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We consider the reaction-diffusion competition system in the so-called critical competition case. The associated ODE system then admits infinitely many equilibria, which makes the analysis intricate. We first prove the non-existence of ultimately monotone traveling waves by applying the phase plane analysis. Next, we study the large time behavior of the solution of the Cauchy problem with a compactly supported initial datum. We not only reveal that the "faster" species excludes the "slower" one (with a known spreading speed), but also provide a sharp description of the profile of the solution, thus shedding light on a new bump phenomenon.

Introduction

We consider the Lotka-Volterra competition-diffusion system

∂ t u = u xx + u(1 -u -v), t > 0, x ∈ R, ∂ t v = dv xx + rv(1 -v -u), t > 0, x ∈ R, (1.1) 
which is critical among systems in the form of (1.5). The main difficulty is that the underlying ODE competition system

u ′ = u(1 -u -v), t > 0, v ′ = rv(1 -v -u), t > 0, (1.2) 
admits infinitely many (nontrivial) equilibria: the whole line u + v = 1. Because of that, there are very few available mathematical results on system (1.1). In the present paper, we fill this gap by proving the non-existence of ultimately monotone traveling waves, and giving a very precise description of the large time behavior of the solution starting from a compactly supported initial datum, thus revealing a new bump phenomenon.

In the absence of one species, system (1.1) reduces to the reaction-diffusion equation

∂ t u = du xx + ru(1 -u), t > 0, x ∈ R, (1.3) 
introduced by Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] and Kolmogorov, Petrovsky and Piskunov [START_REF] Kolmogorov | A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem[END_REF] as a population genetics model to investigate the propagation of a dominant gene in a homogeneous environment.

The KPP equation (1.3) has two main properties. Firstly, nonnegative traveling waves, corresponding to the ansatz u(t, x) = U (xct) and solving

dU ′′ + cU ′ + rU (1 -U ) = 0 in R, U (-∞) = 1, U (∞) = 0, (1.4) 
exist if and only if their speeds c ≥ c * := 2 √ dr. Secondly, the solution of (1.3) starting from a nonnegative (nontrivial) compactly supported initial datum, satisfies lim see [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF]. In other words, the minimal speed c * of traveling wave solutions corresponds to the spreading speed of the solution of the Cauchy problem with a compactly supported initial datum.

The general Lotka-Volterra competition-diffusion system is written

∂ t u = u xx + u(1 -u -av), t > 0, x ∈ R, ∂ t v = dv xx + rv(1 -v -bu), t > 0, x ∈ R. (1.5) 
Here u = u(t, x) and v = v(t, x) represent the population densities of two competing species, d > 0 and r > 0 stand for the diffusion rate and intrinsic growth rate of v (while those of u have been normalized), and a > 0 and b > 0 represent the strength of v and u, respectively, as competitors. The parameters a and b determine the behavior of the underlying ODE system (see below) but, once fixed, the outcomes for system (1.5) are highly dependent on the parameters r, d and the initial datum. The situation is therefore very rich and we refer to the works mentioned below for more details and references. The so-called weak competition case corresponds to a < 1 and b < 1. Nontrivial solutions of the underlying ODE system tend to the co-existence equilibrium. For the diffusion system, it was proved by Tang and Fife [START_REF] Tang | Propagating fronts for competing species equations with diffusion[END_REF] that there exists a minimal speed c ⋆ > 0 such that a monotone traveling wave solution connecting the co-existence equilibrium to the null state (0, 0) exists if and only if c ≥ c ⋆ , which is comparable to the Fisher-KPP equation mentioned above. Concerning the large time behavior of the Cauchy problem, some first estimates were obtained by Lin and Li [START_REF] Lin | Asymptotic spreading of competition diffusion systems: the role of interspecific competitions[END_REF]. More recently, Liu, Liu and Lam [START_REF] Liu | Asymptotic spreading of interacting species with multiple fronts I: A geometric optics approach[END_REF][START_REF] Liu | Asymptotic spreading of interacting species with multiple fronts II: Exponentially decaying initial data[END_REF] obtained some rather complete results.

The so-called strong competition case corresponds to a > 1 and b > 1. Since the coexistence equilibrium is unstable and the equilibria (1, 0) and (0, 1) are both stable for the underlying ODE system, this case corresponds to a bistable situation. For the diffusion system, it was proved by Kan-On [START_REF] Kan-On | Parameter dependence of propagation speed of travelling waves for competition-diffusion equations[END_REF], see also [START_REF] Gardner | Existence and stability of traveling wave solutions of competition models: a degree theoretic approach[END_REF], that there exists a unique traveling wave solution connecting (1, 0) to (0, 1). The sign of the speed of this wave determines the "winner" between u and v, and thus is very relevant for applications, see the review [START_REF] Girardin | The effect of random dispersal on competitive exclusion-a review[END_REF]. We refer to [START_REF] Girardin | Travelling waves for diffusive and strongly competitive systems: relative motility and invasion speed[END_REF], [START_REF] Guo | The sign of the wave speed for the Lotka-Volterra competitiondiffusion system[END_REF] and [START_REF] Rodrigo | Exact solutions of a competition-diffusion system[END_REF] for some results on this delicate issue. As far as the large time behavior of the Cauchy problem is concerned, we refer to the recent work of Carrere [START_REF] Carrere | Spreading speeds for a two-species competition-diffusion system[END_REF] revealing the possibility of propagating terraces, see [START_REF] Ducrot | Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations[END_REF][START_REF] Ducrot | Spreading speeds for multidimensional reactiondiffusion systems of the prey-predator type[END_REF]. Very recently, Peng, Wu and Zhou [START_REF] Peng | Sharp estimates for the spreading speeds of the Lotka-Volterra diffusion system with strong competition[END_REF] provided refined estimates of both the spreading speed and the profile of the solution.

Last, the so-called strong-weak competition case corresponds to a < 1 < b. Nontrivial solutions of the underlying ODE system tend to the state (1, 0) meaning that "u excludes v". For the diffusion system, the traveling wave solutions were constructed by Kan-On [START_REF] Kan-On | Fisher wave fronts for the Lotka-Volterra competition model with diffusion[END_REF]. Concerning the large time behavior of the solution of the Cauchy problem, Girardin and Lam [START_REF] Girardin | Invasion of an empty habitat by two competitors: spreading properties of monostable two-species competition-diffusion systems[END_REF] recently studied the spreading speed of solutions with an initial datum that is null (or exponentially decaying) on the right half line. They obtained a rather complete understanding of the spreading properties, revealing in particular the possibility of an acceleration phenomenon (see Appendix of the present paper for more details).

In the present paper, our goal is to complete the above picture by considering the issues of both traveling wave solutions and the Cauchy problem in the so-called critical competition case a = b = 1, corresponding to system (1.1).

Main results

A traveling wave solution of system (1.1) is defined as follows.

Definition 2.1 ((α, β)-traveling wave). Let 0 ≤ α, β ≤ 1 be given with α = β. Then an (α, β)-traveling wave solution (or traveling wave if there is no ambiguity) of (1.1) is a triplet (c, U, V ), where c ∈ R is the traveling wave speed and (U, V ) two nonnegative profiles, solving

           U ′′ + cU ′ + U (1 -U -V ) = 0, dV ′′ + cV ′ + rV (1 -V -U ) = 0, (U, V )(-∞) = (α, 1 -α), (U, V )(+∞) = (β, 1 -β).
(2.1) As mentioned above, for both the strong competition case and the strong-weak competition case, monotone traveling waves connecting (1, 0) to (0, 1) are known to exist. In the critical competition case under consideration, our first main result is that there is no ultimately monotone traveling wave connecting any two different nonnegative steady states on the line u + v = 1. Definition 2.2 (Ultimately monotone (α, β)-traveling wave). Let 0 ≤ α, β ≤ 1 be given with α = β. Then an ultimately monotone (α, β)-traveling wave solution is an (α, β)-traveling wave for which there further exist

-∞ < z 0 ≤ z * 0 < +∞ such that U ′ (z)V ′ (z) = 0, for all z ∈ (-∞, z 0 ] ∪ [z * 0 , +∞). (2.2) Remark 2.3. Obviously, if (c, U (z), V (z)) is an (ultimately monotone) (α, β)-traveling wave then (-c, U (-z), V (-z)) is a (ultimately monotone) (β, α)-traveling wave.
In other words, we do not require the traveling wave to be monotone on R, but only to be monotone in some neighborhoods of both -∞ and +∞. This reinforces our non-existence result which states as follows.

Theorem 2.4 (Non-existence of ultimately monotone traveling waves). Let 0 ≤ α, β ≤ 1 be given with α = β. Then, there is no ultimately monotone (α, β)-traveling wave for system (1.1).

