sent the first element in our selection. We will then proceed
by computing the DFSTot for every pair of channels consist-
ing of the first one just selected and each of the remaining
C − 1 channels not yet taken. The second element in our
selection will be the one that, in addition to our first choice,
will provide the maximum value of DFSTot. In a similar
way, we will proceed for the subsequent steps. In other
words, the channel selected at each iteration will be the
one that, together with the others already selected, will
produce the maximum value of DFSTot.

Such an iterative method can be stopped at a certain
channel’s threshold, to be defined based on the needs of
the specific research study, or carried out until all channels
have been chosen.

4 CASE-STUDY

The actual data from IASI-NG will be available only in a
few years. Accordingly, in order to be able to perform a
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selection among its channels, a carefully simulated dataset
is necessary. For this purpose, a database of simulated
observations has been built by Andrey-Andrés et al. (2018).

The database contains simulated observations using
IASI’s scan geometry for IASI and two possible versions
of IASI-NG (KBr and ZnSe evaluated prism materials). It
covers four dates in the middle of each season from 2013
in order to provide a maximum of meteorological variabil-
ity: 4 February (Northern Hemisphere winter), 6 May (NH
spring), 6 August (NH summer) and 4 November (NH
autumn). A total of 5,242,047 simulated perfect measure-
ments, in day/night illumination and sea/land conditions,
is obtained through the use of the RTTOV (Radiative
Transfer for TOVS) radiative transfer model, version 11.3
(Hocking et al., 2015). In our study, we use the simulated
IASI-NG data obtained in Andrey-Andrés et al. (2018) by
adding a random Gaussian noise to the simulated perfect
measurements, the noise corresponding to the material
KBr which was finally selected (red curve in Figure 6a
below).

Atmospheric profiles of temperature, humidity and
some chemical compounds used to create the simulated
dataset are thus provided. They are used as the ‘true’ state
in our study. Background profiles for our 1D-Var retrievals
are created from this true state to which a random Gaus-
sian noise is added. This noise comes from the B matrix
used in this work, which is the one provided in the NWP
SAF package containing the 1D-Var software (Smith 2016).
Section 5 gives more details about this matrix.

For the purpose of this project, dealing with more than
5 million simulations would have been too expensive in
terms of computational resources. As a result, we selected
subsets of data to be used as a case-study dataset.

4.1 Subset for Desroziers diagnostic

In order to make the computation efficient, the results
reliable and the time of execution acceptable, the number
of profiles to use for the Desroziers diagnostic procedure
should be at least comparable to the 6,049 channels to be
treated. Therefore, it has been empirically evaluated that
the number of profiles to be retained should be at least
6,000.

With this in mind, to be able to isolate a representative
sample of profiles, we required the following criteria to be
met:

• Instrument Zenith Angle (IZA) < 2.8◦ (i.e., at nadir)
• Over sea (water)
• Clear sky
• Day/night illumination conditions.

T A B L E 2 Detailed number of profiles to be used for the
estimation of the observation error by the Desroziers diagnostic

February May August November Total

Day 569 622 1,110 884 3,185

Night 950 1,079 523 530 3,082

Total 1,519 1,701 1,633 1,414 6,267

Furthermore, we selected observations with surface
temperature above 273.15 K, in order to avoid dealing with
areas affected by sea ice.

A total of 30,210 observations was found to match all
the aforementioned criteria. However, given the initial
preconditions, this number was still too high.

The approach chosen to thin out this subset was to
retain a single pixel per FOV on each scan line, or by spac-
ing each observation from another by at least one scan
line.

We considered two sets of months with comparable cli-
mate features: February/November and May/August. We
split the observations between day/night illumination con-
ditions. By doing so, we reached an optimal number of
6,267 observations (Table 2).

Figures 3a,b show the observation distribution by high-
lighting the month and the illumination conditions. The
profile distribution is geographically homogeneous.

4.2 Subset for channel selection

For the channel selection stage, on the other hand, the
subset of 6,267 profiles previously chosen can be fur-
ther reduced. Performing the selection on a smaller sub-
set of profiles that represent both typical and extreme
cases can actually be equally and optimally fulfilling the
work targets. For this purpose an agglomerative hierarchi-
cal clustering technique has been used (e.g., Kaufman and
Rousseeuw 2005; Anderberg 2014).

