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Geodesic Models with Convexity Shape Prior
Da Chen, Jean-Marie Mirebeau, Minglei Shu, Xuecheng Tai and Laurent D. Cohen, Fellow, IEEE

Abstract—The minimal geodesic models based on the Eikonal equations are capable of finding suitable solutions in various image
segmentation scenarios. Existing geodesic-based segmentation approaches usually exploit image features in conjunction with
geometric regularization terms, such as Euclidean curve length or curvature-penalized length, for computing geodesic curves. In this
paper, we take into account a more complicated problem: finding curvature-penalized geodesic curves which are imposed a convexity
shape prior. We establish new geodesic models relying on the strategy of orientation-lifting, by which a planar curve can be mapped to
an high-dimensional orientation-dependent space. The convexity shape prior serves as a constraint for the construction of local
geodesic metrics encoding a particular curvature constraint. Then the geodesic distances and the corresponding closed geodesic
curves in the orientation-lifted space can be efficiently computed through state-of-the-art Hamiltonian fast marching method. In
addition, we apply the proposed geodesic models to the active contours, leading to efficient interactive image segmentation algorithms
that preserve the advantages of convexity shape prior and curvature penalization.

Index Terms—Geodesic curve, convexity shape prior, curvature penalization, Eikonal equation, fast marching, image segmentation.

F

1 INTRODUCTION

IMAGE segmentation is a fundamental and challenging prob-
lem that is posed in the fields of image analysis, computer

vision and medical imaging. Segmentation models based on the
energy minimization frameworks are capable of coping with a
great amount of complicated segmentation tasks. As important
advantages, these approaches can feature significant flexibility in
the accommodation of various image features, and particularly in
the use of efficient shape priors for image segmentation.

The underlying energy functionals considered in many energy
minimization-based segmentation models are commonly made
up of an image appearance model such as the region-based
homogeneity measure, and a geometry regularization term such
as the curve length. Such a first-order regularizer has proven its
efficiency and is commonly used in either active contour mod-
els [1]–[3] or graph-based models [4], [5]. A significant variant of
the length-based regularization term can be derived by taking into
account the curvature penalization [6]–[8], which usually favors
smooth segmentation contours. However, applying only geometry
regularities as shape priors is sometimes insufficient to search for
favorable segmentation results, especially when handling images
with complicated gray level distribution or weakly visible edges.
In contrast, the strategy of incorporating shape-driven priors into
the objective energies is able to yield more strong and efficient
constraints for segmentation, thus can reduce the segmentation
ambiguity. These shape priors are often carried out via a statistical
model about the target shapes or contours [3], [9]–[12]. The imple-
mentation of the statistical shape priors is capable of encouraging
satisfactory segmentations, even in the absence of reliable image
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edge saliency features and region-based appearance descriptors for
the separation of disjoint and distinct object regions.

Recently, the constraints from the convexity shape and star
convexity were introduced as flexible shape priors. Basically,
existing image segmentation approaches in conjunction with these
shape priors can be loosely categorized as either discrete or
continuous types. In the discrete setting, the convexity prior [15],
the star convexity prior [16], or geodesic star convexity [17] are
characterized as a regularization term to construct the discrete
energy functionals together with image data-driven terms. The en-
ergy minimization can be addressed by the graph cut algorithm [4].
In [18], [19], the convexity prior was incorporated into graph-
based segmentation framework to solve multi-region segmentation
tasks. The hedgehog-like shape prior [20] generalizes the geodesic
star convexity constraint [19] to enlarge the applicable scope of
the original case. Isack et al. [21] proposed a flexible k-convexity
prior-based segmentation model which allows overlaps between
different regions. However, these graph-based approaches with
convexity constraint did not consider the curvature regularization.

In the continuous setting, the convexity shape prior is usually
exploited as a constraint in the active contour models [22]–
[25]. Among them, the curvature property is taken as a crucial
feature to characterize the convexity shape prior during the curve
evolution. Specifically, in [22], [24], the authors revealed the
relationship between the convexity property of a region and the
signed distance map associated to its boundary. They proved that a
region is convex if the Laplacian of its signed distance map, which
approximates the curvature of its iso-contours, has a constant sign
within this region. In this approach, the convexity shape prior is
used to build the search space for target regions. Shi and Li [23]
introduced an alternative level set-based active contour model, in
which the curvature values of the iso-contours of the level set
function are leveraged to establish a convex variant of the curve
evolution flow. An important shortcoming for these models is that
only the sign of the curvature is utilized for segmentation, while
its magnitude is ignored. Bae et al. [25] introduced a variant of
Euler-Mumford elastica model, where the convexity constraint is
implicitly taken as the regularizer of an energy, measured using the
absolute curvature. Unfortunately, finding convex contours by this
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Fig. 1. A comparison example for geodesic curves from different models. a A synthetic image. c to d: Results from the region-based model [13], the
Euler-Mumford elastica model [14] and the proposed elastica model with convexity shape prior.

model heavily relies on the minimization of the energy, leading to
a demanding requirement on the numerical scheme.

1.1 Geodesic Models

The snakes model [26] is referred to as one of the earliest vari-
ational models of leveraging continuous curves to extract image
boundary features. However, the sensitivity to local minima of
the snakes energy functional and the difficulty in finding suitable
numerical solutions prevent this model from practical applications.
In order to overcome these shortcomings, Cohen and Kimmel [27]
proposed an elegant minimal path model, or geodesic model, to
globally minimize a weighted curve length in an Eikonal equation
framework. This original geodesic model has inspired a great
variety of relevant approaches, due to its significant advantages
in both global optimality and efficient numerical solvers. Among
them, many geodesic models have contributed to develop various
local geodesic metrics [28], [29] to extend geodesic curves to
accommodate various scenarios. For instances, the curvature-
penalized geodesic models introduced in [14], [30], [31] took into
account an idea of orientation-lifting to address the computation
problem of geodesic curves with curvature penalization. Using
a suitable relaxation scheme, the geodesic distances involving
curvature penalization can be efficiently estimated through the
Hamiltonian fast marching method [31], [32].

In the context of image segmentation, the basic objective for
geodesic-based methods is to find simple closed curves as the
descriptor for boundaries of interest. Specifically, image gradients
are taken as crucial features for computing geodesic curves, as
considered in [33]–[35]. Moreover, Chen et al. [13] introduced
a region-based Randers geodesic model for computing closed
geodesic curves which can encode regional homogeneity features,
thus build the connection between the eikonal equation-based
geodesic models and the region-based active contours. In [36],
the authors exploited the curvature-penalized geodesic curves
for image segmentation, in which the region-based homogeneity
features were implicitly encoded in the geodesic metrics.

Despite great advances, only the geometric priors (e.g. the
Euclidean curve length or curvature-based length) are utilized
in existing minimal geodesic approaches. In order to overcome
this drawback, we introduce new geodesic models to integrate
the curvature regularization, the region-based homogeneity and
the convexity shape prior for computing geodesic curves, which
to our best knowledge is original. Finally, in Fig. 1, we show
a comparison example for geodesic curves respectively derived
from two state-of-the-art geodesic models and from the proposed
geodesic model with convexity shape prior. In this experiment, we
aim to extract a convex ellipse shape. One can see that only the
proposed geodesic model can find suitable segmentation contour,

illustrating the effectiveness and necessity of imposing convexity
shape prior in computing geodesic paths.

1.2 Contributions and Paper Outline

The convexity shape prior of a simple closed curve is defined
by the sign of its curvature. Using this definition, we propose
new geodesic models, featuring convexity shape prior, under the
Eikonal equation framework. Basically, the proposed model in-
volves the establishment of geodesic metrics and the construction
of search space for admissible geodesic curves. In summary, the
contributions are threefold:
− Geodesic metrics encoding curvature restriction. We introduce
three new geodesic metrics, such that the curvature of the physical
projections of the orientation-lifted geodesic curves associated to
the proposed metrics have a constant sign. In addition, we also
discuss the Hamiltonians of the proposed geodesic metrics, for
which the discrete approximations, in terms of scalar nonnegative
weights and offsets with integer components, are leveraged for
finding the numerical solutions to the Eikonal equations.
− Construction of search space for geodesic curves. We define
a search space to minimize the weighted curve length that is
measured using the proposed geodesic metrics. This search space
is in essence a set of admissible orientation-lifted curves, whose
physical projections are supposed to be simple and closed. In
particular, we work with the tool of total curvature to ensure the
simplicity requirement of the search space.
− Applications in active contours. We investigate the applications
of the proposed geodesic models in active contours and interactive
image segmentation. As a consequence, the image segmentation
procedure can blend the benefits from convexity shape prior,
curvature regularization and image features.

The structure of this paper is organized as follows. Section 2
gives the background on the curvature-penalized geodesic models
and their discretization schemes. The new geodesic models which
are imposed the convexity shape prior are presented in Sections 3
and 4. The numerical implementation is presented in Section 5. In
Section 6, we show how to exploit the proposed geodesic models
to the active contours and image segmentation. The experimental
results and the conclusion are respectively presented in Sections 7
and 8.

