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Abstract: In this paper, we investigate strategies for administering chemo- and immunotherapy to force a 
tumor-immune system to its healthy equilibrium. To solve this problem, we use Pontryagin’s Maximum 
Principle applied to a modified Stepanova model. This model directly accounts for the detrimental effects 
of chemotherapy on immune cell density. Because the parameter for this interaction is unknown, we run 
simulations while varying the parameter to observe the effect on the system. Our results show that combined 
dosages of chemo- and immunotherapy over the first days of the treatment period are sufficient to force the 
system to its healthy equilibrium. 
Keywords: cancer, chemotherapy, immunotherapy, drug delivery, biological systems, optimization, 
Pontryagin’s Maximum Principle

1. INTRODUCTION 

Since their creation, the tools of mathematical optimization 
have been indispensable in predicting and controlling the 
behavior of systems. Optimal control techniques can be 
applied to a range of systems and are useful in a variety of 
fields including economics, engineering, and physics. As 
control methods have evolved, they have been used to describe 
biological models, which are often highly complex and 
nonlinear. In this paper, we focus on a biological model that 
describes the interactions between cancer and immune cells as 
they undergo various types of therapy. Our aim is to find the 
optimal doses of each therapy to drive the tumor-immune 
system to a benign state.  

The two therapies considered in this paper are chemotherapy 
and immunotherapy. Chemotherapy attacks the different types 
of cells (tumor and immune cells) while immunotherapy 
increases the density of immune cells. The purpose of 
immunotherapy is to boost the immune system so that it can 
better fight the growth of tumor cells. Although 
immunotherapy has been used as a supplement to 
chemotherapy, Koebel et al. (2007) proposed that 
immunotherapy alone can drive the tumor to a healthy state for 
some given initial health conditions. 

Because both therapies have negative side effects, it is 
necessary to limit their administration. Thus, most classic 
optimal control methods for tumor-immune system dynamics 
design the cost function to minimize the tumor density as well 
as the amount of drugs administered (Ledzewicz et al., 2020). 
This technique operates off an implicit understanding that 
excessive immunotherapy and chemotherapy are harmful to 

the body. In this paper, however, we consider a model of 
tumor-immune dynamics that explicitly accounts for the 
damage chemotherapy inflicts on the immune system (de Pillis 
et al, 2007). By incorporating the side effects of chemotherapy 
directly, we are ensuring that the negative side effects are 
accounted for so that our model more accurately represents the 
tumor-immune system dynamics. Furthermore, this model has 
been used to design model predictive control strategies, see for 
example Sharifi (2017, 2020).   

In this paper, we use the model presented by Moussa et al. 
(2020) to solve the optimal control problem using Pontryagin’s 
Maximum Principle with both L1 and L2 type objective 
functions. Each type of function has its benefits and its 
disadvantages. Quadratic cost functions ensure that the 
Hamiltonian will be convex with a global minimum. It is often 
easy to manipulate such cost functions and to derive 
information from them. However, using quadratic terms may 
have the effect of warping the data (Ledzewicz & Schättler, 

2007). Whereas quadratic cost functions result in smooth 
functions, linear cost functions give bang-bang controls. In 
this type of function, the control is either at full strength or zero 
strength with possible singular arcs in between. This dosing 
schedule mimics real life administration of drugs but is much 
more difficult to derive (Swierniak et al., 2003). Here, we 
compare the optimal control of both cost functions to identify 
the best dosing schedule.  

The rest of this paper is organized as follows; in section 2 the 
tumor-immune system model is presented. In section 3, the 
nonlinear controllability of the system is determined. In 
section 4, the L2 optimal control problem is solved, and the 



(1) 

corresponding system response presented with Monte-Carlo 
simulations. In section 5, the L1 optimal control problem is 
solved, and numerical response presented. Section 6 contains 
concluding remarks and future work. 

2. THE TUMOR-IMMUNE SYSTEM 

The model we investigate here is a modified version of the 
Stepanova model that has been extensively used in literature 
where optimal control approaches were proposed to schedule 
chemo- and immunotherapy injection profiles (Stepanova, 
1980; d’Onofrio, 2012; Ledzewicz et al., 2012; Ledzewicz et 
al., 2020). Sharifi et al. (2017) proposed a multiple model 
predictive control scheme to design chemo- and 
immunotherapy injection schedules. Furthermore, Sharifi et al. 
(2020) proposed a robust multiple model predictive control 
scheme for this model, in order to consider direct drug 
targeting pharmacokinetic uncertainties as well as system 
model mismatches. Because biological systems are intricate, 
models of these systems can become too complex to analyze 
and manipulate. The model we use is minimally 
parameterized; however, it still describes the main aspects of 
tumor-immune interactions (Moussa et al. 2020). Included in 
the Stepanova model is a growth rate of the tumor cells. While 
both Gompertzian and exponential growth rates have been 
used in various Stepanova models, we use a logistic growth 
model. This growth rate accounts for limited carrying capacity, 
reflecting the physical limits of tumor cell density.   
The system used in this paper, introduced by Moussa et al. 
(2020), is a modified form of the classic Stepanova model: 