There exist many agglomerative algorithms, which
only differ in the way they group similar elements into
classes. The parameter we chose to assess the similarity
between two profiles i and j is the distance:

D(i, 𝑗) =

√√√√ K∑
k=1

{Dk(i, 𝑗)}2
. (10)

The quantity Dk(i, 𝑗) was defined using the Chevallier
et al. (2006) approach:

Dk(i, 𝑗) =

√√√√ N∑
m=1

(
𝜃ik(m) − 𝜃𝑗k(m)

𝜎𝜃k(m)

)2

, (11)
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F I G U R E 3 Geographical distribution of the profile sets taken as the case-study. (a, b) show the 6,267 profiles preselected to be used for
the observation error evaluation. They are displayed in different colours depending on (a) the illumination conditions and (b) the time of the
year. (c, d) refer to the 77 profiles picked up, starting from the 6,267 subset, through a hierarchical agglomerative technique in order to carry
out the proper selection phase [Colour figure can be viewed at wileyonlinelibrary.com]

where k refers to the variables defining our atmospheric
profiles (namely temperature and humidity), 𝜃ik(m) rep-
resents the variable k of the i profile at the m pressure
level, N is the number of atmospheric pressure levels
(N = 54 in our study), and 𝜎𝜃k(m) is the standard deviation
of 𝜃k(m).

The difference between each profile and the remaining
ones has been computed as in Equation 10. At this point,
the profiles deemed to be the most similar based on the val-
ues of D, were gathered through an iterative process. The
procedure was stopped after 77 groups were assembled.
This threshold has been chosen purely for computational
efficiency. At this stage, a representative profile of each
group has been taken.

In the end, through this process we isolated 77 pro-
files representative of contrasted atmospheric conditions,
as shown in Figure 4 for both temperature and humid-
ity. Table 3 reports the detailed number of chosen profiles
per month and time of the day. It shows that the cases are
quite well distributed in terms of day/night illumination
conditions, with just a slight predominance of daytime sce-
narios (56% daytime versus 44% night-time). Concerning
the different months, November is the one with the low-
est number of selected profiles, followed by May, February

and August in this order. The geographical distribution
of this subset is displayed in Figure 3c,d. This selection
ensures the coverage of the three major geographical areas
(Tropics, midlatitudes and polar regions). The polar area
is the least covered with only three profiles. However, this
lack is compensated by several midlatitude cases corre-
sponding to winter scenarios, in both Northern and South-
ern Hemispheres. This ensures a sufficient quantity of
profiles with polar-like characteristics.

5 RESULTS OF THE DESROZIERS
DIAGNOSTICS

In order to implement the Desroziers method for the
evaluation of a full R matrix, observed, background and
retrieved values are required (Subsection 3.2). While the
first two can be obtained from the simulated database, to
get the retrievals we had to carry out 1D-Var experiments.

To initialise the 1D-Var, B and R matrices are needed
(Subsection 3.1). Again, the B matrix exploited for this
work is the one provided in the NWP SAF package con-
taining the 1D-Var software (Smith 2016). This B matrix
consists of one block containing temperature (in K) error

http://wileyonlinelibrary.com
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used pressure levels of the 77 profiles chosen as a case-study to
perform the channel selection [Colour figure can be viewed at
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T A B L E 3 Detail of the profiles chosen as a case-study for
the channel selection step through an agglomerative hierarchical
technique

February May August November Total

Day 12 7 18 6 43

Night 10 9 10 5 34

Total 22 16 28 11 77

covariance information on 54 atmospheric levels, one for
the 29 bottom levels of humidity (represented as ln q)
error covariances, one for surface temperature, one for
surface humidity and finally one with information on skin
temperature. Covariances exists among and between the
errors of the different variables, but these latter are small
compared to auto-covariances.

For this matrix we show in Figure 5 the background-
error standard deviation 𝜎B for temperature and humidity.
It is remarkable that the temperature values are higher
in the stratospheric and higher tropospheric levels, while
humidity values are very low for the lower levels. As
regards the skin temperature, the 𝜎B value is equal to
2.03 K. The values of standard deviation that we show are
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F I G U R E 5 Background-error stardard deviation on the 54
used pressure levels for temperature (K) and 29 levels for humidity
(g⋅kg−1, expressed as ln(q)) [Colour figure can be viewed at
wileyonlinelibrary.com]

similar to those employed in some global NWP models
(e.g., Pereira and Berre 2006).

On the other hand, we do not yet have a R matrix at
this stage. Consequently, we designed a diagonal matrix
containing the standard deviations of innovations 𝜎(O − B)
to be used for the initialization of the process only.

We executed 1D-Var on the 6,267 profiles illustrated in
Subsection 4.1, by using all the 6,049 preselected channels
in the early stage. With the retrievals thus obtained, we
diagnosed a full R matrix through Equation 3.