The above theorem is proved in Section 3. The starting point consists in transforming system (2.1) into a first order system of four ODEs. Then, by a phase plane analysis, we prove that U + V -1 has to "oscillate" in a neighborhood of -∞ or +∞, from which we get a contradiction. Remark 2.5. As easily seen from the proof, to exclude the existence of a traveling wave with speed c > 0, c < 0, it is enough to assume that (2.2) holds in a neighborhood of -∞, +∞ respectively. In other words, there is no traveling wave for which the invading state is monotonically reached. The existence of a traveling wave for which the invading state is not monotonically reached remains an open issue. Last, as seen from subsection 3.1, the non existence of standing waves (c = 0) does not require any ultimately monotonicity assumption.

Our second main focus is concerned with the large time behavior of the solution of system (1.1) starting from a nonnegative (nontrivial) compactly supported initial datum. In both the strong competition case [START_REF] Carrere | Spreading speeds for a two-species competition-diffusion system[END_REF], [START_REF] Peng | Sharp estimates for the spreading speeds of the Lotka-Volterra diffusion system with strong competition[END_REF], and the strong-weak competition case [START_REF] Girardin | Invasion of an empty habitat by two competitors: spreading properties of monostable two-species competition-diffusion systems[END_REF], the monotone traveling wave solutions of the entire system play a key role in studying the large time behavior of the solution of the Cauchy problem. However, for the critical competition case, such traveling wave solutions do not exist.

In order to state our result, we define the (minimal) Fisher-KPP traveling wave solution (c u , U KP P ) as

c u := 2, U ′′ KP P + c u U ′ KP P + U KP P (1 -U KP P ) = 0, U KP P (-∞) = 1, U KP P (∞) = 0, (2.3) 
and, similarly, (c v , V KP P ) as

c v := 2 √ dr, dV ′′ KP P + c v V ′ KP P + rV KP P (1 -V KP P ) = 0, V KP P (-∞) = 1, V KP P (∞) = 0.
(2.4)

Let us recall that both U KP P and V KP P are uniquely defined "up to a shift". Note that, c u (resp. c v ) also represents the spreading speed of u (resp. v) in the absence of v (resp. u).

Theorem 2.6 (Propagation phenomenon). Let (u, v) = (u, v)(t, x) be the solution of system (1.1) starting from an initial datum (u 0 , v 0 ) = (u 0 , v 0 )(x) satisfying u 0 and v 0 are continuous, nontrivial, compactly supported, and 0 ≤ u 0 , v 0 ≤ 1.

(2.5)

Then the following holds.

(i) Assume dr > 1 (i.e. c v > c u ). Then lim t→∞ sup x∈R v(t, x) -V KP P |x| -c v t + 3d c v ln t + η * (t) + sup x∈R u(t, x) = 0, (2.6)
where η * is a bounded function on [0, ∞).

(ii) Assume dr < 1 (i.e. c v < c u ). Then

lim t→∞ sup x∈R u(t, x) -U KP P |x| -c u t + 3 c u ln t + η * * (t) + sup x∈R v(t, x) = 0, (2.7)
where η * * is a bounded function on [0, ∞).

The above theorem is proved in Section 4. Let us briefly comment on Theorem 2.6. First of all, for the case dr > 1 (or dr < 1), the "faster species", namely v, excludes the "slower one", namely u, and imposes its spreading speed, see (2.6). Furthermore, we find that the profile of the solution uniformly converges to the corresponding minimal KPP traveling wave solution, and this up to an identified logarithmic Bramson correction, see (2.6) again.

On the other hand, for the case dr = 1, it is difficult to decide which species leads the invading front, and the behavior of the solution is highly depending on both the parameters and the shape of the initial datum. For the case d = r = 1, for any initial datum satisfying (2.5), a coexistence phenomenon happens. However, for the case dr = 1 but d = 1, the behavior of the solution is much more intricate. Indeed, in this case, the logarithmic phase drifts for u and v are different and there is a narrow region of width O(ln t) where the behaviors of u and v are difficult to "anticipate". This may cause some subtle phenomena (both species driving the front or one excluding the other) and makes the mathematical analysis quite involved. We hope to address these issues in a future work.

Our second result on the Cauchy problem deals with the region "|x| ≤ ε * t", where the profile of the solution is more of the "Heat equation type". Theorem 2.7 (Bump phenomenon). Let (u, v) = (u, v)(t, x) be the solution of system (1.1) starting from an initial datum (u 0 , v 0 ) = (u 0 , v 0 )(x) satisfying (2.5). Denote

k * := min 1 2d , d 2 , d * := max(1, d).
Then the following holds.

x 1 0 v u -2 √ drt + 3 2 d r ln t ← → 2 √ drt -3 2 d r ln t BUMP -ε * t ← → ε * t Figure 1:
The asymptotic profile of the solution, in the case dr > 1.

(i) Assume dr > 1 (i.e. c v > c u ). Then for ε * > 0 small enough and 0 < θ < 1 2 , there exist C 2 > C 1 > 0 and T > 0 such that both

C 1 t -1 2 e -x 2 4t ≤ u(t, x) ≤ C 2 t -k * e -x 2 4d * t , (2.8) max C 1 t -1 2 e -x 2 4t -t -(1+θ) , 0 ≤ 1 -v(t, x) ≤ C 2 t -k * e -x 2 4d * t , (2.9)
hold for any t ≥ T , |x| ≤ ε * t.

(ii) Assume dr < 1 (i.e. c v < c u ). Then for ε * * > 0 small enough and 0 < θ < 1 2 , there exist C 4 > C 3 > 0 and T > 0 such that both

C 3 t -1 2 e -x 2 4t ≤ v(t, x) ≤ C 4 t -k * e -x 2 4d * t , (2.10) max C 3 t -1 2 e -x 2 4t -t -(1+θ) , 0 ≤ 1 -u(t, x) ≤ C 4 t -k * e -x 2 4d * t , (2.11)
hold for any t ≥ T , |x| ≤ ε * * t.

The above theorem is proved in Section 5. Let us briefly comment on Theorem 2.7, say in the case dr > 1. As revealed by (2.8) and (2.9), the solution converges to (0, 1) exponentially in regions of the form |x| ≥ εt with ε > 0, but only algebraically in "sublinear regions" of the form |x| √ t. We call this a bump phenomenon, see Figure 1. Such a phenomenon does not occur in the strong competition case [START_REF] Peng | Sharp estimates for the spreading speeds of the Lotka-Volterra diffusion system with strong competition[END_REF]. As far as the strong-weak competition case is concerned, the results as stated in [START_REF] Girardin | Invasion of an empty habitat by two competitors: spreading properties of monostable two-species competition-diffusion systems[END_REF] are not sufficient to decide if it occurs or not, but we assert it does not, as proved in the forthcoming work [START_REF] Wu | Lotka-Volterra diffusion systems: the strong-weak type[END_REF]. Therefore, the present paper is the first one revealing a bump phenomenon in the context of competition-diffusion systems. We believe such a phenomenon is reserved for the critical case a = b = 1, and is rare to happen in the context of homogeneous reaction-diffusion equations.

Non-existence of traveling waves

This section is devoted to the proof of Theorem 2.4 on the non-existence of ultimately monotone traveling waves for system (1.1).

Preliminary results and observations

In this subsection, the ultimately monotonicity assumption is not required, and thus a traveling wave is understood in the sense of Definition 2.1. We start with the following a priori estimates for a traveling wave.

Lemma 3.1. Any traveling wave has to satisfy

0 < U < 1, 0 < V < 1, and U ′ (±∞) = V ′ (±∞) = 0.
Proof. The positivity of the profiles follows from the strong maximum principle. If U ≤ 1 is not true, then U has to reach a maximum value strictly larger than 1 at some point, and evaluating the U -equation at this point gives a contradiction. Hence U ≤ 1 and, from the strong maximum principle, U < 1. Similarly, one has V < 1.

We now prove the limit behavior U ′ (+∞) = 0, the other ones being proved similarly. Denote the set of accumulation points of

U ′ in +∞ by A. Since U is bounded, 0 ∈ A. Let ℓ ∈ A. Then there exists a sequence z n → +∞ such that U ′ (z n ) → ℓ as n → +∞. Then (U n , V n )(z) := (U, V )(z + z n ) solves U ′′ n + cU ′ n = -U n (1 -U n -V n ).
Since the L ∞ norm of the right hand side term is uniformly bounded with respect to n, the interior elliptic estimates imply that, for all R > 0 and 1 < p < ∞, the sequence

(U n ) is bounded in W 2,p (-R, R). From Sobolev embedding theorem we have that, up to a subsequence, U n converges to some U ∞ in C 1 loc (R). The boundary condition U (+∞) = β thus enforces U ∞ ≡ β and U ′ ∞ ≡ 0. As a result, U ′ (z n ) = U ′ n (0) → U ′ ∞ (0) 
= 0, and thus ℓ = 0. Hence A = {0}, which concludes the proof.

