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Abstract

In this paper, we propose an image tampering localization algorithm using semi-
fragile watermarking and Error-Locating codes in the DWT domain. By intro-
ducing different classes of codes, we show the benefit in terms of image tampering
localization and complexity of using control code error localization as an authen-
tication function. Indeed, we first experimentally show that error localization
block codes is as precise as using classical error correcting codes (Reed-Solomon
and BCH codes) to locate image tampering. However, their corresponding de-
coding algorithms complexity is at least quadratic which make them impractical
for some real time applications. To solve this problem, we introduce a new class
of codes called Error-Locating codes where error localization is reduced to a
single syndrome computation performed with quasi-linear number of binary op-
erations. We provide comparisons of image quality and tampering localization
performances using error-detection, error-localization and error-correction ap-
proaches with different error control codes.

Keywords: Semi-fragile watermarking, error control codes, parity check
matrix, tampering detection and localization, Error-Locating codes, real-time
applications.

1. Introduction

Multimedia content authentication must keep up with the fast pace of tech-
nologies development. This research field has received a growing attention from
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the community to prevent and eliminate content abuses. In this article, we fo-
cus on the problem of digital image tampering detection. More precisely, we5

focus on image tampering localization rather than the problem of distinguishing
maliciously from non-maliciously modified images [1].

Several solutions can be found in the literature, based on different research
areas. For example, one can mention algorithms which are able to detect im-
age forgery as inconsistencies in the natural properties of images (for instance10

see [2]). Other techniques propose to use hashing algorithms that are robust
to some image processing: such a hashing technique is applied on an image and
the obtained hashed value is then transmitted, as well as the image. The re-
ceiver uses the corresponding image hash value to locate the tampered regions
in the received image. One of the most recent contributions in this field is [3]. A15

third approach is to embed a (semi-)fragile watermark in the image, so that this
watermark will vanish if the image is tampered. Several techniques have been
proposed in this direction [4, 5, 1]. In this paper, we focus on this approach, in
the specific track of semi-fragile watermarking schemes using Error Correcting
Codes (ECC).20

Error-correcting codes represent a class of error control codes that is well
known in data hiding. They have been used on the very early years of this re-
search field to improve the robustness against image processing. Their objective
is to protect the payload embedded in the host image. To satisfy image quality
constraints, only a smaller subset of image coefficients are modified. For exam-25

ple, Baudry et al. discuss in [6] the coding strategies and robustness with BSC
or AWGN watermarking channels. In [7], Lefèvre et al. completes the study of
robust watermarking by applying rank metric codes in other error structures.
However, the use of codes in semi-fragile watermarking slightly differs from ro-
bust watermarking. Indeed, the content to be protected is the host image and30

the payload can be randomly chosen from the image content as it is encoded as
a breakable pattern in order to detect and locate an image tampering. Hence,
every image pixel must contain some watermark information to protect the host
image.

First contributions on fragile and semi-fragile watermarking schemes using35

ECC appeared around 2000. In [8], Lee et al. proposed to use Reed-Solomon
parity check coefficients as a payload which is scrambled using a random se-
quence generated by their embedding key. The imperceptibility is ensured by
an embedding in the lowest significant bits. Their scheme can locate and correct
tampered areas. However, experiments are limited and the performance com-40

plexity is not addressed. Moreover, their scheme cannot resist common image
processing such as JPEG compression. In 2002, Sun et al. [9] introduced a semi-
fragile image authentication framework using error correcting codes. They also
propose to embed associated parity check bits in DCT block-based invariant
features to resist JPEG compression. Although Sun et al. discuss the use of45

Hamming codes, there are no experimental result on images.
He et al. [10] embeds their watermark using quantization on coefficients from

a region-based shape descriptor called Angular Radial Transformation (ART)
enabling robustness to several geometric distortions. ART coefficents and water-
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mark payload are both encoded using a Hamming code which helps their scheme50

to survive common image processing. Their work is focused on the resistance to
these attacks and do not provide a detailed study on the tampering detection
and localization performances. Zhou et al. [11] proposed a block-based semi-
fragile authentication algorithm in the DWT domain able to detect and locate
tampered image regions. Their authentication mechanism relies on a signature55

extracted from the host image which is encoded using a small length BCH code.
As in previously described works, their use of error correcting code helps to sur-
vive small distortions caused by common image processing such as compression
and AWGN. Moreover, the experiments are limited to three images and do not
include realistic tamperings. Chan et al. [12] details a method embedding BCH60

codewords into the least significant bits to locate and recover from the tamper-
ings. Moreover, they use Torus automorphisms and bit rotations to scramble
the watermark inside the image. In [13], Chan improved the previous work [12]
by solving potential inacurate prediction of most significant bits.

In the meantime, Chang et al. showed in [14] a way to overcome the prob-65

lems of bursts errors occuring in MSB pixels and Vector Quantization attack
(described by Wong et Memon [15]). They described a fragile watermarking
algorithm using a small length Hamming code and a chaotic map (similar to
a random number generator function) able to locate tampered regions. Their
scheme is not robust against image compression and other non malicious attacks.70

The use of correcting codes in fragile and semi-fragile watermarking for tam-
pering localization schemes has mostly been addressed between 2000 and 2010.
Although there are more recent contributions in the literature on semi-fragile
watermarking (they are described in [16]), we dedicate a particular attention
on the description of papers related to the application of codes. The idea re-75

lies on the error correction ability by embedding parity check bits. However,
involved correcting codes only are small length BCH and Reed-Solomon (RS)
codes. Moreover, most of the experiments are limited (small image database,
few image tampering situations, etc).

In this paper, we propose a semi-fragile algorithm based on quantization80

combined with error control codes in the DWT domain. We focus on their ap-
plication in the image tampering localization problem. The main contributions
in this paper are as follows:

1. We give a general view on the use of control codes for semi-fragile water-
marking by introducing authentication variant functions SYN (error de-85

tection via syndrome), LOC (erroneous symbol localization) and COR
(erroneous bit localization or correction).

2. We investigate the application of Error-Locating codes (EL codes) which
is a novelty in the field of semi-fragile watermarking. These codes can lo-
cate erroneous subwords (i.e. tampered image regions) without correcting90

them. By using a particular parity check matrix, it is possible to locate
errors with a lower number of binary operations compared to our baseline
of codes (BCH and RS codes) where the number of binary operations is
at least quadratic.
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3. We propose a semi-fragile embedding with several authentication functions95

able to locate tampered image areas. First, we experimentally show that
locating erroneous sub-blocks (LOC authentication variant) as a tampered
region is as precise as locating erroneous bits (COR variant) but is faster.
Secondly, we show that the proposed embedding outperforms one of the
most recent DWT-based embedding from Qi et al. [1] described section 4.4.100

The rest of the paper is organized as follows. We first error-locating codes
for an application in semi-fragile watermarking in section 2. We introduce our
semi-fragile watermarking method in section 3. Several experiment results are
presented and analyzed in section 4.

