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Théo Serru

Laboratory ETIS, France. E-mail: theo.serru@ensea.fr
APSYS, France

Kevin Delmas

DTIS, ONERA, France. E-mail: kevin.delmas@onera.fr

Unmanned Aircraft Systems are widely experienced but using these systems for missions near to populated areas
raises new safety challenges. To address these challenges, the European Aviation Safety Agency requires assessing,
for a given operational profile, the likelihood of on-ground collision with critical infrastructure or people. Various
works use Model Based Safety Assessment to identify the failure contributing to the crash, while some works provide
probabilistic estimation methods of an on-ground collision. In these methods the assessment is performed thanks to
Monte Carlo simulation known to be time-consuming to estimate the probability of rare events.
This paper will thus provide a comprehensive tooled method to estimate the on-ground collision probability and uses
Importance Sampling method to tackle Monte Carlo limitations. Through a comparative study based on a drone use-
case, this paper provides a demonstration of the benefits of Importance Sampling over Monte Carlo method. Indeed,
this method allows a reduction in the number of simulations and thus the time needed to compute probabilities, with
a high confidence in the results. The experiments are based on a safety model formalized with the Open AltaRica
platform on an ad-hoc simulator to perform both Monte Carlo and important sampling simulations.
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1. Introduction

Context
Unmanned Aircraft Systems (UAS) are widely
experienced in domains such as transportation,
delivery or infrastructure surveillance. However,
using these systems for missions near to populated
areas raises safety issues. To address these issues,
the European Aviation Safety Agency has pub-
lished safety assessment guidelines for unmanned
operations (EASA, 2020). Some safety objectives,
mostly the Operational Safety Objective #5, re-
quest to assess the likelihood of on-ground col-
lision with critical infrastructure or people.

Problem statement
Despite these regulatory requirements, the proba-
bilistic assessment of on-ground collision is only
partially addressed by existing works. On one
hand, various works (Delmas et al., 2019) promote
the Model Based Safety Assessment to identify
the failures contributing to the crash. On the other
hand, some works (Bertrand et al., 2017) provide
probabilistic estimation methods of an on-ground
collision knowing that the drone is unable to en-
sure flight continuation. The assessment provided
by these methods is performed thanks to Monte
Carlo (Morio and Balesdent, 2015) simulation.
However the computational effort to estimate the

probability of rare events with a high confidence
using standard Monte Carlo (MC) method be-
comes intractable.

Contributions
The main contribution of this paper is a com-
prehensive tooled method to estimate the on-
ground collision probability by considering the
contribution of on-board failures, reconfiguration
mechanisms and operational specificity. To tackle
Monte Carlo limitations, variance reduction meth-
ods (Morio and Balesdent, 2015) and more specif-
ically Importance Sampling (IS) is used to obtain
quicker and tighter estimation of the probability
than standard Monte Carlo method. The paper
provides a detailed presentation of the method and
a demonstration of Importance Sampling benefits
over Monte Carlo through a comparative study on
a UAS case study. The experiments are based on a
safety model formalized with the Open AltaRica
platform (SystemX, 2017) and on an ad-hoc sim-
ulator to perform both Monte Carlo and important
sampling simulations.

Paper organization
The sequel of this article is organized as follows.
The section 2 provides a reminder of the available
safety assessment methods dedicated to drones.
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Then, the section 3 introduces the drone used to
illustrate the work. Section 4 focuses on Impor-
tance Sampling estimation of UAS failure and, on
computation of the final casualty probability. This
part details the major contribution of this work
and illustrates the method on the case study. The
section 5 discusses the results of the safety assess-
ment on the drone Jerry with respect to the reg-
ulation requirements. Finally, section 6 outlines
related works that allow to compute probabilities
of complex dynamic systems.

2. Reminder on safety assessment for
UAS

The UAS safety assessment process and tools used
to illustrate the case study are introduced in this
section. Starting with the safety modeling of fail-
ure propagation within the drone.