We conclude this subsection by showing the non-existence of traveling wave solutions for two special cases.

Proposition 3.2 (Non-existence of standing waves).

There is no standing wave, i.e. traveling wave with speed c = 0, for system (1.1).

Proof. Assume c = 0. By adding the both sides of the U -equation and the V -equation, we find that W := U + V satisfies

W ′′ + U + r d V (1 -W ) = 0, W (±∞) = 1.
If W ≡ 1, then W reaches either a maximum value strictly larger than 1 or a minimum value in (0, 1), which is impossible from the above equation (recall that U + r d V > 0). As a result W = U + V ≡ 1. Going back to the original equations we have U ′′ = V ′′ = 0. Since U and V are bounded, U and V must be constant, which cannot happen since α = β. Proposition 3.3 (Non-existence of traveling waves when d = 1). Assume d = 1. Then there is no traveling wave for system (1.1).

Proof. Again, by adding the both sides of the U -equation and V -equation, we see that

W := U + V satisfies W ′′ + cW ′ + (U + rV )(1 -W ) = 0, W (±∞) = 1,
so that, as in Proposition 3.2, we have W ≡ 1, and thus U ′′ + cU ′ = 0. From Lemma 3.1, by integrating both sides from -∞ to +∞, we have c(βα) = 0, which yields a contradiction since c = 0 and α = β.

Proof of Theorem 2.4

We now consider the case of ultimately monotone traveling waves.

Lemma 3.4. Let 0 ≤ α, β ≤ 1 be given with α = β. Let (c, U, V ) be an ultimately monotone (α, β)-traveling wave solution. Then (2.2) is refined in

U ′ (z)V ′ (z) < 0, for all z ∈ (-∞, z 0 ] ∪ [z * 0 , +∞). (3.1)
Proof. We only deal with the behavior around -∞. If the conclusion is false, we may assume that U ′ (z) > 0 and

V ′ (z) > 0 for all z ∈ (-∞, z 0 ], the case U ′ (z) < 0 and V ′ (z) < 0 being treated similarly. From the boundary conditions (U, V )(-∞) = (α, 1 -α) and (U, V )(+∞) = (β, 1 -β), there must exist a point z 1 > z 0 such that U ′ (z) > 0, V ′ (z) > 0, for all z < z 1 , U ′ (z 1 ) = 0 or V ′ (z 1 ) = 0. Assume w.l.o.g. that U ′ (z 1 ) = 0. In particular U ′′ (z 1 ) ≤ 0. From the U -equation, this enforces (U + V )(z 1 ) ≤ 1 which contradicts to (U + V )(-∞) = 1 and (U + V ) ′ > 0 on (-∞, z 1 ).
We now prove, in the case d = 1, the non-existence of ultimately monotone traveling waves with speed c = 0. In view of subsection 3.1, this is enough to complete the proof of Theorem 2.4.

Completion of the proof of Theorem 2.4. For d = 1, let us consider (c, U, V ) an ultimately monotone (α, β)-traveling wave with c = 0. In the sequel we only deal with the case c > 0 for which we perform a phase plane analysis around -∞ (for the case c < 0, one has to perform a phase plane analysis around +∞ with similar arguments). We define W := α -U , P := U ′ , R := V -1 + α, Q := V ′ . Then we can rewrite (2.1) as

                         W ′ = -P, P ′ = -cP -(α -W )(W -R), R ′ = Q, Q ′ = - c d Q - r d (R + 1 -α)(W -R), (W, P, R, Q)(-∞) = (0, 0, 0, 0), (W, P, R, Q)(+∞) = (α -β, 0, α -β, 0). (3.2) Assume that W -R is ultimately nonnegative, that is ∃z * < z 0 , ∀z ≤ z * , (W -R)(z) ≥ 0. (3.3)
From (3.1), we know that it holds either P > 0 or Q > 0 on (-∞, z 0 ]. Moreover, from Lemma 3.1, α -W ≥ 0 and R + 1α ≥ 0. If P > 0 on (-∞, z 0 ], then from the P -equation in (3.2), we have P ′ < 0 on (-∞, z * ], which contradicts to P > 0 on (-∞, z 0 ] and P (-∞) = 0. If Q > 0 on (-∞, z 0 ], we similarly get a contradiction from the Q-equation. Hence (3.3) does not hold. Assume that W -R is ultimately nonpositive, that is

∃z * < z 0 , ∀z ≤ z * , (W -R)(z) ≤ 0. (3.4)
From (3.1) again, we know that it holds either P < 0 or Q < 0 on (-∞, z 0 ]. If P < 0 on (-∞, z 0 ], then from the P -equation in (3.2), we have P ′ > 0 on (-∞, z * ], which contradicts to P < 0 on (-∞, z 0 ] and P (-∞) = 0. If Q < 0 on (-∞, z 0 ], we similarly get a contradiction from the Q-equation. Hence (3.4) does not hold. As a result, since W -R is neither ultimately nonnegative nor ultimately nonpositive, we can find a local maximum point z 1 < z 0 and a local minimum point z 2 < z 0 such that

(W -R)(z 1 ) > 0, (W -R) ′ (z 1 ) = 0, (W -R) ′′ (z 1 ) ≤ 0; (W -R)(z 2 ) < 0, (W -R) ′ (z 2 ) = 0, (W -R) ′′ (z 2 ) ≥ 0. Note that (W -R) ′′ = cP + c d Q + α -W + r d (R + 1 -α) (W -R). From (3.1), it holds either Q > 0 or Q < 0 on (-∞, z 0 ]. Let us first consider the case d < 1. If Q > 0 on (-∞, z 0 ], since (W -R) ′ (z 1 ) = 0 means (P +Q)(z 1 ) = 0, we have (cP + c d Q)(z 1 ) > 0. Therefore, from the above equation, (W -R) ′′ (z 1 ) > 0, which is a contradiction. On the other hand, if Q < 0 on (-∞, z 0 ], since (P + Q)(z 2 ) = 0, we have (cP + c d Q)(z 2 ) < 0.
Therefore, from the above equation, (W -R) ′′ (z 2 ) < 0, which is a contradiction. Last, the case d > 1 can be treated similarly.

Therefore, we conclude that system (1.1) does not admit any ultimately monotone traveling wave.

The Cauchy problem

In this section, we consider system (1.1) with a compactly supported initial datum, and prove the propagation result, namely Theorem 2.6.

Preliminaries

Let us start by briefly recalling the competitive comparison principle. Define the operators

N 1 [u, v] := u t -u xx -u(1 -u -v) and N 2 [u, v] := v t -dv xx -rv(1 -v -u). Consider a domain Ω := (t 1 , t 2 ) × (x 1 , x 2 ) with 0 ≤ t 1 < t 2 ≤ +∞ and -∞ ≤ x 1 < x 2 ≤ +∞. A (classical) super-solution is a pair (u, v) ∈ C 1 (t 1 , t 2 ), C 2 ((x 1 , x 2 )) ∩ C b Ω 2 satisfying N 1 [u, v] ≥ 0 and N 2 [u, v] ≤ 0 in Ω. Similarly, a (classical) sub-solution (u, v) requires N 1 [u, v] ≤ 0 and N 2 [u, v] ≥ 0.
Proposition 4.1 (Comparison Principle). Let (u, v) and (u, v) be a super-solution and subsolution of system (1.1) in Ω, respectively. If

u(t 1 , x) ≥ u(t 1 , x) and v(t 1 , x) ≤ v(t 1 , x), for all x ∈ (x 1 , x 2 ),
and, for i = 1, 2,

u(t, x i ) ≥ u(t, x i ) and v(t, x i ) ≤ v(t, x i ), for all t ∈ (t 1 , t 2 ), then, it holds u(t, x) ≥ u(t, x) and v(t, x) ≤ v(t, x), for all (t, x) ∈ Ω. If x 1 = -∞ or x 2 =
+∞, the hypothesis on the corresponding boundary condition can be omitted.

Denote (u, v) = (u, v)(t, x) as the solution of (1.1) starting from (u 0 , v 0 ) = (u 0 , v 0 )(x) satisfying (2.5). Obviously, (1, 0) is a super-solution while (0, 1) is a sub-solution. It thus follows from (2.5), the comparison principle and the strong maximum principle that 0 < u(t, x) < 1 and 0 < v(t, x) < 1, for all t > 0, x ∈ R.