2. Error-Locating codes105

In our work, we define the term error control codes as a mathematical ob-
ject with error processing properties. For example, an error correcting code is
an error control code that corrects errors occured in a codeword transmitted
over a noisy channel. The previous statement is also valid for error detecting
codes where the presence of errors are detected only. In any case, we denote110

by decoding algorithm the algorithm to process errors and extract meaningful
information from it. Since one key concept of this paper is to show the potential
of error locating codes, we decide to borrow from [17] the idea that error control
codes can be classified into three (non-mutually exclusive) classes for the sake
of pedagogy.115

In the data hiding field, the most well known is the error-correcting code
class which aims at correcting every errors on an erroneous codeword. This class
has the most powerful decoding abilities, but at a price of a greater complexity
cost. Examples of codes are binary BCH and Reed-Solomon codes. They have
been widely used in the literature of digital watermarking.120

A second class, called error-detecting codes, is only able to detect errors.
These codes have a lower cost but are sufficient in some applications such as
feeback transmissions where the receiver can ask for the retransmission of an
erroneous codeword. For instance, well known codes are Hamming codes. Error-
detecting and error-correcting codes can decode up to some error threshold125

determined by their definition and parameters.
A third class is called error-locating (or EL) codes and stands between the

two classes of codes previously described. In the literature, these block codes are
claimed to be useful to optimize bandwidth usage in feedback communication
systems. The idea relies on retransmitting erroneous blocks only instead of the130

whole codeword.
They are still unkown in data hiding and have the potential to improve digital

watermarking tampering localization algorithms due to their error localization
properties and low complexity. These codes were proposed in 1963 by Wolf et
al. [17, 18, 19].135

We note that there may be an inclusion relationship between these three
classes. If a code can correct errors, it can locate and detect them as well. A
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code may detect more errors than it can locate and it may locate more errors
than it can correct. In other words, an error-correcting code can belong to
the three previously described classes. By specifically considering a code into a140

particular category, one may be able to develop optimized strategies.
In the following of this paper, we transpose the concept described for the

three error control code classes to semi-fragile watermarking and emphasize the
effectiveness of error-localization for image tampering localization.

The idea of encoding is to add to the original message redundancy bits (or145

parity check bits) to obtain a codeword. Instead of sending a k-bit message m =
(m1, . . . ,mk) ∈ Fk2 1 over a noisy channel N , a n-bit codeword c = (c1, . . . , cn) ∈
Fn2 is sent. A function Enc encodes m into a codeword c = Enc(m) where Enc
can be a generator matrix. Here, k < n.

The receiver obtains a word y = c + e with e a binary vector representing150

potential errors for each component. Then, y is processed by a decoding function
Dec.

In this paper, we are interested in erroneous subword localization as a mean
to achieve a finer image tampering localization without having to use error-
correcting codes which are known to have a high computational cost.155

2.1. Application of two classical error-correcting code families

We first consider binary BCH codes which are well adapted to deal with
random errors. The second family are the Reed-Solomon (RS) codes. They are
optimal non-binary BCH codes (or MDS) meaning that they can correct up to
t = (n − k)/2 errors. RS codes have optimal efficiency against burst errors.160

Although there are more efficient and more recent codes in the literature, the
scope is limited to these two families of codes which are chosen as a baseline of
codes representing the error structure they are efficient with.

In the context of tampering localization, they are interesting because errors
may, most of the time, occur in compact shapes. For example, one can embed a165

9-bit RS codeword symbol into a 3× 3 block so that if it contains some errors,
it can be marked as tampered.

However, there are some constraints in order to use these codes in a block-
based embedding. The first disadvantage lies in the code length choice. If blocks
have square shapes δ × δ, the code length needs to be a square integer. In this
paper, we consider binary BCH codes with length n = 2u − 1. We have the
restriction:

δ = 2u/2. (1)

Meanwhile for a RS code RS(n, k) over F2s , we have:

δ =
√
ns. (2)

where n and s are much easier to find. RS codes are more flexible since they
only impose an existence condition, n < 2s, on the length n and the size of

1F2 is a finite field corresponding to the integer remainder classes of the Euclidean division
by 2. Its two elements are represented by symbols 0 and 1.
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the finite field F2s . Another drawback is about the size of these parameters.170

Larger parameters imply a larger computational cost and can strongly decrease
the decoding performances.

Several algorithms were proposed in the literature to decode RS codes. The
Berlekamp-Welch algorithm with complexity O(n2) is one of them. Another well
known algorithm is the Berlekamp-Massey algorithm with the same complexity175

over F2s . It uses the BCH cyclic structure of RS codes to lower the complexity.
In practice, Berlekamp-Massey or Euclid’s algorithm are the used for decoding.

But, eventhough the decoding performances are more than satisfactory for
an application in fragile watermarking, it is possible to gain similar decoding
performances while significantly lowering the computational cost by using a class180

of codes called error-locating codes (or EL codes). In the next subsection, we
provide some details to understand and use these codes.

2.2. Application of Error-Locating codes

EL codes are chosen to represent a key concept in this paper. For an al-
gorithm designed for image tampering localization, it is sufficient to use codes185

that locate errors instead of codes that correct errors. To achieve image tam-
pering localization, the idea is to associate the spatial positions of coefficients
with EL codeword bits. When an error is located in an EL codeword subblock,
the corresponding spatial positions are marked as tampered. In the following,
we propose to apply the work of Das et al. [20, 21, 22] in which bounds of code190

existence and product code constructions are studied.
An EL code C is a linear block code of length n′ over Fq. It consists of k

information symbols and r = n′−k parity symbols. A codeword c ∈ C is divided
into m mutually exclusive sub-blocks, each sub-block containing t = n/m digits.
By definition, C can locate errors if and only if the number of corrupted sub-195

blocks is at most l, and if each sub-block is affected by e or less errors where
l ≤ m. The decoding outputs which blocks (or sub-words) contain errors.

In this work, we use binary digits, i.e. q = 2. EL codes are generally defined
from their parity check matrix H.

These codes are interesting because of the parameter freedom. Using lower200

and upper EL codes bound theorems [22], one can determine the possible pa-
rameters of the form t = t′2 and m = m′2 so that codewords and block size are
equal. Moreover, the decoding algorithm complexity can also be lowered from
quadratic to quasi-linear by using a parity check matrix defined by blocks.

To do so, we are interested here in a modified version of the 13× 16 parity205

check matrix of Example 3.5 proposed after Theorem 3.3 of [22], which is a parity
check matrix for a (16, 3) binary product code with m = 4, t = 4, l = 2, e = 3.
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We have:

H0 =



1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

 (3)

Notice that the subcode is a repetition code of length 4 and dimension 1,
with a 3× 4 parity check matrix Hr represented in red such as :210

Hr =

1 0 0 1
0 1 0 1
0 0 1 1

 (4)

This means that the parity matrix H0 can be rewritten using Hr. More
precisely, the first twelve rows represent the Kronecker product of the 4 × 4
identity matrix by Hr denoted by H1. The last row of H0 is denoted by L13.
For the sake of clarity, we give the expression of H1:

H1 =


1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

 (5)

The decoding is straighforward: once the syndrome σ(y) = H0y of the215

received word y is computed, the positions of the tampered regions are given by
non zero bits in σ(y). Nevertheless, an error in the decoding process can happen
when the subword er is equal to the repetition code codeword (1, 1, 1, 1). Indeed,
the syndrome of er is Hre

T
r = 0 eventhough er 6= 0.