2 CURVATURE PENALIZED MINIMAL PATHS

Notations. Let M := Ω×S1 be an orientation-lifted space, where
Ω ⊂ R2 is a bounded domain, and S1 := R/2πZ can be identified
with [0, 2π[ equipped with a periodic boundary condition. A point
x = (x, θ) is a pair comprised of a physical position x ∈ Ω
and an angular coordinate θ ∈ S1. The tangent space to M
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is represented by E := R2 × R, at any base point x, and its
elements are denoted ẋ = (ẋ, θ̇). In addition, we denote by
a+ := max{0, a} the positive part of a real number a ∈ R, and
likewise a− := max{0,−a}. Finally, the conventions 0×∞ = 0
and a2

+ := (a+)2 are adopted in the remaining of this paper.

2.1 Orientation lifting for curvature representation

The proposed convexity-constrained geodesic models are obtained
as variants of classical curvature penalized models [14], [30],
[31]. Their common foundation is to evaluate curvature using an
orientation lifting [37]. Consider a smooth curve γ : [0, 1] → Ω,
with non-vanishing velocity1. Then there exists a unique function
η : [0, 1]→ S1 obeying for all % ∈ [0, 1]

γ̇(%) = ṅη(%)‖γ̇(%)‖, (1)

where ṅθ = (cos θ, sin θ)> denotes the unit vector of angle θ
w.r.t. the horizontal axis, and γ̇ is the first-order derivative of
γ. Thus, η(%) encodes the tangent direction at γ(%). By (1), we
define the orientation-lifted curve

Γ := (γ, η) : % ∈ [0, 1] 7→ Γ(%) ∈ M, (2)

whose first-order derivative reads Γ̇(%) = (γ̇(%), η̇(%)) ∈ E.
Conversely, we refer to γ as the physical projection, and η as
the angular component, of the orientation lifted curve Γ. The
curvature κ : [0, 1]→ R of the planar curve γ is obtained as

κ(%) = η̇(%)/‖γ̇(%)‖. (3)

As a consequence, the curvature κ is represented through the ratio
of two first-order derivatives.

2.2 Curvature Penalized Geodesic Models

In this paper, we consider three curvature-penalized minimal path
models: the Reeds-Sheep forward (RSF) model [30], the Euler-
Mumford (EM) elastica model [14] and the Dubins car model [31].
The energy functionals defining these models involve a scalar-
valued curvature penalty function C : R →]0,∞], described in
Section 3. For a smooth curve γ : [0, 1] → Ω, with tangent
direction η and curvature κ, see (1) and (3), the energy reads∫ 1

0
ψ(γ(%), η(%)) C(βκ(%))‖γ̇(%)‖d%, (4)

where ψ : M→ R+ is a user-defined cost function, derived in this
paper from the image data, see Section 6. The parameter β ∈ R+

has the dimension of a radius of curvature, and modulates the
strength of the curvature penalty.

The curvature-penalized length (4) involves second-order
derivatives of the curve γ, implicitly through C(βκ), and is thus
not directly amenable to global optimization via the Eikonal
equation framework. Using the orientation lifting (2) one can
however express curvature as a ratio of first order derivatives (3),
which motivates the following equivalent definition of energy

L(Γ) :=

∫ 1

0
ψ(Γ(%))F(Γ(%), Γ̇(%)) d%, (5)

where F : M×E→ [0,∞] is an orientation-lifted Finsler metric
defined for any point x = (x, θ) ∈ M and any vector ẋ =

1. The non-vanishing velocity assumption is implicit in the sequel.

(ẋ, θ̇) ∈ E. The geodesic metric can be expressed in terms of the
curvature penalty function C and modulation parameter β [31]

F(x, ẋ) =

{
C(βθ̇/‖ẋ‖)‖ẋ‖, if ẋ = ṅθ‖ẋ‖,
∞, otherwise,

(6)

if ẋ 6= 0. (The lower semi-continuous limit is used if ẋ = 0.)
The equivalence between the functionals (4) and (5) follows

from the expression (3) of the curvature κ. Let Lip([0, 1],M) be
the collection of all the orientation-lifted curves Γ : [0, 1] → M
with Lipchitz continuity. In order to compute the geodesic curve
from a source point p ∈ M to a target point x ∈ M, we first
define a geodesic distance map Up : M→ [0,∞), also known as
the minimal action map, as follows

Up(x) = inf
Γ∈Lip([0,1],M)

{
L(Γ); Γ(0) = p,Γ(1) = x

}
. (7)

As in [31], [38], this distance map is the unique viscosity solution
to a generalized Eikonal equation, or a static Hamiltonian-Jacobi
equation, based on the Hamiltonian H of the metric F :

Hx(dUp(x)) =
1

2
ψ(x)2, ∀x ∈ M\{p}, (8)

with Up(p) = 0, and with outflow boundary condition on ∂M,
where dUp stands for the differential of the geodesic distance
map Up. The Hamiltonian H is defined from the metric F by
Legendre-Fenchel duality, as follows

Hx(x̂) := sup
ẋ∈E

{
〈x̂, ẋ〉 − 1

2
F(x, ẋ)2

}
(9)

for any point x = (x, θ) ∈ M and any co-tangent vector x̂ =
(x̂, θ̂) ∈ R2 × R. Let us emphasize that the curvature penalty C,
the metric F , and the Hamiltonian H have simple and explicit
expressions for the models of interest, presented Section 3.

Once the distance map Up is known, a geodesic curve G from
the source point p to an arbitrary target point x ∈ M can be
backtracked by solving a gradient descent-like ODE backwards
in time, see [32] for a discussion of suitable numerical methods.
Specifically, denoting by T = Up(x) the arrival time, one sets
G(T ) = x, and

G′(%) = V(G(%)), ∀% ∈]0, T ], (10)

where geodesic flow V is defined from the minimal action map
Up as follows

V(x) = dHx(dUp(x)). (11)

In the remaining of this paper, we remove the dependency on
the points p of the geodesic distance map Up.

2.3 Discretization of the eikonal equation
We describe in this section the construction of a finite difference
scheme approximating the generalized eikonal PDE (8), and the
geodesic flow (11). These numerical methods eventually allow
to compute paths globally minimizing the curvature penalized
energy (4), as described Section 2.2. Our approach follows the
Hamiltonian fast marching (HFM) framework [31], [32], [39].

The HFM method takes its name from a specific representation
or approximation of Hamiltonian (9) involved in the eikonal PDE
(8). For the models considered in this paper, this reads

2Hx(x̂) ≈ max
1≤k≤K

∑
1≤i≤I

ρik(x)〈x̂, ėik〉2+, (12)
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for any point x ∈ M and co-tangent vector x̂. The choice of
the integers I,K , of the non-negative weights ρik(x) ≥ 0, and
of the offsets with integer coordinates ėik ∈ Z3, constitutes the
main originality of the HFM method [31], [32] and is discussed
in detail below and in Section 3. The offsets often depend on the
base point, ėik = ėik(x), like the weights ρik = ρik(x), but this
is omitted in (12) and similar formulas for readability.

2.3.1 The finite difference scheme
The HFM method expects the domain M = Ω × S1 to be
discretized on a Cartesian grid

Mh := (Ω ∩ hZ2)× (hZ\2πZ), (13)

where h = 2π/Nθ is the grid scale with Nθ being the number of
discrete orientations.

Let U : M → R be a smooth function, let x ∈ Mh and let
ė ∈ Z3. Then one has the first order approximation

〈dU(x), ė〉2+ =

(U(x)− U(x− hė)

h

)2

+

+O(h), (14)

which only involves values of U at the grid points x and x− hė,
and is thus suitable for defining a finite difference scheme on Mh.
If x−hė falls outside Mh, or if the segment [x,x−hė] intersects
an obstacle introduced in the domain as in Section 4.1 below, then
we set U(x − hė) = ∞ in (14). This convention implements
outflow boundary conditions.

Inserting (14) in (12) we obtain a finite differences approx-
imation of Hx(dU(x)), with first order O(h) error w.r.t. the
grid scale. This yields the following discretization of the eikonal
equation (8): find u : Mh → R such that

max
1≤k≤K

∑
1≤i≤I

ρik(x)
(
u(x)−u(x−hėik)

)2
+

= h2ψ(x)2 (15)

for all x ∈ Mh \ {p}, with u(p) = 0. The specific form of this
numerical scheme allows to solve it very efficiently, see Section 5.
The stencil of the scheme is defined as

S(x) := {yik := x− hėik; 1 ≤ k ≤ K, 1 ≤ i ≤ I}. (16)

2.3.2 Approximation of a directional first order derivative
For the purposes of this paper, we recall one result of the HFM
framework [31, Proposition 1.1], which allows in Section 3 to
approximate the Hamiltonians of the models considered in this
paper in the desired form (12). Specifically, given a vector v̇ ∈
E ∼= R3 and a relaxation parameter ε > 0, one has for all co-
vectors x̂ :

〈x̂, v̇〉2+ =
∑

1≤j≤J
ρεj(v̇)〈x̂, ėj〉2+ + ‖x̂‖2O(ε2), (17)

where J = 6, the weight ρεj(v̇) ≥ 0 is non-negative, and the
offset ėj = ėεj(v̇) ∈ Z3 has integer components, for all 1 ≤
j ≤ J , consistently with (12). An analogous result holds in two
dimensions: given v̇ ∈ R2, ε > 0, one has for all x̂ ∈ R2

〈x̂, v̇〉2+ =
∑

1≤j≤J′
ρεj(v̇)〈x̂, ėj〉2+ + ‖x̂‖2O(ε2), (18)

with J ′ = 3 terms, and where ρεj(v̇) ≥ 0 and ėj = ėεj(v̇) ∈ Z2

for all 1 ≤ j ≤ J ′.

