
HAL Id: hal-03359175
https://hal.science/hal-03359175

Submitted on 30 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The b-Matching problem in distance-hereditary graphs
and beyond

Guillaume Ducoffe, Alexandru Popa

To cite this version:
Guillaume Ducoffe, Alexandru Popa. The b-Matching problem in distance-hereditary graphs and
beyond. Discrete Applied Mathematics, 2021, 305, pp.233-246. �10.1016/j.dam.2021.09.012�. �hal-
03359175�

https://hal.science/hal-03359175
https://hal.archives-ouvertes.fr

The b-Matching problem in distance-hereditary graphs and beyond 1

Guillaume Ducoffea,b, Alexandru Popaa,b

aICI – National Institute for Research and Development in Informatics, Bucharest, Romania
bUniversity of Bucharest, Bucharest, Romania

Abstract

We make progress on the fine-grained complexity of Maximum-Cardinality Matching within
graphs of bounded clique-width. Quasi linear-time algorithms for this problem have been proposed
for the important subclasses of bounded-treewidth graphs (Fomin et al., SODA’17) and graphs
of bounded modular-width (Coudert et al., SODA’18). We present such algorithm for bounded
split-width graphs — a broad generalization of graphs of bounded modular-width, of which an inter-
esting subclass are the distance-hereditary graphs. Specifically, we solve Maximum-Cardinality
Matching in O((k log2 k) · (m + n) · log n)-time on graphs with split-width at most k. We stress
that the existence of such algorithm was not even known for distance-hereditary graphs until our
work. Doing so, we answer an open question of (Coudert et al., SODA’18). Our work brings
more insights on the relationships between matchings and splits, a.k.a., join operations between
two vertex-subsets in different connected components. Furthermore, our analysis can be extended
to the more general (unit cost) b-Matching problem. On the way, we introduce new tools for
b-Matching and dynamic programming over split decompositions, that can be of independent
interest.

Keywords: maximum-cardinality matching; b-matching; FPT in P; split decomposition;
distance-hereditary graphs.

1. Introduction

The Maximum-Cardinality Matching problem takes as input a graph G = (V,E) and it
asks for a subset F of pairwise non incident edges of maximum cardinality. This is a fundamental
problem with a wide variety of applications [4, 10, 31, 36]. Hence, the computational complexity
of Maximum-Cardinality Matching has been extensively studied in the literature. In [16],
Edmonds presented the first polynomial-time algorithm for this problem. It was also the first
time that the complexity class P was formalized. Currently, the best-known algorithms for this
problem run in O(m

√
n)-time on n-vertex m-edge graphs [34]. Such superlinear running times can

be prohibitive for some applications. Intriguingly, Maximum-Cardinality Matching is one of
the few remaining fundamental graph problems for which we neither have proved the existence of a
quasi linear-time algorithm, nor a superlinear time complexity (conditional) lower-bound. This fact
has renewed interest in understanding what kind of graph structure makes this problem difficult.
Our present work is at the crossroad of two successful approaches to answer this above question,
namely, the quest for improved graph algorithms on special graph classes and the much more recent

1Results of this paper were partially presented at the ISAAC’18 conference [14].

Preprint submitted to Elsevier July 16, 2021

program of “FPT in P”. We start further motivating these two approaches before we detail our
contributions.

1.1. Related work

Algorithmic on special graph classes. One of our initial motivations for this paper was
to design a quasi linear-time algorithm for Maximum-Cardinality Matching on distance-
hereditary graphs [1]. – Recall that a graph G is called distance-hereditary if the distances in
any of its connected induced subgraphs are the same as in G. – Distance-hereditary graphs have
already been well studied in the literature [1, 13, 25]. In particular, we can solve Diameter
in linear-time on this class of graphs [13]. For the latter problem on general graphs, a con-
ditional quadratic lower-bound has been proved in [38]. This result suggests that several hard
graph problems in P may become easier on distance-hereditary graphs. Our work takes a new
step toward better understanding the algorithmic properties of this class of graphs. We stress
that there exist linear-time algorithms for computing a maximum matching on several subclasses
of distance-hereditary graphs, such as: trees, cographs [42] and (tent,hexahedron)-free distance-
hereditary graphs [12]. However, the techniques used for these three above subclasses are quite
different from each other. As a byproduct of our main result, we obtain an O(m log n)-time al-
gorithm for Maximum-Cardinality Matching on distance-hereditary graphs. In doing so, we
propose one interesting addition to the list of efficiently solvable special cases for this problem (e.g.,
see [5, 9, 12, 20, 19, 24, 26, 30, 33, 28, 42, 44, 43]).

Split Decomposition. In order to tackle with Maximum-Cardinality Matching on distance-
hereditary graphs, we consider the relationship between this class of graphs and split decomposition.
A split is a join that is also an edge-cut. By using pairwise non crossing splits, termed “strong
splits”, we can decompose any graph into degenerate and prime subgraphs, that can be organized
in a treelike manner. The latter is termed split decomposition [8], and it is our main algorithmic
tool for this paper. The split-width of a graph is the largest order of a non degenerate subgraph
in some canonical split decomposition. In particular, distance-hereditary graphs are exactly the
graphs with split-width at most two [37]. Many NP-hard problems can be solved in polynomial
time on bounded split-width graphs (e.g., Graph Coloring, see [37]). In particular we have
that clique-width is upper-bounded by split-width, and so, any FPT algorithm parameterized by
clique-width can be transformed into a FPT algorithm parameterized by split-width (the converse
is not true). Recently, with Coudert, we designed FPT algorithms for polynomial-time solvable
problems when parameterized by split-width [7]. It turns out that many “hard” problems in P
such as Diameter can be solved in O(kO(1) · n + m)-time on graphs with split-width at most k.
However, we left this open for Maximum-Cardinality Matching. Indeed, our main contribution
in [7] was a Maximum-Cardinality Matching algorithm based on the more restricted modular
decomposition. Given this previous result, it was conceivable that a Maximum-Cardinality
Matching algorithm based on split decomposition could also exist. However, we need to introduce
quite different tools than in [7] in order to prove in this work that it is indeed the case.

Fully Polynomial Parameterized Algorithms. Our work with split-width fits in the recent
program of “FPT in P”. Specifically, given a graph invariant denoted π (in our case, split-width),
we address the question whether there exists a Maximum-Cardinality Matching algorithm
running in time O(kc · (n + m) · logO(1)(n)), for some constant c, on every graph G such that

2

π(G) ≤ k 2. Note that such an algorithm runs in quasi linear time for any constant k, and that
it is faster than the state-of-the art algorithm for Maximum-Cardinality Matching whenever
k = O(n

1
2c
−ε), for some ε > 0. This kind of FPT algorithms for polynomial problems have

attracted recent attention [7, 11, 23, 27, 29, 32] — although some examples can be found earlier
in the literature [44, 43]. We stress that Maximum-Cardinality Matching has been proposed
in [32] as the “drosophila” of the study of these FPT algorithms in P. We continue advancing in
this research direction.

Note that another far-reaching generalization of distance-hereditary graphs are the graphs of
bounded clique-width [25]. In [7], we initiated the complexity study of Maximum-Cardinality
Matching – and other graph problems in P – on bounded clique-width graph classes. The latter
research direction was also motivated by the recent O(k2 · n log n)-time algorithm for Maximum-
Cardinality Matching on graphs of treewidth at most k, see [18, 27]. Turning our attention
on denser graph classes of bounded clique-width, we proved in [7] that Maximum-Cardinality
Matching can be solved in O(k4 ·n+m)-time on graphs with modular-width at most k. We stress
that distance-hereditary graphs have unbounded treewidth and unbounded modular-width. Fur-
thermore, clique-width is upper-bounded by split-width [37], whereas split-width is upper-bounded
by modular-width [7]. As our main contribution in this paper, we present a quasi linear-time al-
gorithm in order to solve some generalization of Maximum-Cardinality Matching on bounded
split-width graphs — thereby answering positively to the open question from [7], while improving
the state-of-the-art. Our result shows interesting relationships between graph matchings and splits,
the latter being an important particular case of the join operation that is used in order to define
clique-width. The fine-grained complexity of Maximum-Cardinality Matching parameterized
by clique-width, however, remains open.

