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Abstract

We consider the reaction-diffusion competition system in the so-called critical com-
petition case. The associated ODE system then admits infinitely many equilibria, which
makes the analysis intricate. We first prove the non-existence of ultimately monotone
traveling waves by applying the phase plane analysis. Next, we study the large time be-
havior of the solution of the Cauchy problem with a compactly supported initial datum.
We not only reveal that the “faster” species excludes the “slower” one (with a known
spreading speed), but also provide a sharp description of the profile of the solution, thus
shedding light on a new bump phenomenon.
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1 Introduction

We consider the Lotka-Volterra competition-diffusion system
{

∂tu = uxx + u(1− u− v), t > 0, x ∈ R,

∂tv = dvxx + rv(1− v − u), t > 0, x ∈ R,
(1.1)

which is critical among systems in the form of (1.5). The main difficulty is that the underlying
ODE competition system

{

u′ = u(1− u− v), t > 0,

v′ = rv(1− v − u), t > 0,
(1.2)

admits infinitely many (nontrivial) equilibria: the whole line u + v = 1. Because of that,
there are very few available mathematical results on system (1.1). In the present paper, we
fill this gap by proving the non-existence of ultimately monotone traveling waves, and giving
a very precise description of the large time behavior of the solution starting from a compactly
supported initial datum, thus revealing a new bump phenomenon.

In the absence of one species, system (1.1) reduces to the reaction-diffusion equation

∂tu = duxx + ru(1− u), t > 0, x ∈ R, (1.3)

introduced by Fisher [6] and Kolmogorov, Petrovsky and Piskunov [16] as a population genet-
ics model to investigate the propagation of a dominant gene in a homogeneous environment.
The KPP equation (1.3) has two main properties. Firstly, nonnegative traveling waves, cor-
responding to the ansatz u(t, x) = U(x− ct) and solving

{

dU ′′ + cU ′ + rU(1− U) = 0 in R,

U(−∞) = 1, U(∞) = 0,
(1.4)

exist if and only if their speeds c ≥ c∗ := 2
√

dr. Secondly, the solution of (1.3) starting from
a nonnegative (nontrivial) compactly supported initial datum, satisfies

lim
t→∞

sup
|x|≥ct

u(t, x) = 0, for all c > c∗,

lim
t→∞

sup
|x|≤ct

|1− u(t, x)| = 0, for all c < c∗,

see [1]. In other words, the minimal speed c∗ of traveling wave solutions corresponds to the
spreading speed of the solution of the Cauchy problem with a compactly supported initial
datum.

The general Lotka-Volterra competition-diffusion system is written
{

∂tu = uxx + u(1− u− av), t > 0, x ∈ R,

∂tv = dvxx + rv(1− v − bu), t > 0, x ∈ R.
(1.5)
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Here u = u(t, x) and v = v(t, x) represent the population densities of two competing species,
d > 0 and r > 0 stand for the diffusion rate and intrinsic growth rate of v (while those of u

have been normalized), and a > 0 and b > 0 represent the strength of v and u, respectively,
as competitors. The parameters a and b determine the behavior of the underlying ODE
system (see below) but, once fixed, the outcomes for system (1.5) are highly dependent on
the parameters r, d and the initial datum. The situation is therefore very rich and we refer
to the works mentioned below for more details and references.

The so-called weak competition case corresponds to a < 1 and b < 1. Nontrivial solutions
of the underlying ODE system tend to the co-existence equilibrium. For the diffusion system,
it was proved by Tang and Fife [22] that there exists a minimal speed c⋆ > 0 such that a
monotone traveling wave solution connecting the co-existence equilibrium to the null state
(0, 0) exists if and only if c ≥ c⋆, which is comparable to the Fisher-KPP equation mentioned
above. Concerning the large time behavior of the Cauchy problem, some first estimates were
obtained by Lin and Li [17]. More recently, Liu, Liu and Lam [18, 19] obtained some rather
complete results.

The so-called strong competition case corresponds to a > 1 and b > 1. Since the co-
existence equilibrium is unstable and the equilibria (1, 0) and (0, 1) are both stable for the
underlying ODE system, this case corresponds to a bistable situation. For the diffusion system,
it was proved by Kan-On [13], see also [7], that there exists a unique traveling wave solution
connecting (1, 0) to (0, 1). The sign of the speed of this wave determines the “winner” between
u and v, and thus is very relevant for applications, see the review [8]. We refer to [10], [11] and
[21] for some results on this delicate issue. As far as the large time behavior of the Cauchy
problem is concerned, we refer to the recent work of Carrere [3] revealing the possibility
of propagating terraces, see [4, 5]. Very recently, Peng, Wu and Zhou [20] provided refined
estimates of both the spreading speed and the profile of the solution.

Last, the so-called strong-weak competition case corresponds to a < 1 < b. Nontrivial
solutions of the underlying ODE system tend to the state (1, 0) meaning that “u excludes
v”. For the diffusion system, the traveling wave solutions were constructed by Kan-On [14].
Concerning the large time behavior of the solution of the Cauchy problem, Girardin and
Lam [9] recently studied the spreading speed of solutions with an initial datum that is null
(or exponentially decaying) on the right half line. They obtained a rather complete under-
standing of the spreading properties, revealing in particular the possibility of an acceleration
phenomenon (see Appendix of the present paper for more details).

In the present paper, our goal is to complete the above picture by considering the issues
of both traveling wave solutions and the Cauchy problem in the so-called critical competition
case a = b = 1, corresponding to system (1.1).

2 Main results

A traveling wave solution of system (1.1) is defined as follows.

Definition 2.1 ((α, β)-traveling wave). Let 0 ≤ α, β ≤ 1 be given with α 6= β. Then an
(α, β)-traveling wave solution (or traveling wave if there is no ambiguity) of (1.1) is a triplet
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(c, U, V ), where c ∈ R is the traveling wave speed and (U, V ) two nonnegative profiles, solving






















U ′′ + cU ′ + U(1− U − V ) = 0,

dV ′′ + cV ′ + rV (1− V − U) = 0,

(U, V )(−∞) = (α, 1 − α),

(U, V )(+∞) = (β, 1 − β).

(2.1)

As mentioned above, for both the strong competition case and the strong-weak compe-
tition case, monotone traveling waves connecting (1, 0) to (0, 1) are known to exist. In the
critical competition case under consideration, our first main result is that there is no ulti-
mately monotone traveling wave connecting any two different nonnegative steady states on
the line u + v = 1.

Definition 2.2 (Ultimately monotone (α, β)-traveling wave). Let 0 ≤ α, β ≤ 1 be given with
α 6= β. Then an ultimately monotone (α, β)-traveling wave solution is an (α, β)-traveling
wave for which there further exist −∞ < z0 ≤ z∗

0 < +∞ such that

U ′(z)V ′(z) 6= 0, for all z ∈ (−∞, z0] ∪ [z∗
0 , +∞). (2.2)

Remark 2.3. Obviously, if (c, U(z), V (z)) is an (ultimately monotone) (α, β)-traveling wave
then (−c, U(−z), V (−z)) is a (ultimately monotone) (β, α)-traveling wave.

In other words, we do not require the traveling wave to be monotone on R, but only to
be monotone in some neighborhoods of both −∞ and +∞. This reinforces our non-existence
result which states as follows.

Theorem 2.4 (Non-existence of ultimately monotone traveling waves). Let 0 ≤ α, β ≤ 1 be
given with α 6= β. Then, there is no ultimately monotone (α, β)-traveling wave for system
(1.1).

The above theorem is proved in Section 3. The starting point consists in transforming
system (2.1) into a first order system of four ODEs. Then, by a phase plane analysis, we
prove that U + V − 1 has to “oscillate” in a neighborhood of −∞ or +∞, from which we get
a contradiction.

Remark 2.5. As easily seen from the proof, to exclude the existence of a traveling wave
with speed c > 0, c < 0, it is enough to assume that (2.2) holds in a neighborhood of −∞,
+∞ respectively. In other words, there is no traveling wave for which the invading state
is monotonically reached. The existence of a traveling wave for which the invading state is
not monotonically reached remains an open issue. Last, as seen from subsection 3.1, the non
existence of standing waves (c = 0) does not require any ultimately monotonicity assumption.

Our second main focus is concerned with the large time behavior of the solution of system
(1.1) starting from a nonnegative (nontrivial) compactly supported initial datum. In both
the strong competition case [3], [20], and the strong-weak competition case [9], the monotone
traveling wave solutions of the entire system play a key role in studying the large time behavior
of the solution of the Cauchy problem. However, for the critical competition case, such
traveling wave solutions do not exist.