Thanks to row L13, an error is detected if there is an odd number of erroneous220

subwords. Otherwise, the error remains undetected and is counted as a missed
detection in the authentication algorithm. For sake of simplicity, we only use
one parity row although it is possible to add more parity rows that will help
detecting and localizing more errors.

The number of binary multiplications can be determined by looking at the
syndrome σ(y). In general, a matrix/vector multiplication is quadratic over F2

but H0 is sparse with submatrix Hr in the diagonal. We have:

H0 =


Hr 0 0 0
0 Hr 0 0
0 0 Hr 0
0 0 0 Hr

X X X X

 (6)
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so we have σ(y) = (Hr + X)(U + V + W ) where X = (1, 0, 0, 0) and y =225

(U, V,W ) the word defined by block. Since Hr has size t × (t − 1), there are
O(t2) operations. Moreover, in the case where the approximation approximation
t ' m holds, we obtain a number of operations that is quasi-linear in the binary
length of the EL code and is given by O(t2) = O(mt). We refer to this as quasi-
linear complexity. On the other hand, the number of operations to decode230

RS codes (at equal length and subwords size) is O(n2s2) since a multiplication
in F2s costs O(s2) multiplications over F2. The binary complexity becomes
O((ns)2) = O((mt)2) which is higher compared to O(mt). Both codes are
compared with the same block size and the same block length (n = m, s = t).
More details about code parameters are discussed in section 2.3.235

We will show later in the experiments that using the same construction as
parity check matrix H0 allows us to obtain more balanced tampering localiza-
tion performances compared to the product repetition code parity check matrix
obtained by removing L13 from H0. For an EL code consisting of codewords of
m subwords of length t, we generalize the parity check matrix construction (de-240

noted as H0 in our experiments) with a repetition code of length t and dimension
t− 1 with an m×m identity matrix. The last row of the corresponding parity
check matrix H0 is a row vector filled with the row vector v = (1, 0, . . . , 0) ∈ Ft2
repeated m times. In the next section, we explain in detail the embedding
strategy of codewords in a block-based embedding.245

2.3. Embedding process of codewords

In order to use control codes in a block-based scheme, the correspondence
between block size and codes parameters is presented in table 1. For block codes,
we have (n, s) with n the number of symbols or subwords inside a codeword and
s the binary size of a symbol or subword. In the case of block codes, we can250

choose a RS code RSF2s (n, k) and an EL code of parameters (m, t) such that
the code length is equal n = m and s = t.

As for the image block shape, we chose to embed square blocks of size
√
ns×√

ns for the sake of simplicity. Thus, one block represents the embedding area
of a codeword with parameter (n, s). The condition on n and s is they need to255

be square integers.

Table 1: Code parameters and corresponding image block sizes. Since the content of
the watermark has no use in the context of semi-fragile watermarking, we choose k = 1
to obtain the maximum number of symbol errors allowed.

n s
√
ns×

√
ns b(n− 1)/2c

4 4 4× 4 1
16 4 8× 8 7
4 16 8× 8 1

16 9 12× 12 7
9 16 12× 12 4
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In an image, on can embed codewords by choosing a specific order block
selection. A common choice is the raster scan order: blocks are selected from
left to right in a row and from the top row to the bottom row. For codeword
symbols, the process is the same. Since s is a square integer, subwords are260

embedded in a
√
s×
√
s sub block also in the raster scan order.

Table 2: BCH code parameters with correponding block sizes.

block size BCH parameters

16× 16 [255, 9, 63]
8× 8 [63, 7, 15]

In the case of binary codes such as BCH codes, it is possible to simulate the
same type of embedding by embedding one codeword bit into one pixel and fill
the missing pixels with zeros. This implies a BCH code must have a code length
lower and as close as possible to the block size ns.265

As a summary of this section, we introduced the required knowledge to
use error control codes in semi-fragile watermarking. After a description of
the decoding concept and the three classes of codes, we quickly described the
properties of classical codes and introduced EL codes in the data hiding field for
the first time as an application for tampering localization using watermarking.270

In the next section, we detail the proposed embedding method and the different
authentication variants.

3. A new method to locate image tampering using control codes

Our scheme is fully blind which is a desirable watermark property in practical
scenarios. In order to authenticate and localize tamperings, the receiver does not275

require any extra information, but only the secret key and public parameters.
Hence, the security of the secret watermarking key generation only relies on
the choice of a secret seed (for a Mersenne twister pseudo-random generator for
example) and is independent from the host image and the watermark content
(chosen by the user). Moreover, this secret seed can also be used to scramble280

the watermark (using Arnold’s cat map, for instance).
As for the transform domain, we chose the DWT transform domain applied

on the whole image. By choosing this transform, we benefit from several ad-
vantages. The transform to spatial domain correspondence for tampering map
translation leads to satisfying results and we avoid performing a block based285

embedding which can produce visible artifacts at block boundary regions in
the case of strong embedding distortions. Moreover, DWT transform brings
interesting watermarking robustness properties against common image process-
ing such as JPEG compression and filtering which is also true for the DCT
transform. However, block DCT transform is well known in the literature of290
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signal and image processing for producing visible artifacts at block boundaries.
In the context of JPEG compressed images, several solutions were proposed to
address this problem such as [23, 24]. This problem also exists for images that
are watermarked using a block DCT embedding such as in [25, 26].

Using error control codes, our scheme is able to create a tampering map T ′295

which is an estimation of the binary map T representing the original tampered
regions. Several wavelet families were considered such as Debauchies and Haar.
As described later in section 3.4.3, the tampering map is obtained in the DWT
domain and needs to be translated into the spatial domain. The wavelet family
that leads to the best reconstruction is the Haar wavelet family.300

Experimentally, the Haar wavelet family provides the best localization per-
formances. Our method divides a chosen wavelet sub-band into non-overlapping
blocks of size δ×δ (examples are given in table 1). δ is chosen in function of the
authentication variant and the error control code described later in this section.

In the embedding strategy, we propose to embed both information and parity305

bits in order to enable flexibility in the code dimension k. Moreover, only
codewords error localization properties are required so the value and the length
of information bits do not matter, i.e., codewords can be randomly chosen.