2.3.3 The geodesic flow vector field V

By differentiating Eq. (12), we obtain

dHx(x̂) ≈
∑

1≤i≤I
ρik∗(x)〈x̂, ėik∗〉+ėik∗ , (19)

where 1 ≤ k∗ ≤ K is the index for which the maximum (12,
right) is attained, by the envelope theorem. Inserting the finite
differences (14) we can approximate the geodesic flow vector (11)

V(x) ≈ h−1
∑

1≤i≤I
ρik∗(x)

(
u(x)− u(x− ėik∗)

)
+
ėik∗ , (20)

where u : Mh → R denotes the numerical scheme solution (15).

3 CONVEXITY-CONSTRAINED GEODESIC MODELS

We introduce three new geodesic models featuring both a convex-
ity shape prior and a penalization of curvature. More precisely,
these models impose a constraint on the sign of the curvature, as
motivated by the following definition.

Definition 1 (Simple Closed Convex Curves). A simple closed
planar curve γ, smooth and parametrized in counter-clockwise
order, is said convex iff its curvature κ in Eq. (3) is non-negative.

In the remaining of this section, we thus design curvature
penalty functions C, which partly coincide with the penalty C of
the RSF, Dubins and EM elastica models, but also enforce the
non-negativity of the curvature. We then derive the corresponding
geodesic metrics F, Hamiltonians H and their discretizations in
the HFM framework (12). In the text, the convexity constrained
objects C, F, and H are distinguished from their classical coun-
terparts C, F , and H by the choice of font. Further discussion of
the search space for geodesic curves, ensuring that the physical
projection is simple and closed, is postponed to Section 4.

A curvature penalty C : R →]0,∞], enforcing convexity by
imposing a non-negative curvature, should obey by design

C(βκ) =∞ if βκ < 0. (21)

The corresponding geodesic metric F : M× E→ [0,∞], defined
by (6), thus satisfies

F(x, ẋ) =∞, if θ̇ < 0 or ẋ 6= ṅθ‖ẋ‖. (22)

for any point x = (x, θ) ∈ M and any vector ẋ = (ẋ, θ̇) ∈ E.
The associated energy L of a smooth curve Γ : [0, 1]→ M is

L(Γ) :=

∫ 1

0
ψ(Γ(%))F(Γ(%), Γ̇(%))d%. (23)

In view of the properties of the metric (22), any curve Γ = (γ, η)
with finite energy must obey the orientation-lifting relation (1),
and have a non-decreasing angular component η̇ ≥ 0. Finally, we
infer from (9) and (22) that the Hamiltonian H of a convexity-
constrained model obeys

H((±ṅ⊥θ , 0)) = H((−ṅθ, 0)) = H((0,−1)) = 0, (24)

where ṅ⊥θ denotes the rotation of ṅθ by π/2.
Notation: In the rest of this section, we fix a base point x =
(x, θ) ∈ M, a vector ẋ = (ẋ, θ̇) ∈ E, and a co-vector x̂ = (x̂, θ̂).
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3.1 Convex-constrained Reeds-Sheep Forward Model
For the classical Reeds-Sheep forward model, the curvature
penalty function is defined as

CRS(βκ) =
√

1 + (βκ)2. (25)

The RSF geodesic metric FRS is obtained by incorporating CRS

in the general expression (6), and thus reads

FRS(x, ẋ) =

√
‖ẋ‖2 + (βθ̇)2 if ẋ = ṅθ‖ẋ‖, (26)

and F(x, ẋ) = ∞ otherwise. The Hamiltonian HRS, obtained
by specializing (9) to the RSF metric FRS, admits the following
closed form expression [31]

2HRS
x (x̂) = 〈x̂, ṅθ〉2+ + (θ̂/β)2. (27)

In this paper, we consider a convexity-constrained RSF model
defined, in view of (21), by the curvature penalty function

CRS(βκ) =
√

1 + (βκ)2 if βκ ≥ 0, (28)

and C(βκ) = ∞ otherwise. The corresponding convexity-
constrained RSF metric reads, by (6)

FRS(x, ẋ) =

√
‖ẋ‖2 + (βθ̇)2 if θ̇ ≥ 0 and ẋ = ṅθ‖ẋ‖,

and FRS(x, ẋ) =∞ otherwise.

Proposition 1. The Hamiltonian of the convexity-constrained RSF
metric FRS reads

2HRS
x (x̂) = 〈x̂, ṅθ〉2+ + (θ̂/β)2

+, (29)

for any point x = (x, θ) ∈ M and co-vector x̂ = (x̂, θ̂) ∈ R3.

Proof. Observing that θ̇2 = θ̇2
+ + θ̇2

−, we reformulate the
convexity-constrained RSF metric FRS as follows

FRS(x, ẋ)2 =

〈ẋ, ṅθ〉2+ +∞〈ẋ, ṅθ〉2− + β2θ̇2
+ +∞θ̇2

− +∞〈ẋ, ṅ⊥θ 〉2,

with the convention 0 × ∞ = 0. Noting that [(ṅθ, 0), (ṅ⊥θ , 0),
(0, 1)] is an orthonormal basis of E ∼= R2 × R, and by general
properties of Legendre-Fenchel duality (9) for quadratic functions,
we obtain the expression (29) for the Hamiltonian HRS.

We obtain using (18) an approximate decomposition of the
convexity-constrained RSF Hamiltonian HRS, with a form that
fits the HFM framework, and an O(ε2) error,

2HRS
x (x̂) ≈

∑
1≤j≤J′

ρεj(ṅθ)〈x̂, ėj〉2+ + (θ̂/β)2
+.

Recall that J ′ = 3, that ρεj(ṅθ) ≥ 0 is a non-negative weight, and
that ėj = ėεj(ṅθ) ∈ Z2 is a two dimensional offset with integer
components, for all 1 ≤ j ≤ J ′. For comparison, the original
RSF Hamiltonian (27) admits a similar decomposition, used in
[31], except for the last term which reads (θ̂/β)2.

Using finite differences (14) we discretize the operator
HRS
x (dU(x)) of the eikonal equation (8), with consistency error
O(h + ε2). The scheme involves a stencil S := SRS consisting
of I = J ′ + 1 = 4 neighbor points of x on the grid Mh. Namely

SRS(x) := {yi = x− hėi; 1 ≤ i ≤ I}, (30)

where ėi ∈ Z3 is defined as ėi = (ėi, 0) for 1 ≤ i ≤ I − 1, and
ėi = (0, 1) for i = I .

3.2 Convex-constrained Dubins Car Model

In the classical Dubins model, the curvature penalty function C :=
CD is obtained by thresholding the curvature κ, so that

CD(βκ) = 1 if |βκ| ≤ 1, (31)

and CD(βκ) = ∞ otherwise. The Dubins geodesic metric FD is
obtained by incorporating CD in the general expression (6), and
thus reads

FD(x, ẋ) = ‖ẋ‖, if ẋ = ‖ẋ‖ṅθ and |βθ̇| ≤ ‖ẋ‖, (32)

and FD(x, ẋ) = ∞ otherwise. The Hamiltonian HD of the
Dubins metric FD, defined by (9), admits the following closed
form expression [31]

2HD
x (x̂) = max

{
〈x̂, q̇D

+〉2+, 〈x̂, q̇D
−〉2+

}
, (33)

where q̇D
+ := (ṅθ, 1/β)> and q̇D

− := (ṅθ,−1/β)>. The two
vectors q̇D

+, q̇
D
− ∈ E should be regarded as extremal controls, cor-

responding to a vehicle moving in circles of radius β, respectively
in a counter-clockwise and a clockwise manner.

In this paper, we consider a convexity-constrained Dubins
model defined, in view of (21), by the curvature penalty function

CD(βκ) = 1 if 0 ≤ βκ ≤ 1, (34)

and CD(βκ) = ∞ otherwise. The corresponding convexity-
constrained Dubins metric reads, by (6)

FD(x, ẋ) = ‖ẋ‖, if ẋ = ‖ẋ‖ṅθ and 0 ≤ βθ̇ ≤ ‖ẋ‖, (35)

and FD(x, ẋ) =∞, otherwise.