As already mentioned, the sought R matrix will be
used to carry out the selection procedure via DFS. More-
over, at a later time, it will also be used to perform 1D-Var
assimilation experiments in order to test and validate the
selection. However, to be used in 1D-Var, all the covariance
matrices must be both symmetric and positive definite and
this diagnosed matrix did not fulfil these two conditions.
So, in anticipation of use in the assimilation process, the
diagnosed R matrix had to be symmetrized (by taking the
mean of the matrix itself and its transpose) and its negative
eigenvalues had to be modified to become positive.
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F I G U R E 6 Diagnosed IASI-NG observation-error standard deviations from 1D-Var output (orange), standard deviations from 1D-Var
output after reconditioning (dark blue), standard deviations of the innovations (light blue), instrument noise (red) and square root of the
diagonal elements of the diagnosed HBHT matrix (green) [Colour figure can be viewed at wileyonlinelibrary.com]

Modifying the eigenvalues of this kind of matrix can be
tricky since the risk is to change too much the overall char-
acteristics of the matrix itself, or rather the inter-channel
correlation errors. Weston et al. (2014) suggest a couple
of methods aiming to adjust the eigenvalues in a context
where reconditioning the R matrix would make the min-
imization in the assimilation process more efficient. The
most efficient method consists of modifying the eigenval-
ues by adding them an increment 𝜆inc:

𝜆inc =
𝜆max − 𝜆minkreq

kreq − 1
, (12)

where 𝜆max is the diagnosed largest eigenvalue, 𝜆min the
smallest and kreq a proper reconditioning number.

The approach chosen for this study is inspired by
the above proposal. However, instead of directly apply-
ing an increment to all the eigenvalues, we first put

all negative eigenvalues to zero. The increment was
then computed through Equation 12, where 𝜆min = 0 and
kreq = 2,000. This value for the reconditioning number has
been chosen empirically after performing several tests.
Indeed, the comparison of the diagnosed observation-error
standard deviations 𝜎O

diagn to standard deviations after
reconditioning 𝜎O

rec and standard deviations of the innova-
tions, showed that the smaller the reconditioning number,
the less consistent the error estimation. In other words,
using kreq < 103 results in 𝜎O

rec too high compared to 𝜎O
diagn

and even higher than 𝜎(O − B). On the other hand, the 𝜎O
rec

obtained with values kreq > 103 appear to converge. Thus
the choice fell on the value kreq = 2,000.

Figure 6a shows the 𝜎O
rec compared to 𝜎O

diagn, 𝜎(O −
B) and instrument noise. The diagnosed error stan-
dard deviation curve is shifted compared to the instru-
ment noise by almost 0.05 K. This is expected since the
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F I G U R E 7 Diagnosed IASI-NG error correlations from
1D-Var output. The boxes outlined by the dashed lines highlight the
results corresponding to the 2,448 channels of band 1 (bottom left)
and to the 3,601 channels of band 2 (top right). The bottom right
and top left boxes refer to the diagnosed cross-correlations [Colour
figure can be viewed at wileyonlinelibrary.com]

instrument noise is not the only contribution to the overall
observation error. Actually, the inter-channel correlations,
which we aimed to build through this process, are intro-
duced by a combination of other errors such as forward
model and representativeness errors.

On the other hand, the standard deviation of the recon-
ditioned matrix appears even more shifted upwards. It
deviates by a factor 0.1 K from the instrumental noise.
Also, although the reconditioning number is the best that
could be chosen after careful consideration, for the first
approximately 900 channels, the 𝜎O

rec shows values that
sometimes are somewhat higher than the standard devia-
tions of innovations. This behaviour is definitely due to the
reconditioning method.

In order to use the same matrix both for the channel
selection (DFS computation) and the subsequent evalu-
ation through 1D-Var experiments, the reconditioned R
matrix is the one that will be used from now on.

Figure 7 displays the diagnosed observation-error
correlation matrix after reconditioning. Two specific
boxes are highlighted. The bottom-left box repre-
sents the band 1-related part, from channel 1 to 2,448
(645.000–950.875 cm−1). In this box, the highest corre-
lation values are around channels 600 and 700 and all
around the surface sensitive area. In the band 2 box (top
right), the variability in correlations is higher than in the
other part. The highest values are reached between indices
3,000 and 3,400 which correspond to channels from 7,392
to 7,792. This kind of behaviour matches with the actual

variability of the absorption line in the corresponding
spectral area.

6 CHANNEL SELECTION

6.1 Optimal selection

The selection method described in Subsection 3.3 was
applied separately to each of the 77 representative profiles
selected for the case-study. Actually, the more channels are
chosen, the larger the R matrix to be inverted during the
selection process to compute the DFS is, with a significant
increase in the computational time as a result. Therefore,
we decided to restrict the selection to 500 channels for each
profile. This can be seen as a threshold considering that
500 is the current number of IASI channels distributed to
the operational centres through the global telecommuni-
cation system (GTS). Indeed, if the principal component
scores are also to be used for the IASI-NG data distribu-
tion, the number of disseminated channels will probably
remain unchanged. For this reason, 500 is also the number
of channels that we would like to provide to the commu-
nity at the end of this study.

The Jacobians used in Equation 8 to compute the DFS,
and throughout the rest of the work, have been obtained
through the use of the RTTOV radiative transfer model.

Since the channel selection relies on the variation of
the DFS values, it is interesting to observe how this param-
eter evolves with the number of selected channels. This
will also give an information about the contribution of the
different DFS components, as well as the input used in the
process, to the channel choice.