2.1. Failure propagation modeling of
complex reconfigurable systems

Ensuring safety is essential in complex and critical
systems such as Unmanned Aircraft Vehicles, as it
deals with human lives. Classical safety formalism
like fault-trees, Markov chains or Petri nets are
widely used but give little information about the
architecture of the system under study. Further-
more, changes in the architecture might lead to la-
borious changes in the safety model. To overcome
these limitations, Model Based Safety Assess-
ment (MBSA) methods (Lisagor et al., 2011) have
been developed. Such methods are architecture-
oriented as they define the dysfunctional behavior
of components, linked one to another to build a
system. The primary interests of MBSA are to
easily consider changes in the system architecture,
to generate the combination of faults leading to
undesired events and to compute the likelihood of
such events.

Among the MBSA methods, the ALTARICA

formal language is one of the most popular for-
malism, used both in industry and academic re-
search. The third version of the language intro-
duced in (Prosvirnova, 2014) is based on Guarded
Transition Systems (GTS) (Rauzy, 2008) and has
been used to model the case study. This formalism
encompasses reliability block diagrams, Markov
chains and stochastic Petri nets to structure mod-
els and perform safety analyses. A system mod-
eled with ALTARICA 3.0 is made of components
described by the following elements: state vari-
ables describing the component state, flow vari-
ables describing its inputs and outputs, events sus-
ceptible to occur, transitions describing how the
component’s state changes when an event occurs
and finally the assertions enforcing the value of
the flow and state variables.

This version of the language comes with an
open source modeling platform (SystemX, 2017).

This platform allows the user to model systems
using the ALTARICA 3.0 language and provides
tools to perform safety assessment. These tools
are: a fault tree compiler, a step-wise simulator
and a stochastic simulator. The Open ALTARICA

platform was used to model the use case and to
perform stochastic simulation. This allowed to
understand the behavior of the UAV in case of
failures and to compute the probability of a feared
event (as described in section 2.3).

2.2. Estimation of ground risk maps for
UAS

Besides MBSA tools, several works such as
(Bertrand et al., 2017), (Bertrand et al., 2021) and
(Primatesta et al., 2020) focuses on UAV ground
risk assessment and more precisely on risk of
casualties (fatal injuries) for people of inhabited
areas and road network users. They proposed
tools to compute the risk on the ground by consid-
ering high level UAV failures (such as propulsion
loss) and various aspects of the mission, mostly
the planned trajectories and the location of inhab-
ited areas along these trajectories.

The tool DROSERA used in this work is intro-
duced in (Bertrand et al., 2017). It is used to sim-
ulate long range operation of UAVs. DROSERA

gives a risk evaluation on the operation, a 3D visu-
alization of the trajectory and the risks associated
with the mission. One of the main interests of this
tool is to provide indicators for a given drone on
a given mission and generate them using standard
formats, so that they can be visualized with COTS
software such as Google Earth. The tool allows the
user to generate:

• Mission statistics
• Risk exposition indicators on geographical rep-

resentations
• Probabilistic maps and indicators
• Identification of risks relative to flight segments

These indicators are computed using Monte
Carlo simulations (2.3) with inputs such as the
UAV weight, span, flight speed and the mission
GPS coordinates. Finally, the outputs of a simula-
tion are printed in different files (.csv, .kml, .html)
to deal with the needs of the stakeholders.

2.3. Statistical-based assessment of feared
events probabilities

As introduced in 2.1, the calculation of a feared
event probability depends on the architecture of
the system and the probability of failure of each
component. Since these safety-critical systems are
dynamic, finding the analytical expression of the
safety indicators may be overly complex. Thus,
several methods have been developed, taking the
growing computational power of computers as an
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advantage, to approximate this probability with
simulation-based methods.

The most common method is Monte Carlo sim-
ulations (see Landau and Binder (2005)). It relies
on random sampling generation to obtain numer-
ical results. For instance, one may want to esti-
mate the mathematical expectation of g(X) with
g a deterministic scalar function and X a random
variable of density fX that is:

G = EfX (g(X)) =

∫
Rd

g (x) fX (x) dx, (1)

Using the law of large numbers, MC approxi-
mates G by the empirical mean of a large number
of independents and identically distributed (iid)
samples x1, x2, ..., xN following the failure dis-
tribution fX :

G � ̂EMC
fX

=
1

N
×
∑N

i=1
g(xi) (2)

When performing Monte Carlo simulations, two
major limitations may be encountered. The first
one relates to the computational effort requested
when dealing with highly complex systems and
low probabilities. The second limitation comes
in the same specific case where truncation and
round-off might lead to numerical errors.