(4.1)

Actually, the comparison principle also holds for the so-called generalized sub-and supersolutions. This is a rather well-known fact, and we refer to the clear exposition in [9, subsection 2.1] for more details. In particular, if (u 1 , v) and (u 2 , v) are both classical sub-solutions, then (max(u 1 , u 2 ), v) is a generalized sub-solution. Also, if (u, v 1 ) and (u, v 2 ) are both classical sub-solutions, then (u, min(v 1 , v 2 )) is a generalized sub-solution.

We now start the proof of Theorem 2.6. Observe that, by changing the variables as x = d r y and t = 1 r s, system (1.1) can be rewritten as

∂ s v = v yy + v(1 -v -u), s > 0, y ∈ R, ∂ s u = d -1 u xx + r -1 u(1 -u -v), s > 0, y ∈ R.
Therefore, without loss of generality, we assume from now that dr > 1, that is c v > c u , and shall prove the statement (i) in Theorem 2.6.

Since c v > c u and u cannot propagate faster than c u , the behavior of the solution in the region |x| > c u t is rather well-understood. and

lim t→∞ sup c 1 t≤|x|≤c 2 t |1 -v(t, x)| = 0, for all c u < c 1 < c 2 < c v . (4.4)
Proof. Without loss of generality, we only deal with the case x ≥ 0. Define

U (t, x) := C 1 e -cu 2 (x-cut) and V (t, x) := C 2 e -cv 2d (x-cvt) ,
where C 1 > 0 and C 2 > 0 are chosen large enough so that U (0, •) ≥ u 0 and V (0, •) ≥ v 0 . We can easily check that (U, 0) is a super-solution while (0, V ) is a sub-solution. As a result, we have

0 < u(t, x) ≤ min 1, C 1 e -cu 2 (x-cut)
and 0 < v(t, x) ≤ min 1, C 2 e -cv 2d (x-cvt) , (4.5) from which (4.2) and (4.3) follow.

Next, let c u < c 1 < c 2 < c v be given. Select 0 < a < 1 < b and consider (u * , v * ) the solution of the strong-weak competition system

∂ t u * = u * xx + u * (1 -u * -av * ), ∂ t v * = dv * xx + rv * (1 -v * -bu * ), (4.6) 
starting from (u 0 , v 0 ). Obviously, (u * , v * ) is a super-solution for system (1.1), and thus v * (t, x) ≤ v(t, x) ≤ 1 for all t ≥ 0 and x ∈ R. Since the statements ( 2) and ( 3) in [9, Theorem 1.1] imply lim

t→∞ sup c 1 t≤x≤c 2 t |1 -v * (t, x)| = 0,
the same conclusion holds for v.

Construction of the super-solution

The goal of this subsection is to construct an adequate super-solution in, roughly speaking, the region |x| < c u t. More precisely, let 1 d < r 1 < r be given and define c * v := 2 √ dr 1 < c v . In the sequel, we introduce V 1 as a traveling wave solution with speed

c * v = 2 √ dr 1 solving dV ′′ 1 + c * v V ′ 1 + r 1 V 1 (1 -V 1 ) = 0, V 1 (-∞) = 1, V 1 (∞) = 0. ( 4.7) 
As well-known, V ′ 1 < 0 and there are λ 1 > 0 and

M 1 > 0 such that 1 -V 1 (ξ) ∼ M 1 e λ 1 ξ as ξ → -∞. (4.8) 
Let us fix c u < c 1 < c * v . For T > 0, we will work in the domain (which is "expanding in time")

Ω 1 (T ) := {(t, x) ∈ (T, ∞) × R : |x| < c 1 t}. (4.9)
It turns out that the construction of the super-solution is highly dependent on the value of d.

• The case d ≤ 1. We introduce s = s(t, x) as the solution of the Cauchy problem

∂ t s = s xx , s(0, x) = s 0 (x) := B 1 e -q|x| , (4.10) 
and look for a super-solution ( Ũ , Ṽ ) in the form

   Ũ (t, x) := t 1-d 2 (1 -e -τ t )s(t, x), Ṽ (t, x) := V 1 (x -c * v t) + V 1 (-x -c * v t) -1 -Ũ (t, x). (4.11)
All parameters that will be determined below (namely B 1 , q and τ ) are positive, and q < 1.

• The case d ≥ 1. We introduce s = s(t, x) as the solution of the Cauchy problem

∂ t s = ds xx , s(0, x) = s 0 (x) := B 1 e -q|x| , (4.12) 
and look for a super-solution ( Ũ , Ṽ ) in the form

   Ũ (t, x) := t d-1 2d (1 -e -τ t )s(t, x), Ṽ (t, x) := V 1 (x -c * v t) + V 1 (-x -c * v t) -1 -Ũ (t, x). (4.13)
All parameters that will be determined below (namely B 1 , q and τ ) are positive, and q < 1 d . Obviously, (4.10)-(4.11) and (4.12)-(4.13) coincide when d = 1.

Proposition 4.3 (Super-solutions). The following holds.

(i) Assume d ≤ 1. Let 0 < q < 1 and 0 < τ < λ 1 (c * vc 1 ) be given. Then there exists T * > 0 such that, for all B 1 > 0, ( Ũ , Ṽ ), given by (4.10)-(4.11), is a super-solution in the domain Ω 1 (T * ) as defined in (4.9).

(ii) Assume d ≥ 1. Let 0 < q < 1 d and 0 < τ < λ 1 (c * vc 1 ) be given. Then there exists T * > 0 such that, for all B 1 > 0, ( Ũ , Ṽ ), given by (4.12)-(4.13), is a super-solution in the domain Ω 1 (T * ) as defined in (4.9).

Proof. Since our super-solutions are even functions, it is enough to deal with x ≥ 0. In other words, we work for t ≥ T (with T > 0 to be selected) and 0 ≤ x < c 1 t, with c u < c 1 < c * v . For ease of notations, we shall use the shortcuts

ξ ± := ±x -c * v t. Since ξ -≤ -c * v t and ξ + ≤ -(c * v -c 1 )
t, it follows from V ′ 1 < 0 and (4.8) that there exist C -> 0 and C + > 0 such that, for T > 0 large enough,

1-V 1 (ξ -) ≤ C -e -λ 1 c * v t and 1-V 1 (ξ + ) ≤ C + e -λ 1 (c * v -c 1 )t , for all (t, x) ∈ Ω + 1 (T ), (4.14) 
where Ω + 1 (T ) := Ω 1 (T ) ∩ (T, ∞) × [0, ∞). Moreover, up to enlarging T > 0 if necessary, there exists 0 < ρ < 1 3 such that

0 < 1 -V 1 (ξ ± ) ≤ ρ, for all (t, x) ∈ Ω + 1 (T ). ( 4 

.15)

We first assume d ≤ 1. Some straightforward computations combined with (4.10) yield

N 1 [ Ũ , Ṽ ] = t 1-d 2 (1 -e -τ t )s 1 -d 2 t -1 + τ e -τ t 1 -e -τ t -2 + V 1 (ξ + ) + V 1 (ξ -) .
In view of (4.14), by choosing τ < λ 1 (c * vc 1 ), we deduce that, for T > 0 large enough,

N 1 [ Ũ , Ṽ ] ≥ 0 in Ω + 1 (T ).
On the other hand, some straightforward computations combined with (4.10) and (4.7) yield

N 2 [ Ũ , Ṽ ] = J 1 + J 2 + J 3 ,
where

J 1 := t 1-d 2 (1 -e -τ t )s r 2 -V 1 (ξ + ) -V 1 (ξ -) - τ e -γt r(1 -e -τ t ) - 1 -d 2 t -1 -(1 -d) ∂ t s s , J 2 := (r 1 -r)V 1 (ξ + )(1 -V 1 (ξ + )), J 3 := (1 -V 1 (ξ -)) ((r 1 -r)V 1 (ξ -) + r(2 -2V 1 (ξ + ))) .
Since r 1 < r and 0 < V 1 < 1, we have J 2 ≤ 0. Next, from (4.15), we have

J 3 ≤ (1 -V 1 (ξ -)) ((r 1 -r)(1 -ρ) + r(2 -2V 1 (ξ + ))) ,
which, in view of (4.14), is nonpositive up to enlarging T > 0 if necessary. Last, from the "Heat kernel expression" of s(t, x), namely

s(t, x) = (G(t, •) * s 0 ) (x), where G(t, x) := 1 √ 4πt e -x 2 4t ,
we can check that ∂ t s(t, x) ≥ -1 2t s(t, x). As a result, since d ≤ 1, we have

J 1 ≤ t 1-d 2 (1 -e -τ t )sr 2 -V 1 (ξ + ) -V 1 (ξ -) - τ e -τ t r(1 -e -τ t )
.