1.2. Our contributions

We consider a vertex-weighted generalization for Maximum-Cardinality Matching that is
known as the unit-cost b-Matching problem [17]. Roughly, every vertex v is assigned some input
capacity bv, and the goal is to compute integer edge-weights (xe)e∈E so that: for every v ∈ V the
sum of the weights of its incident edges does not exceed bv, and

∑
e∈E xe is maximized. We prove a

simple combinatorial lemma that essentially states that the cardinality of a maximum b-matching
in a graph grows as the floor of at most three linear pieces in the capacity bw of any fixed vertex w.
This nice result (apparently never noticed before) holds for any graph. As such, we think that it
could provide a nice tool for the further investigations on b-Matching. Then, we derive from our
combinatorial lemma a variant of some reduction rule for Maximum-Cardinality Matching
that we first introduced in the more restricted case of modular decomposition [7]. Altogether
combined, this allows us to reduce the solving of b-Matching on the original graph G to solving
b-Matching on supergraphs of every its split components. We expect our approach to be useful in
other matching and flow problems.

Overall, our main result is that b-Matching can be solved in O((k log2 k) · (m + n) · log ||b||1)-
time on graphs with split-width at most k (Theorem 1). It implies that Maximum-Cardinality
Matching can be solved in O((k log2 k) · (m + n) · log n)-time on graphs with split-width at

2The polynomial dependency in k is ignored by some authors [32], who accept any functional dependency in the
parameter. Since Maximum-Cardinality Matching is already known to be polynomial-time solvable, we find it
more natural to consider this restricted setting.

3

most k. Since distance-hereditary graphs have split-width at most two, we so obtain the first
known quasi linear-time algorithms for Maximum-Cardinality Matching and b-Matching on
distance-hereditary graphs.

We introduce the required terminology and basic results in Section 2, where we also sketch the main
ideas behind our algorithm (Section 2.3). Then, Section 3 is devoted to a combinatorial lemma
that is the key technical tool in our subsequent analysis. In Section 4, we present our algorithm for
b-Matching on bounded split-width graphs. We conclude in Section 5 with some open questions.
Results of this paper were partially presented at the ISAAC’18 conference [14].

2. Preliminaries

We use standard graph terminology from [3]. Graphs in this study are finite, simple (hence
without loops or multiple edges), and connected – unless stated otherwise. Furthermore we make
the standard assumption that graphs are encoded as adjacency lists. Given a graph G = (V,E)
and a vertex v ∈ V , we denote its neighborhood by NG(v) = {u ∈ V | {u, v} ∈ E} and the set of its
incident edges by Ev(G) = {{u, v} | u ∈ NG(v)}. When G is clear from the context we write N(v)
and Ev instead of NG(v) and Ev(G). Similarly, we define the neighborhood of any vertex-subset
S ⊆ V as NG(S) =

(⋃
v∈S NG(v)

)
\ S.

2.1. Split-width

A complete join is a subset of edges A×B where A and B are disjoint vertex-subsets (equiva-
lently, the edges of a complete join induce a complete bipartite graph with respective partite sets A
and B). Let a split in a graph G = (V,E) be a partition V = U ∪W such that there is a complete
join between the vertices of NG(U) and NG(W). Note that any ordered bipartition (U,W) where
min{|U |, |W |} ≤ 1 is always a split, sometimes called a trivial split. It is desirable to restrict
ourselves to non trivial splits, for which we have the additional requirement min{|U |, |W |} ≥ 2.
A simple decomposition of G takes as input a non trivial split (U,W), and it outputs two sub-
graphs GU = G[U ∪ {w}] and GW = G[W ∪ {u}] where u,w /∈ V are fresh new vertices such that
NGU

(w) = NG(W) and NGW
(u) = NG(U). The vertices u,w are termed split marker vertices. A

split decomposition of G is obtained by applying recursively some sequence of simple decompositions
(e.g., see Fig. 1). We name split components the subgraphs in a given split decomposition of G.

a

b

c

d

e

f

g

h

i

c

d e

f

g

h

i

a

b

complete
star

star

star

prime

Figure 1: A graph and its split decomposition. Split marker vertices that correspond to a same simple decomposition
are identified by two rectangles with the same color.

It is often desirable to apply simple decompositions until all the subgraphs obtained cannot be
further decomposed. In the literature there are two cases of “indecomposable” graphs. First, a
graph is prime for split decomposition if it only has trivial splits. Throughout the remainder of
this paper, a prime subgraph of a graph G refers to any induced subgraph of G that is prime for
split decomposition. We can now define the following first type of split decomposition:

4

• Minimal split decomposition. A split-decomposition is minimal if all the subgraphs
obtained are prime.

The set of prime graphs in any minimal split decomposition is unique up to isomorphism [8].
However, a minimal split decomposition is in general not unique. To see that, consider a star
with center x0 and leaves x1, x2, x3. For every 1 ≤ i ≤ 3, we can define a split (Ui,Wi) where
Ui = {x0, xi} and Wi = {x1, x2, x3} \ {xi}. The simple decomposition associated to each split
leads to the creation of two stars, each having exactly two leaves. However, the outputs of each
simple decomposition are pairwise different. It leads us to our second case of “indecomposable”
graphs. Specifically, degenerate graphs are such that every bipartition of their vertex-set is a split.
They are exactly the complete graphs and the stars [8]. We can now define another type of split
decomposition:

• Canonical split decomposition. Every graph has a canonical split decomposition where
all the subgraphs obtained are either degenerate or prime and the number of subgraphs is
minimized. Furthermore, the canonical split decomposition of a given graph can be computed
in linear-time [6].

Interestingly, the canonical split decomposition of a graph is unique [8]. The classic algorithms
for computing a split decomposition, e.g. [6], compute this canonical split decomposition. Never-
theless, a minimal split decomposition can be computed from the canonical split decomposition
in linear-time [8]. If the unicity of the decomposition is not required (that is the case for the
algorithmic problems considered in this paper), then it is more convenient to work with a minimal
split decomposition than with the canonical one. Indeed, doing so, we avoid handling with the
particular cases of stars and complete graphs in our algorithms.

For instance, the split decomposition of Fig. 1 is both minimal and canonical for the graph G
to its left. Let us replace the edge {a, b} by a clique of size four, denoted by K, whose all vertices
are adjacent to c. Doing so, we get a new graph G′. In the split decomposition of Fig. 1, there is
a unique complete subgraph, whose vertices are a, b and some split marker vertex w. In order to
construct the canonical split decomposition of G′, it suffices to replace this complete subgraph by a
complete subgraph on K ∪{w}. Since, the canonical split decomposition of G′ contains a subgraph
with five vertices, it is not minimal. To construct a minimal split decomposition of G′, we need to
further decompose this subgraph into 3 triangles.

Definition 1. The split-width of G, denoted by sw(G), is the minimum k ≥ 2 such that any prime
subgraph in the canonical split decomposition of G has order at most k.

We refer to [37] for some algorithmic applications of split decomposition. In particular, graphs
with split-width at most two are exactly the distance-hereditary graphs, a.k.a the graphs whose
all connected induced subgraphs are distance-preserving [1]. Distance-hereditary graphs contain
many interesting subclasses of their own such as cographs (a.k.a., P4-free graphs) and 3-leaf powers.
Furthermore, since every degenerate graph has a split decomposition where all the components are
either triangles or paths of length three, every component in a minimal split decomposition of G
has order at most max{3, sw(G)}.
Split decomposition tree. A split decomposition tree of G is a tree T where the nodes are in
bijective correspondance with the subgraphs of a given split decomposition of G, and the edges
of T are in bijective correspondance with the simple decompositions used for their computation.

5

More precisely, if the considered split decomposition is reduced to G then T is reduced to a single
node; Otherwise, let (U,W) be a split of G and let GU = (U ∪ {w}, EU), GW = (W ∪ {u}, EW) be
the corresponding subgraphs of G. We construct the split decomposition trees TU , TW for GU and
GW , respectively. Furthermore, the split marker vertices u and w are contained in a unique split
component of GW and GU , respectively. We obtain T from TU and TW by adding an edge between
the two nodes that correspond to these subgraphs. The split decomposition tree of the canonical
split decomposition, resp. of a minimal split decomposition, can be constructed in linear-time [37].

2.2. Matching problems

A matching in a graph is a set of edges with pairwise disjoint end vertices.

Problem 1 (Maximum-Cardinality Matching).

Input: A graph G = (V,E).

Output: A matching of G with maximum cardinality.

The Maximum-Cardinality Matching problem can be solved in O(m
√
n)-time [34]. We

do not use this result directly in our paper. However, we do use in our analysis the notion of
augmenting paths, that is a cornerstone of most matching algorithms. Namely, let G = (V,E) be a
graph and F ⊆ E be a matching of G. A vertex is termed matched if it is incident to an edge of
F , and exposed otherwise. An F -augmenting path is a path where the two ends are exposed, all
edges {v2i, v2i+1} are in F and all edges {v2j−1, v2j} are not in F . We can observe that, given an
F -augmenting path P = (v1, v2, . . . , v2`), the matching E(P)∆F (obtained by replacing the edges
{v2i, v2i+1} with the edges {v2j−1, v2j}) has larger cardinality than F .