To deal with the limitations of MC, several
methods have been developed and are described
in work such as (Landau and Binder, 2005) and
(Morio and Balesdent, 2015). These works in-
troduce statistical methods, reliability based ap-
proaches, quantum MC methods or variance re-
duction methods. This last category has been fur-
ther explored in this work and among the variance
reductions methods (e.g. crude Monte Carlo, im-
portance sampling and more), Importance Sam-
pling has been elected because of its proximity to
MC that eases its integration in the safety assess-
ment process.

The key idea of Importance Sampling is to use
an auxiliary distribution h to generate more sam-
ples X1, X2, ..., XN , that will trigger the desired
event (i.e. feared event) than the initial distribu-
tion f. To consider the change in the probability
density function generating the samples, a weight
is introduced in the probability estimate. Let w be
the likelihood factor defined as:

w(X) =
fX(X)

h(X)

The equation 1 can be rewritten using the auxil-
iary distribution h and the likelihood factor w as
follows:

G = Eh(g(X)w(X))

� ÊIS
h =

1

N
×

∑N

i=1
g(Xi)w(Xi)

(3)

The variance of G estimated by IS is thus:

V(ÊIS
h ) =

1

N
(Eh(g(X)2w(X)2)

− Eh(g(X)w(X))2) (4)

The main difficulty of IS is to find the best dis-
tribution for h, called hopt. The reason why this
method is called ”variance reduction method” is
that with the optimal auxiliary distribution, hopt,
the variance is null, that is:

Eh(g(X)2w(X)2) = Eh(g(X)w(X))2 (5)

and thus:

hopt(X) =
h(x)fX(x)

Eh(g(X)w(X))
(6)

As Eh(g(X)w(X)) is the value to be computed
with IS, h needs to be found by an adaptive
method to get close to hopt. Therefore, in this
work, the method relies on a preliminary MC
simulation, to find a distribution h close to hopt
and thus lowering the variance. This method will
be explained in the section 4.

3. Case study

This paper is illustrated by the case study of a
UAV, named Jerry, thus this section provides some
characteristics of the intended mission and the
dysfunctional model.

Jerry is a fixed-wing aircraft used for the mon-
itoring of linear infrastructures such as railways.
The drone can be controlled by a pilot or an oper-
ator to perform the mission using nominal modes.
In a case of adversary conditions or critical on-
board failures, degraded modes can be activated
either by the pilot or the drone itself to ensure
safety.

The major risks associated with the UAV’s mis-
sion are ground, air or infrastructure collisions that
can occur either when the UAV is in nominal or
degraded mode. In addition, if a critical failure
preventing a safe flight continuation occurs then
the drone will automatically crash according to
one of the three termination modes which are:
straight-lined (controlled) descent, spiral descent
and uncontrolled fall. Thus the selected termina-
tion mode will affect the risk of a collision.

The first safety assessment of Jerry considered
three feared events, taken from (OGE, 2018),
which are:

• CAT-SOL: Incapacity to maintain the UAS in
a continuous flight without a flight termination
activation.

• HAZ-SOL1: Incapacity to maintain the UAS in
a safe continuous flight with a flight termination
activation.

• HAZ-SOL3: Unintentional flight termination.
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In the above cited work, the two HAZ-SOL
feared events (HAZ-SOL1 and HAZ-SOL3) were
grouped into a single feared event. Therefore, in
the sequel of this paper, the two feared events con-
sidered will be CAT-SOL and HAZ-SOL events.

Finally, Jerry was modeled using the AltaRica
3.0 language and the Open AltaRica platform (cf
2.1) and resulted in a model with 500 components
and 88 failure modes. The probabilistic assess-
ment was possible by considering that the fail-
ures of the drone’s components follow an expo-
nential law. No data were accessible to compute
the failure rates of Jerry’s components. Therefore,
relevant generic values taken from the literature
((OGE, 2018) and (Belkheiri et al., 2013)) were
used. We remind that the goal of this use-case is to
compare the methods of probabilistic assessment
with a coherent UAV model. Thus, even if other
laws and data might give results closer to the
reality, the primary concern here is the soundness
and performance of the assessment method, intro-
duced in the next section.