In view of (4.14) and τ < λ 1 (c * vc 1 ), we have J 1 ≤ 0 up to enlarging T > 0 if necessary. As a result, N 2 [ Ũ , Ṽ ] ≤ 0 in Ω + 1 (T ). Next, we assume d ≥ 1. Some straightforward computations combined with (4.12) yield

N 1 [ Ũ , Ṽ ] = t d-1 2d (1 -e -τ t )s d -1 2d t -1 + d -1 d ∂ t s s + τ e -τ t 1 -e -τ t -2 + V 1 (ξ + ) + V 1 (ξ -) . As above, since d ≥ 1, ∂ t s(t, x) ≥ -1 2t s(t, x) implies N 1 [ Ũ , Ṽ ] ≥ t d-1 2d (1 -e -τ t )s τ e -τ t 1 -e -τ t -2 + V 1 (ξ + ) + V 1 (ξ -) .
In view of (4.14) and τ < λ 1 (c * vc 1 ), we deduce that, for T > 0 large enough, N 1 [ Ũ , Ṽ ] ≥ 0 in Ω + 1 (T ). On the other hand, some straightforward computations combined with (4.12) and (4.7) yield

N 2 [ Ũ , Ṽ ] = J 1 + J 2 + J 3 ,
where

J 1 := t d-1 2d (1 -e -τ t )s r(2 -V 1 (ξ + ) -V 1 (ξ -)) - τ e -τ t 1 -e -τ t - d -1 2d t -1 , J 2 := (r 1 -r)V 1 (ξ + )(1 -V 1 (ξ + )), J 3 := (1 -V 1 (ξ -)) ((r 1 -r)V 1 (ξ -) + r(2 -2V 1 (ξ + ))) .
By applying the same argument as that for d ≤ 1, we get

N 2 [ Ũ , Ṽ ] ≤ 0 in Ω + 1 (T ).
Note that, time T * in Proposition 4.3 is independent on B 1 > 0, which leaves "some room" to enlarge B 1 so that the "initial order" and the "order on the boundary of the domain" are suitable for the comparison principle to be applicable.

Proposition 4.4 (First estimate on (u, v)

). There exist 0 < q < min(1, Proof. We aim at applying the comparison principle in Ω 1 (T ), as defined in (4.9), with a well-chosen T > 0. Select 0 < q < min(1, 1 d ) small enough so that max(qc 1q 2 , qc 1dq 2 ) < c 1c u . (4.16)

From Proposition 4.3, for any T ≥ T * , we are equipped with a super-solution ( Ũ , Ṽ ) for which B 1 > 0 is arbitrary. We only deal with the case d ≤ 1, the case d ≥ 1 being similar. We first focus on x = c 1 t, t ≥ T * (the case x = -c 1 t, t ≥ T * being similar). Let us prove that, up to enlarging T * > 0 if necessary, it holds u(t, c 1 t) ≤ Ũ (t, c 1 t), for all t ≥ T * .

(4.17)

From the proof of Proposition 4.2, we know that u(t, c 1 t) ≤ C 1 e -(c 1 -cu)t (recall that c u = 2). Recalling s 0 (x) = B 1 e -q|x| , we have

s(t, x) = B 1 √ 4πt 0 -∞ e -(x-y) 2 4t e qy dy + +∞ 0 e -(x-y) 2 4t
e -qy dy , which can be recast, after some elementary computations,

s(t, x) = B 1 √ π e q 2 t-qx +∞ 2qt-x 2 √ t e -w 2 dw + e q 2 t+qx +∞ 2qt+x 2 √ t e -w 2 dw . (4.18)
In particular, since 2q < 2 < c 1 , we have, by enlarging

T * > 0 if necessary, Ũ(t, c 1 t) ≥ 1 2 s(t, c 1 t) ≥ B 1 4 e -(qc 1 -q 2 )t ≥ B 1 4 e -(c 1 -cu)t .
The last inequality holds from the choice (4.16). Thus B 1 > 4C 1 is enough to get (4.17).

Let us recall that v ≥ v * where (u * , v * ) is the solution of the strong-weak competition system (4.6) with the same initial datum (u 0 , v 0 ). From Lemma A.1 (ii) (see Appendix), up to enlarging T * if necessary, there exist µ > 0 and K > 0 such that v * (t, c 1 t) ≥ 1 -Ke -µt for all t ≥ T * . On the other hand, the construction of Ṽ implies that Ṽ (t, c 1 t) ≤ 1 -Ũ (t, c 1 t). Therefore, by choosing qc 1q 2 < µ, up to enlarging T * > 0 if necessary, we have

Ṽ (t, c 1 t) ≤ v(t, c 1 t), for all t ≥ T * . (4.19)
Now, q > 0 and T * > 0 are fixed from the above discussion. We focus on the initial datum, namely t = T * , |x| ≤ c 1 T * . As above, we deduce from (4.18) that

inf |x|≤c 1 T * Ũ (T * , x) ≥ 1 2 s(T * , c 1 T * ) ≥ B 1 4 e -(qc 1 -q 2 )T * ≥ 1 ≥ sup t>0,x∈R u(t, x),
provided that B 1 > 0 is large enough. On the other hand, sup

|x|≤c 1 T * Ṽ (T * , x) ≤ 1 -inf |x|≤c 1 T * Ũ (T * , x) ≤ 1 - B 1 4 e -(qc 1 -q 2 )T * ≤ 0 ≤ inf t>0,x∈R v(t, x),
provided that B 1 > 0 is large enough. As a consequence, the comparison principle can be applied in Ω 1 (T * ), which concludes the proof of Proposition 4.4.

Proof of Theorem 2.6

From the discussion above, we are now in the position to obtain the following spreading speed result.

Proposition 4.5 (Spreading speed). Let (u, v) = (u, v)(t, x) be the solution of (1.1) starting from an initial datum (u 0 , v 0 ) = (u 0 , v 0 )(x) satisfying (2.5). Then the following holds. 

(i) Assume dr > 1 (i.e. c v > c u ). Then, for any 0 < c 1 < c v < c 2 , lim t→∞ sup x∈R u(t, x) + sup |x|≤c 1 t |1 -v(t, x)| + sup |x|≥c 2 t v(t, x) = 0. ( 4 
0 < c 1 < c v , we select c 1 < c * v < c v . Then, Proposition 4.4 yields sup |x|≤c 1 t |1 -v(t, x)| → 0 as t → ∞.
The last part of (4.20) is nothing else than the estimate (4.3).

We are now in the position to complete the proof of Theorem 2.6.

Proof of Theorem 2.6 (i). Since the proof for x ≤ 0 follows from the same argument, we only deal with x ≥ 0. Let us prove (2.6). For a given m ∈ (0, 1), we define E m (t) as the m-level set of v(t, •), namely E m (t) := {x > 0 : v(t, x) = m}.

We claim that there exist M > 0 and T > 0 such that

c v t - 3d c v ln t -M ≤ min E m (t) ≤ max E m (t) ≤ c v t - 3d c v ln t + M, for all t ≥ T. (4.22)
The upper bound in (4.22) is obtained by using the solution of

∂ t v = dv xx + rv(1-v), starting from v(0, x) = v 0 (x)
, as a super-solution. We refer to [START_REF] Peng | Sharp estimates for the spreading speeds of the Lotka-Volterra diffusion system with strong competition[END_REF]Lemma 4.1], see also [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF] and [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF].

As for the lower bound in (4.22), it follows from [START_REF] Peng | Sharp estimates for the spreading speeds of the Lotka-Volterra diffusion system with strong competition[END_REF]Lemma 4.5] which is based on an idea of [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF]. A sketch of the proof is as follows. Let us a fix a small ε > 0 (this is necessary because of the bump phenomenon). By combining (4.5), Proposition 4.4 and (4.18) 3 , we see that there exist C > 0, µ > 0 and T > 0 such that

sup |x|≥εt u(t, x) ≤ Ce -µt , for all t ≥ T. (4.23)
As a result, by setting C 0 = rC, we have

∂ t v ≥ dv xx + v(r -rv -C 0 e -µt
), for all t > 0, x > εt.