Lemma 1 (Berge, [2]). A matching F in G = (V,E) is maximum if and only if there is no
F -augmenting path.

It is folklore that the proof of Berge’s lemma also implies the existence of many vertex-disjoint
augmenting paths for small matchings. More precisely:

Lemma 2 (Hopcroft-Karp, [26]). Let F1, F2 be matchings in G = (V,E). If |F1| = r, |F2| = s and
s > r, then there exist at least s− r vertex-disjoint F1-augmenting paths.

b-Matching. More generally given a graph G = (V,E), let b : V → N assign a nonnegative
integer capacity bv for every vertex v ∈ V . A b-matching is an assignment of nonnegative integer
edge-weights (xe)e∈E such that, for every v ∈ V , we have

∑
e∈Ev

xe ≤ bv. We define the x-degree
of vertex v as degx(v) =

∑
e∈Ev

xe. Furthermore, the cardinality of a b-matching is defined as
||x||1 =

∑
e∈E xe. We will consider the following graph problem:

Problem 2 (b-Matching).

Input: A graph G = (V,E); an assignment function b : V → N.

Output: A b-matching of G with maximum cardinality.

For technical reasons, we will also use the following variant of b-Matching. Let c : E → N
assign a cost to every edge. The cost of a given b-matching x is defined as c · x =

∑
e∈E cexe.

6

Problem 3 (Maximum-Cost b-Matching).

Input: A graph G = (V,E); assignment functions b : V → N and c : E → N.

Output: A maximum-cardinality b-matching of G where the cost is maximized.

Lemma 3 ([21, 22]). For every G = (V,E) and b : V → N, c : E → N, we can solve Maximum-
Cost b-Matching in O(nm log2 n)-time.

In particular, we can solve b-Matching in O(nm log2 n)-time.

There is a nonefficient (quasi polynomial) reduction from b-Matching to Maximum-Cardinality
Matching that we will use in our analysis (e.g., see [41]). More precisely, let G, b be any instance
of b-Matching. The “expanded graph” Gb is obtained from G and b as follows. For every v ∈ V ,
we add the nonadjacent vertices v1, v2, . . . , vbv in Gb. Then, for every {u, v} ∈ E, we add the edges
{ui, vj} in Gb, for every 1 ≤ i ≤ bu and for every 1 ≤ j ≤ bv. It is easy to transform any b-matching
of G into an ordinary matching of Gb, and vice-versa.

2.3. High-level presentation of the algorithm

In order to discuss the difficulties we had to face on, we start giving an overview of the FPT
algorithms that are based on split decomposition.

• We first need to define a vertex-weighted variant of the problem that needs to be solved
for every component of the decomposition separately (possibly more than once). This is
because there are split marker vertices in every component that substitute the other remaining
components; intuitively, the weight of such a vertex encodes a partial solution for the union
of split components it has substituted.

• Then, we take advantage of the treelike structure of split decomposition in order to solve
the weighted problem, for every split component sequentially, using dynamic programming.
Roughly, this part of the algorithm is based on a split decomposition tree. Starting from
the leaves of that tree (resp. from the root), we perform a tree traversal. For every split
component, we can precompute its vertex-weights from the partial solutions we obtained for
its children (resp., for its father) in the split decomposition tree.

Our approach. In our case, a natural vertex-weighted generalization for Maximum-Cardinality
Matching is the unit-cost b-Matching problem [17]. Interestingly, b-Matching has already
attracted attention on its own, e.g., in auction theory [35, 39]. We observe that independently from
this work3, the authors in [29] proposed a new Maximum-Cardinality Matching algorithm
on graphs of bounded modular-width that is also based on a reduction to b-Matching. Unlike
this work, the algorithm of [29] cannot be applied to the more general case of bounded split-width
graphs. Indeed, the main technical difficulty for the latter graphs – not addressed in [29] – is how
to precompute efficiently, for every component of their split decomposition, the specific instances
of b-Matching that need to be solved. To see that, consider the bipartition (U,W) that results
from the removal of a split. In order to compute the b-Matching instances on side U , we should
be able (after processing the other side W) to determine the number of edges of the split that

3Our preliminary version of this paper was released on arXiv one day before theirs.

7

are matched in a final solution. Guessing such number looks computationally challenging. We
avoid doing so by storing a partial solution for every possible number of split edges that can be
matched. However, this simple approach suffers from several limitations. For instance, we need a
very compact encoding for partial solutions – otherwise we could not achieve a quasi linear-time
complexity. Somehow, we also need to consider the partial solutions for all the splits that are
incident to the same component all at once.

This is where we use a result from Section 3, namely, that for every fixed vertex w in a graph,
the maximum-cardinality of a b-matching is a piecewise-linear function, with at most three linear
pieces, in the capacity bw of this vertex. Roughly, in any given split component Ci, we consider
all the vertices w substituting a union of other components. The latter vertices are in one-to-one
correspondence with the strong splits that are incident to the component. We expand every such
vertex w to a module that contains O(1) vertices for every straight-line section of the corresponding
piecewise-linear function. We want to stress that to the best of our knowledge, the combination of
dynamic programming over split decomposition with the recursive computation of some piecewise-
linear functions is an all new algorithmic technique 4.

3. Changing the capacity of one vertex

We first consider an auxiliary problem on b-matching that can be of independent interest. Let
G = (V,E) be a graph, w ∈ V and b : V \ w → N be a partial assignment. We denote µ(t) the
maximum cardinality of a b-matching of G provided we set to t the capacity of vertex w. Clearly, µ
is nondecreasing in t. Our main result in this section is that the function µ is essentially piecewise
linear, with only constantly many pieces (Proposition 1).

We start by introducing some useful lemmata. They are obtained by studying vertex-disjoint
augmenting paths in some “expanded graphs” Gb,t (cf. Lemmata 1 and 2).

Lemma 4. µ(t+ 1)− µ(t) ≤ 1.

Proof. Consider the two expanded graphs Gb,t and Gb,t+1 that are obtained after setting the capac-
ity of w to, respectively, t and t+ 1. Let Ft+1 be a maximum matching of Gb,t+1. Since Gb,t+1 can
be obtained from Gb,t by adding a new vertex wt+1, we can transform Ft+1 into a (not necessarily
maximum) matching of Gb,t by removing at most one edge. In particular, µ(t) ≥ µ(t+ 1)− 1.

Lemma 5. If µ(t+ 2) = µ(t) then we have µ(t+ i) = µ(t) for every i ≥ 0.

Proof. By contradiction, let i0 be the least integer i ≥ 3 such that µ(t + i) > µ(t). By Lemma 4
we have µ(t + i0) ≤ µ(t + i0 − 1) + 1 = µ(t) + 1, therefore µ(t + i0) = µ(t) + 1. Consider the two
expanded graphs Gb,t and Gb,t+i0 that are obtained after setting the capacity of w to, respectively, t
and t+ i0. Let Ft be any maximum matching of Gb,t. By the hypothesis, |Ft| = µ(t). Furthermore,
since Gb,t+i0 can be obtained from Gb,t by adding the new vertices wt+1, . . . , wt+i0 (that are false
twins of w1, w2, . . . , wt), Ft is also a matching of Gb,t+i0 . However Ft is not maximum in Gb,t+i0

since we have µ(t + i0) = µ(t) + 1. By Berge’s lemma (Lemma 1) there exists an Ft-augmenting
path P in Gb,t+i0 . Furthermore, since Ft is maximum in Gb,t, P must contain a vertex amongst

4Earlier examples of dynamic programming which recursively computes a piece-wise linear function can be found
in the literature, e.g., see [40].

8

wt+1, . . . , wt+i0 . Note that the latter vertices are all exposed (since they are not in Gb,t), and so,
an Ft-augmenting path can only contain at most two of them. Furthermore, since wt+1, . . . , wt+i0

are pairwise false twins, we can assume w.l.o.g. that P has wt+1 as an end. In the same way, in
case P has its two ends amongst wt+1, . . . , wt+i0 then we can assume w.l.o.g. that the two ends of
P are exactly wt+1, wt+2. It implies either µ(t) < µ(t+ 1) ≤ µ(t+ 2) or µ(t) = µ(t+ 1) < µ(t+ 2).
In both cases, µ(t+ 2) > µ(t), that is a contradiction.

Lemma 6. If µ(t+ 1) = µ(t) then we have µ(t+ 3) = µ(t+ 2).