However, the embedded watermark becomes more predictible. In order to
prevent any unauthorized party to modify or delete the fragile mark, one can310

add a random noisy sequence to every codeword. The concatenation of these
noisy vectors can be secretely generated using the watermarking private key
k. Before we describe the embedding, extraction and authentication process,
we propose to quickly describe the concept of digital watermarking based on
quantization.315

3.1. Digital Watermarking based on Quantization

In this work, we propose to use the well known Quantization Index Mod-
ulation (QIM) by Chen et al. [27], further studied in [28]. There are several
improvements to the QIM method in the literature such as DC-QIM [27] and
DM-QIM [29] but we choose the original QIM method for the sake of peda-320

gogy since this paper focuses on the application of codes. The QIM method is
well known for its robustness in watermarking applications and motivates us to
choose it over the spread spectrum method [30]. We note that we choose the
binary QIM in order to be able to compare binary BCH, RS and EL codes in
our experiments. Nevertheless, one can still choose a multiple symbol QIM if a325

block code (such as a RS code). In the following, we describe the binary QIM
method.

To embed one bit of information m in a host sample x of dimension L, we
use a quantizer Qm defined by:

y = Qm(x,∆) =
⌊ x

∆

⌋
∆ + (−1)m+1 ∆

4

with ∆ the quantization step and y the modified (or watermarked) host sample.
On the receiver side, detection step processes the received vector z of dimension
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L, and an estimation of the original message m̂ is computed:

m̂ = arg min
m∈{0,1}

dist(z,Λm)

with
dist(z,Λ) = min

y∈Λ
‖z − y‖2

and {
Λ0 = ∆ZL − ∆

4

Λ1 = ∆ZL + ∆
4

A larger quantization step ∆ implies a larger distortion on the vector, i.e. a
lower image quality. Reciprocally, a smaller ∆ allows one to embed a watermark
while preserving a better iamge quality. In the later case, the watermark is less330

robust to image processing. In practice, one needs to find a tradeoff adapted to
the watermarking real world application.

3.2. Watermark embedding

We denote by I the host image, and ` the wavelet decomposition level. We
empirically determined that the best performance tradeoff is obtained with ` = 2335

and HH subband. The embedding algorithm is decomposed into the following
steps:

1. Apply a level ` decomposition on host image I
2. Extract sub band HH (of size h0 ×w0) and divide it into non overlapping

blocks of size δ × δ340

3. For each block, generate a 2D random binary blocks of length δ× δ using
a secret key k as a pseudo-random number seed

4. Generate a random binary codeword cu,v of size δ2

5. For each HH sub band block Bu,v, quantize (L = 1) every coefficient where
the binary sequence is cu,v + nu,v345

6. Recompose the image with the modified coefficients to obtain the water-
marked image I ′

Secret key k allows one to secure the watermark by scrambling the embedding
sequence (random codewords). In order to extract the watermark, the receiver
must know k. Block size δ × δ can be chosen using tables 1 and 2. Note that350

the embedding is done in the sub band HH only at level `.

3.3. Watermark extraction

The receiver then processes the watermarked image I ′ that has potentially
been modified. We have:

1. Apply a level ` decomposition on the received image I ′′355

2. Extract sub band HH (of size h0 ×w0) and divide it into non overlapping
blocks of size δ × δ
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3. For each received block B′u,v, extract the associated received codeword
yu,v of size δ2 using the secret key k using the quantization detector with
step ∆.360

The extraction algorithm is limited to the extraction of codewords in a binary
form from each quantized DWT blocks.

3.4. Image authentication

The authentication process of image I ′′ aims at estimating a tampering
map T ′ that is very close to the original tampering map T which is the binary365

difference between the image before and after the tampering.
In this paper, we focus on image tampering localization. One will interpret

the nature of the tampering map content after T ′ is computed. For example,
the receiver can decide if the image has been modified by a malicious user or
conclude that the image has been damaged by an innocuous image processing.370

A third and rather edge case is to conclude that the image has suffered from
weak distortions, malicious or not and can thus be ignored.

3.4.1. Error detection via syndrome (SYN)

The class of codes known as error-detection consists in returning the number
of errors in a codeword without locating and correcting them. Moreover, by375

simply using a classic error-correcting code, we can setup a simple algorithm to
detect if a received codeword has been modified.

The syndrome computation of a word y is a faster operation compared to
the next two authentication variants we describe later. In the case of an error-
correcting code C, it is enough in our context to detect the presence of at least380

one error no matter how many errors there are in a given codeword. The
algorithm we implement for this authentication variant is called error-detection
via syndrome denoted as SYN.

For a received word y, there is a codeword c ∈ C such that y = c+e. If there
is an error, e 6= 0 which can be verified by the following equation:

c ∈ C ⇐⇒ σ(c) = HcT = 0 (7)

with H the associated parity check matrix of C.
In the authentication step, we compute the syndrome σu,v of every received385

codewords yu,v that were extracted from their corresponding sub band blocks
B′u,v.

If σu,v = 0, the sub band tampering map T ′HH is marked with grayscale
value 0 (for black as a non tampered region) at the location of block B′u,v.
Else, σu,v 6= 0 and T ′HH is marked with grayscale value 255 or 1 for white as a390

tampered region.
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3.4.2. Erroneous symbol/subword localization (LOC)

We discuss two ideas about the second authentication variant. The first one
is developing the SYN variant. The decoding algorithm of a codeword c ∈ RSn,k
over Fq can be further developed. Instead of only detecting the existence of an395

error, one may want to know more by locating which symbols are erroneous.
We can obtain a much finer tampering localization algorithm by modifying

the previous one described above. Instead of marking the whole block B′u,v as
tampered, we mark as tampered the spatial location of the erroneous codeword
symbols.400

More precisely, we have c = (c1, . . . , cn), ci ∈ Fq with q = 2α, α ≥ 2. In block
B′u,v, the spatial locations of modified ci’s will be marked as tampered.

Hence, the tampered regions are described more presicely but at the cost of
a higher complexity and a lower computational speed. However, the computa-
tional cost is in practice lower than trying to completely correcting all the errors405

since the remaining linear systems over Fq are not executed.
The second idea is about using EL codes. As we saw in the last section, these

codes provide a solution to tampering localization at a lesser complexity (and a
faster time computation) compared to conventional error-correcting codes such
as RS and BCH codes. As we saw in the previous section, a well chosen parity410

check matrix of an EL codes allows one to simply read the syndrome to locate
the errors.

3.4.3. Erroneous bit localization or correction (COR)

The third authentication variant is the most precise authentication method.
By continuing our demonstration with the previous RS code, we can obtain415

the finest tampering localization performances by correcting erroneous symbols
(but with a greater computation cost). Then, the tampering localization can be
done bit by bit instead of symbol by symbol.

Independently from the authentication variant being used, the output is a
sub band tampering map T ′HH . However, the quality of T ′HH is not satisfying420

and can be further refined using a sliding window method such as in Qi et al.’s
method. The result of this operation is a tampering map with better localization
results defined. For each pixel of T ′HH , we do the following:

1. Count the number tα of tampering pixels in T ′HH in a ν × ν pixel window

2. If tα > t0, with t0 a threshold integer, mark the pixel at the center of the425

ν × ν window as tampered in the new map (image borders are padded
with pixels considered as not tampered)

Sliding windows with ν = 5, 7 and tα > 3 were tested but did not lead the
best localization results. The best parameters we found are ν = 3 and tα = 3.