Figure 8 shows the DFS evolution with the number
of selected channels, averaged on the 77 case-study pro-
files. One can remark that the Total DFS growth is very
fast in the very first part of the selection and it becomes
slower and slower as the number of selected channels
increases. The skin temperature, which largely contributes
to the very first selected channels, stops providing a steady
value of almost 1, which is its maximum value, just after
these very few selection steps have taken place. This can
be explained by considering the background error asso-
ciated with this variable, which is the largest (2 K) when
compared with the one associated with temperature in
the rest of the atmospheric column (0.5 K on average in
the tropospheric levels up to 1.6 K in the stratosphere,
as shown in Figure 5). The IASI-NG spectrum has many
surface-sensitive channels that have a strong skin temper-
ature Jacobian. Consequently, just a very few channels are
required in order to reduce the uncertainty of the skin
temperature variable.
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F I G U R E 8 DFS trend values in channel selection averaged on the 77 case-study profiles. The solid blue line denotes the total DFS. The
pink, green and orange lines refer to the the skin temperature, humidity and temperature terms, respectively. The shaded areas associated
with each curve indicate the standard deviations for that specific term. (a) shows the complete result, while (b) shows a zoom on the first 30
steps in the process [Colour figure can be viewed at wileyonlinelibrary.com]

After that, until approximately the first 30 channels
are selected, the greatest contribution to the Total DFS
comes from the humidity term. The humidity background
errors are larger than the temperature ones, in propor-
tion, which is consistent with what is observed in NWP
global models. Moreover, Figure 6b shows that the diag-
nosed background errors projected onto the observation
space are larger for the water vapour channels (band 2) and
surface channels (end of band 1). Many IASI-NG channels
have strong humidity Jacobians in the mid to upper tro-
posphere where the humidity background errors are the
largest (Figure 5). The channel selection tries to reduce
these errors by picking up channels mainly sensitive to
humidity in those atmospheric levels.

The temperature DFS, on the other hand, starts pro-
viding a weak contribution to the Total DFS growth only
after a couple of channels have already been selected. The
predominant contribution becomes the temperature one
just after the humidity gives way to it (i.e., after the 30 first
selected channels). This is consistent with the trend of the
background error, which has a minor influence compared

with the other two variables. The Total DFS value reaches
15.8 at the end of the selection process (with DFSSkTem of 1,
DFSHum of 6 and DFSTem of 8.8). These specific results, as
just explained, are influenced by the characteristics of the
chosen background error and of the specific profiles con-
sidered and, of course, they would be affected by the choice
of another input.

A study carried out on the channels selected in the
first stages of the DFS selection process proves that these
channels are primarily sensitive to surface or humid-
ity. For readability purposes, Figure 9 summarizes the
results obtained by focusing on the first three channels
selected during each optimal selection. If three different
channels were chosen for each profile, the total number
of single channels would have been 231. However, there
are channels in common to the selections and this leads
to 49 unique channels, which are listed on the y-axis.
The bar lengths illustrate how many times the channel
of interest has been selected among the three first steps
of the DFS selection process. Among these 49 channels,
4 are sensitive to temperature, 12 to the surface and the
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remaining 33 to humidity. The channel the most fre-
quently selected is 1,382 (33 times). This is a channel
showing a double sensitivity to both surface temperature
and humidity. This specific feature, associated with the
characteristics of the background error already exposed,
makes of it the first choice in 43% of the cases where the
selection has been performed. This channel is then fol-
lowed by 2,390 (selected 18 times), which is located in the
atmospheric window spectral area as the previous one, but
it is predominantly surface sensitive. Humidity-sensitive
channels 6,862 and 6,863 follow, selected in 15 and 14
cases respectively. Their Jacobians exhibit large values in
the region between 300 and 400 hPa. Similarly, these chan-
nels are sensitive to areas where the background errors for
humidity are the largest.

As previously mentioned, the leading idea is to have,
at the end of this study, a selection of 500 channels, since
this number would be consistent with the one currently
distributed to NWP centres from IASI. At this stage,
however, we do not have yet a total number of 500, but
rather an optimal selection of 500 channels per profile.

Since the 77 selections are all different from each other,
we performed a statistical study in order to understand
how many channels are in common and how often they
appear. The histogram in Figure 10 summarizes the results
thus obtained. Each bar shows the percentage of the ini-
tial 6,049 channel group which has been chosen and how
often, or rather in how many cases, those channels have
been selected. From these data one can deduce that 65% of
the whole 6,049 initial group is never selected. Among the
remaining 35 % channels that have been selected at least
in one case (namely 2090), only 109 are always selected
(1.8 % of the initial set). Through this study it was also
possible to identify the 500 most frequently selected chan-
nels, or rather the channels selected in at least 37.7% of
cases. It is this last group that we decided to evaluate as the
sought channel selection. The complete list is provided in
Table A1.