Proposition 2. The convexity-constrained Dubins Hamiltonian,
denoted by HD, reads

2HD
x (x̂) = max

{
〈x̂, q̇D

+〉2+, 〈x̂, ṅθ〉2+
}
. (36)

Proof. By definition (9), and positive homogeneity of FD, one has

HD
x (x̂) = sup

ẋ∈E

{
〈x̂, ẋ〉 − 1

2F
D(x, ẋ)2

}
= sup

ẋ∈E

{
1
2 〈x̂, ẋ〉

2
+; FD(x, ẋ) ≤ 1

}
. (37)

The convex optimization problem (37) is posed on the set

BD(x) = {ẋ ∈ E; FD(x, ẋ) ≤ 1}
= {(aṅθ, b/β) ∈ E; 0 ≤ b ≤ a ≤ 1}.

The set BD(x), referred to as the control set of the metric FD, is a
right-angled triangle, with vertices (0, 0), q̇D

+, (ṅθ, 0) ∈ E ≈ R3.
By convexity, the maximum of ẋ 7→ 〈x̂, ẋ〉2+ is attained at one of
these vertices, as observed for a similar problem in [31]. Therefore

2HD
x (x̂) = max{0, 〈x̂, q̇D

+〉2+, 〈x̂, (ṅθ, 0)>〉2+},

which concludes the proof.

The two vectors q̇D
+ = (ṅθ, 1/β) and (ṅθ, 0), involved implic-

itly in (36), should be regarded as extremal controls corresponding
respectively to a vehicle moving in circles of radius β counter-
clockwise, or moving in a straight line.
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We obtain using (17) and (18) an approximate decomposition
of the convexity-constrained RSF Hamiltonian HD, with a form
that fits the HFM framework, and an O(ε2) error,

2HD
x (x̂) ≈ max

{ ∑
1≤j≤J

ρεj(q̇
D
+)〈x̂, ėj〉2+,∑

1≤j≤J′
ρεj(ṅθ)〈x̂, ėj〉2+

}
. (38)

Recall that J = 6 and J ′ = 3, that ρεj(q̇
D
+) and ρεj(ṅθ) are

non-negative weights, and that ėj = ėεj(q̇
D
+) ∈ Z3 and ėj =

ėεj(ṅθ) ∈ Z2 are offsets with integer coordinates.
Using finite differences (14) we discretize the operator

HD
x (dU(x)) of the eikonal equation (8), with consistency error
O(h+ ε2). The scheme involves a stencil S := SD consisting of
I = J + J ′ = 9 neighbor points of x on the grid Mh. Namely

SD(x) := {yi = x− hėi ∈ Mh; 1 ≤ i ≤ I}, (39)

where the offsets are defined by ėi = ėεi (q̇
D
+) for 1 ≤ i ≤ J , and

ėi = (ėεi−J(ṅθ), 0) for J + 1 ≤ i ≤ I . For comparison, the orig-
inal Dubins model hamiltonian HD (33) admits an approximate
decomposition similar to (38) but involving the vector q̇D

− instead
of ṅθ , and a finite differences scheme based on a J + J = 12
points stencil [31].

3.3 Convex-constrained Euler-Mumford Elastica Model
In the classical EM elastica model, the curvature penalty function
is defined as

CEM(βκ) = 1 + (βκ)2. (40)

This quadratic curvature penalty is intermediate between the
quasi-linear penalty of the RSF model (25), and the hard threshold
of the Dubins model (31). As a result the EM elastica model
assigns a high cost to path sections with large curvature, in contrast
to the Dubins model which forbids them, and to the RSF model
which tolerates infinite curvature (angular paths), see [31]. The
elastica geodesic metric FEM reads, by (6)

FEM(x, ẋ) = ‖ẋ‖+
(βθ̇)2

‖ẋ‖
if ẋ = ṅθ‖ẋ‖, (41)

with FEM(x,0) = 0 and and FEM(x, ẋ) = ∞ otherwise. The
elastica Hamiltonian HEM is derived from the metric FEM by
Legendre-Fenchel duality (9), and in [31] it is shown equal to

2HEM
x (x̂) =

1

4

(
〈x̂, ṅθ〉+

√
〈x̂, ṅθ〉2 + (θ̂/β)2

)2

(42)

=

∫ π/2

−π/2

〈
q̇(θ, ϕ), x̂

〉2
+

cosϕdϕ, (43)

where we denoted

q̇(θ, ϕ) :=
√

3
2 (ṅθ cosϕ, β−1 sinϕ) ∈ E ∼= R2 × R. (44)

Somewhat curiously, the integral form (43) is more suitable for
the HFM solver framework than the algebraic form (42) of the
Hamiltonian. Indeed, using the Fejer quadrature rule2 with L
points we obtain with an O(1/L2) error

2HEM
x (x̂) ≈

∑
1≤l≤L

wl〈x̂, q̇(θ, ϕl)〉2+,

2. The integral (43) has a cosine weight over the interval [−π/2, π/2],
which is equivalent to a sine weight over [0, π], thus suitable for the Fejer rule.

with suitable weights wl ≥ 0, and with the quadrature nodes
ϕl := (2l − L − 1)π/(2L), for all 1 ≤ l ≤ L. From this
point, the approximate decomposition (17) of each of the terms
〈x̂, q̇(θ, ϕl)〉2+, yields with (14) a finite differences scheme with
an O(h + ε2 + L−2) error and a stencil of LJ points [31]. In
practice, we often use L = 5 which yields enough accuracy,
and use the relaxation parameter ε = 0.1, whereas J = 6 by
definition.

In contrast with the RSF and Dubins models, we design the
convexity-constrained EM elastica model through a modification
of Hamiltonian HEM (43), rather than of the curvature penalty
function CEM. More precisely, we let (notice the integral bounds)

2HEM
x (x̂) :=

∫ π/2

0

〈
q̇(θ, ϕ), x̂

〉2
+

cosϕdϕ. (45)

The vectors q̇(θ, ϕ) in (43) and (45) should be regarded as
controls. When ϕ ≥ 0 as in (45), the third component of q̇(θ, ϕ)
is non-negative, see (44), and this control thus corresponds to a
vehicle rotating clockwise. Note also that HEM obeys (24). In
the following, we compute the metric FEM and curvature cost
function CEM corresponding to HEM, and show that they obey
(22) and (21) as desired.

Before that, let us conclude the description of the numerical
scheme for the convexity constrained EM elastica model. We have
by (17) the approximate decomposition, with O(ε2 + L−1) error

2HEM
x (x̂) ≈

∑
1≤l≤L

w̃l
∑

1≤j≤J
ρjl〈x̂, ėjl〉2+,

where ρjl = ρεj(q̇(θ, ϕl)) and ėjl = ėεj(q̇(θ, ϕl)), and where

w̃l :=


wl if ϕl > 0,

wl/2 if ϕl = 0,

0 else,
(46)

is an adaptation of the Fejer rule for the integral (45) over the half
domain [0, π/2]. Alternatively, another consistent approximation
of (45), albeit with a larger consistency error, can be achieved by
retaining the original Fejer weights wl, but introducing ρ̃jl :=
ρjl if the third component of ėjl is non-negative, and ρ̃jl := 0
otherwise3.

A consistent approximation of the eikonal equation operator
H(dU(x)) is obtained by introducing the finite difference approx-
imations (14), resulting in the discretized system of equations∑

1≤l≤L
w̃l

∑
1≤j≤J

ρjl

(
u(x)− u(x− hėjl)

h

)2

+

= ψ(x)2, (47)

which is a special case of (15) withK = 1. The numerical scheme
of the original EM elastica uses LJ points, but in view of (46) the
stencil SEM of the convexity constrained variant only contains
I = dLeJ points at most.

In the rest of this section, we obtain closed form expressions of
the hamiltonian, metric, and curvature penalty, of the convexity-
constrained EM elastica model. This is only motivated by a better
understanding of the model, since for all practical purposes the
front propagation and geodesic backtracking are implemented
using (15) and (20) which only require the weights and offsets
of the scheme. As a starter, we present a closed form expression
of HEM in polar coordinates.

3. Indeed, note that ėjl is almost aligned with q̇(θ, ϕl), due to (17), at
least when ρjl is sufficiently positive. Hence the conditions ϕl ≥ 0 and
〈ėjl, (0, 1)〉 ≥ 0 are closely related.
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Fig. 2. Left: Curvature penalty CEM of the EM elastica model (dashed),
and CEM of the convexity constrained variant (thick). Right: Unit vectors
in tangent space for the EM elastica model with and without convexity
prior. Set of all (ṡ, θ̇) such that FEM(x, (ṡṅθ, θ̇)) = 1 (solid line), and
likewise for FEM (dashed line).

Proposition 3. The function λ : [−π, π]→ R defined by

λ(φ) :=
3

8

∫ π/2

0
(cos(ϕ− φ))2

+ cosϕdϕ. (48)

admits the explicit expression

8λ(φ) =


0 if φ ∈ [−π,−π/2],

2 cosφ+ 2 cosφ sinφ if φ ∈ [−π/2, 0],

1 + cos2 φ+ 2 cosφ sinφ if φ ∈ [0, π/2],

1 + cos2 φ+ 2 cosφ if φ ∈ [π/2, π].