In order to state our result, we define the (minimal) Fisher-KPP traveling wave solution
(cu, UKP P ) as

cu := 2,

{

U ′′
KP P + cuU ′

KP P + UKP P (1− UKP P ) = 0,

UKP P (−∞) = 1, UKP P (∞) = 0,
(2.3)
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and, similarly, (cv, VKP P ) as

cv := 2
√

dr,

{

dV ′′
KP P + cvV ′

KP P + rVKP P (1− VKP P ) = 0,

VKP P (−∞) = 1, VKP P (∞) = 0.
(2.4)

Let us recall that both UKP P and VKP P are uniquely defined “up to a shift”. Note that, cu

(resp. cv) also represents the spreading speed of u (resp. v) in the absence of v (resp. u).

Theorem 2.6 (Propagation phenomenon). Let (u, v) = (u, v)(t, x) be the solution of system
(1.1) starting from an initial datum (u0, v0) = (u0, v0)(x) satisfying

u0 and v0 are continuous, nontrivial, compactly supported, and 0 ≤ u0, v0 ≤ 1. (2.5)

Then the following holds.

(i) Assume dr > 1 (i.e. cv > cu). Then

lim
t→∞

(

sup
x∈R

∣

∣

∣

∣

v(t, x)− VKP P

(

|x| − cvt +
3d

cv
ln t + η∗(t)

)∣

∣

∣

∣

+ sup
x∈R

u(t, x)

)

= 0, (2.6)

where η∗ is a bounded function on [0,∞).

(ii) Assume dr < 1 (i.e. cv < cu). Then

lim
t→∞

(

sup
x∈R

∣

∣

∣

∣

u(t, x)− UKP P

(

|x| − cut +
3

cu
ln t + η∗∗(t)

)∣

∣

∣

∣

+ sup
x∈R

v(t, x)

)

= 0, (2.7)

where η∗∗ is a bounded function on [0,∞).

The above theorem is proved in Section 4. Let us briefly comment on Theorem 2.6. First
of all, for the case dr > 1 (or dr < 1), the “faster species”, namely v, excludes the “slower
one”, namely u, and imposes its spreading speed, see (2.6). Furthermore, we find that the
profile of the solution uniformly converges to the corresponding minimal KPP traveling wave
solution, and this up to an identified logarithmic Bramson correction, see (2.6) again.

On the other hand, for the case dr = 1, it is difficult to decide which species leads the
invading front, and the behavior of the solution is highly depending on both the parameters
and the shape of the initial datum. For the case d = r = 1, for any initial datum satisfying
(2.5), a coexistence phenomenon happens. However, for the case dr = 1 but d 6= 1, the
behavior of the solution is much more intricate. Indeed, in this case, the logarithmic phase
drifts for u and v are different and there is a narrow region of width O(ln t) where the behaviors
of u and v are difficult to “anticipate”. This may cause some subtle phenomena (both species
driving the front or one excluding the other) and makes the mathematical analysis quite
involved. We hope to address these issues in a future work.

Our second result on the Cauchy problem deals with the region “|x| ≤ ε∗t”, where the
profile of the solution is more of the “Heat equation type”.

Theorem 2.7 (Bump phenomenon). Let (u, v) = (u, v)(t, x) be the solution of system (1.1)
starting from an initial datum (u0, v0) = (u0, v0)(x) satisfying (2.5). Denote

k∗ := min

(

1

2d
,
d

2

)

, d∗ := max(1, d).

Then the following holds.
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Figure 1: The asymptotic profile of the solution, in the case dr > 1.

(i) Assume dr > 1 (i.e. cv > cu). Then for ε∗ > 0 small enough and 0 < θ < 1
2 , there exist

C2 > C1 > 0 and T > 0 such that both

C1t− 1
2 e− x2

4t ≤ u(t, x) ≤ C2t−k∗
e− x2

4d∗t , (2.8)

max

(

C1t− 1
2 e− x2

4t − t−(1+θ), 0

)

≤ 1− v(t, x) ≤ C2t−k∗
e− x2

4d∗t , (2.9)

hold for any t ≥ T , |x| ≤ ε∗t.

(ii) Assume dr < 1 (i.e. cv < cu). Then for ε∗∗ > 0 small enough and 0 < θ < 1
2 , there

exist C4 > C3 > 0 and T > 0 such that both

C3t− 1
2 e− x2

4t ≤ v(t, x) ≤ C4t−k∗
e− x2

4d∗t , (2.10)

max

(

C3t− 1
2 e− x2

4t − t−(1+θ), 0

)

≤ 1− u(t, x) ≤ C4t−k∗
e− x2

4d∗t , (2.11)

hold for any t ≥ T , |x| ≤ ε∗∗t.

The above theorem is proved in Section 5. Let us briefly comment on Theorem 2.7, say in
the case dr > 1. As revealed by (2.8) and (2.9), the solution converges to (0, 1) exponentially
in regions of the form |x| ≥ εt with ε > 0, but only algebraically in “sublinear regions” of
the form |x| .

√
t. We call this a bump phenomenon, see Figure 1. Such a phenomenon does

not occur in the strong competition case [20]. As far as the strong-weak competition case is
concerned, the results as stated in [9] are not sufficient to decide if it occurs or not, but we
assert it does not, as proved in the forthcoming work [23]. Therefore, the present paper is the
first one revealing a bump phenomenon in the context of competition-diffusion systems. We
believe such a phenomenon is reserved for the critical case a = b = 1, and is rare to happen
in the context of homogeneous reaction-diffusion equations.

3 Non-existence of traveling waves

This section is devoted to the proof of Theorem 2.4 on the non-existence of ultimately mono-
tone traveling waves for system (1.1).
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3.1 Preliminary results and observations

In this subsection, the ultimately monotonicity assumption is not required, and thus a trav-
eling wave is understood in the sense of Definition 2.1. We start with the following a priori
estimates for a traveling wave.

Lemma 3.1. Any traveling wave has to satisfy 0 < U < 1, 0 < V < 1, and U ′(±∞) =
V ′(±∞) = 0.

Proof. The positivity of the profiles follows from the strong maximum principle. If U ≤ 1
is not true, then U has to reach a maximum value strictly larger than 1 at some point, and
evaluating the U -equation at this point gives a contradiction. Hence U ≤ 1 and, from the
strong maximum principle, U < 1. Similarly, one has V < 1.

We now prove the limit behavior U ′(+∞) = 0, the other ones being proved similarly.
Denote the set of accumulation points of U ′ in +∞ by A. Since U is bounded, 0 ∈ A. Let
ℓ ∈ A. Then there exists a sequence zn → +∞ such that U ′(zn) → ℓ as n → +∞. Then
(Un, Vn)(z) := (U, V )(z + zn) solves

U ′′
n + cU ′

n = −Un(1− Un − Vn).

Since the L∞ norm of the right hand side term is uniformly bounded with respect to n,
the interior elliptic estimates imply that, for all R > 0 and 1 < p < ∞, the sequence
(Un) is bounded in W 2,p(−R, R). From Sobolev embedding theorem we have that, up to a
subsequence, Un converges to some U∞ in C1

loc(R). The boundary condition U(+∞) = β thus
enforces U∞ ≡ β and U ′

∞ ≡ 0. As a result, U ′(zn) = U ′
n(0) → U ′

∞(0) = 0, and thus ℓ = 0.
Hence A = {0}, which concludes the proof.

We conclude this subsection by showing the non-existence of traveling wave solutions for
two special cases.

Proposition 3.2 (Non-existence of standing waves). There is no standing wave, i.e. traveling
wave with speed c = 0, for system (1.1).

Proof. Assume c = 0. By adding the both sides of the U -equation and the V -equation, we
find that W := U + V satisfies

W ′′ +

(

U +
r

d
V

)

(1−W ) = 0, W (±∞) = 1.

If W 6≡ 1, then W reaches either a maximum value strictly larger than 1 or a minimum value
in (0, 1), which is impossible from the above equation (recall that U + r

d
V > 0). As a result

W = U + V ≡ 1. Going back to the original equations we have U ′′ = V ′′ = 0. Since U and
V are bounded, U and V must be constant, which cannot happen since α 6= β.

Proposition 3.3 (Non-existence of traveling waves when d = 1). Assume d = 1. Then there
is no traveling wave for system (1.1).

Proof. Again, by adding the both sides of the U -equation and V -equation, we see that W :=
U + V satisfies

W ′′ + cW ′ + (U + rV )(1 −W ) = 0, W (±∞) = 1,

so that, as in Proposition 3.2, we have W ≡ 1, and thus U ′′ + cU ′ = 0. From Lemma 3.1, by
integrating both sides from −∞ to +∞, we have c(β − α) = 0, which yields a contradiction
since c 6= 0 and α 6= β.
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3.2 Proof of Theorem 2.4

We now consider the case of ultimately monotone traveling waves.