𝑥 ̇ = 𝜇 𝑥 −
𝜇

𝑥
𝑥 − 𝛾𝑥 𝑥 − 𝜅 𝑥 𝑢  

𝑥 ̇ = 𝜇 (𝑥 − 𝛽𝑥 )𝑥 − 𝛿𝑥 + 𝛼 + 𝜅 𝑥 𝑢 − 𝜂𝑢 𝑥  
 

Here 𝑥  represents the number of tumor cells and 𝑥  the 
immune cell density. The controls, 𝑢  and 𝑢 , represent the 
administration of chemo- and immunotherapy, respectively. 
We extend the Stepanova model with the term 𝜂𝑢 𝑥 , which 
represents the interaction between chemotherapy and immune 
cells and directly accounts for the detrimental effect of 
chemotherapy on the immune system (Moussa et al., 2020). In 

this paper, we will set 𝜂 =  1, unless otherwise stated. Later 
we will consider the control problem while varying 𝜂. We 
assess a method for random sampling that remains applicable 
for other uncertain parameters. Table 1 provides the numerical 
values for the parameters used in the model with the state 
variables having been normalized (d’Onofrio et al., 2012).  

2.1 Dynamics of the Uncontrolled System 

As predicted by Koebel (2007), the uncontrolled system 
(u , u = 0) has a benign equilibrium in which the tumor 
subsists in a microscopic state. The healthy equilibrium is at 
(𝑥 , 𝑥 ) = (34.98, 0.53), while an unhealthy equilibrium 
exists at (𝑥 , 𝑥 ) = (735.9, 0.032), see Figure 1. We will 
consider the control problem starting from the initial condition 
(𝑥 , 𝑥 ) = (500, 0.5), which would tend to the unhealthy 
equilibrium in the absence of therapy. The amount of chemo- 
and immunotherapy needed to drive the system to the healthy 
equilibrium heavily depends on the initial condition.  

3. CONTROLLABILITY OF THE SYSTEM 

Before attempting to control a system, it is necessary to 
determine whether the system is in fact controllable. Our 
system can be represented as  
 

�̇� = 𝑓 𝑥(𝑡), 𝑢(𝑡) = 𝑓(𝑥) + g (𝑥)𝑢 (𝑡) + g (𝑥)𝑢 (𝑡)

𝑦 = ℎ 𝑥(𝑡) , 𝑥(0) = 𝑥
   (2) 

 

where 

𝑔 =
𝜅 𝑥
−𝜂𝑥 ,  𝑔 =

0
𝜅 𝑥  

For nonlinear systems, controllability is defined in terms of 
accessibility. We say that, given a system and an initial state 
𝑥 , if it is possible to choose a control 𝑢(𝑡) to drive the system 
to another state 𝑥 , then 𝑥  is accessible from 𝑥 . If all states 
are accessible from every other state, then the system is 
controllable (James, 1987). 

Figure 1: Phase portrait of the uncontrolled system showing the 
two locally asymptotically stable equilibrium points (Moussa, 
2020). 

Table 1: Numerical values for the system variables 
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(7) 

(8) 

(9) 

(10) 

(11) 

(3) 

(4) 

(5) 

One criterion for determining controllability is the 
controllability rank condition. In a neighborhood M of 𝑥 , 
if 𝑑𝑖𝑚 < 𝑎𝑑  | 𝑅(𝑓) > =  𝑛 , where 𝑛 is the dimension of 𝑥, 

then the system satisfies the controllability rank condition 
(Bara, 2017). Here < 𝑎𝑑   | 𝑅(𝑓) > is the controllability 

distribution where 𝑎𝑑  represents the adjoint, and 𝑅(𝑓) is the 

distribution spanned by 𝑓( ∙ , 𝑢) (Isidori, 1995). This condition 
can be verified using the controllability matrix defined as  

𝐶 = (𝑔 , 𝑔 , [𝑔 , 𝑔 ], … ) 
 

where [𝑔 , 𝑔 ] is the Lie bracket (Hermann & Krener, 1977). 
The Lie bracket is closely connected to controllability and 
defines a new vector field. A Lie bracket is calculated and 
defined as (Hedrick & Girard, 2005):  

[𝑔 , 𝑔 ] ≡
𝜕𝑔

𝜕𝑥
𝑓 −

𝜕𝑔

𝜕𝑥
𝑔 

 
If the controllability matrix C has rank 𝑛 at 𝑥 , then the system 
is locally controllable around 𝑥 . Since our model has rank 2, 
we only need to check if this matrix has rank 2 around the 
equilibrium points. Thus, if we take only the first two columns 
in the controllability matrix, and it has rank 2, then the 
condition is verified.  
 