Also, the convexity-constrained elastica Hamiltonian HEM reads

HEM
x (x̂) = r2λ(φ), when (〈x̂, ṅθ〉, θ̂/β) = r(cosφ, sinφ),

for some r > 0 and φ ∈ [−π, π].

Proof. By considering the sign of cos(φ− ϕ), we find that λ(φ)
is the integral of the trigonometric expression cos(ϕ− φ)2 cosϕ
over the interval ∅, [0, π/2 + φ], [0, π/2], and [φ − π/2, π/2]
respectively in each of the four distinguished cases. The expression
of λ(φ) easily follows. Finally we observe that

2√
3
〈q̇(θ, ϕ), x̂〉 = 〈x̂, ṅθ〉 cosϕ+

θ̂

β
sinϕ

= r(cosϕ cosφ+ sinϕ sinφ) = r cos(ϕ− φ),

and the expression of HEM follows from (45).

The metric FEM can be expressed in terms of the Hamiltonian
HEM using Legendre-Fenchel duality, inverting the relation (9):

1

2
FEM(x, ẋ)2 = sup

x̂

{
〈x̂, ẋ〉 − HEM

x (x̂)
}
. (49)

Denoting ṡ := ‖ẋ‖ and ν̇ := βθ̇, the metric FEM reads for any
non-zero vector ẋ = (ẋ, θ̇) ∈ E

FEM(x, ẋ)2 = (50)
+∞, if θ̇ < 0 or ẋ 6= ṅθ‖ẋ‖,

8
27ν̇ (9ṡν̇2 + ṡ3 + (ṡ2 − 3ν̇2)

3
2 ) if 0 < ν̇ ≤ ṡ/2,

4(ṡ2 − 2ṡν̇ + 2ν̇2), if 0 ≤ ṡ/2 ≤ ν̇ ≤ ṡ,
(ṡ+ ν̇2/ṡ)2, if 0 ≤ ṡ ≤ ν̇.

Sketch of proof of (50). The announced expression of FEM was
obtained with the help of the formal computing program
Mathematica R©. We only show here how it can be checked for-
mally, once it is known. Define the Lagrangian

Lx(ẋ) :=
1

2
FEM(x, ẋ)2,

as defined from (50), and denote the Hamiltonian Hx(x̂) :=
HEM
x (x̂). Our objective is to establish (49), in other words that Lx

is the Legendre-Fenchel dual of Hx. This relation is characterized4

by the identity
Lx(∇Hx(x̂)) = H(x̂) (51)

for any co-vector x̂ ∈ E∗. Recalling that Hx(x̂) = r2λ(φ) from
Proposition 3, and differentiating in these polar-like coordinates,
we obtain

∇Hx(x̂) = 2rλ(φ)(ṅθ cosφ,
sinφ

β
)+rλ′(φ)(−ṅθ sinφ,

cosφ

β
)

In the sequel we assume that r = 1, for simplicity and w.l.o.g. by
homogeneity of H and L. In view of (50), we define ṡ and ν̇ by
∇Hx(x̂) = ẋ = (ẋ, θ̇) = (ṡ ṅθ, ν̇/β), in other words

ṡ = 2λ(φ) cosφ− λ′(φ) sinφ,

ν̇ = 2λ(φ) sinφ+ λ′(φ) cosφ.

In order to conclude the proof, we need to insert the explicit
expression of λ, distinguishing cases depending on the interval
containing φ. If φ ∈ [−π, π/2], then λ(φ) = λ′(φ) = 0, thus
ṡ = ν̇ = 0 and therefore both sides of (51) are zero. If φ ∈
[−π/2, 0], then we obtain 8ṡ = 2(2 cosφ+2 cosφ sinφ) cosφ−
(−2 sinφ−2 sin2 φ+2 cos2 φ) sinφ, and likewise ν̇ is a polyno-
mial function of cosφ and sinφ. A long and tedious sequence of
elementary trigonometric identities, which is not presented here,
and which is within the grasp of symbolic computation methods,
yields the inequality 0 ≤ ν̇ ≤ ṡ/2 and the identity

8

27ν̇
(9ṡν̇2 + ṡ3 + (ṡ2 − 3ν̇2)

3
2 ) = 2 cosφ+ 2 cosφ sinφ,

which is equivalent to (51) when φ ∈ [−π/2, 0]. (Use that
ṡ2 − 3ν̇2 = (cos 2φ − sinφ)2/16.) Proving (51) thus reduces,
likewise when φ ∈ [0, π/2] and φ ∈ [π/2, π], to checking an
inequality and an equality between suitable polynomials in the
variables cosφ and sinφ, which follows from elementary (yet
tedious) computations.

The curvature penalty of the convexity constrained EM model
can be recovered from the metric and the relation CEM(βκ) =
FEM(x, (ṅθ, κ)), in view of (6). This also amounts to choosing
ṡ = 1 and ν̇ = βκ in (50), and therefore

CEM(ν̇) =


+∞ if ν ≤ 0√

8
27ν̇ (9ν̇2 + 1 + (1− 3ν̇2)

3
2 ) if 0 < ν̇ ≤ 1/2

2
√

1− 2ν̇ + 2ν̇2 if 1/2 ≤ ν̇ ≤ 1,

1 + ν̇2, if 1 ≤ ν̇.

The penalty CEM is infinite when the path curvature is negative,
as expected, and coincides with the original EM elastica model
CEM when 1 ≤ ν̇ := βκ, in other words when the path
curvature exceeds 1/β. Note that straight line segments have finite
energy for the convexity constrained Reeds-Shepp and Dubins
models, since CRS(0) = CD(0) = 1, whereas the EM variant
only allows strictly convex paths, since CEM(0) = ∞. The
curvature penalty function CEM, and the set of all (ṡ, θ̇) such
that FEM(x, (ṡṅθ, θ̇)) = 1 with β = 1, are illustrated in Fig. 2.

4. And in addition Lx(ẋ) = ∞ when ẋ is not in the range of ∇H, which
is readily checked.
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Fig. 3. The black dash line indicates the ray line <z(p), which originates
from the physical position z (black dot) and passes through p (blue dot).
The arrow stands for the direction of (cos θp, sin θp)>, respectively.

4 EXTRACTING SIMPLE CLOSED CONVEX CURVES

We have introduced in Section 3 three metrics F, on the state
space M = Ω × S1 of positions and orientations, featuring
both a convexity shape prior and a curvature regularization. In
this section, we address the problem of tracking orientation-lifted
geodesics G := (C, η), with respect to the chosen metric F, whose
physical projection C ∈ C2([0, 1],Ω) on the physical space Ω is
simple closed and convex. Moreover, we introduce an additional
constraint ensuring that the planar curve C encloses a given point
in Ω, so as to accommodate practical segmentation tasks.

Toward that purpose, we define a reduced domain M̃, by
removing an appropriate region which acts as a wall, and choose a
specific start and endpoint p, see Section 4.1. The work presented
in this paper is a variant of the circular geodesic model [33]. It
combines constraints on the physical projection C and the angular
component η of the curve, so as to control the total curvature and
eliminate curves whose physical projection has self-intersections.

4.1 Endpoints and Artificial Obstacles

The circular geodesic (CG) model [33] is a practical method for
extracting closed planar geodesic curves within the image domain
Ω. Our variant of this model requires the user to fix a planar point
z ∈ Ω, and an orientation lifted point p = (p, θp) ∈ M = Ω×S1,
subject to the compatibility condition det(p− z, ṅθp) > 0.

In the context of interactive image segmentation, it is natural to
place the point p on the boundary of the target region, with θp de-
noting the tangent orientation of this boundary in the trigonometric
orientation. The point z is placed inside the target convex region,
allowing the user to guide the image segmentation in a simple and
reliable manner. A crucial ingredient of the CG model is a ray line,
i.e. a half line, introduced within the domain Ω and defining a cut
which locally disconnects its two sides. More precisely, the ray
line <z(p) originating from z and passing through p is regarded
as an obstacle. We also introduce a barrier at the position θp in
the angular domain. See Fig. 3, where <z(p) is dotted, the angular
coordinate θp of p is indicated by the arrow (cos θp, sin θp)

>, and
an admissible path γ is shown. The accessible domain remaining
for the orientation-lifted geodesic paths is thus

M̃ := {(x, θ) ∈ M; x /∈ <z(p) and θ 6= θp}. (52)

Our method exploits a path of minimal energy L, from the point
p to itself, and within the obstacle free domain M̃: we solve

inf
{
L(Γ); Γ ∈ C1([0, 1],M),

Γ(0) = Γ(1) = p,Γ(%) ∈ M̃,∀% ∈]0, 1[
}
. (53)

We show in Section 4.2 that the physical projection of any
candidate minimizer to the problem (53) is a simple closed and
convex curve enclosing the point z, and we describe Section 5 a
global numerical optimization procedure.

4.2 Total Curvature and Curve Simplicity

In this section, we show that the constraints of (53) ensure
the simplicity of the physical projection γ of any admissible
orientation-lifted curve Γ = (γ, η).