Proof. If µ(t + 2) = µ(t) then the result follows from Lemma 5 directly. Thus, we assume from
now on that µ(t + 2) > µ(t). By Lemma 4 we have µ(t + 2) ≤ µ(t + 1) + 1 = µ(t) + 1, therefore
µ(t + 2) = µ(t) + 1. Suppose by contradiction µ(t + 3) > µ(t + 2). Again by Lemma 4 we get
µ(t + 3) = µ(t + 2) + 1, therefore µ(t + 3) = µ(t) + 2. Consider the two expanded graphs Gb,t

and Gb,t+3 that are obtained after setting the capacity of w to, respectively, t and t + 3. Let Ft

be any maximum matching of Gb,t. By the hypothesis, |Ft| = µ(t). Furthermore, since Gb,t+3

can be obtained from Gb,t by adding the three new vertices wt+1, wt+2, wt+3 (that are false twins
of w1, w2, . . . , wt), Ft is also a matching of Gb,t+3. However, Ft is not maximum in Gb,t+3 since
we have µ(t + 3) = µ(t) + 2. By Hopcroft-Karp lemma (Lemma 2) there exist 2 Ft-augmenting
paths in Gb,t+3 that are vertex-disjoint. Furthermore, since Ft is maximum in Gb,t, every such path
must contain a vertex amongst wt+1, wt+2, wt+3. Note that the latter vertices are all exposed, and
so, an Ft-augmenting path can only contain at most two of them. In particular, there is at least
one of these two Ft-augmenting paths, denoted by P , that only contains a single vertex amongst
wt+1, wt+2, wt+3. W.l.o.g., since wt+1, wt+2, wt+3 are pairwise false twins, we can assume that wt+1

is an end of P . However, it implies that P is also an Ft-augmenting path in Gb,t+1, and so, that
µ(t+ 1) > µ(t), that is a contradiction.

We are now ready to prove the main result in this section:

Proposition 1. There exist integers c1, c2 such that:

µ(t) =


µ(0) + t if t ≤ c1
µ(c1) +

⌊
t−c1
2

⌋
= µ(0) + c1 +

⌊
t−c1
2

⌋
if c1 < t ≤ c1 + 2c2

µ(c1 + 2c2) = µ(0) + c1 + c2 otherwise.

Furthermore, the triple (µ(0), c1, c2) can be computed in O(nm log2 n log ||b||1)-time.

1

11

0

1

11

1

1

11

2

1

11

3

Figure 2: An example with (µ(0), c1, c2) = (1, 1, 1). Vertices are labeled with their capacity. Thin and bold edges
have respective weights 0 and 1.

Proof. Let c1 be the maximum integer t such that µ(t) = µ(0) + t. This value is well-defined since
µ must stay constant whenever t ≥

∑
v∈NG(w) bv (saturation of all the neighbors). Furthermore,

9

by Lemma 4 we have µ(t) = µ(0) + t for every 0 ≤ t ≤ c1. Then, let tmax be the least integer t
such that, for every i ≥ 0 we have µ(tmax + i) = µ(tmax). Again, this value is well-defined since
we have the trivial upper-bound tmax ≤

∑
v∈NG(w) bv. Furthermore, since µ is strictly increasing

between 0 and c1, tmax ≥ c1. Let c′2 = tmax− c1. We claim that c′2 = 2c2 is even. For that, we need
to observe that µ(c1) = µ(c1 + 1) by maximality of c1. Using Lemma 6, we prove by induction
µ(c1 + 2i) = µ(c1 + 2i + 1) for every i ≥ 0. The latter proves, as claimed, c′2 = 2c2 is even by
minimality of c′2. Moreover, for every 0 ≤ i < c2 we have by Lemma 5 µ(c1 + 2i) < µ(c1 + 2(i+ 1))
(since otherwise tmax ≤ c1+2i). By Lemma 6 we have µ(c1+2i) = µ(c1+2i+1). Finally, by Lemma 4
we get µ(c1+2(i+1)) ≤ µ(c1+2i+1)+1 = µ(c1+2i)+1, therefore µ(c1+2(i+1)) = µ(c1+2i)+1.
Altogether combined, it implies that µ(c1 + 2i) = µ(c1 + 2i + 1) = µ(c1) + i for every 0 ≤ i ≤ c2,
that proves the first part of our result.

We can compute µ(0) with any b-Matching algorithm after we set the capacity of w to 0. The
value of c1 can be computed within O(log c1) calls to a b-Matching algorithm, as follows. Starting
from c′1 = 1, we multiply the current value of c′1 by 2 until we reach a value c′1 > c1 such that
µ(c′1) < µ(0) + c′1. Then, we perform a binary search between 0 and c′1 in order to find the largest
value c1 such that µ(c1) = µ(0) + c1. Once c1 is known, we can use a similar approach in order to
compute c2. Overall, since c1 + 2c2 = tmax ≤

∑
v∈NG(w) bv = O(||b||1), we are left with O(log ||b||1)

calls to any b-Matching algorithm. Therefore, by Lemma 3, we can compute the triple (µ(0), c1, c2)
in O(nm log2 n log ||b||1)-time.

4. The algorithm

We present in this section a quasi linear-time algorithm for computing a maximum-cardinality
b-matching on any bounded split-width graph (Theorem 1). Given a graph G, our algorithm takes
as input the split decomposition tree T of any minimal split decomposition of G. We root T in an
arbitrary component C1. Then, starting from the leaves, we compute by dynamic programming on
T the cardinality of an optimal solution. This first part of the algorithm is involved, and it uses the
results of Section 3. It is based on a new reduction rule that we introduce in Definition 2. Finally,
starting from the root component C1, we compute a maximum-cardinality b-matching of G, b by
top-to-bottom dynamic programming on T . This second part of the algorithm is simpler than the
first one, but we need to carefully upper-bound its time complexity. In particular, we also need to
ensure that some additional property holds for the b-matchings we compute at every component.

4.1. Reduction rule

Recall that an edge between a rooted subtree and its parent in T corresponds to a split (U,W)
of G. After we processed the side U (corresponding to this subtree) we account for all the partial
solutions found for GU by transforming the split marker vertex u into a module 5, as follows:

Definition 2. For any instance G = (V,E), b and any split (U,W) of G let C = NG(W) ⊆ U, D =
NG(U) ⊆ W . Let GU = (U ∪ {w}, EU), GW = (W ∪ {u}, EW) be the corresponding subgraphs of
G. We define the pairs GU , b

U and HW , b
W as follows:

• For every v ∈ U we set bUv = bv; the capacity of the split marker vertex w is left unspecified.
Let (µU (0), cU1 , c

U
2) be as defined in Proposition 1 w.r.t. GU , b

U and w.

5Recall that M is a module if for every x, y ∈M we have N(x) \M = N(y) \M .

10

Du D
u

u

u

3

2

1

Figure 3: The reduction of Definition 2.

• The auxiliary graph HW is obtained from GW by replacing the split marker vertex u by a
module Mu = {u1, u2, u3}, NHW

(Mu) = NGW
(u) = D; we also add an edge between u2, u3.

For every v ∈W we set bWv = bv; we set bWu1
= cU1 , b

W
u2

= bWu3
= cU2 .

See Fig. 3 for an illustration. We will show throughout this section that our gadget somewhat
encodes all the partial solutions for side U . Formally, the following relationship holds between
solutions for G, b and solutions for HW , b

W :

Proposition 2. Given a graph G = (V,E) and a capacity function b, let (U,W) be a split of G
and let HW , b

W be as in Definition 2. If x and xW are maximum-cardinality b-matchings for the
pairs G, b and HW , b

W , respectively, then we have:

||x||1 = ||xW ||1 + µU (0)− cU2

In what follows, we prove the first direction of Proposition 2 using classical flow techniques.
We postpone the proof of the other direction since, for that one, we need to prove intermediate
lemmata that will be also used in the proof of Theorem 1.

Lemma 7. Let x be a b-matching for G, b. There exists a b-matching xW for HW , b
W such that

||xW ||1 ≥ ||x||1 + cU2 − µU (0).

Proof. See Fig. 4 for an illustration. Let us define bUw =
∑

e∈C×D xe. As an intermediate step, we
can construct a b-matching xU of the pair GU , b

U as follows. First we keep all the edge-weights
xe = xUe , for every e ∈ E(U). Then, for every v ∈ C we set xU{v,w} =

∑
v′∈D x{v,v′}. We deduce

from this transformation that:

||xU ||1 =
∑

e∈E(U)∪(C×D)

xe ≤ µU (bUw).