𝐶 = (𝑔 , 𝑔 ) =
𝜅 𝑥 0
−𝜂𝑥 𝜅 𝑥  

These vectors are already linearly independent and will 
therefore be trivially full rank. By plugging in the equilibrium 
points, we obtain the following full rank matrices, 𝐶  and 𝐶 , 
corresponding to the healthy and unhealthy equilibrium, 
respectively.  
 

𝐶 =
349800000 0

−53/100 5300000
 

 

𝐶 =  
7359000000 0

−4/125 320000
 

 

Because these controllability matrices have rank 2, our system 
is locally controllable around both equilibrium points. With 
this information, we can proceed to derive controls to force the 
system to the healthy equilibrium.  

4. L2 OPTIMIZATION 

The optimal control problem for this system was solved by 
Moussa et al. (2012) using the generalized moment approach 
developed by Lasserre. In this paper, however, we use 
Pontryagin’s Maximum Principle to solve the optimal control 
problem with both L1 and L2 type objective functions. For both 
solutions, it is necessary that 𝑥 ,𝑥 ≥  0 to reflect physical 

realities. In addition, the immune cell density must remain 

relatively high to ensure the health of the entire body. We will 
consider here that 𝑥 >  0.1 at all times.  

4.1 Methods for L2 Optimal Control  

In this section, we explore the optimal controls for a quadratic 
cost function (Lenhart & Workman, 2007):  
 

𝐽(𝑢, 𝑣) = ∫ (𝑥 𝑄𝑥 + 𝑢 𝑅𝑢)𝑑𝑡 = ∫ (𝑞 𝑥 + 𝑞 𝑥 +

𝑟 𝑢 + 𝑟 𝑢 )𝑑𝑡  
 

𝑄 =
𝑞 0
0 𝑞

 =  
1 0
0 0

 ,  𝑅 =  
𝑟 0
0 𝑟

=  10 0
0 10

 

 

The weights represented in matrices Q and R can be chosen to 
penalize certain parameters more or less as desired. The 
weights for 𝑟  and 𝑟  penalize the use of drugs to minimize the 
injected doses. We do not put a weight on the immune cells 
(𝑞 =  0), as we do not want them to be minimized. The 
Hamiltonian for this cost function is as follows:   

𝐻 = 𝑞 𝑥 + 𝑞 𝑥 + 𝑟 𝑢 + 𝑟 𝑢 + 𝜆 𝜇 𝑥 − 𝑥 −

𝛾𝑥 𝑥 − 𝜅 𝑥 𝑢 + 𝜆 𝜇 𝑥 𝑥 − 𝜇 𝛽𝑥 𝑥 − 𝛿𝑥 + 𝛼 +

𝜅 𝑥 𝑢 − 𝜂𝑢 𝑥   

The corresponding adjoint equations: 
 

𝜆 ̇ = − = −2𝑞 𝑥 + 𝜆 −𝜇 + 2 𝑥 + 𝛾𝑥 +

𝜅 𝑢 + 𝜆 (−𝜇 𝑥 + 2𝜇 𝛽𝑥 𝑥 )  

 

𝜆 ̇ = − = −2𝑞 𝑥 + 𝜆 𝛾𝑥 + 𝜆 −𝜇 𝑥 + 𝜇 𝛽𝑥 + 𝛿 −

𝜅 𝑢 + 𝜂𝑢   

 
The optimality conditions can be found as follows:  

𝜕𝐻

𝜕𝑢
= 2𝑟 𝑢 − 𝜆 𝜅 𝑥 − 𝜆 𝜂𝑥 = 0 

𝑢 =
𝜆 𝜅 𝑥 + 𝜆 𝜂𝑥

2𝑟
 

 
𝜕𝐻

𝜕𝑢
= 2𝑟 𝑢 + 𝜆 𝜅 𝑥 = 0 

𝑢 =
−𝜆 𝜅 𝑥

2𝑟
 

 
To solve these equations numerically, we discretized the 
system and used the Forward-Backward Sweep method 
(Lenhart & Workman, 2007). This algorithm works as follows: 
1. Make an initial guess for the controls u over the interval  
(u = 0 typically works well). 
2. Solve the state equations numerically forward in time using 
the initial condition 𝑥  = 𝑥(𝑡 ) and the initial guess for u.         
3. Solve the adjoint equations numerically backward in time. 