Lemma 3.4. Let 0 ≤ α, β ≤ 1 be given with α 6= β. Let (c, U, V ) be an ultimately monotone
(α, β)-traveling wave solution. Then (2.2) is refined in

U ′(z)V ′(z) < 0, for all z ∈ (−∞, z0] ∪ [z∗
0 , +∞). (3.1)

Proof. We only deal with the behavior around −∞. If the conclusion is false, we may assume
that U ′(z) > 0 and V ′(z) > 0 for all z ∈ (−∞, z0], the case U ′(z) < 0 and V ′(z) < 0 being
treated similarly. From the boundary conditions (U, V )(−∞) = (α, 1−α) and (U, V )(+∞) =
(β, 1 − β), there must exist a point z1 > z0 such that

U ′(z) > 0, V ′(z) > 0, for all z < z1, U ′(z1) = 0 or V ′(z1) = 0.

Assume w.l.o.g. that U ′(z1) = 0. In particular U ′′(z1) ≤ 0. From the U -equation, this
enforces (U + V )(z1) ≤ 1 which contradicts to (U + V )(−∞) = 1 and (U + V )′ > 0 on
(−∞, z1).

We now prove, in the case d 6= 1, the non-existence of ultimately monotone traveling
waves with speed c 6= 0. In view of subsection 3.1, this is enough to complete the proof of
Theorem 2.4.

Completion of the proof of Theorem 2.4. For d 6= 1, let us consider (c, U, V ) an ultimately
monotone (α, β)-traveling wave with c 6= 0. In the sequel we only deal with the case c > 0 for
which we perform a phase plane analysis around −∞ (for the case c < 0, one has to perform
a phase plane analysis around +∞ with similar arguments). We define W := α−U , P := U ′,
R := V − 1 + α, Q := V ′. Then we can rewrite (2.1) as



















































W ′ = −P,

P ′ = −cP − (α−W )(W −R),

R′ = Q,

Q′ = − c

d
Q− r

d
(R + 1− α)(W −R),

(W, P, R, Q)(−∞) = (0, 0, 0, 0),

(W, P, R, Q)(+∞) = (α− β, 0, α − β, 0).

(3.2)

Assume that W −R is ultimately nonnegative, that is

∃z∗ < z0,∀z ≤ z∗, (W −R)(z) ≥ 0. (3.3)

From (3.1), we know that it holds either P > 0 or Q > 0 on (−∞, z0]. Moreover, from Lemma
3.1, α−W ≥ 0 and R + 1− α ≥ 0. If P > 0 on (−∞, z0], then from the P -equation in (3.2),
we have P ′ < 0 on (−∞, z∗], which contradicts to P > 0 on (−∞, z0] and P (−∞) = 0. If
Q > 0 on (−∞, z0], we similarly get a contradiction from the Q-equation. Hence (3.3) does
not hold.

Assume that W −R is ultimately nonpositive, that is

∃z∗ < z0,∀z ≤ z∗, (W −R)(z) ≤ 0. (3.4)
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From (3.1) again, we know that it holds either P < 0 or Q < 0 on (−∞, z0]. If P < 0 on
(−∞, z0], then from the P -equation in (3.2), we have P ′ > 0 on (−∞, z∗], which contradicts
to P < 0 on (−∞, z0] and P (−∞) = 0. If Q < 0 on (−∞, z0], we similarly get a contradiction
from the Q-equation. Hence (3.4) does not hold.

As a result, since W −R is neither ultimately nonnegative nor ultimately nonpositive, we
can find a local maximum point z1 < z0 and a local minimum point z2 < z0 such that

(W −R)(z1) > 0, (W −R)′(z1) = 0, (W −R)′′(z1) ≤ 0;

(W −R)(z2) < 0, (W −R)′(z2) = 0, (W −R)′′(z2) ≥ 0.

Note that

(W −R)′′ = cP +
c

d
Q +

(

α−W +
r

d
(R + 1− α)

)

(W −R).

From (3.1), it holds either Q > 0 or Q < 0 on (−∞, z0]. Let us first consider the case d < 1. If
Q > 0 on (−∞, z0], since (W−R)′(z1) = 0 means (P +Q)(z1) = 0, we have (cP + c

d
Q)(z1) > 0.

Therefore, from the above equation, (W−R)′′(z1) > 0, which is a contradiction. On the other
hand, if Q < 0 on (−∞, z0], since (P + Q)(z2) = 0, we have (cP + c

d
Q)(z2) < 0. Therefore,

from the above equation, (W − R)′′(z2) < 0, which is a contradiction. Last, the case d > 1
can be treated similarly.

Therefore, we conclude that system (1.1) does not admit any ultimately monotone trav-
eling wave.

4 The Cauchy problem

In this section, we consider system (1.1) with a compactly supported initial datum, and prove
the propagation result, namely Theorem 2.6.

4.1 Preliminaries

Let us start by briefly recalling the competitive comparison principle. Define the operators

N1[u, v] := ut − uxx − u(1− u− v) and N2[u, v] := vt − dvxx − rv(1− v − u).

Consider a domain Ω := (t1, t2)× (x1, x2) with 0 ≤ t1 < t2 ≤ +∞ and −∞ ≤ x1 < x2 ≤ +∞.

A (classical) super-solution is a pair (u, v) ∈
[

C1
(

(t1, t2), C2((x1, x2))
)

∩Cb

(

Ω
) ]2

satisfying

N1[u, v] ≥ 0 and N2[u, v] ≤ 0 in Ω.

Similarly, a (classical) sub-solution (u, v) requires N1[u, v] ≤ 0 and N2[u, v] ≥ 0.

Proposition 4.1 (Comparison Principle). Let (u, v) and (u, v) be a super-solution and sub-
solution of system (1.1) in Ω, respectively. If

u(t1, x) ≥ u(t1, x) and v(t1, x) ≤ v(t1, x), for all x ∈ (x1, x2),

and, for i = 1, 2,

u(t, xi) ≥ u(t, xi) and v(t, xi) ≤ v(t, xi), for all t ∈ (t1, t2),
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then, it holds

u(t, x) ≥ u(t, x) and v(t, x) ≤ v(t, x), for all (t, x) ∈ Ω.

If x1 = −∞ or x2 = +∞, the hypothesis on the corresponding boundary condition can be
omitted.

Denote (u, v) = (u, v)(t, x) as the solution of (1.1) starting from (u0, v0) = (u0, v0)(x)
satisfying (2.5). Obviously, (1, 0) is a super-solution while (0, 1) is a sub-solution. It thus
follows from (2.5), the comparison principle and the strong maximum principle that

0 < u(t, x) < 1 and 0 < v(t, x) < 1, for all t > 0, x ∈ R. (4.1)

Actually, the comparison principle also holds for the so-called generalized sub- and super-
solutions. This is a rather well-known fact, and we refer to the clear exposition in [9, subsection
2.1] for more details. In particular, if (u1, v) and (u2, v) are both classical sub-solutions, then
(max(u1, u2), v) is a generalized sub-solution. Also, if (u, v1) and (u, v2) are both classical
sub-solutions, then (u, min(v1, v2)) is a generalized sub-solution.

We now start the proof of Theorem 2.6. Observe that, by changing the variables as

x =
√

d
r
y and t = 1

r
s, system (1.1) can be rewritten as

{

∂sv = vyy + v(1 − v − u), s > 0, y ∈ R,

∂su = d−1uxx + r−1u(1− u− v), s > 0, y ∈ R.

Therefore, without loss of generality, we assume from now that dr > 1, that is cv > cu, and
shall prove the statement (i) in Theorem 2.6.

Since cv > cu and u cannot propagate faster than cu, the behavior of the solution in the
region |x| > cut is rather well-understood.

Proposition 4.2 (Estimates in the region |x| > cut). We have

lim
t→∞

sup
|x|≥ct

u(t, x) = 0, for all c > cu, (4.2)

lim
t→∞

sup
|x|≥ct

v(t, x) = 0, for all c > cv, (4.3)

and
lim

t→∞
sup

c1t≤|x|≤c2t

|1− v(t, x)| = 0, for all cu < c1 < c2 < cv. (4.4)

Proof. Without loss of generality, we only deal with the case x ≥ 0. Define

U(t, x) := C1e− cu
2

(x−cut) and V (t, x) := C2e− cv
2d

(x−cvt),

where C1 > 0 and C2 > 0 are chosen large enough so that U(0, ·) ≥ u0 and V (0, ·) ≥ v0. We
can easily check that (U, 0) is a super-solution while (0, V ) is a sub-solution. As a result, we
have

0 < u(t, x) ≤ min
(

1, C1e− cu
2

(x−cut)
)

and 0 < v(t, x) ≤ min
(

1, C2e− cv
2d

(x−cvt)
)

, (4.5)
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from which (4.2) and (4.3) follow.
Next, let cu < c1 < c2 < cv be given. Select 0 < a < 1 < b and consider (u∗, v∗) the

solution of the strong-weak competition system

{

∂tu
∗ = u∗

xx + u∗(1− u∗ − av∗),

∂tv
∗ = dv∗

xx + rv∗(1− v∗ − bu∗),
(4.6)

starting from (u0, v0). Obviously, (u∗, v∗) is a super-solution for system (1.1), and thus
v∗(t, x) ≤ v(t, x) ≤ 1 for all t ≥ 0 and x ∈ R. Since the statements (2) and (3) in [9, Theorem
1.1] imply

lim
t→∞

sup
c1t≤x≤c2t

|1− v∗(t, x)| = 0,

the same conclusion holds for v.