For that purpose, let us summarize the properties obeyed by a
candidate minimizer Γ = (γ, η) to the optimization problem (53):

γ(0) = γ(1) = p, η(0) = η(1) = θp, (54)

γ(%) /∈ <z(p), η(%) 6= θp, (55)

γ̇(%) = ṅη(%)‖γ̇(%)‖, η̇(%) ≥ 0. (56)

The first line follows from the boundary condition Γ(0) = Γ(1) =
p. The second line holds for % ∈]0, 1[ and follows from the choice
(52) of the obstacle free domain M̃. The third line holds for % ∈
[0, 1], and follows from L(Γ) <∞ (otherwise Γ is not a candidate
minimizer) and from the choice of metric, see Eqs. (22) and (23).

The rest of this section will be devoted to the proof of the
following proposition.

Proposition 4. Assume that (γ, η) ∈ C1([0, 1],M) obeys (54),
(55), (56), and that γ′ is non-vanishing over [0, 1]. Then the curve
γ is simple, closed, convex, and encloses the point z. Furthermore,
the total (absolute) curvature of γ is 2π.

Proof. We introduce a parametric function η :]0, 1[→ R such that
η(%) ≡ η(%) (mod 2π), for all % ∈]0, 1[, and likewise θp ∈ R
such that θp ≡ θp (mod 2π). We may assume that η(0) = θp,
by (54, right). Observe that η(%) is non-decreasing, by (56, right),
and that η(%) /∈ θp + 2πZ for all % ∈]0, 1[, by (55, right). As a
result

θp < η(%) < θp + 2π, ∀ρ ∈]0, 1[, (57)

and finally η(1) = θp + 2π, by (54, right).
The path γ has a non-vanishing velocity, and obeys the lifting

compatibility condition (56, left), hence its curvature is obtained
as κ = η̇/‖γ̇‖, see (3). Note that the curvature κ is non-negative,
by (56, right), and thus equal to the absolute curvature. The total
curvature of γ (absolute or otherwise) is obtained as

K(γ) =

∫ 1

0
κ(%) ‖γ̇(%)‖ d% =

∫ 1

0
η̇(%) d%, (58)

and therefore, in view of previously established properties of η

K(γ) =

∫ 1

0
η̇(%) d% = η(1)− η(0) = (θp + 2π)− θp = 2π.

Consider 0 ≤ %1 < %2 < 1 such that η(%1) = η(%2), if they
exist. Then from (57) and the monotony of η we obtain η(%) =
η(%1) for all %1 ≤ % ≤ %2, hence γ that is restricted to [%1, %2] is
a straight segment, and therefore the tangent lines at γ(%1) and at
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γ(%2) coincide. It easily follows that there are no three5 points of
γ such that the tangents at these points are pairwise distinct and
parallel, and thus that γ is the boundary of a convex set R ⊂ R2.

By construction, the boundary ∂R intersects the half line
<z(p) at the point p and nowhere else. Recalling that det(p −
z, ṅθp) > 0 we see that <z(p) is not tangential to ∂R, and thus
R contains the bounded connected component of <z(p) \ {p},
which is the segment [z, p[. In other words, the curve γ encloses
the point z, and the announced result follows.

5 NUMERICAL SOLUTIONS

Let us consider the path-length quasi-distance function D that is
defined by

D(x,y) := inf
{
L(Γ); Γ ∈ C1([0, 1], M̃),

Γ(0) = x,Γ(1) = y
}
,

for all points x,y of the obstacle free domain M̃, see (52). We set
here the objective of computing the distance D(p0,p1) with

p0 := (p+ εṅθp , θp + ε), p1 := (p− εṅθp , θp − ε), (59)

where p = (p, θp) is a user defined orientation-lifted point, see
Section 4.1, and ε > 0 is a small parameter. Letting ε → 0, we
recover the original problem (53) of finding a path from p to itself,
within M̃ and minimizing L. Note that the endpoints p0,p1 may
be replaced with any small perturbations of p whose components
lie on the similar side of the obstacle <z(p) in the planar domain,
and of the obstacle {θp} in the angular domain. In practice, we
may choose the points of the discretization grid Mh, see (13),
which are the closest to p and obey these geometrical constraints.

Define the geodesic distance map U : M̃→ [0,∞] by

U(x) := D(p0,x). (60)

This function obeys the eikonal equation H(∇U(x)) = 1
2ψ(x)2

on M̃ \ {p0}, with U(p0) = 0 and with outflow boundary
conditions on ∂M̃. Here H is the Hamiltonian corresponding to
one of the convexity constrained geodesic models, see Section 3.

A numerical solution u : Mh → R to the discretized eikonal
equation (15) is computed, using one of the solvers described in
the next subsection. Once u is known, a globally optimal path
from p0 to p1 can be extracted by backtracking as defined in
Eq. (10), based on the expression (20) of the geodesic flow.

5.1 Solving for the Distance Map
In this section, we briefly discuss the numerical computation of
the unique solution to the discretized eikonal equation (15), which
is quite standard. Indeed, our main contributions lies in the design
of the curvature constrained models, of the scheme coefficients
and offsets, and of the artificial obstacles, see Sections 3 and 4.
For simplicity, we assume w.l.o.g. that the desired path endpoints
p0,p1 belong to the discretization grid Mh, see (13) and (59).

For numerical purposes, an array of unknowns u : Mh → R
is introduced, and initialized to u(p0) = 0 and u =∞ elsewhere
on Mh \{p0}. In the course of the numerical solver, the unknown
is updated by solving locally the numerical scheme (15), at some

5. If the tangent lines at γ(%1), γ(%2) and γ(%3) are parallel, then
η(%1) ≡ η(%2) ≡ η(%3) (mod π), thus by the pigeonhole principle one
has e.g. η(%1) ≡ η(%2) (mod 2π), and then by the previous argument the
tangents at γ(%1) and γ(%2) are identical.

given point x ∈ Mh\{p0}. In such an update, we assign u(x)←
u, where u solves

max
1≤k≤K

∑
1≤i≤I

ρik(x)(u− uik)2
+ = h2ψ(x)2, (61)

and where for all 1 ≤ i ≤ I and 1 ≤ k ≤ K one has denoting
yik := x− hėik

uik =


+∞ if yik /∈ Mh or [x,yik] 6⊂ M̃,
+∞ if yik not ACCEPTED,

u(yik) else.
(62)

The first line serves to apply outflow boundary conditions on ∂M,
and to avoid any front propagation across the obstacles introduced
in M̃, whereas the second line is specific to the fast marching
numerical method, see below. Note that letting uik = ∞ is
equivalent to ignoring the contribution of the stencil point yik,
since the update equation involves the difference (u − uik)+.
Once the values (uik)1≤k≤K

1≤i≤I are gathered and sorted, one can find
the update value u by solving at most KI univariate polynomial
equations of degree two, since (61, l.h.s.) is a piecewise quadratic
function of u. A similar procedure was already used in [40].

The ordering of the updates (61) depends on the numerical
solver used. On a CPU processor, the fast marching algorithm [40]
is used, which is made possible by the mathematical structure6 of
the scheme as in [31], [32], [39]. This method works in a single
pass over the domain (the points of Mh are successively AC-
CEPTED one by one based on a priority queue) and has complexity
O(N lnN) where N = #(Mh) is the number of discretization
points. The front propagation can be stopped as soon as the target
point p1 is reached. If a GPU accelerator is available, on the
other hand, then a variant of the massively parallel fast iterative
method [41] is used (which does not involve ACCEPTED tags).
The increased complexity of this approach, namely O(N1+1/d)
with d = 3, and the stricter stopping criterion, namely global con-
vergence of u, are more than compensated by the massive thread
parallelism, resulting in a 15× or better speedup in applications.

Let us mention that it is possible to track the the total curvature
K of the minimal paths by adapting a numerical method [42], orig-
inally introduced to simultaneously estimate the weighted length
and the Euclidean length of geodesic curves between p0 and any
point x, without backtracking these curves. By the arguments of
Section 4.2, this is not necessary to ensure that the paths is simple
and convex, provided the front propagation is restrained to the
obstacle free domain (52) using proper intersection tests for the
offsets as in (62, first line). In fact, by tracking and limiting the
total curvature one eliminates the need for the obstacle {θp} in the
angular domain S1, whose implementation can be inconvenient
due to the periodic boundary condition, so this remains an option.

6 APPLICATIONS TO ACTIVE CONTOURS

In this section, we show the possibility of applying the proposed
geodesic models with convexity shape prior to address the active
contour problems.

6. Namely, that (61) is a non-decreasing function of [(u− uik)+]1≤k≤K1≤i≤I .
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6.1 Computation of Region-based Velocity
6.1.1 Region-based Randers Geodesic Model
We start from a typical active contour energy functional compris-
ing of a region-based homogeneity term Ξ and a regularization
term Φ

E(γ) := µΞ(γ) + Φ(γ), (63)

where µ > 0 is a positive constant and γ ∈ Lip([0, 1],Ω) is
a closed curve. In general, the term Φ(γ) can be defined as a
weighted curve length w.r.t. a Riemannian metric, of the form

Φ(γ) =

∫ 1

0
‖γ̇(%)‖M(γ(%)) d%.