In particular, let yU be a b-matching of GU , b
U of optimal cardinality µU (bUw) and such that d =

degyU (w) =
∑

e∈Ew(GU) y
U
e is minimized. By Proposition 1, we have d ≤ cU1 + 2cU2 . We obtain a

b-matching xW for the pair HW , b
W as follows:

• We keep all the edge-weights xe = xWe , for every e ∈ E(W). Doing so, we get an initial
b-matching of cardinality ||x||1 − ||xU ||1 ≥ ||x||1 − µU (bUw);

• Then, in order to define xWe , for every edge e that is incident to u1, we make a simple reduction
to a flow problem. Namely, consider a star with leaves D and central node the split marker
vertex u. The star is node-capacitated, with the capacity being set to: min{d, cU1 } for u; and∑

v∈C x{v,v′} for every v′ ∈ D. By construction, the capacities on side D sum to bUw ≥ d. So,

11

x xU yU xW

2

24 4

Figure 4: The construction of xW . Vertices with capacity greater than 1 are labeled with their capacity. Thin and
bold edges have respective weights 0 and 1.

we can send exactly min{d, cU1 } units of flow from D to u. Furthermore, we define xW{u1,v′},

for every v′ ∈ D, as the value of the flow passing through the arc (v′, u). Doing so, we get a
partial solution of cardinality ≥ ||x||1 − µU (bUw) + min{d, cU1 }.

• We end up defining the weights of edges incident to u2, u3. There are two cases:

– Case d < cU1 . By Proposition 1, bUw = d and µU (bUw) − d = µU (0). We complete the
b-matching by setting xW{u2,u3} = cU2 .

– Case d ≥ cU1 . By Proposition 1 and the minimality of d, we have that d − cU1 = 2d′ is
even, d′ ≤ cU2 and µU (bUw) − cU1 = µU (0) + d′. We make two other reductions to a flow
problem, on the same star as before but with different node capacities. More precisely,
we set the capacity of u to d′, while for every v′ ∈ D, we decrease its original capacity by
xW{u1,v′}. By construction, the capacities on side D now sum to bUw − cU1 ≥ d− cU1 ≥ 2d′.

So, we can send exactly d′ units of flow from D to u. Furthermore, we define xW{u2,v′},

for every v′ ∈ D, as the value of the flow passing through the arc (v′, u).

Then, we again decrease the node capacity for every v′ ∈ D, by exactly xW{u2,v′}. We

send d′ more units of flow from D to u. For every v′ ∈ D, we define xW{u3,v′} as the

additional amount of flow being sent through the arc (v′, u). Note that, doing so, we get
that

∑
v′∈D x

W
{u2,v′} =

∑
v′∈D x

W
{u3,v′} = d′. Finally, we set xW{u2,u3} = cU2 − d′. In total,

the cardinality of the b-matching has so increased by 2d′ + (cU2 − d′) = cU2 + d′.

In both cases, the resulting b-matching has cardinality at least ||x||1 + cU2 − µU (0).

The following Sections 4.2 and 4.3 detail the intermediate results that we will use in order to
prove the other direction of Proposition 2 (as well as Theorem 1).

4.2. b-matchings with additional properties

We consider an intermediate modification problem on the b-matchings of some “auxiliary
graphs” that we define next. – The necessary notations and terminology introduced here for
understanding this intermediate problem are repeated in the proof of Theorem 1. – First, let us fix
a given split decomposition of G, and let T be the associated split decomposition tree. We root T
arbitrarily. Let Ci be an arbitrary split component. We have that Ci is obtained from a sequence
of simple decompositions. Specifically:

12

• Let Cp(i) be the parent node of Ci (if it exists). The edge {Ci, Cp(i)} ∈ E(T) corresponds
to some split (Ui,Wi) of G, where V (Ci) ∩ V ⊆ Ui. Recall that after we applied the simple
decomposition associated to this split (see Sec. 2), we created the two split marker vertices
ui, wi. In particular wi ∈ V (Ci).

• In the same way, if {Ci, Cit} is an edge of T between Ci and a child node Cit , then it
corresponds to some split (Uit ,Wit) of G, where V (Ci) ∩ V ⊆ Wit . After we applied the
simple decomposition associated to this split (see Sec. 2), we created the two split marker
vertices uit , wit . In particular uit ∈ V (Ci).

In order to create an auxiliary graph, we consider a split component Ci and the subsequence of all
the simple decompositions that are corresponding to the edges between Ci and its ` children Cit

in T (i.e., we only exclude the edge between Ci and its parent node in T if it exists). We apply
the reduction rule of Definition 2 to each simple decomposition of this subsequence. Doing so,
we obtain a pair Hi, b

Hi with Hi being a supergraph of Ci obtained by replacing the split marker
vertices uit , 1 ≤ t ≤ `, by the modules Mit = {u1it , u

2
it
, u3it}. By construction the capacity of vertex

u1it equals cit1 ; furthermore, u2it , u
3
it

are adjacent and they have the same capacity cit2 .
Let wi ∈ V (Ci) be the split marker vertex associated to the edge between Ci and its parent

node in T (if it exists). We observe that our above construction does not say anything about the
capacity of wi in Hi. Actually, several different capacities need to be assigned to wi in our final
algorithm (i.e., see the proof of Theorem 1). However, this has no incidence on the discussion
below, and so, for the remainder of this section, we may assume the capacity of wi to be arbitrary.

We seek for a maximum-cardinality b-matching xi for the pair Hi, b
Hi such that the following

properties hold for every 1 ≤ t ≤ `:

• (symmetry) degxi(u2it) = degxi(u3it).

• (saturation) if degxi(u1it) < cit1 then, degxi(u2it) = xi{u2
it
,u3

it
}.

We prove next that for every fixed t, any xi can be processed in O(|Euit
(Ci)|)-time so that both

the saturation property and the symmetry property hold for Mit . However, ensuring that these
two above properties hold simultaneously for every t happens to be trickier. We manage to do so
by reducing to Maximum-Cost b-Matching (i.e., internal edges in the modules are assigned a
larger cost than the other edges).

Lemma 8. In O(|V (Hi)| · |E(Hi)| · log2 |V (Hi)|)-time, we can compute a maximum-cardinality
b-matching xi for the pair Hi, b

Hi such that both the saturation property and the symmetry property
hold for every Mit , 1 ≤ t ≤ `.

Proof. We start presenting an iterative solution that works on a standard (unit-cost) b-matching.
We show why this solution may not work when there are ` > 1 modules. Then, we explain how to
fix this solution by assigning edge-costs.

Let xi be some initial maximum-cardinality b-matching (to be defined later). While there exists
a t such that the saturation property or the symmetry property does not hold for Mit , we keep
repeating the following rules until none of them can be applied:

• Rule 1. Suppose degxi(u1it) < cit1 and there exists v′ ∈ NHi(Mit) such that xi{u2
it
,v′} > 0

(resp., xi{u3
it
,v′} > 0). Then, we increase xi{u1

it
,v′} as much as we can, that is by exactly

13

min{cit1 −degxi(u1it), x
i
{u2

it
,v′}} (resp., min{cit1 −degxi(u1it), x

i
{u3

it
,v′}}), and we decrease xi{u2

it
,v′}

(resp., xi{u3
it
,v′}) by exactly the same amount. By repeating this step until it is no more

possible to do so, we ensure that the saturation property holds for Mit .

• Rule 2. Suppose degxi(u2it) > degxi(u3it)+1 (the case degxi(u3it) > degxi(u2it)+1 is symmetrical
to this one). Let v′ ∈ NHi(Mit) such that xi{u2

it
,v′} > xi{u3

it
,v′}. We increase xi{u3

it
,v′} as much as

we can, that is by min

{⌊
degxi (u

2
it
)−degxi (u

3
it
)

2

⌋
, xi{u2

it
,v′}

}
, while we decrease xi{u2

it
,v′} by exactly

the same amount. By repeating this step until it is no more possible to do so, we ensure that
|degxi(u2it)− degxi(u3it)| ≤ 1.

• Rule 3. Suppose degxi(u2it) = degxi(u3it)+1 (the case degxi(u3it) = degxi(u2it)+1 is symmetrical
to this one). Let v′ ∈ NHi(Mit) such that xi{u2

it
,v′} > xi{u3

it
,v′}. We decrease xi{u2

it
,v′} by one

unit; similarly, we increase xi{u2
it
,u3

it
} by one unit. Doing so, we ensure that the symmetry

property holds for Mit .

Overall, we only need to scan O(1) times the set NHi(Mit), and so, we can ensure that both the
saturation property and the symmetry property hold for Mit in O(|NHi(Mit)|)-time. However,
doing so, we may break the saturation property or the symmetry property for some other t′ 6= t
(e.g., see Fig. 5). Therefore, if we start from an arbitrary xi, the above procedure may take quasi
polynomial time in order to converge.

a

a a

a

1

a-1

a a-1

a

1

1

1

a-1

a-1 a-1

a-1

1

1

1

1 1

Figure 5: An example where the naive processing stage requires O(||b||1)-time.