Among these 500, 300 channels come from band 1
and the remaining 200 from band 2. Their spectral posi-
tions are shown in Figure 11. Spectral coverage is gen-
erally homogeneous. The less populated area appears to
be the surface-sensitive one. However, we still select 24
channels for this spectral region. The selected channels
are preferably channels whose weighting functions are
peaking in the higher stratosphere, where the background
error is higher. For this reason, their contribution to the
DFS is very strong, and they end up being the prevailing
channels.

Figure 12 shows the percentage and number of chan-
nels in bands 1 and 2 for each selection frequency. The
majority of channels never selected belong to band 2
(2,329 versus 1,630 in band 1). The same applies to the
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F I G U R E 9 Channels selected among the first three on each of
the 77 profiles. The y axis lists channels satisfying this characteristic.
The bar width denotes the number of cases the channel in question
has been selected among the first three. Dashed lines delimit the
subsets of temperature, surface and water vapour sensitive channels
[Colour figure can be viewed at wileyonlinelibrary.com]

channels selected in at least one case (1,272 band 2 ver-
sus 818 band 1). However, the more the selection fre-
quency increases, the more the trend reverses and the
prevailing contribution to the total comes from band 1.
Indeed, the channels always selected mostly belong to
band 1 (96 versus 13 in band 2). The 13 humidity chan-
nels have large sensitivity to the upper troposphere/lower
stratosphere with Jacobians peaking at 200 hPa (not
shown). These results are consistent with the channels
most frequently selected among the first three from
band 2. The 96 temperature channel Jacobians show
large values in the upper troposphere and mainly in the
stratosphere.
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F I G U R E 10 Percentage of the initial 6,049 channel group that has been selected per number of profiles (frequency of selection). The
white column represents the percentage of never-selected channels, and the blue one the channels selected in all cases. All the intermediate
groups are depicted in cyan. The grey arrows indicate the number of channels selected with a frequency of 100, 80, 60, 40, 20% and those
selected at least once (frequency >0%). The red arrow highlights that the 500 most frequently chosen channels correspond to the channels
selected in 37.7% of cases [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(b)

F I G U R E 11 Spectral location of the 500 selected channels: 300 in band 1 (magenta dots) and 200 in band 2 (green dots). (a) represents
the preselected band 1 area (from 645.000 to 950.875 cm−1), and (b) the band 2 area (from 1,500.000 to 1,950.000 cm−1) [Colour figure can be
viewed at wileyonlinelibrary.com]
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F I G U R E 12 Band 1 (magenta) and band 2 (green) contributions to the channels picked up in eight main subsets from the study as in
Figure 10. The groups at issue correspond to channels: never selected (0% of selection frequency), selected at least once (frequency >0%),
selected with frequencies >20%, >40%, >60%, >80%, always selected (frequency 100%) and selected in >37.7% of cases (namely the 500 most
frequent channels). For each group, the total number on which the percentage has been calculated is also shown [Colour figure can be
viewed at wileyonlinelibrary.com]

6.2 Impact of the channel selection
on the retrievals

In order to test the selection contribution to the assimila-
tion process, 1D-Var assimilation experiments have been
performed on the 6,267 pre-selected profiles (Subsec-
tion 4.1). The idea was to test the selection on a represen-
tative sample of profiles, which is why we used this larger
subset than only the 77 profiles on which the selections
were made.

In addition to the 500 most frequently selected chan-
nels, other groups have also been tested in the same way.
The groups chosen are those containing channels selected
at least once, in 20, 60 and 100% of cases.

The results have been evaluated statistically by com-
puting, for each atmospheric level in all profiles, the
background-minus-truth (xb − xt), or background error,
and the retrieved-minus-truth (xa − xt), or analysis error.
For these parameters, an average and a standard deviation
have been computed on the 6,267 cases.

Figure 13 displays the results in terms of Rate of
Improvement (ROI) of the retrievals compared to the
background. This parameter has been computed for each
atmospheric level j as follows:

ROI(𝑗) = 𝜎 (xa − xt) (𝑗) − 𝜎 (xb − xt) (𝑗)
𝜎 (xb − xt) (𝑗)

, (13)

where 𝜎 (xa − xt) (𝑗) and 𝜎 (xb − xt) (𝑗) represent the
analysis- and background-error standard deviations
respectively, computed on the 6,267 profiles and for each
atmospheric level j. The atmospheric levels where the ROI

parameter is computed range between 1 and 54, except for
humidity where the 1D-Var performs the minimisation
over the 29 lowest levels.

The overall outcome always shows an improvement of
the retrievals compared to the background when using the
various channel selections. When examining the results in
more details, it appears that the more channels are added,
the better the results are.

The use of the always selected channels allows an
improvement of the temperature and humidity retrieval
all along the profiles. The results obtained using the 109
set of always selected channels show, for temperature,
a stronger improvement around 200 hPa where the ROI
reaches values up to −25%. Two other secondary max-
ima are present at 950 hPa and in the upper atmosphere.
For humidity, on the other hand, the best improvement
occurs again in the higher troposphere, with maxima up to
40% (Figure 13). Another maximum is observed at around
700 hPa. These results are consistent with the sensitivities
of the selected channels.