4.2 Construction of the super-solution

The goal of this subsection is to construct an adequate super-solution in, roughly speaking,
the region |x| < cut. More precisely, let 1

d
< r1 < r be given and define c∗

v := 2
√

dr1 < cv . In
the sequel, we introduce V1 as a traveling wave solution with speed c∗

v = 2
√

dr1 solving

{

dV ′′
1 + c∗

vV ′
1 + r1V1(1− V1) = 0,

V1(−∞) = 1, V1(∞) = 0.
(4.7)

As well-known, V ′
1 < 0 and there are λ1 > 0 and M1 > 0 such that

1− V1(ξ) ∼M1eλ1ξ as ξ → −∞. (4.8)

Let us fix cu < c1 < c∗
v. For T > 0, we will work in the domain (which is “expanding in time”)

Ω1(T ) := {(t, x) ∈ (T,∞)× R : |x| < c1t}. (4.9)

It turns out that the construction of the super-solution is highly dependent on the value of d.

• The case d ≤ 1. We introduce s = s(t, x) as the solution of the Cauchy problem

{

∂ts = sxx,

s(0, x) = s0(x) := B1e−q|x|,
(4.10)

and look for a super-solution (Ũ , Ṽ ) in the form







Ũ(t, x) := t
1−d

2 (1− e−τt)s(t, x),

Ṽ (t, x) := V1(x− c∗
vt) + V1(−x− c∗

vt)− 1− Ũ(t, x).
(4.11)

All parameters that will be determined below (namely B1, q and τ) are positive, and q < 1.

• The case d ≥ 1. We introduce s = s(t, x) as the solution of the Cauchy problem

{

∂ts = dsxx,

s(0, x) = s0(x) := B1e−q|x|,
(4.12)
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and look for a super-solution (Ũ , Ṽ ) in the form






Ũ(t, x) := t
d−1
2d (1− e−τt)s(t, x),

Ṽ (t, x) := V1(x− c∗
vt) + V1(−x− c∗

vt)− 1− Ũ(t, x).
(4.13)

All parameters that will be determined below (namely B1, q and τ) are positive, and q < 1
d
.

Obviously, (4.10)—(4.11) and (4.12)—(4.13) coincide when d = 1.

Proposition 4.3 (Super-solutions). The following holds.

(i) Assume d ≤ 1. Let 0 < q < 1 and 0 < τ < λ1(c∗
v − c1) be given. Then there exists

T ∗ > 0 such that, for all B1 > 0, (Ũ , Ṽ ), given by (4.10)—(4.11), is a super-solution in
the domain Ω1(T ∗) as defined in (4.9).

(ii) Assume d ≥ 1. Let 0 < q < 1
d

and 0 < τ < λ1(c∗
v − c1) be given. Then there exists

T ∗ > 0 such that, for all B1 > 0, (Ũ , Ṽ ), given by (4.12)—(4.13), is a super-solution in
the domain Ω1(T ∗) as defined in (4.9).

Proof. Since our super-solutions are even functions, it is enough to deal with x ≥ 0. In other
words, we work for t ≥ T (with T > 0 to be selected) and 0 ≤ x < c1t, with cu < c1 < c∗

v.
For ease of notations, we shall use the shortcuts ξ± := ±x − c∗

vt. Since ξ− ≤ −c∗
vt and

ξ+ ≤ −(c∗
v − c1)t, it follows from V ′

1 < 0 and (4.8) that there exist C− > 0 and C+ > 0 such
that, for T > 0 large enough,

1−V1(ξ−) ≤ C−e−λ1c∗
vt and 1−V1(ξ+) ≤ C+e−λ1(c∗

v−c1)t, for all (t, x) ∈ Ω+
1 (T ), (4.14)

where Ω+
1 (T ) := Ω1(T )∩ (T,∞)× [0,∞). Moreover, up to enlarging T > 0 if necessary, there

exists 0 < ρ < 1
3 such that

0 < 1− V1(ξ±) ≤ ρ, for all (t, x) ∈ Ω+
1 (T ). (4.15)

We first assume d ≤ 1. Some straightforward computations combined with (4.10) yield

N1[Ũ , Ṽ ] = t
1−d

2 (1− e−τt)s

(

1− d

2
t−1 +

τe−τt

1− e−τt
− 2 + V1(ξ+) + V1(ξ−)

)

.

In view of (4.14), by choosing τ < λ1(c∗
v − c1), we deduce that, for T > 0 large enough,

N1[Ũ , Ṽ ] ≥ 0 in Ω+
1 (T ). On the other hand, some straightforward computations combined

with (4.10) and (4.7) yield
N2[Ũ , Ṽ ] = J1 + J2 + J3,

where

J1 := t
1−d

2 (1− e−τt)s

(

r
(

2− V1(ξ+)− V1(ξ−)− τe−γt

r(1− e−τt)

)

− 1− d

2
t−1 − (1− d)

∂ts

s

)

,

J2 := (r1 − r)V1(ξ+)(1 − V1(ξ+)),

J3 := (1− V1(ξ−)) ((r1 − r)V1(ξ−) + r(2− 2V1(ξ+))) .

Since r1 < r and 0 < V1 < 1, we have J2 ≤ 0. Next, from (4.15), we have

J3 ≤ (1− V1(ξ−)) ((r1 − r)(1− ρ) + r(2− 2V1(ξ+))) ,
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which, in view of (4.14), is nonpositive up to enlarging T > 0 if necessary. Last, from the
“Heat kernel expression” of s(t, x), namely

s(t, x) = (G(t, ·) ∗ s0) (x), where G(t, x) :=
1√
4πt

e− x2

4t ,

we can check that ∂ts(t, x) ≥ − 1
2t

s(t, x). As a result, since d ≤ 1, we have

J1 ≤ t
1−d

2 (1− e−τt)sr

(

2− V1(ξ+)− V1(ξ−)− τe−τt

r(1− e−τt)

)

.

In view of (4.14) and τ < λ1(c∗
v − c1), we have J1 ≤ 0 up to enlarging T > 0 if necessary. As

a result, N2[Ũ , Ṽ ] ≤ 0 in Ω+
1 (T ).

Next, we assume d ≥ 1. Some straightforward computations combined with (4.12) yield

N1[Ũ , Ṽ ] = t
d−1
2d (1− e−τt)s

(

d− 1

2d
t−1 +

d− 1

d

∂ts

s
+

τe−τt

1− e−τt
− 2 + V1(ξ+) + V1(ξ−)

)

.

As above, since d ≥ 1, ∂ts(t, x) ≥ − 1
2t

s(t, x) implies

N1[Ũ , Ṽ ] ≥ t
d−1
2d (1− e−τt)s

(

τe−τt

1− e−τt
− 2 + V1(ξ+) + V1(ξ−)

)

.

In view of (4.14) and τ < λ1(c∗
v − c1), we deduce that, for T > 0 large enough, N1[Ũ , Ṽ ] ≥ 0

in Ω+
1 (T ). On the other hand, some straightforward computations combined with (4.12) and

(4.7) yield
N2[Ũ , Ṽ ] = J1 + J2 + J3,

where

J1 := t
d−1
2d (1− e−τt)s

(

r(2− V1(ξ+)− V1(ξ−))− τe−τt

1− e−τt
− d− 1

2d
t−1

)

,

J2 := (r1 − r)V1(ξ+)(1− V1(ξ+)),

J3 := (1− V1(ξ−)) ((r1 − r)V1(ξ−) + r(2− 2V1(ξ+))) .

By applying the same argument as that for d ≤ 1, we get N2[Ũ , Ṽ ] ≤ 0 in Ω+
1 (T ).

Note that, time T ∗ in Proposition 4.3 is independent on B1 > 0, which leaves “some room”
to enlarge B1 so that the “initial order” and the “order on the boundary of the domain” are
suitable for the comparison principle to be applicable.