3 from which one can straightforwardly deduce that sup x≥εt s(t, x) = s(t, εt

) = O e -ε 2
The key idea, borrowed from [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF], is then to linearize the above equation, and to consider

∂ t w = dw xx + w(r -C 0 e -µt ), t > 0, x > Γ(t) := c v t - 3d c v ln(t + t 0 ), (4.24)
together with the Dirichlet boundary conditions w(t, Γ(t)) = 0 and a compactly supported initial datum w(0, •). Then, one can exactly reproduce the technical arguments of [20, Lemma 4.3 and 4.4], mainly borrowed from [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF], to obtain the lower bound in (4.22). Last, by applying (4.22), we can reproduce the argument of [12, Section 4], see also [20, Proof of Theorem 2], to conclude that there exists a bounded function

η * : [0, ∞) → R such that lim t→∞ sup x≥0 v(t, x) -V 1 x -c v t + 3d c v ln t + η * (t) = 0, (4.25) 
which, combined with (4.20), concludes the proof of (2.6).

The bump phenomenon

In this section, we will provide a lower estimate for the solution of system (1.1) starting from a compactly supported initial datum, and prove Theorem 2.7 on the bump phenomenon.

Construction of the sub-solution

The goal of this subsection is to construct an adequate sub-solution in, roughly speaking, the region |x| < c v t. More precisely, let r 2 > r be given and define

c * * v := 2 √ dr 2 > c v . Let us fix c v < c 2 < c * * v .
For T > 0, we will work in the domain (which is "expanding in time")

Ω 2 (T ) := {(t, x) ∈ (T, ∞) × R : |x| < c 2 t}. ( 5.1) 
A key observation for the construction is the following: from Proposition 4.2, in the region c u t < |x| < c v t, we have u + v ≈ 1, and therefore

∂ t u ≈ u xx , ∂ t v ≈ dv xx .
We thus introduce f = f (t, x) and h = h(t, x) the solutions of the Cauchy problems

∂ t f = f xx , f (0, x) = f 0 (x) := B 2 1 (-1,1) (x), ∂ t h = h xx , h(0, x) = h 0 (x) := B 3 e -k|x| , (5.2) 
and look for a sub-solution (U, V ) in the form

   U (t, x) := g(t)f (t, x) -h(t, x), V (t, x) := V 2 (x -c * * v t -ζ 0 ) + V 2 (-x -c * * v t -ζ 0 ) -1 -U (t, x) + 1 t 1+θ , (5.3) where g(t) := exp 1 δ(1 + t) δ .
Here, all parameters that will be determined below (namely

B 2 , B 3 , k, ζ 0 , θ, δ) are positive, B 2 < 1, B 3 < 1, while V 2 is the traveling wave solution with speed c * * v = 2 √ dr 2 satisfying dV ′′ 2 + c * * v V ′ 2 + r 2 V 2 (1 -V 2 ) = 0, V 2 (-∞) = 1, V 2 (∞) = 0.
(5.4)

It is well-known that V ′ 2 < 0 and there exist λ 2 > 0 and

M 2 > 0 such that 1 -V 2 (ξ) ∼ M 2 e λ 2 ξ as ξ → -∞. (5.5) 
Next, we shall provide some estimates which are based on the "Heat kernel expressions" of the solutions f and h of (5.2). Note that, in Lemma 5.1, 0 < B 2 < 1 and 0 < B 3 < 1 can be relaxed to B 2 > 0 and B 3 > 0.

Lemma 5.1. Let δ > 0 and k > 0 be given, and set B 3 = γB 2 with some γ > 0. Then the following holds.

(i) For any given 0 < j < k, h(t, x) ≤ B 3 √ π k k 2 -j 2 t -1 2 e -x 2 4t
, for all t > 0, |x| ≤ 2jt.

(ii) For any given 0 < j < k and T > 0, there exists

γ 1 > 0 such that, if 0 < γ ≤ γ 1 , then, for all B 2 > 0, g(t)f (t, x) -h(t, x) > 0, for all t ≥ T, |x| ≤ 2jt.
(iii) There is T 0 > 0 such that, for all B 2 > 0,

g(t)f (t, x) -h(t, x) ≤ 0, for all t ≥ T 0 , |x| = 2kt.
Proof. Since f (t, •) and h(t, •) are even functions, it is enough to deal with x ≥ 0. Recalling that h 0 (x) = B 3 e -k|x| , we have

h(t, x) = B 3 √ 4πt 0 -∞ e -(x-y) 2 4t e ky dy + +∞ 0 e -(x-y) 2 4t
e -ky dy , which can be recast, after some elementary computations,

h(t, x) = B 3 √ π e k 2 t-kx +∞ 2kt-x 2 √ t e -w 2 dw + e k 2 t+kx +∞ 2kt+x 2 √ t e -w 2 dw . ( 5.6) 
Now, recalling that +∞ X e -w 2 dw ≤ e -X 2 2X for any X > 0, the above expression implies that, for any 0

≤ x ≤ 2jt < 2kt, h(t, x) ≤ B 3 √ π e -x 2 4t √ t 2kt -x + √ t 2kt + x ≤ B 3 √ π k k 2 -j 2 t -1 2 e -x 2 4t ,
which proves (i).

Recalling that f 0 (x) = B 2 1 (-1,1) (x), we have

f (t, x) = B 2 √ 4πt 1 -1 e -(x-y) 2 4t dy = B 2 √ π x+1 2 √ t x-1 2 √ t e -w 2 dw. ( 5.7) 
Hence, from g(t) ≥ 1, B 3 = γB 2 , (5.7) and (i), we deduce that, for all 0 ≤ x ≤ 2jt and t ≥ T ,

g(t)f (t, x) -h(t, x) ≥ B 2 √ π t -1 2 e -(x+1) 2 4t -γ k k 2 -j 2 t -1 2 e -x 2 4t ≥ B 2 √ π t -1 2 e -x 2 4t e -1 4T e -j -γ k k 2 -j 2 , ( 5.8) 
which is enough to prove (ii). From (5.6), we have h(t, 2kt)

≥ B 3 √ π e -k 2 t +∞ 0 e -w 2 dw = B 3 √ π e -k 2 t √ π 2 .
Hence, from B 3 = γB 2 and (5.7), we deduce that, for t ≥ T 0 := 1 2k ,

g(t)f (t, 2kt) -h(t, 2kt) ≤ B 2 √ π g ∞ t -1 2 e -(2kt-1) 2 4t -γ √ π 2 e -k 2 t ≤ B 2 √ π e -k 2 t g ∞ e k t -1 2 -γ √ π 2 ,
which is nonpositive, up to increasing T 0 if necessary. The proof of (iii) is complete. 

(t, x)| ≤ G(t, •) ∞ f 0 1 ≤ C G t -1 2 f 0 1 , with some C G > 0. Also, we have ∂ t f (t, x) = (∂ t G(t, •) * f 0 )(x)
, and thus

|∂ t f (t, x)| ≤ ∂ t G(t, •) ∞ f 0 1 ≤ C ′ G t -3 2 f 0 1 ,
with some C ′ G > 0. Note that, f 0 1 = 2B 2 , which implies C is independent on B 2 < 1 in (5.9) and (5.10).

Since h 0 ∈ L 1 (R), similar estimates hold for h(t, x) and ∂ t h(t, x), and

C = C(k) since h 0 1 = 2B 3 k ≤ 2 k .
We are now in the position to complete the construction of the sub-solution (U, V ) in the form (5.3). Proposition 5.4 (Sub-solutions). Let 0 < δ < θ < 1 2 be given. Let us fix k > 0, and set B 3 = γB 2 with 0 < γ < 1.

Then there exists T * > 0 such that, for all 0 < B 2 < 1 and ζ 0 > 0, (U, V ) is a sub-solution in the domain Ω 2 (T * ) as defined in (5.1).

Proof. Since U (t, •) and V (t, •) are even functions, it is enough to deal with x ≥ 0. In other words, we work for t ≥ T (with T > 0 to be selected) and 0 ≤ x < c 2 t, with c v < c 2 < c * * v . For simplicity of notations, we shall use the shortcuts

ξ ± := ±x -c * * v t -ζ 0 . Since ξ -≤ -c * * v t and ξ + ≤ -(c * * v -c 2 )
t, it follows from V ′ 2 < 0 and (5.5) that there exist C -> 0 and C + > 0 such that, for T > 0 large enough,

1 -V 2 (ξ -) ≤ C -e -λ 2 c * * v t and 1 -V 2 (ξ + ) ≤ C + e -λ 2 (c * * v -c 2 )
t , for all (t, x) ∈ Ω + 2 (T ), (5.11) where Ω + 2 (T ) := Ω 2 (T ) ∩ (T, ∞) × [0, ∞). Moreover, up to enlarging T > 0 if necessary, there exists 0 < ρ < 1 3 such that 0 < 1 -V 2 (ξ ± ) ≤ ρ, for all (t, x) ∈ Ω + 2 (T ).