using the transversality condition, 𝜆(𝑁 + 1) = 𝜆(𝑇) = 0, and 
the values for 𝑢 and x.  
4.  Update the value of the controls using the new values for x 
and 𝜆.  
5.  Check for convergence of each of these parameters. Repeat 
steps 1-4 until the state, adjoint, and control functions are 
negligibly close. 
For steps 2 and 3, we used the 4th order Runge-Kutta method 
to solve for the state and adjoint equations numerically.   

4.2 Numerical Results with L2 Objective  

Figures 2 and 3 display the results of our Forward-Backward 
Sweep, giving the optimal controls to drive the system to its 
healthy equilibrium for the initial condition (𝑥 , 𝑥 ) =

(500, 0.5). Figure 2 shows the trajectories of the tumor and 
immune cell densities under the influence of the controls. Both 
states are driven to the healthy equilibrium, and 𝑥  naturally 
remains above the healthy threshold (𝑥 > 0.1). Figure 3 

shows the scheduling and dosage of the chemo- and 
immunotherapy that forces the system to its healthy state.   
For approximately the first 5 days, chemotherapy is 
administered at a higher concentration than immunotherapy. 
Then, once the immune cell density has decreased below its 
equilibrium amount, immunotherapy dosage increases to 
higher levels than chemotherapy, allowing the immune system 
to rebuild itself and recover from chemotherapy. The immune 
cell density never drops to dangerously low levels, and both 
states remain nonnegative. 

4.3 Monte-Carlo Simulations 

Because the parameter 𝜂 is unknown, we now explore the 
effect different values of 𝜂 have on the control problem. To 
analyze this effect, we perform Monte-Carlo simulations. We 
run the same numerical method to solve the optimal control 
problem, but we vary 𝜂, taking 20 random values between 0 
and 2, assuming 𝜂~𝑈([0,2]).  

Figure 2: The trajectory of the tumor (a) and immune cell (b) 
density under the influence of the controls. 

 

Figure 3: Control profiles for L2 objective, where u1 represents 
chemotherapy, and u2 represents immunotherapy.  

Figure 4: Results of the Monte-Carlo simulations showing the 
profiles of the tumor cell number (a), the immune cell density 
(b) 

Figure 5: Results of the Monte-Carlo simulations showing 
the administration of chemotherapy (a) and immunotherapy 
(b) 



(12) 

(13) 

(14) 

(15) 

Figures 4 and 5 show the results of the Monte-Carlo 
simulations. Overall, the system behaves similarly over all 
values of 𝜂. The states remain nonnegative, and the immune 
cell density remains within a healthy range. In each trial, the 
tumor and immune cells reached their healthy equilibrium, and 
the trajectories only had slight deviations. The immunotherapy 
profiles show more dispersion across the simulation than the 
chemotherapy profiles. Looking at the system dynamics in (1), 
it is probable that the immunotherapy doses increase as 𝜂 
increases. 

5.  L1 OPTIMIZATION 

In this section, we will solve the optimal control problem with 
an L1, or linear, objective function. Using a linear objective 
function more closely reflects real-world systems. However, it 
is more difficult to derive the controls with a linear function. 

5.1 Methods for L1 Optimal Control  

For an L1 objective, the cost function is as follows [11]:  
 

𝐽(𝑢, 𝑣) = ∫ |𝑄𝑥 + 𝑅𝑢|𝑑𝑡 = ∫ |𝑞 𝑥 + 𝑞 𝑥 +  𝑟 𝑢 +

𝑟 𝑢 | 𝑑𝑡  
 

Using Pontryagin’s Maximum Principle, we derive the 
following Hamiltonian function with its corresponding 
adjoint functions:  
 

𝐻 = 𝑞 𝑥 + 𝑞 𝑥 + 𝑟 𝑢 + 𝑟 𝑢 + 𝜆 𝜇 𝑥 − 𝑥 −

𝛾𝑥 𝑥 − 𝜅 𝑥 𝑢 + 𝜆 𝜇 𝑥 𝑥 − 𝜇 𝛽𝑥 𝑥 − 𝛿𝑥 + 𝛼 +

𝜅 𝑥 𝑢 − 𝜂𝑢 𝑥   
 

𝜆 ̇ = − = −𝑞 + 𝜆 −𝜇 + 2 𝑥 + 𝛾𝑥 + 𝜅 𝑢 +

𝜆 (−𝜇 𝑥 + 2𝜇 𝛽𝑥 𝑥 )  
 