Proposition 4.4 (First estimate on (u, v)). There exist 0 < q < min(1, 1
d
), T ∗∗ > 0 and

B1 > 0 such that

u(t, x) ≤ Ũ(t, x) and Ṽ (t, x) ≤ v(t, x), for all t ≥ T ∗∗, |x| ≤ c1t,

where (Ũ , Ṽ ) is given by (4.10)—(4.11) when d ≤ 1, and by (4.12)—(4.13) when d ≥ 1.
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Proof. We aim at applying the comparison principle in Ω1(T ), as defined in (4.9), with a
well-chosen T > 0. Select 0 < q < min(1, 1

d
) small enough so that

max(qc1 − q2, qc1 − dq2) < c1 − cu. (4.16)

From Proposition 4.3, for any T ≥ T ∗, we are equipped with a super-solution (Ũ , Ṽ ) for which
B1 > 0 is arbitrary. We only deal with the case d ≤ 1, the case d ≥ 1 being similar.

We first focus on x = c1t, t ≥ T ∗ (the case x = −c1t, t ≥ T ∗ being similar). Let us prove
that, up to enlarging T ∗ > 0 if necessary, it holds

u(t, c1t) ≤ Ũ(t, c1t), for all t ≥ T ∗. (4.17)

From the proof of Proposition 4.2, we know that u(t, c1t) ≤ C1e−(c1−cu)t (recall that cu = 2).
Recalling s0(x) = B1e−q|x|, we have

s(t, x) =
B1√
4πt

(
∫ 0

−∞
e− (x−y)2

4t eqydy +

∫ +∞

0
e− (x−y)2

4t e−qydy

)

,

which can be recast, after some elementary computations,

s(t, x) =
B1√

π

(

eq2t−qx
∫ +∞

2qt−x

2
√

t

e−w2
dw + eq2t+qx

∫ +∞

2qt+x

2
√

t

e−w2
dw

)

. (4.18)

In particular, since 2q < 2 < c1, we have, by enlarging T ∗ > 0 if necessary,

Ũ(t, c1t) ≥ 1

2
s(t, c1t) ≥ B1

4
e−(qc1−q2)t ≥ B1

4
e−(c1−cu)t.

The last inequality holds from the choice (4.16). Thus B1 > 4C1 is enough to get (4.17).
Let us recall that v ≥ v∗ where (u∗, v∗) is the solution of the strong-weak competition

system (4.6) with the same initial datum (u0, v0). From Lemma A.1 (ii) (see Appendix), up
to enlarging T ∗ if necessary, there exist µ > 0 and K > 0 such that v∗(t, c1t) ≥ 1−Ke−µt for
all t ≥ T ∗. On the other hand, the construction of Ṽ implies that Ṽ (t, c1t) ≤ 1 − Ũ(t, c1t).
Therefore, by choosing qc1 − q2 < µ, up to enlarging T ∗ > 0 if necessary, we have

Ṽ (t, c1t) ≤ v(t, c1t), for all t ≥ T ∗. (4.19)

Now, q > 0 and T ∗ > 0 are fixed from the above discussion. We focus on the initial
datum, namely t = T ∗, |x| ≤ c1T ∗. As above, we deduce from (4.18) that

inf
|x|≤c1T ∗

Ũ(T ∗, x) ≥ 1

2
s(T ∗, c1T ∗) ≥ B1

4
e−(qc1−q2)T ∗ ≥ 1 ≥ sup

t>0,x∈R

u(t, x),

provided that B1 > 0 is large enough. On the other hand,

sup
|x|≤c1T ∗

Ṽ (T ∗, x) ≤ 1− inf
|x|≤c1T ∗

Ũ(T ∗, x) ≤ 1− B1

4
e−(qc1−q2)T ∗ ≤ 0 ≤ inf

t>0,x∈R

v(t, x),

provided that B1 > 0 is large enough.
As a consequence, the comparison principle can be applied in Ω1(T ∗), which concludes

the proof of Proposition 4.4.
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4.3 Proof of Theorem 2.6

From the discussion above, we are now in the position to obtain the following spreading speed
result.

Proposition 4.5 (Spreading speed). Let (u, v) = (u, v)(t, x) be the solution of (1.1) starting
from an initial datum (u0, v0) = (u0, v0)(x) satisfying (2.5). Then the following holds.

(i) Assume dr > 1 (i.e. cv > cu). Then, for any 0 < c1 < cv < c2,

lim
t→∞

(

sup
x∈R

u(t, x) + sup
|x|≤c1t

|1− v(t, x)|+ sup
|x|≥c2t

v(t, x)

)

= 0. (4.20)

(ii) Assume dr < 1 (i.e. cv < cu). Then, for any 0 < c3 < cu < c4,

lim
t→∞

(

sup
x∈R

v(t, x) + sup
|x|≤c3t

|1− u(t, x)|+ sup
|x|≥c4t

u(t, x)

)

= 0. (4.21)

Proof. Let us prove (i). The result on u in (4.20) is obtained by combining (4.2) and Propo-
sition 4.4. Next, for a given 0 < c1 < cv, we select c1 < c∗

v < cv. Then, Proposition 4.4 yields
sup|x|≤c1t |1− v(t, x)| → 0 as t→∞. The last part of (4.20) is nothing else than the estimate
(4.3).

We are now in the position to complete the proof of Theorem 2.6.

Proof of Theorem 2.6 (i). Since the proof for x ≤ 0 follows from the same argument, we only
deal with x ≥ 0. Let us prove (2.6). For a given m ∈ (0, 1), we define Em(t) as the m-level
set of v(t, ·), namely

Em(t) := {x > 0 : v(t, x) = m}.
We claim that there exist M > 0 and T > 0 such that

cvt− 3d

cv
ln t−M ≤ min Em(t) ≤ max Em(t) ≤ cvt− 3d

cv
ln t + M, for all t ≥ T. (4.22)

The upper bound in (4.22) is obtained by using the solution of ∂tv = dvxx +rv(1−v), starting
from v(0, x) = v0(x), as a super-solution. We refer to [20, Lemma 4.1], see also [2] and [12].
As for the lower bound in (4.22), it follows from [20, Lemma 4.5] which is based on an idea of
[12]. A sketch of the proof is as follows. Let us a fix a small ε > 0 (this is necessary because of
the bump phenomenon). By combining (4.5), Proposition 4.4 and (4.18)3, we see that there
exist C > 0, µ > 0 and T > 0 such that

sup
|x|≥εt

u(t, x) ≤ Ce−µt, for all t ≥ T. (4.23)

As a result, by setting C0 = rC, we have

∂tv ≥ dvxx + v(r − rv − C0e−µt), for all t > 0, x > εt.

3from which one can straightforwardly deduce that supx≥εt s(t, x) = s(t, εt) = O

(

e
−

ε
2

4
t

√
t

)

.
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The key idea, borrowed from [12], is then to linearize the above equation, and to consider

∂tw = dwxx + w(r − C0e−µt), t > 0, x > Γ(t) := cvt− 3d

cv
ln(t + t0), (4.24)

together with the Dirichlet boundary conditions w(t, Γ(t)) = 0 and a compactly supported
initial datum w(0, ·). Then, one can exactly reproduce the technical arguments of [20, Lemma
4.3 and 4.4], mainly borrowed from [12], to obtain the lower bound in (4.22). Last, by applying
(4.22), we can reproduce the argument of [12, Section 4], see also [20, Proof of Theorem 2],
to conclude that there exists a bounded function η∗ : [0,∞)→ R such that

lim
t→∞

sup
x≥0

∣

∣

∣

∣

v(t, x)− V1

(

x− cvt +
3d

cv
ln t + η∗(t)

)∣

∣

∣

∣

= 0, (4.25)

which, combined with (4.20), concludes the proof of (2.6).

5 The bump phenomenon

In this section, we will provide a lower estimate for the solution of system (1.1) starting from
a compactly supported initial datum, and prove Theorem 2.7 on the bump phenomenon.

5.1 Construction of the sub-solution

The goal of this subsection is to construct an adequate sub-solution in, roughly speaking, the
region |x| < cvt. More precisely, let r2 > r be given and define c∗∗

v := 2
√

dr2 > cv. Let us fix
cv < c2 < c∗∗

v . For T > 0, we will work in the domain (which is “expanding in time”)

Ω2(T ) := {(t, x) ∈ (T,∞)× R : |x| < c2t}. (5.1)

A key observation for the construction is the following: from Proposition 4.2, in the region
cut < |x| < cvt, we have u + v ≈ 1, and therefore

{

∂tu ≈ uxx,

∂tv ≈ dvxx.