4. Experiments430

In all our experiments, we use an image dataset from [31] called Realistic
Tampering Dataset. This dataset gathers image pairs (original and realistically
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tampered) with different cameras. These images were collected in a natural
environment and were tampered in such a way the human eye cannot tell if the
image was tampered. Eventhough, by definition, the proposed method does not435

distinguish between realistic and non realistic tamperings, this image dataset
provides more credibility to our work for a real world application. On the
opposite, the majority of past contributions in this field only have tested their
algorithms with a small number of images with simple tampering situations.
Moreover, choosing this dataset also helps on defining more precisely the context440

or possibility the nature of errors produced by the tampering operations.
Our measures are computed using the 55 images of the Canon 60D camera.

In our experiments, the tampering is applied on the watermarked image by
adding the image difference between the pristine image as a host image and the
tampered one.445

As for the authentication variant parameters, we chose block sizes as square
integers for the sake of simplicity. We choose (n, s) for convenience with n and
s always being square integers. Let us remind that n is the number of symbols
inside a codeword with s the binary size of a symbol. One also must make the
difference between (n, s) and the block size inside the image which is

√
ns×
√
ns.450

For example, (n, s) = (16, 16) is represented as a 16 × 16 image block. Also,
(n, s) = (16, 4) is represented as a 8× 8 image block.

In the next subsection, we introduce some metrics to evaluate the tampering
localization performances of every authentication methods.

4.1. Metrics455

In this context, the choice of metrics medium used to evaluate tampering lo-
calization performances are not standardized in the literature of watermarking.
However, it is very common to compute the false alarm (FA) and missed detec-
tion (MD) rates. In addition, researchers in the image tampering localization
research field are also used to use metrics such as F1 and Precision. As a con-460

sequence, we propose to use these four metrics on the original tampering map
T and the estimated tampering map T ′.

Let us note that F1 score can be defined as the harmonic mean of precision
and recall metrics such as:

F1 = 2× precision× recall

precision + recall
(8)

Moreover, precision metric is only considering true positives and false alarms
and is defined such as:

precision =
TP

TP + FP
(9)

With FP and TP the number of false positives and true positives respectively.
For recall, it is the opposite over 1 of the corresponding missed detection rate:

recall = 1−missed detection rate (10)
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with :

missed detection rate =
FN

FN + TP
(11)

With FN the number of false negatives.
As a summary, F1 score can be seen as an overall performance measure but

doesn’t allow one to have a closer observation at the underlying tradeoff in terms465

of false alarms and missed detections for example. On the other hand, we believe
it is also essential to be able to visually evaluate performances in a efficient
way. Hence, we introduce a color map we called as confusion map combining
the information of T and T ′ in the same image using the corresponding 2 × 2
confusion matrix containing TP , FP , FN and TN .470

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 1: From top to bottom: examples of watermarked, tampered images, original
tampering map T , estimated tampering map T ′ and confusion maps. From left to
right: DPP0012, DPP0022, DPP0027.

The associated colors defines the confusion map color coding. An example
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of confusion map is given in figure 1. One can visualize the original tampering
map T by only considering regions in green and red (TP and FN). For the
estimated tampering map T ′, the corresponding colors are green and blue (TP
and FP). Image regions in grey correspond to true negatives (TN).475

We have now provided the necessary explanations for our experiments and
propose in the next subsection to show our experimental results.

4.2. Image quality evaluation

Image quality can be controlled at the embedding step by adjusting the
quantization step ∆ in the DWT domain. In figure 2, we show several curves480

corresponding to different wavelet decomposition level in the HH sub band.
They represent the evolution of watermarked image PSNR in function of ∆.
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Figure 2: Evolution of PSNR and SSIM in function of ∆ for several Haar wavelet
decomposition levels (Li for a decomposition level of i) in the HH sub band. For each
measure, the standard deviation is less than 0.6 and 0.1 for PSNR and SSIM measures
respectively. Each legend entry is of the form Li, n×s, with n the number of sub blocks
and s the size of one sub block.

We can see that L2 curves are overlaping in figure 2, PSNR measures are
the same for every ∆ for different block sizes because the whole sub band is
quantized. Even if some rows and columns are ignored by the quantization due485

to the sub band size not being an integer multiple of the block size, the PSNR
variation can be neglected.

However, PSNR values are clearly changing with the wavelet decomposition
level. Between curves L1 and L2, the PSNR difference is around 4dB and
we have around 5dB difference for curves L2 and L3. Hence, embedding in a490

higher wavelet decomposition level sub band allows the proposed method to
have a better image quality and reciprocally. In practice, embedding with a
higher decomposition level results in a more difficult tampering localization.
We experimentally determined that using the Haar wavelet family produces
better tampering localization maps compared to Debauchies wavelets.495

For SSIM measures, we can see that they remain higher than 0.73 for every
curves. A higher quantization step implies a lower PSNR as explained in the
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paper. SSIM measures also decrease when Delta increases. It can be explained
by the fact that the watermark can be considered as an “uniform-like” or “well
spread” noise in all parts of the host image.500

An ideal image quality which is visually acceptable can be achieved with
PSNR = 40dB. For curve L1, it is not possible to obtain such image quality.
For curves L2, we achieve this PSNR value with ∆ = 30 and SSIM = 0.975.
In the same way, curves L3 have corresponding values of ∆ = 60 and SSIM
= 0.975. The image quality must be adjusted in order to optimize a tradeoff505

by also considering tampering localization and robustness performances. In the
next two subsections, we detail the previously mentioned experiments.

4.3. Tampering localization performance evaluation

In this subsection, we evaluate the performances of our semi-fragile algo-
rithm and its variants with different error control codes. First, we propose to510

illustrate the impact of the different authentication variants on the tampering
localization performances. In section 3, we detailed three ways (SYN, LOC and
COR) to implement an authentication algorithm. Each one of them has differ-
ent tradeoff in terms of tampering localization and complexity. In table 3, those
three authentication variants are evaluated using Reed-Solomon codes and dif-515

ferent block sizes with F1 score, precision, false alarm rate and missed detection
rate.

Globally, we can see that F1 is the best when the block size is smaller (4× 4
compared to 9×9 and 16×16) for RS-SYN, RS-LOC and RS-COR respectively.
For every block size, F1 score of RS-LOC are generally closer to RS-COR than520

RS-SYN. This observation is clearer to see by looking at the precision measures.
For example with block size (9, 9), a precision of 0.754 for RS-LOC is closer
to RS-COR precision (0.7797) than RS-SYN precision (0.5881) with standard
deviations σ ≤ 0.17. Moreover, the same observation can be done for FA rates.