Moving from 109 to 320 channels, that is, to those
channels chosen in 60% of cases, the ROI values decrease
further. This is especially true for humidity, for which the
improvements are higher in the middle/high troposphere,
where a maximum of 50% is reached at 450 hPa. If we look
at the temperature, adding channels almost uniformly
improves results up to 200 hPa altitude. Above this level,
the improvement is drastically reduced until it stops at
pressures lower than 50 hPa. At the same time, we find a
very good impact in the lower atmospheric layers (from
960 to 990 hPa approximately).
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F I G U R E 13 Rate of Improvement (ROI) of analysis-error standard deviations compared to the background ones averaged on 6,267
profiles, for temperature (left) and humidity (right). The figure compares the results obtained for the groups of channels chosen at least once,
and in 20, 60, and 100% of cases and the ROI obtained through our 500 channel selection. Negative values mean retrievals were improved
relative to the background [Colour figure can be viewed at wileyonlinelibrary.com]

Using our selection of the 500 channel selection
further improves 1D-Var outcome. For temperature the
improvement especially occurs between 600 and 900 hPa,
while for humidity it is smaller but spread over almost
all of the minimised atmospheric layers. Adding chan-
nels beyond this threshold leads to some small improve-
ments, but mostly the performance saturates, even though
it is sometimes observed that the retrievals obtained
through the use of a larger number of channels can
be slightly worse than those obtained with a less popu-
lated group. More specifically, this behaviour is noticeable
between 260 and 500 hPa (degradation of less than 2%) for
temperature and between 600 and 700 hPa (degradation
less than 1%) for humidity.

The general ROI trend can be explained by exam-
ining the Jacobians of the involved channels. This is
true for all the channel groups, however we will show
those concerning the 500 channel selection only for a
midlatitude profile (Figure 14) as an example, and since it
is the most interesting for our purposes. Band 2 channels
have a strong temperature sensitivity between 250 and
500 hPa, which is exactly where the ROI degradation
occurs when increasing the number of channels. Band 1
channels have almost no sensitivity to humidity. A low
sensitivity (with values of the order of 0.1 K) is shown by
the channels with indices between 180 and 200, which
are spread in the spectral range between 703.000 and

950.875 cm−1. These same channels are those showing
sensitivity to skin temperature. Among them are the 24
channels selected in the atmospheric window and which,
for this reason, have the highest sensitivity values to
skin temperature. Non-zero values are also present for
the last six channels in the 500 list, which lie between
1,850.000 cm−1 and the end of the band.

Figure 15 presents a cumulative ROI averaged on the
atmospheric column. It is evident that the best value is
obtained with the largest number of channels (channels
selected at least once). It is also remarkable that, by adding
channels after the 500 threshold, some sort of saturation is
reached. In other words, adding channels after this thresh-
old brings very small improvement to the overall result
(less than 0.6% for the total ROI). As shown in Figure 13,
if computed only on the 29 lowest atmospheric levels, the
improvement of the average ROI is larger (27.6%) than the
one computed over the whole atmospheric column (22.9%)
showing that the largest improvement provided by our
selection takes place in the troposphere.

7 RANDOM SELECTION

In order to evaluate the optimality of the already
well-known channel selection methodology applied in this
work, a completely random selection was performed as

http://wileyonlinelibrary.com


3312 VITTORIOSO et al.

F I G U R E 14 Temperature, humidity and skin temperature
Jacobians for the 500 selected channels. The values are displayed for
a midlatitude profile (44◦31′15.6′′N, 19◦18′57.6′′W) [Colour figure
can be viewed at wileyonlinelibrary.com]

in Martinet et al. (2014). Indeed, assessing the impact of
this further selection on the analysis process has been
considered to be a good sanity check for this purpose.

First of all, 77 different 500 random channel selec-
tions were produced without any constraints or conditions
except that the aforementioned channels belonged to the
spectral areas covered during this study (Subsection 2.2).

After that, 1D-Var assimilation experiments have been
performed by using a different random channel selection
for each of the 77 case-study profiles. The aim was to
compare these results with those from the assimilation
experiments carried out using for each of the 77 cases
its optimal selection obtained through the DFS method
(Subsection 6.1). Figure 16 shows the average improve-
ment of standard deviations of the retrievals compared to
the background for random and DFS selection. The use
of a different random selection for each profile leads to
the same overall improvement trend as for the optimal
selection. However, using selections obtained through the
DFS method almost always leads to a better result. This
is particularly true in the upper part of the atmosphere
above 400 hPa for temperature. The only exceptions are
between 450 and 600 hPa (difference lower than 1.5%) for

F I G U R E 15 Rate of Improvement (ROI) of retrieval standard
deviations compared to the background ones averaged over the
6,267 profiles and over the atmospheric column: humidity data
obtained by averaging the 29 levels for which the parameter is
minimized in 1D-Var (cyan); the temperature data obtained using
the same 29 atmospheric levels as for humidity (pink); and the
average of the temperature values over the 54 1D-Var atmospheric
levels (orange). The blue line represents the average for both
temperature and humidity and the green line is the same but for
only the 29 levels in the troposphere. The values are calculated for
the five groups of channels studied: channels selected in 100%, 60%,
37.7% (red dots) and 20% of cases and channels selected at least
once [Colour figure can be viewed at wileyonlinelibrary.com]

temperature and between 350 and 550 hPa (lower than
2%) for humidity.