We thus introduce f = f(t, x) and h = h(t, x) the solutions of the Cauchy problems

{

∂tf = fxx,

f(0, x) = f0(x) := B21(−1,1)(x),

{

∂th = hxx,

h(0, x) = h0(x) := B3e−k|x|,
(5.2)

and look for a sub-solution (U, V ) in the form







U(t, x) := g(t)f(t, x) − h(t, x),

V (t, x) := V2(x− c∗∗
v t− ζ0) + V2(−x− c∗∗

v t− ζ0)− 1− U(t, x) +
1

t1+θ
,

(5.3)

where

g(t) := exp
1

δ(1 + t)δ
.
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Here, all parameters that will be determined below (namely B2, B3, k, ζ0, θ, δ) are positive,
B2 < 1, B3 < 1, while V2 is the traveling wave solution with speed c∗∗

v = 2
√

dr2 satisfying

{

dV ′′
2 + c∗∗

v V ′
2 + r2V2(1− V2) = 0,

V2(−∞) = 1, V2(∞) = 0.
(5.4)

It is well-known that V ′
2 < 0 and there exist λ2 > 0 and M2 > 0 such that

1− V2(ξ) ∼M2eλ2ξ as ξ → −∞. (5.5)

Next, we shall provide some estimates which are based on the “Heat kernel expressions”
of the solutions f and h of (5.2). Note that, in Lemma 5.1, 0 < B2 < 1 and 0 < B3 < 1 can
be relaxed to B2 > 0 and B3 > 0.

Lemma 5.1. Let δ > 0 and k > 0 be given, and set B3 = γB2 with some γ > 0. Then the
following holds.

(i) For any given 0 < j < k,

h(t, x) ≤ B3√
π

k

k2 − j2
t− 1

2 e− x2

4t , for all t > 0, |x| ≤ 2jt.

(ii) For any given 0 < j < k and T > 0, there exists γ1 > 0 such that, if 0 < γ ≤ γ1, then,
for all B2 > 0,

g(t)f(t, x)− h(t, x) > 0, for all t ≥ T, |x| ≤ 2jt.

(iii) There is T 0 > 0 such that, for all B2 > 0,

g(t)f(t, x)− h(t, x) ≤ 0, for all t ≥ T 0, |x| = 2kt.

Proof. Since f(t, ·) and h(t, ·) are even functions, it is enough to deal with x ≥ 0. Recalling
that h0(x) = B3e−k|x|, we have

h(t, x) =
B3√
4πt

(
∫ 0

−∞
e− (x−y)2

4t ekydy +

∫ +∞

0
e− (x−y)2

4t e−kydy

)

,

which can be recast, after some elementary computations,

h(t, x) =
B3√

π

(

ek2t−kx

∫ +∞

2kt−x

2
√

t

e−w2
dw + ek2t+kx

∫ +∞

2kt+x

2
√

t

e−w2
dw

)

. (5.6)

Now, recalling that
∫+∞

X e−w2
dw ≤ e−X2

2X
for any X > 0, the above expression implies that,

for any 0 ≤ x ≤ 2jt < 2kt,

h(t, x) ≤ B3√
π

e− x2

4t

( √
t

2kt− x
+

√
t

2kt + x

)

≤ B3√
π

k

k2 − j2
t− 1

2 e− x2

4t ,

which proves (i).
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Recalling that f0(x) = B21(−1,1)(x), we have

f(t, x) =
B2√
4πt

∫ 1

−1
e− (x−y)2

4t dy =
B2√

π

∫ x+1

2
√

t

x−1

2
√

t

e−w2
dw. (5.7)

Hence, from g(t) ≥ 1, B3 = γB2, (5.7) and (i), we deduce that, for all 0 ≤ x ≤ 2jt and t ≥ T ,

g(t)f(t, x) − h(t, x) ≥ B2√
π

(

t− 1
2 e− (x+1)2

4t − γ
k

k2 − j2
t− 1

2 e− x2

4t

)

≥ B2√
π

t− 1
2 e− x2

4t

(

e− 1
4T e−j − γ

k

k2 − j2

)

, (5.8)

which is enough to prove (ii).

From (5.6), we have h(t, 2kt) ≥ B3√
π

e−k2t
∫ +∞

0 e−w2
dw = B3√

π
e−k2t

√
π

2 . Hence, from B3 =

γB2 and (5.7), we deduce that, for t ≥ T 0 := 1
2k

,

g(t)f(t, 2kt) − h(t, 2kt) ≤ B2√
π

(

‖g‖∞t− 1
2 e− (2kt−1)2

4t − γ

√
π

2
e−k2t

)

≤ B2√
π

e−k2t

(

‖g‖∞ekt− 1
2 − γ

√
π

2

)

,

which is nonpositive, up to increasing T 0 if necessary. The proof of (iii) is complete.

Remark 5.2. The statement (ii) in Lemma 5.1 guarantees that U(t, x) = g(t)f(t, x)−h(t, x)
is not a trivial sub-solution if γ is small enough.

Lemma 5.3. There exists C = C(k) > 0 such that

|f(t, x)|+ |h(t, x)| ≤ Ct− 1
2 , for all t > 0, x ∈ R, (5.9)

and
|∂tf(t, x)|+ |∂th(t, x)| ≤ Ct− 3

2 , for all t > 0, x ∈ R. (5.10)

Proof. This proof is very classical. Denoting G(t, x) := 1√
4πt

e− x2

4t , we have f(t, x) = (G(t, ·) ∗
f0)(x), and thus

|f(t, x)| ≤ ‖G(t, ·)‖∞‖f0‖1 ≤ CGt− 1
2 ‖f0‖1,

with some CG > 0. Also, we have ∂tf(t, x) = (∂tG(t, ·) ∗ f0)(x), and thus

|∂tf(t, x)| ≤ ‖∂tG(t, ·)‖∞‖f0‖1 ≤ C ′
Gt− 3

2 ‖f0‖1,

with some C ′
G > 0. Note that, ‖f0‖1 = 2B2, which implies C is independent on B2 < 1 in

(5.9) and (5.10).
Since h0 ∈ L1(R), similar estimates hold for h(t, x) and ∂th(t, x), and C = C(k) since

‖h0‖1 = 2B3
k
≤ 2

k
.

We are now in the position to complete the construction of the sub-solution (U, V ) in the
form (5.3).
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Proposition 5.4 (Sub-solutions). Let 0 < δ < θ < 1
2 be given. Let us fix k > 0, and set

B3 = γB2 with 0 < γ < 1.
Then there exists T ∗ > 0 such that, for all 0 < B2 < 1 and ζ0 > 0, (U, V ) is a sub-solution

in the domain Ω2(T ∗) as defined in (5.1).

Proof. Since U(t, ·) and V (t, ·) are even functions, it is enough to deal with x ≥ 0. In other
words, we work for t ≥ T (with T > 0 to be selected) and 0 ≤ x < c2t, with cv < c2 < c∗∗

v .
For simplicity of notations, we shall use the shortcuts ξ± := ±x− c∗∗

v t− ζ0. Since ξ− ≤ −c∗∗
v t

and ξ+ ≤ −(c∗∗
v − c2)t, it follows from V ′

2 < 0 and (5.5) that there exist C− > 0 and C+ > 0
such that, for T > 0 large enough,

1− V2(ξ−) ≤ C−e−λ2c∗∗
v t and 1− V2(ξ+) ≤ C+e−λ2(c∗∗

v −c2)t, for all (t, x) ∈ Ω+
2 (T ),

(5.11)
where Ω+

2 (T ) := Ω2(T )∩ (T,∞)× [0,∞). Moreover, up to enlarging T > 0 if necessary, there
exists 0 < ρ < 1

3 such that

0 < 1− V2(ξ±) ≤ ρ, for all (t, x) ∈ Ω+
2 (T ). (5.12)

Some straightforward computations combined with (5.2) yield

N1[U, V ] = g′f − (gf − h)(2 − V2(ξ+)− V2(ξ−)− t−(1+θ))

≤ −(1 + t)−(1+δ)gf + gft−(1+θ) + h
(

2− V2(ξ+)− V2(ξ−)− t−(1+θ)
)

,

since 2− V2(ξ+)− V2(ξ−) > 0. Thus, it follows from (5.11) that

N1[U, V ] ≤ gf
(

−(1 + t)−(1+δ) + t−(1+θ)
)

+ h
(

C−e−λ2c∗∗
v t + C+e−λ2(c∗∗

v −c2)t − t−(1+θ)
)

.

Since δ < θ, it follows that, for T > 0 large enough, N1[U, V ] ≤ 0 in Ω+
2 (T ).