In order to overcome this above issue, we assign costs on the edges. All the edges of Hi have
unit cost, except the edges {u2it , u

3
it
}, for every 1 ≤ t ≤ `, to which we assign cost 2. We compute

a maximum-cardinality b-matching xi for the pair Hi, b
Hi that is of maximum cost. By Lemma 3,

this can be done in time O(|V (Hi)||E(Hi)| log2 |V (Hi)|). Then, we apply the same procedure on
xi as described above. We claim that there is at most one loop for every t. Indeed, let 1 ≤ t ≤ `
be arbitrary. We observe that Rules 1 and 2 cannot modify the weight of an edge inside a module
Mij . As a result, Rules 1 and 2 do not change the cost of the b-matching. Furthermore, for every
v′ ∈ NHi(Mit), Rules 1 and 2 do not change the xi-degree of v′. Hence, we can only break the
saturation property or the symmetry property for some other t′ 6= t by applying Rule 3. However,
Rule 3 increases the cost of xi, and so, since xi is supposed to be of maximum cost, this rule will
never be applied. Therefore, the claim is proved. Overall, it implies that the postprocessing of xi

takes time O(
∑`

t=1 |NHi(Mit)|), that is in O(|E(Hi)|).

14

4.3. Merging the partial solutions together

Finally, before we can describe our main algorithm (Theorem 1) we need to consider the in-
termediate problem of merging two partial solutions. Let (U,W) be a split of G and let GU =
(U ∪{w}, EU), GW = (W ∪{u}, EW) be the corresponding subgraphs of G. Consider some partial
solutions xU and xW obtained, respectively, for the pairs GU , b

U and GW , b
W (for some bU , bW to be

defined later). Assuming an appropriate data-structure for b-matchings (Lemma 9), this merging
stage of xU with xW can be solved with a greedy algorithm (Lemma 10).

First we introduce the following data structure for storing a b-matching. To make things easier in
our presentation, we shall assume (only for Lemmata 9 and 10 below) the split marker vertices u
and w, for any split (U,W), to be vertices of the original graph G. Specifically, we assume that
we have u ∈ NG(W) and w ∈ NG(U). Note that in this situation, EU ∪ EW ⊆ E(G), and in fact
EU ∩ EW is reduced to a single edge e = {u,w}.

Lemma 9. For every G = (V,E) there exists a data structure that can be initialized in O(m)-time,
and such that the following properties hold:

• (Access) An edge-weight assignment (xe)e∈E is stored. Initially, all the edge-weights are set
to 0. For every e ∈ E, we can read and modify xe in constant-time.

• (Split) Furthermore, let (U,W) be a split of G and let GU = (U ∪ {w}, EU), GW = (W ∪
{u}, EW) be the corresponding subgraphs of G. In O(1)-time, we can modify the data structure
so that it can store separate edge-weight assignments for GU and GW (initially set to (xe)e∈EU

and (xe)e∈EW
).

• (Merge) Conversely, let (U,W) be a split of G and let GU = (U ∪ {w}, EU), GW =
(W ∪ {u}, EW) be the corresponding subgraphs of G. Suppose that two separate assignments
(xUe)e∈EU

and (xWe)e∈EW
are stored in the data structure. In O(1)-time, we can modify the

data structure so that it stores the following edge-weight assignment for G:

xe =


xUe if e ∈ EU \ EW

xWe if e ∈ EW \ EU

max{xUe , xWe } if e ∈ EU ∩ EW

undefined otherwise.

Proof. Every edge e ∈ E has a pointer to its corresponding weight xe (initially set to 0). Now, con-
sider any split (U,W) of G and let GU = (U∪{w}, EU), GW = (W ∪{u}, EW) be the corresponding
subgraphs of G. Observe that EU , EW intersect in exactly one edge eU,W = {u,w}. So, in order
to perform a split of the data structure, it suffices to split the pointer of eU,W in two new pointers,
that are initially pointing to two distinct copies of the value xe. Note that for every pointer newly
introduced, we need to keep track of the corresponding split (U,W) and of the corresponding side
(i.e., U or W). Conversely, in order to merge the respective data structures obtained for GU and
GW , it suffices to extract the values xUeU,W

and xWeU,W
(on which the two new pointers introduced

after the split are pointing to) and to set the original value xeU,W to max{xUeU,W
, xWeU,W

}.

Lemma 10. Suppose that bU (resp., bW) satisfies bUv ≤ bv for every v ∈ U (resp., bWv ≤ bv for every
v ∈ W). Let xU , xW be b-matchings for, respectively, the pairs GU , b

U and GW , b
W such that we

15

have degxU (w) = degxW (u) = d. Furthermore, for any graph H let ϕ(H) = |E(H)|+4 ·(sc(H)−1),
with sc(H) being the number of split components in any minimal split decomposition of H 6.

Then, in at most K · (ϕ(G) − ϕ(GU) − ϕ(GW))-time, for some universal constant K, we can
obtain a valid b-matching x for the pair G, b such that ||x||1 = ||xU ||1 + ||xW ||1 − d.

Proof. There are two cases. First, suppose C = NG(W) = {u} (the case D = NG(U) = {w} is
symmetrical to this one). The split marker vertex w is pendant in GU , with its unique neighbor
being u (so, in particular, xU{u,w} = d). In order to compute x, we set xU{u,w} to 0 and then we

merge xU , xW . By Lemma 9 this takes constant-time. Furthermore, since |E| − |EU | − |EW | =
|C||D| − |C| − |D| = −1, and sc(G) = sc(GU) + sc(GW), we get ϕ(G)− ϕ(GU)− ϕ(GW) = 3 > 0.

Therefore, from now on we assume that |C| ≥ 2 and |D| ≥ 2. For every v ∈ C we assign
a capacity cv = xU{v,w} and then we set xU{v,w} to 0. In the same way, for every v′ ∈ D we

assign a capacity cv′ = xW{v′,u} and then we set xW{v′,u} to 0. It takes O(|C| + |D|)-time. Overall,∑
v∈C cv =

∑
v′∈D cv′ = d. Then, let us merge xU , xW in order to initialize x (note that by

construction, x{u,w} = 0, and ||x||1 = ||xU ||1 + ||xW ||1−2d). By Lemma 9 this takes constant-time.
While there exist a v ∈ C and a v′ ∈ D such that cv > 0, cv′ > 0 we pick one such pair v, v′ and we
set: x{v,v′} = min{cv, cv′}; cv = cv − x{v,v′}; cv′ = cv′ − x{v,v′}. Since for every loop, the capacity
of at least one vertex drops to 0, it takes total time O(|C|+ |D|). Furthermore, since |C| ≥ 2 and
|D| ≥ 2 we have |E|−|EU |−|EW | = |C||D|−(|C|+|D|) ≥ 2(|C|+|D|)−4−(|C|+|D|) ≥ |C|+|D|−4.
As a result, ϕ(G)− ϕ(GU)− ϕ(GW) ≥ |C|+ |D| − 4 + 4 ≥ Ω(|C|+ |D|).

Overall, since there are at most n−2 components in any minimal split decomposition of G [37],
the merging stages take total time O(ϕ(G)) = O(n+m).

4.4. Main result

The following algorithmic proof of Proposition 2 is the cornerstone of our main result.

Proof of Proposition 2. We have ||xW ||1 ≥ ||x||1 − µU (0) + cU2 by Lemma 7. In order to prove the
converse inequality, we can assume w.l.o.g. that xW satisfies both the saturation property and the
symmetry property w.r.t. the module Mu (otherwise, by Lemma 8, we can process xW so that
it is the case). We partition ||xW ||1 as follows: µW =

∑
e∈E(W) x

W
e , c′1 = degxW (u1) ≤ cU1 and

c′2 = degxW (u2) − xW{u2,u3} = degxW (u3) − xW{u2,u3} ≤ cU2 . Since we assume that xW satisfies both

the saturation property and the symmetry property w.r.t. Mu, we have c′2 > 0 only if c′1 = cU1 .
Furthermore, we observe that u2 and u3 must be saturated (otherwise, we could increase the
cardinality of the b-matching by setting xW{u2,u3} = cU2 − c′2). Therefore, we get:

||xW ||1 = µW + c′1 + 2c′2 + (cU2 − c′2) = µW + c′1 + c′2 + cU2 .

We define bWu = bUw = c′1 + 2c′2. Then, we proceed as follows (see Fig. 6 for an illustration).

• We transform xW into a b-matching for the pair GW , b
W by setting xW{u,v′} = xW{u1,v′} +

xW{u2,v′} + xW{u3,v′} for every v′ ∈ NGW
(u) = D. Note that we have degxW (u) = bWu = c′1 + 2c′2.

Furthermore, the cardinality of the b-matching has decreased by xW{u2,u3} = cU2 − c′2.

6We recall that the set of prime graphs in any minimal split decomposition is unique up to isomorphism [37].