(5.12) Some straightforward computations combined with (5.2) yield

N 1 [U, V ] = g ′ f -(gf -h)(2 -V 2 (ξ + ) -V 2 (ξ -) -t -(1+θ) ) ≤ -(1 + t) -(1+δ) gf + gf t -(1+θ) + h 2 -V 2 (ξ + ) -V 2 (ξ -) -t -(1+θ) , since 2 -V 2 (ξ + ) -V 2 (ξ -) > 0.
Thus, it follows from (5.11) that

N 1 [U, V ] ≤ gf -(1 + t) -(1+δ) + t -(1+θ) + h C -e -λ 2 c * * v t + C + e -λ 2 (c * * v -c 2 )t -t -(1+θ) .
Since δ < θ, it follows that, for T > 0 large enough, N 1 [U, V ] ≤ 0 in Ω + 2 (T ). Next, some straightforward computations combined with (5.2) and (5.4) yield

N 2 [ Ū , V ] = r 2 V 2 (ξ + )(1 -V 2 (ξ + )) + r 2 V 2 (ξ -)(1 -V 2 (ξ -)) + (1 + t) -(1+δ) gf +(d -1)(g∂ t f -∂ t h) -(1 + θ)t -(2+θ) -r(V 2 (ξ + ) + V 2 (ξ -) -1 -gf + h + t -(1+θ) )(2 -V 2 (ξ + ) -V 2 (ξ -) -t -(1+θ) ) = I 1 + • • • + I 5 ,
where

I 1 := rgf 2 -V 2 (ξ + ) -V 2 (ξ -) + 1 r (1 + t) -(1+δ) , I 2 := (1 -V 2 (ξ -)) (r 2 -r)V 2 (ξ -) + r 2 -2V 2 (ξ + ) -t -(1+θ) -h , I 3 := (1 -V 2 (ξ + )) ((r 2 -r)V 2 (ξ + ) -rh) , I 4 := (d -1)(g∂ t f -∂ t h), I 5 := rt -(1+θ) V 2 (ξ -) + 2V 2 (ξ + ) -2 + t -(1+θ) -gf + h - 1 + θ r t -1 .
Since 0 < V 2 < 1, we have I 1 ≥ 0. From r 2 > r, (5.9) and (5.12), we have

I 2 ≥ (1 -V 2 (ξ -)) (r 2 -r)(1 -ρ) -rt -(1+θ) -rCt -1 2 ≥ 0,
up to enlarging T > 0 if necessary. Similarly, we obtain I 3 ≥ 0. Last, from (5.12) and Lemma 5.3, we obtain

I 4 + I 5 ≥ rt -(1+θ) 1 -3ρ -g ∞ Ct -1 2 - 1 + θ r t -1 -C|d -1|( g ∞ + 1)t -3 2 .
Since θ < 1 2 and 0 < ρ < 1 3 , we have I 4 + I 5 ≥ 0 up to enlarging T > 0 if necessary. As a result, for T > 0 large enough, N 2 [U, V ] ≥ 0 in Ω + 2 (T ), and the proof of Proposition 5.4 is complete.

Note that, time T * in Proposition 5.4 is independent on 0 < B 2 < 1 and ζ 0 > 0, which leaves "some room" to reduce B 2 and to enlarge ζ 0 so that the "initial order" is suitable for the comparison principle to be applicable. We shall also need the suitable "order on the boundary of the domain", which will be obtained by choosing an appropriate k and Lemma 5.1 (iii). More precisely, the following holds. Proposition 5.5 (Second estimate on (u, v)). Let 0 < δ < θ < 1 2 be given. Let us fix k := c 2 2 > 0, and set B 3 = γB 2 with 0 < γ < 1. Then there exist T * * > 0, 0 < B 2 < 1 and ζ 0 > 0 such that

U (t, x) ≤ u(t, x) and v(t, x) ≤ V (t, x), for all t ≥ T * * , |x| ≤ c 2 t,
where (U, V ) is given by (5.3).

Proof. We aim at applying the comparison principle in Ω 2 (T ), as defined in (5.1), with a wellchosen T > 0. From Proposition 5.4, for any T ≥ T * , we are equipped with a sub-solution (U, V ) for which 0 < B 2 < 1 and ζ 0 > 0 are arbitrary. We now focus on |x| = c 2 t, t ≥ T , that is, with a slight abuse of language, the boundary of Ω 2 (T ). We now set T * * := max(T * , T 0 ), where T 0 > 0 is provided by Lemma 5.1 (iii). In particular this implies (recall the choice k = c 2 2 ) that U (t, ±c 2 t) ≤ 0 ≤ u(t, ±c 2 t), for all t ≥ T * * .

Next, recalling that c v < c 2 < c * * v , it follows from Proposition 4.2 that v(t, ±c 2 t) → 0 as t → ∞. On the other hand, for any t ≥ T * * ,

V (t, ±c 2 t) ≥ V 2 (-(c * * v -c 2 )t) + V 2 (-(c 2 + c * * v )t) -1.
As a result, up to enlarging T * * if necessary, one has

v(t, ±c 2 t) ≤ V (t ± c 2 t), for all t ≥ T * * .
Last we focus on the initial data, namely t = T * * and |x| ≤ c 2 T * * . From (4.1), there exists ε > 0 such that

min inf |x|≤c 2 T * * u(T * * , x), inf |x|≤c 2 T * * 1 -v(T * * , x) ≥ ε > 0.
We now select 0 < B 2 < ε 2 g ∞ . From this choice, we have

U (T * * , x) ≤ g ∞ B 2 ≤ ε 2 ≤ u(T * * , x), for all |x| ≤ c 2 T * * ,
and, for all |x| ≤ c 2 T * * ,

V (T * * , x) ≥ 2V 2 (-ζ 0 ) -1 -g ∞ B 2 ≥ 2V 2 (-ζ 0 ) -1 - ε 2 ≥ 1 -ε, by selecting ζ 0 > 0 large enough, which implies v(T * * , x) ≤ V (T * * , x), for all |x| ≤ c 2 T * * .
As a consequence, the comparison principle can be applied in Ω 2 (T * * ), which concludes the proof of Proposition 5.5.

Proof of Theorem 2.7

It remains to prove the bump phenomenon which, as explained in Section 2, is reserved to the critical competition case under consideration. Let 0 < ε < c u be given and let us prove (2.8) and (2.9). Let us set T * * > 0 such that both Proposition 5.5 and Proposition 4.4 apply. In the sequel, we always consider t ≥ T * * and 0 ≤ x ≤ εt.

In particular, one has

g(t)f (t, x) -h(t, x) = U (t, x) ≤ u(t, x) ≤ Ũ (t, x) = t -(k * -1 2 ) (1 -e -τ t )s(t, x).
This estimate and (5.8) (with j = ε 2 ) yield the lower estimate in (2.8). On the other hand, Lemma 5.1 (i) (with j = ε

2 ) provides an upper bound of the form t -1 2 e -x 2 4t in the case d ≤ 1 (since then ∂ t s = s xx ) and of the form t -1 2 e -x 2 4dt in the case d ≥ 1 (since then ∂ t s = ds xx ). This gives the upper estimate in (2.8).

Similarly, one obtains

U (t, x)-t -(1+θ) ≤ 1-V (t, x) ≤ 1-v(t, x) ≤ 1-Ṽ (t, x) ≤ 2-V 1 (-c * v t)-V 1 (-(c * v -ε)t)+ Ũ (t, x),
which gives the lower estimate in (2.9). On the other hand, we deduce from (4.8) that there exist C -> 0 and C + > 0 such that, for all 0 ≤ x ≤ εt,

1 -Ṽ (t, x) ≤ C -e -λ 1 c * v t + C + e -λ 1 (c * v -ε)t + Ũ (t, x) ≤ Ct -k * e -x 2 4d * t + Ũ (t, x),
with some C > 0 provided ε > 0 is chosen sufficiently small. This gives the upper estimate in (2.9) and concludes the proof of Theorem 2.7.

A A result on the strong-weak competition system

In this Appendix, we consider the strong-weak competition system (0 < a < 1 < b)

∂ t u = u xx + u(1 -u -av), ∂ t v = dv xx + rv(1 -v -bu), (A.1)
supplemented with an initial datum (u 0 , v 0 ) satisfying (2.5), for which we need a technical result, namely Lemma A.1, which is inspired by [START_REF] Peng | Sharp estimates for the spreading speeds of the Lotka-Volterra diffusion system with strong competition[END_REF]Lemma 2.8] and the forthcoming work [START_REF] Wu | Lotka-Volterra diffusion systems: the strong-weak type[END_REF].