4. Importance sampling-based
estimation of UAS critical failure and
casualty computation

4.1. Overview
In the safety assessment process
of the drone Jerry, MBSA, stochastic simulation
and DROSERA are used. Indeed, these methods
allow to: have a great understanding of the drone
and its behavior, compute the probability of feared
events and estimate the ground risk. This process
is illustrated in the Figure 1.

One of the added values of this work was to
link the three methods in a unified safety assess-
ment process, as illustrated by the Figure 1. This
chain of tools allows to compute the probability
of lethal impact for a given drone and mission.
This is thus a significant step to match with the
requirements from regulations such as (JARUS,
2019).

The estimation of the probability of the oc-
currence of a feared event can be formalized as
a mean value estimation problem stated by the
equation 1. Indeed, the UAV can be modeled as
a deterministic function φ

• taking a random input X of dimension d, corre-
sponding to the date of failure for each compo-
nent (d = 88 for Jerry), following an exponen-
tial distribution fX in our case,

• and producing a binary output denoted φ(X)
indicating whether the considered feared event
occurred during the mission.

Thus, the probability of the occurrence of a feared
event f over a mission is the unknown parameter
Pf of the Bernoulli variable φ(X) we want to

Fig. 1. Overview of the tooled UAV safety assessment
process

estimate. Let

g(X) = 1(φ(X)=1)

Then the parameter estimation can be formalized
as follows:

Pf =

∫
Rd

g(x)fX(x)dx = EfX (g(X)) (7)

Let the dimensions of the input vector be denoted
X =

(
X(1), . . . , X(d)

)
and the random vari-

ables be independently and identically distributed
with an exponential distribution of parameter λ(i).
Hence the density f(X) is the product of d expo-
nential densities, that is:

fX(x) = f(x(1), . . . , x(d))

=
∏d

i=1 λ
(i)e−λ(i)x(i) (8)

The probability Pf can be estimated by the em-
pirical mean obtained with the Monte Carlo simu-
lator from the Open AltaRica platform. However,
MC limitations quickly appeared, as the simula-
tions were too long or without enough confidence
in the results. Thus, an ad-hoc Importance Sam-
pling generator has been developed to be incor-
porated in the overall safety assessment process.
This ad-hoc simulator is the principal contribution
of this work and is introduced in the following
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sections, starting with the choice of the auxiliary
distribution.

4.2. Calibration of the sample generation
Section 2.3 introduced Importance Sampling and
the notion of auxiliary distribution. To build the
ad-hoc simulator, the first step is thus to compute
this distribution h. As explained in the section 2.3,
the main difficulty here is to find a good auxiliary
density function that is close to the optimal value
hopt. To do so, the simulator uses a method based
on a preliminary Monte Carlo simulation. The in-
tuition is that the samples leading to a feared event
in MC are distributed according to the optimal
auxiliary function hopt. Indeed, the distribution h
is supposed to generate more failures than f. Thus,
the optimum would be to generate a significant
proportion of scenarios leading to a feared event.
Then, using samples leading to failure from the
preliminary MC simulation, a density function hδ
can be computed as follows:

(1) The ad-hoc simulator uses the Open AltaR-
ica MC simulator to generate N samples
X1, . . . , XN following fX with the consid-
ered laws and parameters.

(2) Among them, let us consider that X ′
1, . . . , X

′
k

samples are such that the considered feared
event has been triggered during the simula-
tion, that is when 1(g(Xi)=1) = 1.

(3) Then the ad-hoc simulator computes the mean
failure time value of each input (failure mode)
over all the runs leading to the feared event.
Since the failures follow an exponential dis-
tribution one may estimate the failure rate as
follows:

δ =
1

E(X)
(9)

Let X ′(j)
i correspond to the value of the input

j of the run i, then the new parameter δ(j) for
each input j ∈ [1, d] is:

1

δ(j)
=

1

k

∑k

i=1
g(X ′

i)X
′(j)
i (10)

Now, the auxiliary density hδ is defined, one can
estimate the probability of failure by Importance
Sampling. The next step is to simulate N ′ addi-
tional runs with the new density hδ . To assess the
confidence in the estimation we will use the coef-
ficient of variation denoted cX defined as follows:

cX =

√
V(X)

E(X)
(11)

The lower its value is, the more confident we are
in the results of the simulation. To illustrate this
method, we use the model of Jerry and generate

a preliminary Monte Carlo simulation. The num-
ber of samples generated is 1e8 and the mission
duration is 200 seconds. During the auxiliary dis-
tribution computation, the failure having the most
impact on the feared event had its rate changed
from λMC = 10−6/h to δIS = 1.9/h, leading to
an auxiliary distribution hδ speeding up failures.