For FA and MD rates, when the block size is increasing, rates are respectively525

increasing and decreasing except for RS-COR where MD rates are increasing.
Hence, we have a natural tradeoff for RS-SYN and RS-LOC for these metrics.
On one side, tampering distortions are fooling the quantization so the MD rate
is naturally increasing. On the other side, since the block size is increasing,
the probability to mark a untampered pixel as tampered is increasing (i.e., the530

FA rate is increasing) but it also helps the MD rate to ”artificially” decrease
(we can see the result as a ”lucky guess”). This can be seen as a numerical
optimization but deciding which of FA or MD rates is more important to lower
is an important issue to be resolved by the scheme user.

As for the exception of RS-COR MD rates increasing, it can be explained535

by the nature of decoding involved in the authentication process. Even though
the block size is

√
ns ×

√
ns, the decoding is done bit by bit independently of

the block size. In table 4, the same behavior occurs for BCH-COR variant MD
rates.

A final remark of the first part of this experiment, we see that RS-LOC540

performances are much closer to RS-COR than RS-SYN with the advantage of
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Table 3: Tampering localization performances of variants RS-SYN, RS-LOC and RS-
COR based on RS codes. ∆ = 30, PSNR = 40.2dB.

(n, s) F1 score Precision FA rate MD rate

RS-SYN

(4, 4) 0.7945 0.7597 0.0093 0.1325
σ 0.1202 0.1264 0.0045 0.1652

(9, 9) 0.6994 0.5881 0.0237 0.0801
σ 0.1389 0.168 0.0103 0.1159

(16, 16) 0.5919 0.4566 0.0450 0.0621
σ 0.1612 0.1791 0.0209 0.1030

RS-LOC

(4, 4) 0.7999 0.8227 0.0058 0.1868
σ 0.1392 0.1038 0.0031 0.1941

(9, 9) 0.7853 0.754 0.0098 0.1450
σ 0.1183 0.1232 0.0048 0.1667

(16, 16) 0.7448 0.6683 0.0162 0.1160
σ 0.1144 0.1383 0.0082 0.1495

RS-COR

(4, 4) 0.7906 0.8249 0.0056 0.2047
σ 0.1464 0.1032 0.0030 0.2012

(9, 9) 0.7524 0.7797 0.0076 0.2319
σ 0.1559 0.1162 0.0041 0.2049

(16, 16) 0.7059 0.6879 0.0123 0.2439
σ 0.1467 0.1378 0.0075 0.1941

having a decreasing MD rate when the block size is increasing. This is why
F1 scores obtained with RS-LOC are a little better than RS-COR. Moreover,
RS-LOC has a lower complexity because the RS decoding algorithm is limited
to localizing erroneous symbols inside a codeword (block of ns pixels) as we saw545

in section 2. Its implementation is hence easier and faster than the complete RS
error correction algorithm. In conclusion, RS-LOC is the best authentication
variant by achieving better tampering localization performances and having a
lower complexity.

As a second part of this experiment, we propose to show that it is possible550

to further decrease the complexity of the authentication process by using the
previously introduced EL codes. The corresponding variant is denoted as EL-
LOC and uses the parity check matrix H shown in section 2. In table 4, we
show measures using the same metrics as in the previous experiment.

Compared to RS variants, EL-LOC globally obtains better results. For block555

size (4, 4), EL-LOC F1 score and precision are the highest and false alarm rates is
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Table 4: Performances comparisons of variants EL-LOC, REP-LOC and BCH-COR
with different parameters (n, s). ∆ = 30 and PSNR = 40.2dB.

(n, s) F1 score Prec. FA rate MD rate

EL-LOC

(4, 4) 0.8021 0.8301 0.0054 0.1911
σ 0.1364 0.0986 0.0029 0.1902

(9, 9) 0.7568 0.6989 0.0128 0.1330
σ 0.1245 0.1492 0.0057 0.1518

(16, 16) 0.6897 0.5918 0.0231 0.1116
σ 0.1467 0.1739 0.0121 0.1505

REP-LOC

(4, 4) 0.7935 0.8836 0.0031 0.2480
σ 0.1551 0.0741 0.0017 0.2043

(9, 9) 0.8079 0.8127 0.0063 0.1664
σ 0.1236 0.1088 0.0031 0.1746

(16, 16) 0.7902 0.7589 0.0093 0.1406
σ 0.1170 0.1267 0.0045 0.1633

BCH-COR

(16, 4) 0.7019 0.85 0.0036 0.3529
σ 0.2166 0.1058 0.0022 0.2469

(16, 16) 0.6519 0.8732 0.0044 0.4182
σ 0.2271 0.0846 0.0052 0.2618

the lowest which is a convincing result even though its MD rate is slightly higher
than RS-LOC MD rate. As the block size increases, these measures decrease and
become lower than RS-LOC and RS-COR measures. Moreover, the false alarm
rate is higher. For MD rates, EL-LOC and RS-LOC have similar measures.560

We easily conclude that the variant EL-LOC achieves nearly better average
measures but still similar (because of the standard deviation) performances
than RS-LOC with even lower complexity since the decoding algorithm doesn’t
involve any equation system to solve and only consists in reading the syndrome
with parity check matrix H.565

In addition to this result, figure 4 also shows performance results about
product repetition codes with parity check matrix H1 and BCH codes through
variants REP-LOC and BCH-COR respectively. F1 and precision measures of
REP-LOC are higher than EL-LOC with lower false alarm rates but higher
missed detection rates for a given block size.570

For BCH-COR, we only propose measures for block size 16 × 16 and 8 × 8
((16, 16) and (16, 4) respectively). The corresponding BCH code parameters
can be consulted in table 2. Since the decoding is done bit by bit, i.e., pixel by

19



pixel inside one block, BCH-COR performances should be similar to RS-COR
(table 3) but that is not the case. One explanation requires us to assume that575

errors from the tampering are random and hence BCH codes are optimal to
handle this type of errors.

In this subsection, we evaluated the tampering localization performances of
the proposed authentication variants. These variants are using an embedding
based on the quantization of DWT coefficients. We showed that LOC variant580

equiped with an EL code obtained the best tradeoff in terms of tampering
localization performances and complexity. If one requires the highest precision
performances, a smaller block size is recommended.

4.4. Comparisons with a state of the art method

We compare our method performances with Qi et al’s method [1]. To our585

knowledge, no recent work on semi-fragile algorithms using codes were found.
One common point for comparison is the use of the DWT domain. We remind
that the goal of this work is to present a proof of concepts for the application
of codes in digital watermarking. This method comparison serves as a reference
point to the reader.590

Compared to our method, Qi et al.’s method is built differently and has a dif-
ferent goal. Their embedding strategy is based on SVD performed on 4×4 DWT
coefficients. The authors describe a watermark contained a content-independent
mark and a content-dependent mark. By manipulating the relationships be-
tween singular values in JPEG quantized sub-blocks, a block pattern that rep-595

resents the content-dependent part of the mark is created. After an image
tampering, relationships between singular values may break. Qi et al. propose
to use five authentication measures and a three-level authentication process to
localize tampered areas and classify the nature of the tampering. Three types of
modifications are analyzed: intentional tampering, incidental modifications and600

mild to severe content-preserving modifications. We note that these metrics are
independent from the watermarking scheme they proposed. By following their
analysis on the five authentication measures, we can also apply them to our
work.