Next, some straightforward computations combined with (5.2) and (5.4) yield

N2[Ū , V ] = r2V2(ξ+)(1 − V2(ξ+)) + r2V2(ξ−)(1− V2(ξ−)) + (1 + t)−(1+δ)gf

+(d− 1)(g∂tf − ∂th)− (1 + θ)t−(2+θ)

−r(V2(ξ+) + V2(ξ−)− 1− gf + h + t−(1+θ))(2− V2(ξ+)− V2(ξ−)− t−(1+θ))

= I1 + · · ·+ I5,

where

I1 := rgf

(

2− V2(ξ+)− V2(ξ−) +
1

r
(1 + t)−(1+δ)

)

,

I2 := (1− V2(ξ−))
(

(r2 − r)V2(ξ−) + r
(

2− 2V2(ξ+)− t−(1+θ) − h
))

,

I3 := (1− V2(ξ+)) ((r2 − r)V2(ξ+)− rh) ,

I4 := (d− 1)(g∂tf − ∂th),

I5 := rt−(1+θ)
(

V2(ξ−) + 2V2(ξ+)− 2 + t−(1+θ) − gf + h− 1 + θ

r
t−1
)

.

Since 0 < V2 < 1, we have I1 ≥ 0. From r2 > r, (5.9) and (5.12), we have

I2 ≥ (1− V2(ξ−))
(

(r2 − r)(1− ρ)− rt−(1+θ) − rCt− 1
2

)

≥ 0,
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up to enlarging T > 0 if necessary. Similarly, we obtain I3 ≥ 0. Last, from (5.12) and Lemma
5.3, we obtain

I4 + I5 ≥ rt−(1+θ)
(

1− 3ρ− ‖g‖∞Ct− 1
2 − 1 + θ

r
t−1
)

− C|d− 1|(‖g‖∞ + 1)t− 3
2 .

Since θ < 1
2 and 0 < ρ < 1

3 , we have I4 + I5 ≥ 0 up to enlarging T > 0 if necessary. As a
result, for T > 0 large enough, N2[U, V ] ≥ 0 in Ω+

2 (T ), and the proof of Proposition 5.4 is
complete.

Note that, time T ∗ in Proposition 5.4 is independent on 0 < B2 < 1 and ζ0 > 0, which
leaves “some room” to reduce B2 and to enlarge ζ0 so that the “initial order” is suitable
for the comparison principle to be applicable. We shall also need the suitable “order on the
boundary of the domain”, which will be obtained by choosing an appropriate k and Lemma
5.1 (iii). More precisely, the following holds.

Proposition 5.5 (Second estimate on (u, v)). Let 0 < δ < θ < 1
2 be given. Let us fix

k := c2
2 > 0, and set B3 = γB2 with 0 < γ < 1.

Then there exist T ∗∗ > 0, 0 < B2 < 1 and ζ0 > 0 such that

U(t, x) ≤ u(t, x) and v(t, x) ≤ V (t, x), for all t ≥ T ∗∗, |x| ≤ c2t,

where (U, V ) is given by (5.3).

Proof. We aim at applying the comparison principle in Ω2(T ), as defined in (5.1), with a well-
chosen T > 0. From Proposition 5.4, for any T ≥ T ∗, we are equipped with a sub-solution
(U, V ) for which 0 < B2 < 1 and ζ0 > 0 are arbitrary.

We now focus on |x| = c2t, t ≥ T , that is, with a slight abuse of language, the boundary
of Ω2(T ). We now set T ∗∗ := max(T ∗, T 0), where T 0 > 0 is provided by Lemma 5.1 (iii). In
particular this implies (recall the choice k = c2

2 ) that

U(t,±c2t) ≤ 0 ≤ u(t,±c2t), for all t ≥ T ∗∗.

Next, recalling that cv < c2 < c∗∗
v , it follows from Proposition 4.2 that v(t,±c2t) → 0 as

t→∞. On the other hand, for any t ≥ T ∗∗,

V (t,±c2t) ≥ V2(−(c∗∗
v − c2)t) + V2(−(c2 + c∗∗

v )t)− 1.

As a result, up to enlarging T ∗∗ if necessary, one has

v(t,±c2t) ≤ V (t± c2t), for all t ≥ T ∗∗.

Last we focus on the initial data, namely t = T ∗∗ and |x| ≤ c2T ∗∗. From (4.1), there
exists ε > 0 such that

min

(

inf
|x|≤c2T ∗∗

u(T ∗∗, x), inf
|x|≤c2T ∗∗

1− v(T ∗∗, x)

)

≥ ε > 0.

We now select 0 < B2 < ε
2‖g‖∞

. From this choice, we have

U(T ∗∗, x) ≤ ‖g‖∞B2 ≤
ε

2
≤ u(T ∗∗, x), for all |x| ≤ c2T ∗∗,
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and, for all |x| ≤ c2T ∗∗,

V (T ∗∗, x) ≥ 2V2(−ζ0)− 1− ‖g‖∞B2 ≥ 2V2(−ζ0)− 1− ε

2
≥ 1− ε,

by selecting ζ0 > 0 large enough, which implies

v(T ∗∗, x) ≤ V (T ∗∗, x), for all |x| ≤ c2T ∗∗.

As a consequence, the comparison principle can be applied in Ω2(T ∗∗), which concludes
the proof of Proposition 5.5.

5.2 Proof of Theorem 2.7

It remains to prove the bump phenomenon which, as explained in Section 2, is reserved to
the critical competition case under consideration. Let 0 < ε < cu be given and let us prove
(2.8) and (2.9). Let us set T ∗∗ > 0 such that both Proposition 5.5 and Proposition 4.4 apply.
In the sequel, we always consider t ≥ T ∗∗ and 0 ≤ x ≤ εt.

In particular, one has

g(t)f(t, x)− h(t, x) = U(t, x) ≤ u(t, x) ≤ Ũ(t, x) = t−(k∗− 1
2

)(1− e−τt)s(t, x).

This estimate and (5.8) (with j = ε
2 ) yield the lower estimate in (2.8). On the other hand,

Lemma 5.1 (i) (with j = ε
2) provides an upper bound of the form t− 1

2 e− x2

4t in the case d ≤ 1

(since then ∂ts = sxx) and of the form t− 1
2 e− x2

4dt in the case d ≥ 1 (since then ∂ts = dsxx).
This gives the upper estimate in (2.8).

Similarly, one obtains

U(t, x)−t−(1+θ) ≤ 1−V (t, x) ≤ 1−v(t, x) ≤ 1−Ṽ (t, x) ≤ 2−V1(−c∗
vt)−V1(−(c∗

v−ε)t)+Ũ (t, x),

which gives the lower estimate in (2.9). On the other hand, we deduce from (4.8) that there
exist C− > 0 and C+ > 0 such that, for all 0 ≤ x ≤ εt,

1− Ṽ (t, x) ≤ C−e−λ1c∗
vt + C+e−λ1(c∗

v−ε)t + Ũ(t, x)

≤ Ct−k∗
e− x2

4d∗t + Ũ(t, x),

with some C > 0 provided ε > 0 is chosen sufficiently small. This gives the upper estimate
in (2.9) and concludes the proof of Theorem 2.7.

A A result on the strong-weak competition system

In this Appendix, we consider the strong-weak competition system (0 < a < 1 < b)

{

∂tu = uxx + u(1− u− av),

∂tv = dvxx + rv(1− v − bu),
(A.1)

supplemented with an initial datum (u0, v0) satisfying (2.5), for which we need a technical
result, namely Lemma A.1, which is inspired by [20, Lemma 2.8] and the forthcoming work
[23].
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When cv = 2
√

rd > cu = 2, as proved in [9], the spreading properties are rather subtle:
the rapid competitor v invades first at speed cv and is then replaced by the strong competitor
u at a speed C which can take two different values. To make this clear, we quote the following
from [9] to which we refer for more details. First, the strong-weak system admits a minimal
monotone traveling wave solution (cLLW , U, V ) with speed 2

√
1− a ≤ cLLW ≤ 2, defined as























U ′′ + cLLW U ′ + U(1− U − aV ) = 0,

dV ′′ + cLLW V ′ + rV (1− V − bU) = 0,

(U, V )(−∞) = (1, 0), (U, V )(∞) = (0, 1),

U ′ < 0, V ′ > 0.

Next define the decreasing function f : [2
√

1− a, +∞)→ (2
√

a, 2(
√

1− a +
√

a)]

f(c) := c−
√

c2 − 4(1− a) + 2
√

a so that f−1(c̃) :=
c̃

2
−
√

a +
2(1 − a)

c̃− 2
√

a
.

If 2
√

rd ∈ (2, f(cLLW )), then define

cnlp := f−1(2
√

rd) =
√

rd−
√

a +
1− a√
rd−√a

∈ (cLLW , 2).