The metric tensor M is derived from the image gradients, in
such way that ‖ẋ‖M(x) =

√
〈ẋ,M(x)ẋ〉 is low [14] when an

edge passes by the point x ∈ Ω with a tangent direction that
approximates the unit vector ẋ.

The region-based term Ξ, also referred to as the image appear-
ance model, measures the homogeneity of image features in each
region. In this section, we take the region competition model [43]
with the Gaussian mixture model (GMM) as an example to
formulate the region-based term

Ξ(γ) =

∫
R1

ξ1(x)dx+

∫
R2

ξ2(x)dx, (64)

where R1 and R2 are the regions inside and outside the closed
curve γ. The scalar-valued functions ξi : Ω → R (i = 1, 2)
encode the image homogeneity features within each region Ri.
We compute each ξi using a Gaussian mixture model, for which
the probability distribution function (PDF) Pi(z; Θi) is taken as
a weighted sum of N Gaussian PDFs. Let f : Ω → Rd be an
image, where d = 1 (resp. d = 3) implies that f is a gray level
(resp. color) image. Then one has

ξi(x) = − log
(
Pi(f(x); Θi)

)
, ∀x ∈ Ω, (65)

where Θi are the parameters of the PDFs of the GMM.
Moreover, the piecewise constant appearance model [44] is

known as an efficient variant of the GMM-based term Ξ. In this
case, the function ξi can be computed as

ξi(x) =

∫
Ri

‖f(x)− ci‖2dx, (66)

where ci = (ci,1, ci,2, ci,3) ∈ Rd such that ci,j with 1 ≤ j ≤ d
stands for the mean intensity of the j-th image channel within
each corresponding region Ri.

In the region-based geodesic model [13], [45], image seg-
mentation is solved by minimizing the energy E as formulated
in (63). A key ingredient for the EAC model is to express, using
Stokes theorem, the energy (63) as a weighted curve length, i.e.
E(γ) = Φ̃(γ) + σ, where σ is a scalar value independent of γ,
and where

Φ̃(γ) =

∫ 1

0
‖γ̇(%)‖M(γ(%)) + µ〈$(γ(%)), γ̇(%)〉d%. (67)

The vector field $ : R2 → R2 is defined over an open bounded
region U ⊂ Ω, and is obtained as the solution of the linear PDE

min

∫
R2

‖$(x)‖2dx, s.t. curl$ = (ξ1 − ξ2)χU , (68)

where χU : R2 → {0, 1} is the characteristic function of the
subdomain U . The solution to the linear problem (68) can be

obtained by convolution of the r.h.s. (ξ1 − ξ2)χU with a suitable
kernel [45]. In a variant of (68), used in the experiments, the
objective function is replaced with

∫
U ‖$(x)‖2dx, so that a

staggered grid finite difference method can be used over the
domain U , which provides less guarantees but often yields better
numerical behavior [45].

The weighted length (67) is an instance of Randers geometry,
defined by a non-symmetric metric

R(x, ẋ) = ‖ẋ‖M(x) + µ〈$(x), ẋ〉. (69)

It is proven in [45] that the metric R is positive definite provided
the region U is sufficiently small and the first order term is defined
by (68). During the curve evolution, U should be understood as
the search space for the evolving curves.

6.1.2 Orientation-lifted Velocity
The weighted curve length (67) can be theoretically interpreted
in the framework of orientation lifting, by choosing the cost
ψ(x, θ) = R(x, ṅθ). This leads to the possibility of integrating
the region-based homogeneity features and curvature regulariza-
tion for solving the active contour problems, using a sufficiently
small U to ensure the positivity of ψ(x, θ). However, such an
interpretation is not what we do in this paper. In contrast, we
construct the velocity ψ as an exponential cost of the components
of the metric R. Specifically, we consider

ψ(x, θ) =

{
exp

(
α ψ̃(x, θ)

)
, ∀x ∈ U,

∞, otherwise,
(70)

where α > 0 is a constant and where the function ψ̃ is defined as

ψ̃(x, θ) :=
‖ṅθ‖M(x)

sup
(y,ϑ)∈M

‖ṅϑ‖M(y)
+
µ〈$(x), ṅθ〉
sup
y∈Ω
‖$(y)‖

. (71)

This construction of ψ proves to be very efficient in practice,
although the connection with (63) and (67) is partly lost.

6.2 Convexity-constrained Active Geodesic Paths for
Interactive Image Segmentation
We apply the proposed geodesic models imposed with convexity
shape prior for interactive image segmentation in conjunction
with a curve evolution manner. The evolving curves are the
physical projections of the orientation-lifted geodesic paths. When
the evolution stabilizes, the target boundaries can be delineated
by the obtained physical projection curves, generated using the
proposed geodesic models with convexity shape prior. The pro-
posed interactive segmentation algorithm can be divided into two
steps: (i) establishing extra constraints for geodesic paths from
user-specified annotations, and (ii) evolving the geodesic paths
associated to the proposed geodesic models. In the following, we
will present the details for those steps.

6.2.1 Extra Constraints for Geodesic Paths
Scribbles-based Annotations. Scribbles are very often taken as
initial annotations in interactive segmentation algorithms. Here we
propose a way for geodesic-based segmentation, which allows to
leverage foreground and background scribbles as extra constraint.
In our model, each scribble is regarded as a subregion of the
image domain Ω. We can randomly sample a point xF from each
foreground scribble F ⊂ Ω. The union ([z, xF ]∪F )× S1 serves
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Fig. 4. An example for initialization derived from the landmark points-based annotation. The blue and cyan dots in columns 1 to 4 denote the
landmark points. Column 1: The cyan dot together with the cyan arrows indicate the source point p. Column 2: the blue transparent region indicates
the convex hull of all the landmark points with the red dot being its barycenter center. Column 3: the green lines represent the additional obstacles.
Column 4: Segmentation contour indicated by the red line.

Fig. 5. An example for initialization derived from the scribbles-based annotation. The blue and red curvilinear structures in columns 1 to 4 represent
the interior and exterior scribbles, respectively. Column 1: The cyan dot together with the cyan arrows indicate the source point p. Column 2: the
blue transparent region indicates the convex hull. Column 3: the green lines represent the additional obstacles. Column 4: Segmentation contour
indicated by the red line.

RSF-Convexity Dubins-Convexity Elastica-Convexity

Fig. 6. Top: The geodesic paths (red lines) in columns 1 to 3 are respectively derived from the proposed RSF-Convexity, Dubins-Convexity and
Elastica-Convexity models. The blue curvilinear structures are the foreground scribbles, and the cyan dots with arrows represent the source point.
Bottom: The plots of the turning angles of the corresponding orientation-lifted geodesic paths.

as an obstacle such that no curve is allowed to passed through it. At
the same time, one can choose a point xB from each background
scribble B ⊂ Ω. This point can yield a segment [xB , q] where
q ∈ ∂Ω is a point subject to (z − xB) ∝ (xB − q). Similarly to
([z, xF ] ∪ F )× S1, the union ([xB , q] ∪ B) × S1 also forms an
obstacle in the search space of geodesic paths.

When numerically computing geodesic distance values by the
HFM method, any point y will be removed from the stencil S(x)
if the segment [x,y] intersects the obstacles generated by the
scribbles and the point z.

Landmark points-based Annotations. In the context of interac-
tive image segmentation, boundary-based annotations are usually
carried out by a family of landmark points xk, indexed by

1 ≤ k ≤ K, such that each point xk is placed at the target
boundary. In contrast to traditional approaches [35], we do not
impose any order to the points xk.

Let <z(xk) be a ray line or half straight line emanating from
z and passing through xk, and let qk be the intersection point
between <z(xk) and the target boundary. It is easy to see that
the orientation-lifted geodesic paths do not pass through the wall
[z, xk[×S1 and ]xk, qk] × S1, due to the convex assumption on
their physical projections. Note that for each index k, neither
[z, xk[ nor ]xk, qk] involves the landmark point xk. Numerically,
when computing geodesic distances by the HFM method, the walls
[z, xk[×S1 and ]xk, qk] × S1 are used to refine the stencils S .
Specifically, a point y ∈ S(x) should be excluded from S(x),
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(a) (b)

Fig. 7. An example for geodesic curves with (left) or without (right) the
constraint on the bound of the total curvature, respectively. The red dots
indicate the physical position z and the cyan dots together with the cyan
arrows represent the source point p = (p, θp).

if the segment [x,y] satisfies that [x,y] ∩ ([z, xk[×S1) 6= ∅, or
[x,y] ∩ (]xk, qk] × S1) 6= ∅. As a result, the physical projection
of any closed geodesic paths G, subject to G(0) = G(1) = p, will
pass through all landmark points xk.
Automatic Detection of the point z. The point z used for defining
the search space of geodesic paths can be automatically derived
from the user annotations. By the convexity assumption of the
target regions, it is natural to set the point z as the barycenter
of the convex hull of the set {p, xk; k = 1, · · · ,K} (resp. F ∪
{p} with F being all the foreground scribbles) for the landmark
points-based (resp. scribbles-based) annotation way, where p is the
physical position of the source point p = (p, θp). In this way, one
can point out that the detected point z must lie at the interior of
the target region.