4.3. Estimation of the feared event
probabilities

Following the auxiliary distribution, the simulator
generates N ′ additional runs using MC. At the end
of the simulation, it collects the state of the inputs
Xi for each i = 1, . . . , N ′. Then it can estimate
the probability using Importance Sampling with
the density hδ and the initial density fX :

Pf � ÊIS
h =

1

N ′
∑N ′

i=1
g(Xi)

fX(Xi)

hδ(Xi)
(12)

As the inputs are independent f(X) and h(X) are the
product of the densities. Thus, the expectation can
be written as:

ÊIS
h =

1

N ′
∑N ′

i=1
g(X)

∏d

j=1

fλ(j)(X
(j)
i )

hδ(j)(X
(j)
i )

(13)
where samples Xi are iid following the density
hδ , and N ′ expected to be lower than N . To
validate the results, the coefficient of variation on
the estimator is computed. With this method, the
coefficient is expected to be lower with the IS. A
greater error can indicate a low confidence Monte
Carlo or IS estimation of Pf .

The first MC simulation for the CAT-SOL event
gave a coefficient of variation cCAT = 1.96e−1.
Then, the IS simulation allowed to compute a
new probability with a new coefficient of varia-
tion cCAT = 1.65e−2 with a similar estimation,

ÊIS
h = 2.96e−7, and N ′ = 1e5 simulations.

Thus, by adding a simulation of only 1e5 samples,
the coefficient of variation was divided by 10.

With a higher confidence in the simulation re-
sults and a lower simulation time, the computed
probability can be used in the overall safety pro-
cess. The next section focuses on computing the
final probability of lethal impact.

4.4. Computation of final regulatory
safety indicators

As written in the two documents (OGE, 2018)
and (JARUS, 2019), the primary goal of a safety
assessment is to ensure a minimum risk for the
population while performing UAVs operations.
Therefore, the indicator of risk for the population
is the probability of a lethal impact during a mis-
sion. As depicted in the Figure 1, this indicator
is computed by the last step of the process. More
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precisely, the indicator is computed thanks to the
equation 14, proposed by (Bertrand et al., 2017):

p(cslty) = p(loss)× p(imp|loss)
×p(coll|imp ∩ loss)
×p(cslty|coll ∩ imp ∩ loss)

(14)

Where:

• loss stands for Loss of control of the UAV that
is the vehicle starts a non-controlled descent
to the ground.

• imp stands for Non-controlled ground im-
pact that is the vehicle crashes with a non-
controlled speed or on a non-prepared landing
area.

• coll stands for Collision with someone that is
the crash results in a collision between the
UAV and someone on the ground.

• cslty stands for Fatal injury to someone that
is the collision with someone results in fatal
injuries to that person.

p(loss) is generated by the ad-hoc simula-
tor and the three other terms are generated by
DROSERA . Furthermore, the probability of a ca-
sualty is also computed by DROSERA , but for
each second of the flight and not for the entire mis-
sion duration. Thus, a conversion is performed to
provide indicators consistent with the final safety
objective. Let p(csltyf ) be the probability of a ca-
sualty for a given feared event f among F disjoint
feared events, then the probability of casualty can
be expressed as:

p(cslty) =
∑

f∈F p(csltyf ) (15)

Let Ai stand for a casualty at t = i after the
triggering of the feared event f , then the terms
p(csltyf ) can be estimated as follows:

p(csltyf ) =
∑t

i=0
p(Ai)×

∏i−1

j=0
p(Aj) (16)

For Jerry, two feared events are considered, CAT
and HAZ, so the probability will be:

p(cslty) = p(csltyCAT ) + p(csltyHAZ) (17)

Hence, the proposed process allows to assess
the acceptability of lethal impact of the drone with
respect to the final safety objective. This process
benefits from the use of Importance Sampling to
speed up the estimation of the crash probability.
Nevertheless, the efficiency of Importance Sam-
pling is tied to the estimation of hδ that is em-
pirical and do not come with strong guarantees
of variance reduction. That is why this method is
experimented on Jerry and its efficiency discussed
by comparison to classical Monte Carlo.