Then we can precise

C =

{

cnlp if 2 < cv < f(cLLW ), (acceleration phenomenon),

cLLW if cv ≥ f(cLLW ).

We now state the result used in the proof of Proposition 4.4.

Lemma A.1. Assume dr > 1 (i.e. cv > cu). Let (u, v) = (u, v)(t, x) be the solution of the
strong-weak competition system (A.1) starting from an initial datum (u0, v0) = (u0, v0)(x)
satisfying (2.5). Then the following holds.

(i) For any c > C , there exist C1 > 0, ν1 > 0, T1 > 0 such that

sup
|x|≥ct

u(t, x) ≤ C1e−ν1t, for all t ≥ T1.

(ii) For any c1 and c2 with C < c1 < c2 < cv, there exist C2 > 0, ν2 > 0, T2 > 0 such that

sup
c1t≤|x|≤c2t

v(t, x) ≥ 1− C2e−ν2t, for all t ≥ T2.

Proof. Let us briefly start with (i). If c > cu then the conclusion is clear by the same argument
as in Proposition 4.2. Since cv > cu, it thus suffices to consider the case C < c < cv. In this
case, the conclusion is already included in [9, Proposition 1.5] and the proof of [9, Section
3.2.3, Theorem 1.1]. We do not present the full details but only emphasize that a key tool is,
for any small δ > 0, the minimal monotone traveling wave of the perturbed system























U ′′ + cU ′ + U(1 + δ − U − aV ) = 0,

dV ′′ + cV ′ + rV (1− 2δ − V − bU) = 0,

(U, V )(−∞) = (1 + δ, 0), (U, V )(∞) = (0, 1 − 2δ),

U ′ < 0, V ′ > 0.
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Let us now turn to (ii) (which is the estimate we need in the proof of Proposition 4.4) for
which the above perturbation argument seems unapplicable. Let C < c1 < c2 < cv be given.
We only deal with x ≥ 0. From [9, Theorem 1.1] we know

lim
t→∞

sup
c1t≤x≤c2t

(

u(t, x) + |1− v(t, x)|
)

= 0.

From this and (i), one can choose ε > 0 small enough and T0 ≫ 1 such that

0 < u(t, x) ≤ C1e−ν1t, v(t, x) > 1− ε, for all t ≥ T0, x ∈ [c1t, c2t].

From the v-equation in (A.1), we have

vt ≥ dvxx + r(1− ε)(1 − v)− rbC1ve−ν1t, for all t ≥ T0, x ∈ [c1t, c2t]. (A.2)

Defining

ṽ(t, x) := v(t, x + c̃t), c̃ :=
c1 + c2

2
, (A.3)

it follows from (A.2) that

ṽt ≥ dṽxx + c̃ṽx + r(1− ε)(1 − ṽ)− rbC1ṽe−ν1t, for all t ≥ T0, x ∈ [−c3t, c3t],

where c3 := c2−c1
2 .

To estimate ṽ, for any T ≥ T0, we define

α(t) := 1 +
bC1

1− ε
e−ν1(t+T ), for all t ≥ 0.

Up to enlarging T > 0 if necessary, we may assume α(0) < 1
1−ε

. Now, let us first consider the
auxiliary problem















ϕt = dϕxx + c̃ϕx + r(1− ε)[1 − α(t)ϕ], t > 0, −c3T < x < c3T,

ϕ(t,±c3T ) = 1− ε, t > 0,

ϕ(0, x) = 1− ε, −c3T ≤ x ≤ c3T.

(A.4)

Letting

Φ(t, x) := eQ(t)[ϕ(t, x) − 1 + ε], Q(t) := r(1− ε)t− rbC1

ν1
e−ν1(t+T ),

so that Q′(t) = r(1− ε)α(t), it follows from (A.4) that















Φt = dΦxx + c̃Φx + r(1− ε)eQ(t)(1− (1− ε)α(t)), t > 0, −c3T < x < c3T,

Φ(t,±c3T ) = 0, t > 0,

Φ(0, x) = 0, −c3T ≤ x ≤ c3T.

(A.5)

Up to a rescaling, we may assume d = 1 so that (A.5) is very comparable to [15, problem
(3.12)] on which we now rely. Denoting G1(t, x, z) the Green function of [15, page 53] (with
obvious changes of constants), we obtain the analogous of [15, (3.14)], namely

Φ(t, x) ≥ r(1− ε)

∫ t

0
eQ(s)(1− (1− ε)α(s))

(

∫ c3T

−c3T
G1(t− s, x, z)dz

)

ds,
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for all t > 0, −c3T < x < c3T . Next, for any small 0 < δ < 1, we define

Dδ :=
{

(t, x) ∈ R
2 : 0 < t < δ2c3T, |x| < (1− δ)c3T

}

.

From the same process used in [15, pages 54-55], there exist C3, C4 > 0 such that the following
lower estimate holds

Φ(t, x) ≥ r(1− ε)(1 − (1− ε)α(0))(1 − C3e−C4T )

∫ t

0
eQ(s)ds, for all (t, x) ∈ Dδ,

resulting in

ϕ(t, x) ≥ Ψ(t)(1− C3e−C4T )(1 − (1− ε)α(0)) + 1− ε, for all (t, x) ∈ Dδ, (A.6)

where Ψ(t) := r(1− ε)e−Q(t)
∫ t

0 eQ(s)ds. Denoting K = rbC1
ν1

, we have

Ψ(t) ≥ r(1− ε)e−Q(t)
∫ t

0
er(1−ε)se−Ke−ν1T

ds

= e−r(1−ε)teKe−ν1(t+T )
e−Ke−ν1T

∫ t

0
r(1− ε)er(1−ε)sds

= eKe−ν1T (e−ν1t−1)(1− e−r(1−ε)t).

Inserting this into (A.6) and using ey ≥ 1 + y for all y ∈ R, we have, for all (t, x) ∈ Dδ,

ϕ(t, x) ≥ eKe−ν1T (e−ν1t−1)(1− e−r(1−ε)t)(1− C3e−C4T )(1− (1− ε)α(0)) + 1− ε

≥ (1−Ke−ν1T (1− e−ν1t))(1 − e−r(1−ε)t)(1− C3e−C4T )(1− (1− ε)α(0)) + 1− ε

≥ (1−Ke−ν1T )(1− e−r(1−ε)t)(1− C3e−C4T )(1 − (1− ε)α(0)) + 1− ε.

Letting
I1 := 1−Ke−ν1T , I2(t) := 1− e−r(1−ε)t, I3 := 1− C3e−C4T ,

we get
ϕ(t, x) ≥ I1I2(t)I3 + (1 − ε)(1 − I1I2(t)I3α(0)), for all (t, x) ∈ Dδ.

Now observe that I1I2(t)I3 ≤ I1I2(δ2c3T )I3. Furthermore some straightforward computations
show that, if

r(1− ε)δ2c3 < ν1, (A.7)

then I1I2(δ2c3T )I3α(0) ≤ 1 up to enlarging T > 0 if necessary. As a result, for all (t, x) ∈ Dδ,

ϕ(t, x) ≥ I1I2(t)I3 ≥ 1−K1e−ν1T −K2e−r(1−ε)t,

with some K1, K2 > 0. The last inequality holds since we can always choose ν1 < C4. As a
conclusion, we have

ϕ(t, x) ≥ 1−K1e−ν1T −K2e−r(1−ε)t, for all (t, x) ∈ Dδ, (A.8)

provided that δ > 0 is sufficiently small for (A.7) to hold and T > 0 is sufficiently large.
In particular (A.8) implies that, for all |x| ≤ (1− δ)c3T ,

ϕ
(

δ2c3T, x
)

≥ 1−K1e−ν1T −K2e−r(1−ε)δ2c3T ≥ 1− (K1 + K2)e−r(1−ε)δ2c3T , (A.9)
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in virtue of (A.7). On the other hand, we know from the comparison principle that ṽ(t +
T, x) ≥ ϕ(t, x) for t ≥ 0 and |x| ≤ c3T , which together with (A.9) implies that

ṽ
(

δ2c3T + T, x
)

≥ 1− (K1 + K2)e−r(1−ε)δ2c3T , for all |x| ≤ (1− δ)c3T.

We further take t = (δ2c3 + 1)T , which yields

ṽ(t, x) ≥ 1− C2e−ν2t, for all large t and |x| ≤ (1−δ)c3

1+c3δ2 t,

where C2 := K1 + K2 and ν2 := r(1−ε)δ2c3

1+c3δ2 > 0. Recalling that ṽ(t, x) = v(t, x + c̃t) with

c̃ = c1+c2
2 , that c3 = c2−c1

2 and since δ > 0 can be chosen arbitrarily small, the above estimate
completes the proof of (ii).
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