16

xW

2

2

saturation of u

2

2

1 symmetrization

2

2

xU

4

x

Figure 6: The construction of x′. Vertices with capacity greater than 1 are labeled with their capacity. Thin and
bold edges have respective weights 0 and 1.

• Let xU be a b-matching for the pair GU , b
U of maximum cardinality µU (c′1 + 2c′2). Since

c′1 ≤ cU1 , c′2 > 0 only if c′1 = cU1 , and c′2 ≤ cU2 , the following can be deduced from Proposition 1:
||xU ||1 = µU (c′1 + 2c′2) = µU (0) + c′1 + c′2; and the split marker vertex w is saturated in xU ,
i.e., degxU (w) = bUw = c′1 + 2c′2.

Since we have degxW (u) = degxU (w) = c′1 + 2c′2, we can define a b-matching x′ for the pair G, b by
applying Lemma 10. Doing so, we get ||x||1 ≥ ||x′||1 = ||xU ||1 +

(
||xW ||1 − (cU2 − c′2)

)
− (c′1 +2c′2) =

µU (0) + c′1 + c′2 + ||xW ||1 − (cU2 + c′1 + c′2) = ||xW ||1 + µU (0)− cU2 .

We finally prove (in a similar way as above) the main result in this paper.

Theorem 1. For every pair G = (V,E), b with sw(G) ≤ k, we can solve b-Matching in O((k log2 k)·
(m+ n) · log ||b||1)-time.

Proof. Let C1, C2, . . . , Cs, s = sc(G) be the split components in any minimal split decomposition of
G. Furthermore, let T be the corresponding split decomposition tree. It can be computed in linear-
time [37]. We root T in C1. For every 1 ≤ i ≤ s, let Ti be the subtree of T that is rooted in Ci. If
i > 1 then let Cp(i) be its parent in T . By construction of T , the edge {Cp(i), Ci} ∈ E(T) corresponds
to a split (Ui,Wi) of G, where V (Ci)∩V ⊆ Ui. Let GUi = (Ui∪{wi}, EUi), GWi = (Wi∪{ui}, EWi)
be the corresponding subgraphs of G. We can observe that Ti is a split decomposition tree of GUi ,
while T \ Ti is a split decomposition tree of GWi .

Our algorithm proceeds in two main steps, with each step corresponding to a different traversal of
the tree T .

Step 1: Computing the cardinality of the solution. Let G1 = G and let Gi = GUi for every
i > 1. Let b1 = b and, for every i > 1 let bi be the restriction of b to Ui. We note that for any
i > 1, bi does not assign any capacity to the split marker vertex wi. Up to adding a dummy isolated
vertex w1 to G1, we assume that this above property holds for any i. Then, for any i, we compute
the triple (µi(0), ci1, c

i
2) w.r.t. Gi, b

i and wi (as defined in Proposition 1). In order to do so, we
proceed by dynamic programming on the tree T , as follows. Let Ci1 , Ci2 , . . . , Ci` be the children
of Ci in T . Every edge {Ci, Cit} ∈ E(T), 1 ≤ t ≤ ` also corresponds to a split (Uit ,Wit) of Gi,
where V (Cit) ∩ V (Gi) ⊆ Uit . We name wit ∈ V (Cit), uit ∈ V (Ci) the vertices added after the
simple decomposition. Furthermore, let (µit(0), cit1 , c

it
2) be the triple corresponding to Git , b

it and
wit (obtained by dynamic programming). We apply the reduction rule of Definition 2 — i.e., we
replace the split marker vertex uit by the module Mit = {u1it , u

2
it
, u3it} where u1it has capacity cit1 and

the two adjacent vertices u2it , u
3
it

have equal capacity cit2 . Doing so for every 1 ≤ t ≤ `, we obtain

17

a pair Hi, b
Hi where Hi is a supergraph of Ci such that: |V (Hi)| ≤ 3|V (Ci)| ≤ max{3k, 9} and

|E(Hi)| ≤ 9|E(Ci)| + |V (Ci)|. Let us compute the triple (µHi(0), ci1, c
i
2) corresponding to Hi, b

Hi

and wi. By Proposition 1 it can be done in time O(|V (Hi)||E(Hi)| log2 |V (Hi)| log ||b||1), that is in
O((k log2 k) · (|E(Ci)|+ |V (Ci)|) log ||b||1).
Finally, by applying Proposition 2 for every split (Uit ,Wit) we have:

µi(0) = µHi(0) +
∑̀
t=1

(µit(0)− cit2).

Overall, this step takes total time O((k log2 k) ·
∑

i(|E(Ci)| + |V (Ci)|) · log ||b||1) = O((k log2 k) ·
(n+m) · log ||b||1). Furthermore, since G1 = G, we have computed the maximum cardinality µ1(0)
of any b-matching of G.

Step 2: Computing an optimal solution. We compute a b-matching for the pair G, b that is of
maximum cardinality µ1(0), in two passes: the first one uses a top-to-bottom dynamic programming
on T , and the second one uses a bottom-to-top dynamic programming on T .

The output of Step 2 is more general than what we did in Step 1, thus seemingly subsuming
this previous step. However, Step 1 is needed in order to properly initialize the capacities of all the
subgraphs considered during Step 2. Indeed, we consider the same pairs Hi, b

Hi as for Step 1. Each
subgraph Hi contains some triples of vertices u1it , u

2
it
, u3it , that are in one-to-one correspondence

with the edges {Ci, Cit} of the split decomposition tree. Their respective capacities were computed
during Step 1 by bottom-to-top dynamic programming. Unlike for Step 1, the capacity of vertex
wi is also fixed (computed by top-to-bottom dynamic programming).

Specifically, for any i let biwi
be a fixed capacity for the split marker vertex wi (if i = 1 then

we set b1w1
= 0; otherwise, for i > 1, biwi

is obtained by top-to-bottom dynamic programming). In
what follows, we compute a maximum-cardinality b-matching for the pair Gi, b

i. For that we set
bHi
wi

= biwi
.

• We compute a maximum-cardinality b-matching xi for the pair Hi, b
Hi such that both the

saturation property and the symmetry property hold for every 1 ≤ t ≤ `. By Lemma 8, it can
be done in time O(|V (Hi)||E(Hi)| log2 |V (Hi)|), that is in O((k log2 k) · (|E(Ci)|+ |V (Ci)|)).

• For every 1 ≤ t ≤ `, let us define biuit
= degxi(u1it) + 2 · (degxi(u2it) − x

i
{u2

it
,u3

it
}). We merge

Mit into the original split marker vertex uit . Furthermore, we assign the capacity biuit
to

uit , and we update the b-matching xi such that, for every v ∈ NHi(Mit), we have xi{v,uit}
=

xi{v,u1
it
} + xi{v,u2

it
} + xi{v,u3

it
}. Doing so, we transform xi into a b-matching for Ci, b

i. Recall

that since the symmetry property holds, we have degxi(u2it) = degxi(u3it). In particular, we
have after the transformation that:∑

v∈NHi
(Mit)

xi{v,uit}
= degxi(u1it) + (degxi(u2it)− x

i
{u2

it
,u3

it
}) + (degxi(u3it)− x

i
{u2

it
,u3

it
})

= degxi(u1it) + 2 · (degxi(u2it)− x
i
{u2

it
,u3

it
})

= biuit
.

As a result, in xi, all vertices ui1 , ui2 , . . . , ui` are saturated.

18

• For every 1 ≤ t ≤ ` we set bitwit
= biuit

and then we compute a maximum-cardinality b-

matching xit for the pair Git , b
it . Note that since the saturation property holds, we have

either biuit
≤ cit1 or biuit

= cit1 + 2 · dit where dit = degxi(u2it) − x
i
{u2

it
,u3

it
} ≤ cit2 . Then, we can

deduce from Proposition 1 that any decrease of bitwit
(= biuit

) would result in a decrease of the

maximum-cardinality of a b-matching for the pair Git , b
it . As a result, in xit , the split marker

vertex wit is saturated.

• By applying the routine of Lemma 10 for every incident split (Uit ,Wit) we merge xi with all
the xit ’s until we obtain a b-matching for Gi, b

i (bottom-to-top dynamic programming). It
takes time at most K · (ϕ(Gi)−

∑l
t=1 ϕ(Git)), for some universal constant K.

Finally, the above b-matching is of maximum cardinality, that follows from Proposition 2 (applied
for every incident split). Overall, this second step of the algorithm takes total time O(ϕ(G)) +
O((k log2 k) ·

∑
i(|E(Ci)|+ |V (Ci)|)) = O((k log2 k) · (n+m)).

Setting bv = 1 for every v ∈ V , we obtain the following implication of Theorem 1:

Corollary 1. For every graph G = (V,E) with sw(G) ≤ k, we can solve Maximum-Cardinality
Matching in O((k log2 k) · (m+ n) · log n)-time.