5. Results

The results of the experiments performed on Jerry
are gathered in the table 2. Concerning CAT SOL,
the results demonstrate a one order of magnitude
reduction of the coefficient of variation with few
additional simulations (1e5) compared to the 1e8

samples used to obtain an initial estimation of
the mean value. We see that the coefficient of
variation obtained on the 1.001e8 samples is still
better than the one obtained with 2e8 samples and
thus reduces the computational costs.

Nevertheless, this reduction is significant if the
number of Monte Carlo samples are quite close to
the minimum number of samples needed to esti-
mate the probability i.e. 1eN samples to estimate
a 1e−N mean value. If the number of samples
is large enough, which is the case for HAZ SOL
(1e−5 mean value estimated with 1e8 samples),
then the advantages of the importance sampling
are less significant as showed by the table 2. On
the other hand, a poor initial guess of the mean
value used to compute the auxiliary distribution
also lead to poor IS results as shown in the table
for N = 1e7.

The next step is the computation of the proba-
bility of lethal impact for each second of the flight
by DROSERA . Thus, two simulations have been
launched for a mission of t = 200 seconds in the
french city of Tournay with p(loss) = 2.96e−7

for the first CAT SOL simulation and p(loss) =
8.16e−5 for the HAZ SOL simulation.

The result obtained by processing the Drosera
results with the equation 16 are p(csltyCAT ) =
4.02e−10 and p(csltyHAZ) = 1.01e−7 result-
ing in a total casualty probability of p(cslty) =
1.01e−7.

By comparing these results to the safety objec-
tive from the OGE-I (OGE, 2018):

p(csltyCAT ) = 4.02e−10 < 10−7

p(csltyHAZ) = 1.01e−7 < 10−5

it gives an excellent overview on the level of safety
of the UAV. Here, the drone could be validated
regarding the OGE-I on the evaluation of the prob-
ability of failure. Thus, even if the failure rates
are not the real one, it is clear that the safety
assessment process is in line with the regulations
and their expectations.

6. Related works

The safety assessment method introduced in this
work relies upon other methods, enabling the
computation of indicators such as the probability
of the crash of the drone. The choice of using
Monte Carlo and then Importance Sampling was
made after analyzing the state of the art.
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Feared Event Method Sample size Estimated probability Coefficient of variation Computation time

CAT SOL Monte Carlo 1e7 6.00e−7 4.08e−1 47s
Importance Sampling 1.01e7 3.45e−7 4.17e−1 71s

Monte Carlo 1e8 2.60e−7 1.96e−1 449s
Importance Sampling 1.001e8 2.96e−7 1.65e−2 474s

Monte Carlo 2e8 2.85e−7 1.3e−1 920s

HAZ SOL Monte Carlo 1e7 7.6e−5 3.6e−2 47s
Importance Sampling 1.01e7 1.74e−4 2.81e−1 51s

Monte Carlo 1e8 7.45e−5 1.15e−2 449s
Importance Sampling 1.001e8 8.16e−5 7.30e−3 451s

Fig. 2. Estimated probability of feared event occurrence during Jerry mission

Dynamic system assessment
The computation of probabilistic indicators for
dynamic systems has been extensively studied in
the literature. Markov Chains based approaches
have been used to compute probabilities in (Hast-
ings, 1970) as a Monte Carlo sampling method, or
in (Baier et al., 2000) as a base for a model check-
ing tool. The typical Fault Trees (FT) have also
been adapted in Dynamic Fault Trees (DFTs) to
consider the dynamic aspect of complex systems.
Various works propose dedicated formalisms to
analyse DFTs such as (Merle, 2010) based on an
algebraic method. Dynamic Event Trees (DETs)
have also been used in the nuclear industry to
perform safety analyses. Finally, Petri Nets have
been extensively used for decades to model com-
plex systems, and works such as (Wang, 2007),
illustrates their use on dynamic systems. As stated
in the section 2, ALTARICA is based on guarded
transition systems encompassing the presented
formalisms, hence could be translated into one of
them and benefits from the developed assessment
methods. Nevertheless, such translations are not
available on the platform provided for ALTARICA

3.0, that is why the Monte-Carlo method request-
ing only the access to a simulator has been elected.