𝜆 ̇ = − = −𝑞 + 𝜆 𝛾𝑥 + 𝜆 −𝜇 𝑥 + 𝜇 𝛽𝑥 + 𝛿 −

𝜅 𝑢 + 𝜂𝑢   

Here, unlike with the L2 objective, the controls do not appear 
in the optimality condition since they are linear in the 
Hamiltonian. Thus, it is impossible to explicitly solve for 
them. Instead of solving for 𝑢  and 𝑢 , we must use switching 
functions (d’Onofrio et al., 2012). The switching function for 
𝑢  is defined as 

𝜓 =
𝜕𝐻

𝜕𝑢
= 𝑟 − 𝜆 𝜅 𝑥 − 𝜆 𝜂𝑥  

where  

𝑢  =  
0       𝑖𝑓 ψ (𝑡) > 0

1      𝑖𝑓 ψ (𝑡) < 0
 

 
The switching function for 𝑢  is defined as 
 

𝜓 =
𝜕𝐻

𝜕𝑢
= 𝑟 + 𝜆 𝜅 𝑥  

where 

𝑢  =  
0       𝑖𝑓 ψ (𝑡) > 0

1      𝑖𝑓 ψ (𝑡) < 0
 

 
These controls have the extreme values of 0 and 1, jumping 
between full and zero doses depending on the sign of the 
switching functions. Such controls are called bang controls 
(d’Onofrio et al., 2012). If the controls switch more than once, 
they are called a bang-bang controls. When 𝜓 =  0, the control 
is called singular and must be found using other methods. The 
theory for finding singular arcs can be quite complex and is 
explored by Bonnard and Chyba (2003). Our system was 
checked for singular controls while being numerically solved, 
and no singular arcs existed. As with the L2 objective, we used 
the Forward-Backward Sweep method; however, we used 
gradient descent to solve for the state and adjoint equations. 

5.2 Numerical Results with L1 Objective  

Figures 6 and 7 show the results of optimization using a linear 
objective function starting from the initial condition (𝑥 , 𝑥 ) =

(500, 0.5). In these graphs, the system is driven to its healthy 
equilibrium by the bang controls. Here, chemotherapy is 
administered for a day at full strength, and immunotherapy is 

Figure 6: The trajectories of the tumor cells (a) and the immune 
cell density (b) using an L1 objective.   

(16) 

(17) 

(18) 

(19) 

Figure 7: The scheduling for chemotherapy in blue and 
immunotherapy in red using the L1 objective. Only the first 5 
days are shown as there is no therapy for the remainder of the 
treatment period. 



administered for around half a day at full strength to drive the 
system to its healthy state.  
As with the L2 objective function, both therapies are 
administered in combination here for the optimal effect. 
Additionally, all parameters remain within their constraints. In 
Figure 7, the therapy profiles are only shown for the first five 
days as they remain at zero for the rest of the treatment period.  

6. CONCLUSION 

Our results suggest that a combination of chemo- and 
immunotherapy sustained for a short period of time at the 
beginning of the treatment period is optimal for driving the 
tumor-immune system to its healthy equilibrium. This pattern 
is consistent across L1 and L2 objectives. These results are ideal 
when considering real-life treatment plans and for minimizing 
the damaging side effects of the therapies. Our results also 
reflect the results of the control problem with the same system 
found by Moussa et al. (2020) and with a similar Stepanova 
model found by d’Onofrio et al. (2012). In both papers, as in 
this one, immunotherapy alone was not found to be the optimal 
treatment. Instead, a mixture of both therapies was best in 
moving the system from its malignant initial condition to its 
healthy equilibrium. These results are reasonable when 
considering the ultimate goal of attacking the tumor cells while 
also supporting the immune system. 
 

With both objective functions, a relatively short administration 
period was enough to drive the system away from its malignant 
equilibrium. Further research would be necessary to determine 
how the controls would change based on different initial 
conditions and to investigate what initial conditions are viable 
for treatment.  
 

Our results from the Monte-Carlo simulations show that 
varying the unknown parameter η changed the optimal doses 
of immunotherapy. Otherwise, varying this parameter had 
little effect on the outcome of the control problem, thus 
suggesting that the system will behave similarly if the 
parameter is within the distribution we tested. For further 
research, it would be necessary to run clinical tests to find the 
value of this parameter. Clinically finding a value for the 
parameter describing the chemo-immune system interaction 
would greatly increase the validity of this model. Additionally, 
further research could be done to verify these results across 
varying types of chemo- and immunotherapy.  
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