When c v = 2 √ rd > c u = 2, as proved in [START_REF] Girardin | Invasion of an empty habitat by two competitors: spreading properties of monostable two-species competition-diffusion systems[END_REF], the spreading properties are rather subtle: the rapid competitor v invades first at speed c v and is then replaced by the strong competitor u at a speed C which can take two different values. To make this clear, we quote the following from [START_REF] Girardin | Invasion of an empty habitat by two competitors: spreading properties of monostable two-species competition-diffusion systems[END_REF] to which we refer for more details. First, the strong-weak system admits a minimal monotone traveling wave solution (c LLW , U, V ) with speed 2 √ 1a ≤ c LLW ≤ 2, defined as

           U ′′ + c LLW U ′ + U (1 -U -aV ) = 0,
dV ′′ + c LLW V ′ + rV (1 -V -bU ) = 0, (U, V )(-∞) = (1, 0), (U, V )(∞) = (0, 1),

U ′ < 0, V ′ > 0.
Next define the decreasing function f : 

c nlp := f -1 (2 √ rd) = √ rd - √ a + 1 -a √ rd - √ a ∈ (c LLW , 2).
Then we can precise

C = c nlp if 2 < c v < f (c LLW ), (acceleration phenomenon), c LLW if c v ≥ f (c LLW ).
We now state the result used in the proof of Proposition 4.4.

Lemma A.1. Assume dr > 1 (i.e. c v > c u ). Let (u, v) = (u, v)(t, x) be the solution of the strong-weak competition system (A.1) starting from an initial datum (u 0 , v 0 ) = (u 0 , v 0 )(x) satisfying (2.5). Then the following holds.

(i) For any c > C , there exist C 1 > 0, ν 1 > 0, T 1 > 0 such that sup |x|≥ct u(t, x) ≤ C 1 e -ν 1 t , for all t ≥ T 1 .

(ii) For any c 1 and c 2 with C < c 1 < c 2 < c v , there exist C 2 > 0, ν 2 > 0, T 2 > 0 such that sup c 1 t≤|x|≤c 2 t v(t, x) ≥ 1 -C 2 e -ν 2 t , for all t ≥ T 2 .

Proof. Let us briefly start with (i). If c > c u then the conclusion is clear by the same argument as in Proposition 4.2. Since c v > c u , it thus suffices to consider the case C < c < c v . In this case, the conclusion is already included in [9, Proposition 1.5] and the proof of [9, Section 3.2.3, Theorem 1.1]. We do not present the full details but only emphasize that a key tool is, for any small δ > 0, the minimal monotone traveling wave of the perturbed system

           U ′′ + cU ′ + U (1 + δ -U -aV ) = 0,
dV ′′ + cV ′ + rV (1 -2δ -V -bU ) = 0, (U, V )(-∞) = (1 + δ, 0), (U, V )(∞) = (0, 1 -2δ),

U ′ < 0, V ′ > 0.
Let us now turn to (ii) (which is the estimate we need in the proof of Proposition 4.4) for which the above perturbation argument seems unapplicable. Let C < c 1 < c 2 < c v be given. We only deal with x ≥ 0. From this and (i), one can choose ε > 0 small enough and T 0 ≫ 1 such that 0 < u(t, x) ≤ C 1 e -ν 1 t , v(t, x) > 1ε, for all t ≥ T 0 , x ∈ [c 1 t, c 2 t].

From the v-equation in (A.1), we have ṽt ≥ dṽ xx + cṽ x + r(1ε)(1 -ṽ) -rbC 1 ṽe -ν 1 t , for all t ≥ T 0 , x ∈ [-c 3 t, c 3 t],

v t ≥ dv xx + r(1 -ε)(1 -v) -rbC 1 ve -ν 1 t ,
where c 3 := c 2 -c 1 2 . To estimate ṽ, for any T ≥ T 0 , we define α(t) := 1 + bC 1 1ε e -ν 1 (t+T ) , for all t ≥ 0.

Up to enlarging T > 0 if necessary, we may assume α(0) < Up to a rescaling, we may assume d = 1 so that (A.5) is very comparable to [15, problem (3.12)] on which we now rely. Denoting G 1 (t, x, z) the Green function of [15, page 53] (with obvious changes of constants), we obtain the analogous of [15, (3.14)], namely

Φ(t, x) ≥ r(1 -ε) t 0 e Q(s) (1 -(1 -ε)α(s)) c 3 T -c 3 T
G 1 (ts, x, z)dz ds, in virtue of (A.7). On the other hand, we know from the comparison principle that ṽ(t + T, x) ≥ ϕ(t, x) for t ≥ 0 and |x| ≤ c 3 T , which together with (A.9) implies that ṽ δ 2 c 3 T + T, x ≥ 1 -(K 1 + K 2 )e -r(1-ε)δ 2 c 3 T , for all |x| ≤ (1δ)c 3 T.

We further take t = (δ 2 c 3 + 1)T , which yields ṽ(t, x) ≥ 1 -C 2 e -ν 2 t , for all large t and |x| ≤ (1-δ)c 3 1+c 3 δ 2 t, where C 2 := K 1 + K 2 and ν 2 := r(1-ε)δ 2 c 3 1+c 3 δ 2 > 0. Recalling that ṽ(t, x) = v(t, x + ct) with c = c 1 +c 2 2 , that c 3 = c 2 -c 1 2 and since δ > 0 can be chosen arbitrarily small, the above estimate completes the proof of (ii).

  u(t, x)| = 0, for all c < c * ,

Proposition 4 . 2 (

 42 Estimates in the region |x| > c u t). We have lim t→∞ sup |x|≥ct u(t, x) = 0, for all c > c u , (4.2) lim t→∞ sup |x|≥ct v(t, x) = 0, for all c > c v , (4.3)

[ 2 √ 1 - 2 √

 212 a, +∞) → (2 √ a, 2( √ 1a + √ a)] f (c) := cc 2 -4(1a) + 2 √ a so that f -1 (c) rd ∈ (2, f (c LLW )), then define

From [ 9 ,

 9 Theorem 1.1] we know lim t→∞ sup c 1 t≤x≤c 2 t u(t, x) + |1v(t, x)| = 0.

Φ

  t = dϕ xx + cϕ x + r(1ε)[1α(t)ϕ], t > 0, -c 3 T < x < c 3 T, ϕ(t, ±c 3 T ) = 1ε, t > 0, ϕ(0, x) = 1ε, -c 3 T ≤ x ≤ c 3 T. (A.4) Letting Φ(t, x) := e Q(t) [ϕ(t, x) -1 + ε], Q(t) := r(1ε)t -rbC 1 ν 1 e -ν 1 (t+T ) , so that Q ′ (t) = r(1ε)α(t), it follows from (A.4) that t = dΦ xx + cΦ x + r(1ε)e Q(t) (1 -(1ε)α(t)), t > 0, -c 3 T < x < c 3 T, Φ(t, ±c 3 T ) = 0, t > 0, Φ(0, x) = 0, -c 3 T ≤ x ≤ c 3 T.(A.5)

  .20) (ii) Assume dr < 1 (i.e. c v < c u ). Then, for any 0 < c 3 < c u < c 4 ,

	lim t→∞	sup x∈R	v(t, x) + sup |x|≤c 3 t	|x|≥c 4 t |1 -u(t, x)| + sup	u(t, x) = 0.	(4.21)

Proof. Let us prove (i). The result on u in (4.20) is obtained by combining (4.2) and Proposition 4.4. Next, for a given

  for all t ≥ T 0 , x ∈ [c 1 t, c 2 t].

					(A.2)
	Defining	ṽ(t, x) := v(t, x + ct), c :=	c 1 + c 2 2	,	(A.3)
	it follows from (A.2) that				

t √ t.
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for all t > 0, -c 3 T < x < c 3 T . Next, for any small 0 < δ < 1, we define

From the same process used in [15, pages 54-55], there exist C 3 , C 4 > 0 such that the following lower estimate holds

where

Inserting this into (A.6) and using e y ≥ 1 + y for all y ∈ R, we have, for all

Letting

with some K 1 , K 2 > 0. The last inequality holds since we can always choose ν 1 < C 4 . As a conclusion, we have

provided that δ > 0 is sufficiently small for (A.7) to hold and T > 0 is sufficiently large. In particular (A.8) implies that, for all |x| ≤ (1δ)c 3 T , ϕ δ 2 c 3 T, x ≥ 1 -K 1 e -ν 1 T -K 2 e -r(1-ε)δ 2 c 3 T ≥ 1 -(K 1 + K 2 )e -r(1-ε)δ 2 c 3 T , (A.9)