In order to more specifically evaluate the 500 chan-
nels most frequently selected via DFS, another test has
been carried out. Only one 500 random selection among
the previous 77 has been chosen and used to carry out
1D-Var assimilation experiments on all of the 77 pro-
files. The average result is shown in Figure 17 together
with the average improvement obtained by exploiting
the aforementioned 500 DFS channel selection for all
the case-study. As well as for the optimal selections, the
improvement trends are quite similar, although the DFS
selection provides better results than the random one.

This random selection consists of 90 channels belong-
ing to the CO2 absorption band, 115 surface sensitive and
295 sensitive to humidity. The large number of surface
channels may also be beneficial to the retrieval in the
boundary layer.

Figure 18 shows the different average improve-
ment obtained with the four channel selections. The
rate between an optimal selection and a random one is
comparable for both cases when a fixed selection or a
variable one is used. However for all the five parameters,
we find a better score if using a specific channel selection
for each profile.
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F I G U R E 16 ROI of retrieval standard deviations compared to the background ones, for temperature (left panel) and humidity (right).
The plot shows in blue the average of the ROI obtained using the optimal channel selection (DFS) method for each of the 77 case-study
profiles. The orange curve represents the averaged ROI for the 1D-Var retrievals obtained using a different random selection for each of the 77
profiles [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 17 ROI of retrieval standard deviations compared to the background ones, for temperature (left panel) and humidity (right).
In red is the average of the 77 case-study profiles of the ROI obtained each using the 500 channels most frequently selected through the DFS
method. The green curve shows the results produced using the same random channel selection applied to all 77 profiles [Colour figure can be
viewed at wileyonlinelibrary.com]

8 CONCLUSIONS
AND PERSPECTIVES

An IASI-NG channel selection was performed with the
aim of serving as a starting point for future assimilations
in the NWP context. The work was carried out on
a database of atmospheric temperature and humidity
profiles simulated with the specific purpose of serving as a
basis for the preparation of this new instrument.

The method used to perform the selection is the iter-
ative procedure by Rodgers (1996) for clear conditions,

using DFS as a figure of merit for the implementation. This
method has been applied on 77 representative profiles over
the globe for various seasons.

Different groups of channels have been chosen at
the same time, but the selection proposed in this paper
consists of the 500 most frequently selected channels, or
rather the channels chosen in 37.7% or more of the eval-
uated cases. The threshold of 500 was chosen because
this number is currently used for the distribution of IASI
channels to NWP centres. The selection consists of 300
channels belonging to band 1 (277 temperature and 23
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F I G U R E 18 Histograms of ROI averaged over the 77 profiles
and the vertical (total or partial) column, as a function of
temperature, humidity and for the total. Blue bars refer to the
optimal selection, the orange ones to a different random selection for
each profile, the red ones to the 500 channel selection and the green
bars to a unique random selection applied over the whole 77 profile
subset [Colour figure can be viewed at wileyonlinelibrary.com]

surface-sensitive channels) and 200 from the water vapour
band.

This selection, plus other groups of channels retained
more or less frequently, have been tested on a larger
set of 6,267 atmospheric profiles. The results obtained
always show an improvement in the retrievals compared
to the background profiles when using the selected chan-
nels. The more channels are used, the better the results.
Regarding temperature, the improvement is especially
pronounced in the very low layers (960 to 990 hPa approxi-
mately) and in the upper troposphere, with improvements
reaching up to 30% at 200 hPa. For water vapour, on
the other hand, the improvement is more pronounced
in the medium/high layers (between 600 and 200 hPa)
with improvements up to 50%. The selection of 500 chan-
nels proposed here completely follows this same trend.
By examining the Jacobians of the channel selection on
the case-study profiles, it has been observed that this
behaviour is due to the sensitivity which is maximal for
these regions.

The selection was also compared to a completely
random selection. It has been found that the opti-
mal selection and the proposed 500 channel selection
perform better than random ones. The gain is particularly
important for temperature in the upper part of the
troposphere/stratosphere.

Each channel selection method has advantages and
disadvantages. In further studies, it could be interesting

to compare several methods using the same inputs (B, R,
observations) and to assess the impact on the metrics we
used, such as the DFS statistics and the rate of improve-
ment. On the other hand, the choice of the B matrix may
also have an impact on the selection. An intercompari-
son exercise using several B matrices provided by different
NWP centres in the selection process may be of interest
to evaluate the overall sensitivity of the selection to the
background errors.