In the work we propose, we call malicious image manipulation strong changes605

in the content such as content removal and addition. These changes preserve
the image quality and conceal their existence through high quality hand-crafted
forgeries. Then, we consider non malicious (or incidental) attacks as common
image processing such as JPEG compression, filtering and noising. When the
tampering map is extracted, only the maliciously tampered regions are meant610

to appear. In this context, the ideal goal is to allow one to accurately segment
the modified areas of the image. To perform a fair comparison, we choose to
compute the previously used metrics on Qi et al.’s tampering maps after using
the same filtering strategy used in our scheme (see section 3.4.3), i.e., a new
error map is computed by assigning a pixel as tampered if at least three of its615

eight neighbor pixels are tampered.
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We first measured the image quality of QI-SVD and obtained a PSNR of
39.8dB which is similar to the proposed method PSNR measures previously
showed in figure 2 for L2 curves at ∆ = 30 or L3 curves at ∆ = 60.

On the tampering localization performances , QI-SVD precision measures620

(showed in table 5) is the highest compared to every other measures in table 4
with a very low false alarm rate. However, QI-SVD’s missed detection rate is
very high (0.5425) meaning that only half of the tampered pixels are correctly
detected. As for its F1 score (0.5919), it is similar to the lowest F1 measure
(0.5919) obtained by RS-SYN (16, 16). Moreover, QI-SVD’s measures of stan-625

dard deviation are the lowest which makes this method very stable in terms of
performances.

In table 5, we compare the QI-SVD with EL-LOC performances. EL-LOC
variant is a more balanced authentication method compared to QI-SVD at an
equal block size of 4×4 with a higher F1 score and precision and a lower missed630

detection rate.

Table 5: Performances comparisons of variant EL-LOC (4, 4), and method QI-SVD.
∆ = 30 and PSNR = 40.2dB.

(n, s) F1 score Prec. FA rate MD rate

EL-LOC

(4, 4) 0.8021 0.8301 0.0054 0.1911
σ 0.1364 0.0986 0.0029 0.1902

QI-SVD

- 0.6088 0.9177 0.0013 0.5425
σ 0.0394 0.0788 0.001 0.0352

In conclusion, we have proposed a semi-fragile embedding using quantization
in the DWT domain using error-control codes. We first showed than LOC
variant allows to obtain tampering localization peformances at least as good
as COR variant with lower complexity leading to easier implementation and635

potentially faster computations. Moreover, we propose to use EL codes instead
of RS codes to further decrease the computational complexity. This semi-fragile
embedding using codes allow us to obtain better performances than a state of
the art method [1].

However, one limitation of the proposed method is its inability to detect640

shadow modifications such as adding a light shadow or modifying a shadow.
For example, a person or an object is added in the foreground of the host im-
age. In order to be realistic with the image luminance, the corresponding per-
son’s shadow must be added. This type of modifications only introduces small
grayscale distortions that are related to the image content. If the quantization645

step ∆ is high enough, image regions corresponding to shadow will be part of
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the missed detections represented by the red regions in figure 3. In the case of
QI-SVD, we can see that this phenomenon does not happen. Instead, missed
detections are mixed with the true positives in green in the entire tampered
regions.650

(a) DPP0069 host (b) DPP0078 host (c) DPP0269 host

(d) tampered (e) tampered (f) tampered

(g) EL-LOC 4 × 4,
∆ = 30

(h) EL-LOC 4 × 4,
∆ = 30

(i) EL-LOC 4 × 4,
∆ = 30

(j) QI-SVD (k) QI-SVD (l) QI-SVD

Figure 3: Tampering localization performances in the case of low grayscale content
related modifications (eg: shadows). Results obtained with variant EL-LOC and method
QI-SVD.

We propose now to study the tampering localization performances under
high constraints such as JPEG compression and Additive White Gaussian Noise.

4.5. Robustness evaluation

It is realistic to expect a fragile embedding to be robust to some image pro-
cessing and embedding a watermark in DWT domain can achieve such require-655

ment. In this subsection, we evaluate the tampering localization performances
against two of the most common unintentional image processing (JPEG com-
pression and additive white gaussian noise abbreviated AWGN). This evaluation
is not meant to be exhaustive but rather to illustrate a robustness evaluation of
the tampering localization performances and focus on the analysis of EL codes.660

We must note that the experiment in this section does not evaluate the ro-
bustness of a watermark payload (typically evaluated by observing binary error
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rates) but rather the tampering localization performances using EL codes under
image processing attacks.

In this experiment, we embed our watermark in the entire diagonal sub-665

band HH at the third level resolution. Several quantization steps are used
(∆ = 30, 45, 60) and corresponding PSNR can be consulted in figure 2. The au-
thentication variant being used is EL-LOC. Experimentally, we provide a large
range of parameters for both attacks. Compared to EL-LOC, results are similar
for other variants.670
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Figure 4: Tampering localization performances evolution in function of the JPEG
quality factor q for variant EL-LOC at a level 3 wavelet decomposition.

For JPEG compression, the best robustness results were obtained with a
block size of 4×4 in figure 4. For different values of ∆, curve values are increas-
ing from nearly 0 to a maximum of 0.70 for F1 score and precision, decreasing
from 0.78 to 0.012 for false alarm rates and increasing from 0.15 to 0.25 for
missed detection rates. Note that tampering maps produced in this experi-675

ments are visually satisfying when F1 scores are close to 0.7. Values for which
F1 scores are reaching 0.69 are high quality factors only (q = 90, 80, 75 with
∆ = 30, 45, 60 respectively). We have the same remark for precision measures
with q = 95, 85, 75. False alarm rates are also reaching 0.1 for q = 90, 80, 65
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respectively. By increasing the quantization step ∆, performances are better680

for every metrics except for missed detection rates which slightly increase when
∆ increases. Also, one could embed the watermark in a higher level of decom-
position to obtain a better robustness. However, experiments on that matter
showed that using a higher decomposition level gives better robustness to the
quantization based method but localization results obtained from the DWT to685

spatial tampering map translation is worse.
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Figure 5: Tampering localization performances evolution in function of the AWGN
standard deviation σ for variant EL-LOC at a level 3 wavelet decomposition.

As for the experiments on AWGN, we obtain values around 0.7 for F1 score
and precision for small values of σ (figure 5). For F1 metric, measures can be
maintained at 0.7 with respect to respective ∆ = 30, 45, 60 when σ = 1, 2, 3 and
get below 0.6 for σ = 1.5, 3, 4. We can observe the same behavior for precision690

measures. For false alarm rates, values stay minimal for σ = 1, 2, 3 and become
higher than 0.1 σ = 2, 4, 5.5. Missed detection rates are stable and vary between
0.15 and 0.25.