Variance reduction
The use of Importance Sampling has been intro-
duced in section 4 and has been motivated by
other works using variance reduction methods.
The first of these works is (Morio and Bales-
dent, 2015) and focuses on the estimation of
rare event probabilities in complex aerospace sys-
tems. It introduces the main rare event estima-
tion techniques such as crude Monte Carlo, Im-
portance Sampling, extreme value theory or
directional sampling. However, other methods
have been developed in works such as (Echard
et al., 2013). In this paper, the authors are intro-
ducing a method mixing Importance Sampling
and Kringing metamodel to assess small prob-
abilities. The paper (Gomes and Awruch, 2004)
introduces other methods and compares them to
MC and adaptive IS. These methods, response

surface and neural networks, are supposed to
reduce the computational cost of structural eval-
uations. The choice of Importance Sampling has
been motivated once again by the possibility to
use the MC simulator provided by the AltaRica
platform.

Calibration of samples generation
Among works on Importance Sampling, there are
many ways to compute the auxiliary distribution.
Indeed, the choice of this distribution h is crucial
to lower the variance effectively. A first method is
introduced in (Tomasson and Soder, 2017) which
defines the cross entropy method to estimate the
auxiliary distribution for composite power sys-
tems. The work (Morio and Balesdent, 2015) also
define several methods such as non adaptive IS
(scaling, mean translation, exponential twisting),
adaptive IS (cross entropy, non parametric adap-
tive IS). The first method gives good results for
rather simple systems and is easy to implement,
where the second is better for complex and high
dimensional systems but are harder to use in prac-
tice. Thus, a version of the cross entropy method
(using only 1 iteration) has been used in this work
as it was quicker to implement into the safety
assessment while giving satisfying results on a
complex case study as shown in section 5.

7. Conclusion

Summary
In this paper, we presented a tooled process to
assess the compliance of a UAS to some of the
probabilistic requirements requested by the appli-
cable regulations. More precisely, the assessment
of the collision probability between a drone and a
third person on the ground is estimated.

This process relies upon three main steps with
dedicated tools. First, the drone is modeled using
the ALTARICA 3.0 language with its failure pa-
rameters. Then an ad-hoc Importance Sampling
simulator computes the probability of a flight ter-
mination activation due to internal failures. This
simulator allows to overcome some limitations of
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the classical Monte Carlo simulations to compute,
with fewer samples, a sound probability. The tool
DROSERA is then used to compute the probability
of lethal impact between the drone and a third
person on the ground. Eventually a final compu-
tation derives the collision probability for the mis-
sion from the DROSERA computation. This tooled
process is mostly automatized and benefits from
well-known academic tools. The process has been
applied on the case study Jerry to illustrate the
benefits and limitations of the proposed approach.

Future works
In this paper, we greatly discussed about the
uncertainties brought by the estimation method.
Nevertheless, other sources of uncertainties, on
the failure rates for instance, may have a dramatic
impact on the estimation. Therefore a sensitivity
analysis could be used to identify the more im-
pacting sources of uncertainties and help to drive
the uncertainty reduction in the proposed process.

Since each flight termination mode leads to
different crash trajectories, a way to improve
our estimation would be to exploit the abil-
ity of DROSERA to consider alternative flight
termination modes (e.g. parachute, descending
glide/spiral). To do so, DROSERA must be com-
plemented with additional dynamic models cap-
turing the crash trajectories for such termination
modes.

Moreover, the degraded modes introduced in 3,
are not considered when computing the ground
impact probability. For example, during a ”Return
to Base” mode, the UAV will go straight to a pre-
viously identified location. It will neither follow
the route previously taken nor continue its flight.
These modes may have a significant impact over
the collision probability and thus must be taken
into account.
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