In conclusion, the 500 channel selection has been
tested and it provides pretty good results. The selected
channels depend on many components, such as the
atmospheric profiles and the errors prescribed to the
background and the observations. However, we have to
remember that the selection has been performed on two
limited areas of the spectrum. Future work may focus
on spectral areas not yet explored in this study. Scan-
ning and evaluating channels sensitive to other chemical
species would make the selection even more complete
and optimal. Cloudy and over-land case-studies could
also be analysed. Moreover, it would be interesting to
evaluate the IASI-NG selection in a more realistic context
such as in a specific global model (e.g., the Météo-France
Action de Recherche petite Echelle Grande Echelle,
ARPEGE; Courtier et al., 1991) through Observing System
Simulation Experiments (OSSEs).
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APPENDIX A. CHANNELS SELECTED
THROUGH THE DFS METHOD

Table A1 provides the 500 IASI-NG channel selection
obtained through this study.

T A B L E A1 List of the 500 channels most frequently selected with the DFS method

1 2 3 13 14 15 25 26 27

29 30 31 32 50 51 63 65 71

77 83 95 97 101 107 108 119 120

125 128 130 132 140 141 142 143 144

145 170 171 172 173 174 175 176 177

178 179 180 181 182 183 184 185 186

187 188 189 190 191 192 193 194 195

196 197 199 209 214 216 219 221 222

224 231 232 234 235 236 237 239 242

243 244 245 247 248 250 251 252 255

256 257 258 260 262 263 264 267 273

274 275 276 280 283 284 285 286 287

289 290 293 294 296 297 299 300 306

310 313 315 318 325 328 331 332 333

334 343 345 346 347 353 357 358 359

360 369 370 371 372 373 383 384 385

386 395 396 397 399 408 409 410 412

413 421 422 424 425 426 431 432 434

(Continues)
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T A B L E A1 Continued

435 438 439 444 445 447 448 450 451

452 457 458 459 460 464 465 470 472

473 477 483 484 485 490 491 497 503

504 510 517 522 523 528 531 535 548

549 561 580 582 583 584 592 593 594

595 596 597 598 599 600 605 606 607

653 672 686 691 692 697 698 705 710

712 713 714 726 727 739 740 742 746

747 748 749 751 752 753 760 761 763

764 765 766 769 770 771 772 773 774

775 776 777 796 797 801 802 803 808

814 815 838 857 876 888 900 912 965

1,012 1,054 1,057 1,114 1,117 1,119 1,120 1,174 1,175

1,176 1,211 1,224 1,225 1,226 1,230 1,233 1,267 1,307

1,382 1,463 1,560 1,660 1,661 1,663 1,666 1,939 2,443

2,445 2,446 2,447 6,851 6,859 6,860 6,877 6,886 6,891

6,892 6,895 6,897 6,900 6,901 6,904 6,914 6,915 6,917

6,918 6,919 6,920 6,926 6,933 6,939 6,940 6,945 6,950

6,951 6,953 6,964 6,983 6,991 6,993 6,994 6,997 7,002

7,005 7,006 7,011 7,012 7,017 7,018 7,019 7,028 7,035

7,053 7,054 7,064 7,122 7,125 7,149 7,150 7,153 7,154

7,158 7,159 7,170 7,172 7,177 7,178 7,194 7,197 7,198

7,232 7,240 7,243 7,248 7,258 7,276 7,281 7,282 7,301

7,302 7,305 7,306 7,308 7,309 7,314 7,315 7,320 7,321

7,323 7,332 7,375 7,425 7,440 7,449 7,450 7,451 7,452

7,453 7,508 7,518 7,611 7,625 7,698 7,699 7,720 7,773

7,775 7,884 7,923 7,936 7,942 7,943 7,948 8,009 8,015

8,060 8,062 8,063 8,064 8,065 8,066 8,067 8,073 8,074

8,077 8,080 8,121 8,195 8,213 8,245 8,320 8,407 8,408

8,443 8,445 8,446 8,450 8,580 8,591 8,617 8,646 8,665

8,674 8,680 8,708 8,717 8,852 8,861 8,880 8,882 8,905

8,907 8,921 8,969 8,979 8,980 8,985 8,987 8,993 9,087

9,102 9,112 9,120 9,121 9,129 9,131 9,132 9,134 9,158

9,198 9,222 9,257 9,272 9,274 9,275 9,296 9,298 9,306

9,308 9,336 9,344 9,348 9,351 9,373 9,375 9,385 9,388

9,389 9,390 9,392 9,395 9,398 9,405 9,409 9,460 9,531

9,560 9,561 9,660 9,678 9,679 9,680 9,682 9,684 9,698

9,816 9,821 9,861 9,886 10,292

Note: This table reports the channel numbers, n. To compute the corresponding wave number 𝜈, apply the formula:
𝜈 = 0.125(n − 1) + 645.000.