5. Open questions

We presented an algorithm for solving b-Matching on distance-hereditary graphs, and more
generally on any graph with bounded split-width. In contrast to our result, we stress that as already
noticed in [29], Maximum-Weight Matching cannot be solved faster on complete graphs, and
so, on distance-hereditary graphs, than on general graphs. An interesting open question would be
to know whether b-Matching can be solved in linear time on bounded split-width graphs. In a
companion paper [15], we prove with a completely different approach that Maximum-Cardinality
Matching can be solved in O(n+m)-time on distance-hereditary graphs. However, it is not clear
to us whether similar techniques can be used for bounded split-width graphs in general.

References

[1] H.-J. Bandelt and H. Mulder. Distance-hereditary graphs. J. of Combinatorial Theory, Series
B, 41(2):182–208, 1986.

[2] C. Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences,
43(9):842–844, 1957.

[3] J. A. Bondy and U. S. R. Murty. Graph theory. Grad. Texts in Math., 2008.

[4] H. Bunke. Graph matching: Theoretical foundations, algorithms, and applications. In Proc.
Vision Interface, volume 2000, pages 82–88, 2000.

[5] M. Chang. Algorithms for maximum matching and minimum fill-in on chordal bipartite graphs.
In International Symposium on Algorithms and Computation, pages 146–155. Springer, 1996.

[6] P. Charbit, F. De Montgolfier, and M. Raffinot. Linear time split decomposition revisited.
26(2):499–514, 2012.

19

[7] D. Coudert, G. Ducoffe, and A. Popa. Fully polynomial FPT algorithms for some classes of
bounded clique-width graphs. ACM Transactions on Algorithms (TALG), 15(3):1–57, 2019.

[8] W. Cunningham. Decomposition of directed graphs. SIAM Journal on Algebraic Discrete
Methods, 3(2):214–228, 1982.

[9] E. Dahlhaus and M. Karpinski. Matching and multidimensional matching in chordal and
strongly chordal graphs. Discrete Applied Mathematics, 84(1-3):79–91, 1998.

[10] E. Dekel and S. Sahni. A parallel matching algorithm for convex bipartite graphs and appli-
cations to scheduling. Journal of Parallel and Distributed Computing, 1(2):185–205, 1984.

[11] S. Dong, Y. Lee, and G. Ye. A Nearly-Linear Time Algorithm for Linear Programs with
Small Treewidth: A Multiscale Representation of Robust Central Path. 2021. To appear in
STOC’21. Available online at https://arxiv.org/abs/2011.05365.

[12] F. Dragan. On greedy matching ordering and greedy matchable graphs. In WG’97, volume
1335 of LNCS, pages 184–198. Springer, 1997.

[13] F. Dragan and F. Nicolai. LexBFS-orderings of distance-hereditary graphs with application
to the diametral pair problem. Discrete Applied Mathematics, 98(3):191–207, 2000.

[14] G. Ducoffe and A. Popa. The b-Matching Problem in Distance-Hereditary Graphs and Beyond.
In 29th International Symposium on Algorithms and Computation (ISAAC 2018), volume
123 of Leibniz International Proceedings in Informatics (LIPIcs), pages 30:1–30:13. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

[15] G. Ducoffe and A. Popa. The Use of a Pruned Modular Decomposition for Maximum Matching
Algorithms on Some Graph Classes. In 29th International Symposium on Algorithms and
Computation (ISAAC 2018), volume 123 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 6:1–6:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

[16] J. Edmonds. Paths, trees, and flowers. Canadian J. of mathematics, 17(3):449–467, 1965.

[17] J. Edmonds and E. Johnson. Matching: A well-solved class of integer linear programs. In
Combinatorial structures and their applications. Citeseer, 1970.

[18] F. Fomin, D. Lokshtanov, S. Saurabh, M. Pilipczuk, and M. Wrochna. Fully polynomial-time
parameterized computations for graphs and matrices of low treewidth. ACM Transactions on
Algorithms (TALG), 14(3):1–45, 2018.

[19] J.-L. Fouquet, V. Giakoumakis, and J.-M. Vanherpe. Bipartite graphs totally decomposable
by canonical decomposition. International J. of Foundations of Computer Science, 10(04):513–
533, 1999.

[20] J.-L. Fouquet, I. Parfenoff, and H. Thuillier. An O(n)-time algorithm for maximum matching
in P4-tidy graphs. Information processing letters, 62(6):281–287, 1997.

[21] H. Gabow. An efficient reduction technique for degree-constrained subgraph and bidirected
network flow problems. In STOC’83, pages 448–456. ACM, 1983.

20

https://arxiv.org/abs/2011.05365

[22] H. Gabow. Data Structures for Weighted Matching and Extensions to b-matching and f -
factors. ACM Transactions on Algorithms (TALG), 14(3):1–80, 2018.

[23] A. C. Giannopoulou, G. B. Mertzios, and R. Niedermeier. Polynomial fixed-parameter al-
gorithms: A case study for longest path on interval graphs. Theoretical Computer Science,
689:67–95, 2017.

[24] F. Glover. Maximum matching in a convex bipartite graph. Naval Research Logistics (NRL),
14(3):313–316, 1967.

[25] M. Golumbic and U. Rotics. On the clique-width of some perfect graph classes. International
J. of Foundations of Computer Science, 11(03):423–443, 2000.

[26] J. Hopcroft and R. Karp. An nˆ5/2 algorithm for maximum matchings in bipartite graphs.
SIAM Journal on computing, 2(4):225–231, 1973.

[27] Y. Iwata, T. Ogasawara, and N. Ohsaka. On the power of tree-depth for fully polynomial FPT
algorithms. In STACS’18, 2018.

[28] R. Karp and M. Sipser. Maximum matching in sparse random graphs. In FOCS’81, pages
364–375. IEEE, 1981.

[29] S. Kratsch and F. Nelles. Efficient and adaptive parameterized algorithms on modular decom-
positions. In ESA’18. LIPIcs, 2018. To appear.

[30] Y. Liang and C. Rhee. Finding a maximum matching in a circular-arc graph. Information
processing letters, 45(4):185–190, 1993.

[31] L. Lovász and M. Plummer. Matching theory, volume 367. American Mathematical Soc., 2009.

[32] G. Mertzios, A. Nichterlein, and R. Niedermeier. The power of linear-time data reduction for
maximum matching. In MFCS’17, pages 46:1–46:14, 2017.

[33] G. Mertzios, A. Nichterlein, and R. Niedermeier. A Linear-Time Algorithm for Maximum-
Cardinality Matching on Cocomparability Graphs. SIAM Journal on Discrete Mathematics,
32(4):2820–2835, 2018.

[34] S. Micali and V. Vazirani. An O(
√
V E) algorithm for finding maximum matching in general

graphs. In FOCS’80, pages 17–27. IEEE, 1980.

[35] M. Penn and M. Tennenholtz. Constrained multi-object auctions and b-matching. Information
Processing Letters, 75(1-2):29–34, 2000.

[36] W. Pulleyblank. Matchings and extensions. Handbook of combinatorics, 1:179–232, 1995.

[37] M. Rao. Solving some NP-complete problems using split decomposition. Discrete Applied
Mathematics, 156(14):2768–2780, 2008.

[38] L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the diameter and
radius of sparse graphs. In STOC’13, pages 515–524. ACM, 2013.

21

[39] M. Tennenholtz. Tractable combinatorial auctions and b-matching. Artificial Intelligence,
140(1-2):231–243, 2002.

[40] P. Tseng and Z.-Q. Luo. On computing the nested sums and infimal convolutions of convex
piecewise-linear functions. Journal of Algorithms, 21(2):240–266, 1996.

[41] W. Tutte. A short proof of the factor theorem for finite graphs. Canad. J. Math, 6(1954):347–
352, 1954.

[42] M.-S. Yu and C.-H. Yang. An O(n)-time algorithm for maximum matching on cographs.
Information processing letters, 47(2):89–93, 1993.

[43] R. Yuster. Maximum matching in regular and almost regular graphs. Algorithmica, 66(1):87–
92, 2013.

[44] R. Yuster and U. Zwick. Maximum matching in graphs with an excluded minor. In Proceed-
ings of the eighteenth annual ACM-SIAM Symposium on Discrete Algorithms, pages 108–117.
Society for Industrial and Applied Mathematics, 2007.

22

	Introduction
	Related work
	Our contributions

	Preliminaries
	Split-width
	Matching problems
	High-level presentation of the algorithm

	Changing the capacity of one vertex
	The algorithm
	Reduction rule
	b-matchings with additional properties
	Merging the partial solutions together
	Main result

	Open questions