An explanation of the obtained performances is the ability to classify er-
ror types. In the dataset [31] we use, realistic tampering are characterized by695

compact modified regions and can be created by different type of tamperings.
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More importantly, the modified grayscale values are, most of the time, unre-
lated to the original ones. Some examples are copy-pasting other regions of the
image (copy-move), copy pasting contents from other images and partial con-
tent erasure. In this dataset, tampering are realistic, i.e., invisible to the naked700

eye. Therefore, by applying a filter-like operation which is the window sliding
method described in section 3, it is possible to differentiate realistic tamperings
and noisy error structure types induced by JPEG compression and AWGN.

In figure 6, we propose to visually appreciate the robustness of EL-LOC with
∆ = 60. We chose a quality factor q = 85 and a standard deviation σ = 2 for705

which performances are satisfying. For EL-LOC, some artifacts (false alarms in
blue) produced by a compression for example sometimes appear in the confusion
map.

Finally, we also added the tampering localization performances under JPEG
compression and AWGN for method QI-SVD in figures 4 and 5. In the case710

of JPEG compression, we can see that, even at high quality factor q ≥ 90, QI-
SVD’s performances are below 0.3 for F1 score and precision whereas EL-LOC
curves are at 0.7. Its false alarm rate is low but is much higher than EL-LOC
curves and its missed detection rate is very high with a horizontal-like curve
around 0.54. For the AWGN attack, the F1 score and precision curves are also715

decreasing rapidly when σ increases from 0 to 1 whereas EL-LOC remain at 0.7
again. The false alarm rate is also increasing starting at 0 meanwhile EL-LOC
curves start to increase after σ ≥ 1. The missed detection curve is similar to
the one obtained for JPEG compression.

It can be seen that the authentication method QI-SVD is not robust against720

JPEG compression and AWGN. We propose some confusion map examples in
figure 6 to observe a result sample of QI-SVD localization performances under
both attacks. One can see that these attacks produce much more false alarms
(blue artefacts) in subfigures (m) to (r).

An extra experiment with low pass filtering as an attack has also been per-725

formed but the proposed variants are not robust. Other attacks such as median
filtering and gaussian filtering can be studied as a work perspective. Another
class of image processing is the class of geometrical attacks (rotation, scaling
and translation). To obtain robustness to such distortions, the coefficient syn-
chronization strategy needs to be adapted. For example, an image rotation will730

change the position of blocks which is not considered in our paper.
In conclusion, the proposed authentication variant EL-LOC is able to resist

JPEG compression and AWGN, i.e. is able to provide satisfying tampering
localization performances thanks to a quantization-based embedding on DWT
coefficients. The other studied variants also achieve similar performances but735

with a higher computation cost.
Before ending this section, we propose a comment on a common property of

semi-fragile watermarking called image recovery as part of our work perspective
to extend the proposed semi-fragile watermarking framework. This property
allows the receiver end to recover tampered regions of the images. Based on our740

work, error correcting codes (BCH and Reed-Solomon codes in our work) can
allow the receiver end recovering tampered regions of the images but it is not
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possible with error locating (EL) codes.
When errors occur in an EL codeword, the goal of the decoding algorithm is

to determine which blocks of the codeword contain errors but these errors are not745

corrected. However, EL codes decoding abilities are sufficient for an application
in image tampering localization only. In the paper, EL codes are used in the
variants REP-LOC and EL-LOC. However, the use of COR variants (with BCH
and RS error correcting codes) may be a good start in order to be able to recover
tampered image regions. When an image is watermarked using BCH-COR or750

RS-COR, some tampered coefficients can be recovered while other coefficients
cannot be recovered due to the quantization method redundancy. Eventhough
the embedded bits are fully recovered, the original associated quantization value
cannot always be correctly deduced if the pixel modification is large since several
quantization values encode the same information bit (redundancy property).755

After correction of the embedded bits, it may be possible to design an algorithm
which guesses the original quantization values based on the information given by
pixel neighborhood values. Then, coefficients that have the highest probability
of being original can be considered as recovered. By applying this algorithm
several times on previously recovered coefficients, it is possible to obtain a highly760

probable reconstruction.

5. Conclusion

We have proposed a semi-fragile watermarking algorithm using quantization
in the DWT domain. It is equipped with different authentication variants and
control codes to solve the problem of image tampering localization. We also in-765

troduced a point of view on error control codes applied in digital watermarking
for image authentication with the introduction of SYN, LOC and COR authen-
tication variants. In particular, we introduced a class of codes called error-
locating codes that are able, by choosing suitable parameters, to further reduce
the computation cost of image tampering localization compared to our baseline770

of codes.
On the experimental part, we showed that error localization (LOC) is as

precise as error correction (COR). In addition, we showed that EL codes could
achieve the same localization performances as Reed-Solomon codes except it is
faster (quasi-linear decoding complexity) and simpler to use compared to Reed-775

Solomon and BCH codes. With different block sizes, performance tradeoffs can
be easily chosen to fit the desired application.

In the mean time, we analyzed the performances of our algorithms in terms
of image quality, tampering localization performances and robustness. Results
showed that the authentication variant EL-LOC proposes the best tradeoff per-780

formances among all the variants and method QISVD. Finally, the semi-fragile
algorithm is also robust to JPEG compression and additive white gaussian noise
within a limited range of attacks parameters.

An example of perspective is to work on parity check matrix H0 and more
generally on EL codes to improve the error-decoding performances. In addition,785
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we are convinced it is possible to adapt the quantization step in function of the
pixel value intensity to detect shadows as part of the tampered regions.
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(a) DPP0086 origi-
nal

(b) DPP0247 origi-
nal

(c) DPP0405 origi-
nal

(d) tampered (e) tampered (f) tampered

EL-LOC, JPEG, q = 85,∆ = 60

(g) 0.71, 0.72, 0.01, 0.31 (h)
0.75, 0.76, 0.007, 0.26

(i) 0.74, 0.65, 0.007, 0.15

EL-LOC, AWGN, σ = 1,∆ = 60

(j) 0.72, 0.74, 0.01, 0.30 (k)
0.78, 0.81, 0.005, 0.25

(l) 0.79, 0.74, 0.005, 0.15

QI-SVD, JPEG, q = 94

(m) 0.26, 0.18, 0.09, 0.51 (n) 0.42, 0.37, 0.02, 0.52 (o) 0.11, 0.07, 0.08, 0.62

QI-SVD, AWGN, σ = 1

(p) 027, 0.19, 0.08, 0.53 (q) 0.43, 0.4, 0.02, 0.54 (r) 0.11, 0.06, 0.08, 0.64

Figure 6: Confusion map examples from EL-LOC for images DPP0086, DPP0247,
DPP0405 respectively from the left to the right. Each sub figure caption contain the
following: (q,∆, F1,Precision,FA rate,MD rate).
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