6.2.2 Active Geodesic Evolution Procedure

In this section, we incorporate the proposed geodesic models with
convexity shape prior into the region-based Randers geodesic
model [45], such that the image segmentation can preserve the
advantages of user annotations, curvature regularization and con-
vexity shape constraint.

Using a curve evolution scheme, the goal is to generate a
sequence of closed geodesic paths {Gj}j≥0, each of which lies
at the space M and solves the problem (53) and is such that the
physical projection Cj is a simple closed and convex planar curve,
obeying Cj(%) ∈ Uj ,∀% ∈ [0, 1]. In this way, the search space Uj
at the j-th iteration is used to find the solution to the problem (68),
in order to update the velocity ψj through Eq. (70). Moreover, as
in the region-based geodesic model [45], we choose the search
space Uj as a tubular neighbourhood of Cj−1.

Recall that the initialization for the proposed geodesic models
requires a point z ∈ R with R ⊂ Ω being the target region, and
an orientation-lifted point p = (p, θp) ∈ M such that p ∈ ∂R, as
described in Section 4.1. In addition to these points, we take into
account two types of interaction ways for building the sequence
{Gj}j≥0, in order to accommodate complicated situations.
Building the initial curves. The initial curve G0 = (C0, η0) should
obey that (i) G0(0) = p, and (ii) the physical projection C0 is
simple closed and convex. In order to simplify the initialization
process of the proposed segmentation method, we construct the
initial curve G0 as a closed minimal path by solving the prob-
lem (53), subject to the user-provided annotations discussed above.

The image gradients-based features are independent to the
evolving geodesic curves Gj . As a consequence, such an initial

curve G0 can be produced using the edge-based features only. We
denote by ψedge such an edge-based velocity that reads

ψedge(x, θ) = exp

 ‖ṅ‖M(x)

sup
(y,ϑ)∈M

‖ṅϑ‖M(y)

 ,∀x ∈ Ω, (72)

which is independent to the tubular neighbourhood Uj for any
j ≥ 0.

7 EXPERIMENTAL RESULTS

In this section, the numerical experiments are mainly dedicated
to illustrate the advantages of exploiting the convexity shape prior
and the curvature penalty for image segmentation. We firstly study
the properties of the proposed three geodesic models. Following
that, we focus on the qualitative and quantitative comparisons
against the graph-based segmentation model with convexity shape
constraint (Graph-Convexity) [15], and the geodesic paths-based
segmentation approaches involving the region-based Randers
geodesic (RandersGeo) model [45] and the instances of curvature-
penalized geodesic models [14], [30]. In addition, when tracking
closed geodesic paths, we exploit the same strategy with the
proposed models except that the total curvature constraint on
geodesic curves is removed to the RandersGeo model and the
curvature-penalized geodesic models, as discussed in Section 4.

7.1 Properties of the Proposed Geodesic Models
We first illustrate in Fig. 7 the effect of the wall in the angular
domain, which amounts to a constraint on the total curvature, and
which guarantees the simplicity of the target physical projection
curves, see Proposition 4. In this figure, the cyan dots and the
respective cyan arrows indicate the source point p = (p, θp). The
red lines are the physical projections of the extracted geodesic
paths. Figs. 7a and 7b respectively illustrate the results of the
proposed Elastica-Convexity model with and without the total
curvature constraint. In Fig. 7a, one can observe that the closed
curve indicated by a red line is simple and convex. In contrast,
in Fig. 7b, the absence of the constraint on the bound of the total
curvature (58) leads to the self-crossing phenomenon. Moreover,
the lack of the total curvature constraint also yields a non-convex
closed curve, proving its importance and necessity in the proposed
models.

In Fig. 6, we present a numerical experiment to illustrate the
qualitative differences between the proposed geodesic models with
convexity shape prior, by choosing a constant velocity ψ ≡ 1
and the parameter β = 4, see Eq. (23), for each tested geodesic
model. The red lines shown in the top row of columns 1 to 3
represent the physical projections of the geodesic paths, which
are respectively generated through the RSF-Convexity, Dubins-
Convexity and Elastica-Convexity models. These paths are ob-
tained by performing the HFM algorithm just once, as discussed
in Section. 6.2. In the bottom row, we plot the turning angles (i.e.
the angular coordinate η) of the orientation-lifted geodesic paths
Γ = (γ, η), each of which is parameterized by the Euclidean
curve length of γ. The physical projection curves corresponding
to the RSF-Convexity and Elastica-Convexity models appear to be
smooth. Specifically, the physical projection curve associated to
the RSF-Convexity model allows the presence of high curvature
values, which also can be seen from the plot of the turning angles
(as shown in the bottom row of column 1). In the top row of
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Original Images Initializations Graph-Convexity RSF-Convexity Elastica-Convexity

Fig. 8. Qualitative comparison results with the Graph-Convexity model. Column 1: Original images. Column 2: Initializations. The blue and red
curvilinear structures denote the scribbles inside and outside the target regions. The cyan dots and the respective arrows indicate the source
points. Columns 3 to 5: Segmentation results from different models.

column 2, the physical projection curve associated to the Dubins-
Convexity model can be approximately divided into straight seg-
ments and parts of circles, which is also discussed in [32]. Such an
observation can be verified by the plot of turning angles, the graph
of which is the concatenation of straight segments of different
slopes. Moreover, we notice that the plots of the turning angles for
all the proposed models indicate non-decreasing curvature values,
consistently with Definition 1. Finally, the qualitative differences
between the proposed geodesic models are quite similar to those
between the original curvature-penalized geodesic models [32],
due to their relevance.

Notice that in both the original Dubins model and its
convexity-constrained variant, the parameter β defines a hard
constraint on the the curvature of the geodesic curves. This lack
of flexibility means that the parameter β must be finely tuned,
otherwise the desired contour may not be admissible, which
prevents the practical applications of the Dubins model in image
analysis. Accordingly, in the remaining of this section, we focus
on the qualitative and quantitative evaluation of the performance
of the RSF-Convexity and Elastica-Convexity models.

7.2 Qualitative Comparisons

In order to set up the proposed geodesic models with convexity
shape prior, we need to give the values of the related param-
eters. Specifically, we choose the parameters α ∈ {3, 4} and
µ ∈ {0.1, 1} for the computation of the velocity defined in
Eq. (70), and fix the parameter β = 1 for the relative importance
of the curvature term. The relaxation parameter ε = 0.1 is used
for the numerical schemes of the HFM method. In the following
experiments, the point z is generated automatically using the
procedure presented in Section 6.2. In addition, unless otherwise
specified, we apply the identical velocity ψ and identical values
of parameters β, ξ to the instances of the classical curvature-
penalized models and the proposed geodesic models with con-
vexity shape constraint.

In Fig. 8, we illustrate the qualitative comparison results
with the Graph-Convexity model on the images chosen from
the Convexity dataset [15]. The original images and the initial
annotations are respectively shown in columns 1 and 2, where
the red and blue dots respectively represent the point z and the
physical position p of the source point p = (p, θp). The cyan
arrow is positively collinear to (cos θp, sin θp)

>. For the Graph-
Convexity model, we leverage the seeded annotations provided by
the authors [15] as the foreground and background scribbles. For
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Fig. 9. Qualitative comparison results with state-of-the-art geodesic models. Columns 1 and 2 show the original images as well as the corresponding
annotations. The blue structures in column 2 denote the scribbles inside the target regions. The cyan dots and the respective arrows indicate the
source points. Columns 3 to 5: Image segmentation results from different models.

TABLE 1
Quantitative comparison of different models by the average and standard deviation values of Jaccard scores on 5 images shown in Fig. 10.

IMAGES Row 1 Row 2 Row 3 Row 4 Row 5

Models
JS

Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std.

Graph-Convexity 59.16% 0.04 69.80% 0.05 87.23% 0.01 92.38% 0.01 96.04% 0.02

RandersGeo 86.31% 0.01 88.35% 0.02 85.34% 0.01 77.66% 0.14 89.42% 0.00

Classical Elastica 72.03% 0.07 92.04% 0.01 84.66% 0.03 78.21% 0.15 89.91% 0.01

Elastica-Convexity 88.62% 0.02 95.58% 0.00 90.30% 0.01 99.63% 0.00 99.49% 0.00

fair comparison, we add the segment [z, p] (resp. the segment
[p, q] such that q ∈ ∂Ω subject to (p − z) ∝ (q − p)) to
the foreground scribbles (resp. to the background scribbles). In
column 3 of Fig. 8, we can see that the segmentation regions
from [15] indeed appear to be approximately convex, but fail to
accurately recover the objective regions. In contrast, the proposed
RSF-Convexity and Elastica-Convexity models are capable of
yielding smooth and accurate segmentation contours, as shown
in columns 4 and 5. Moreover, the segmentation results from both
of the proposed geodesic models are quite close to each other,
despite their different regularities on the curvature.

Fig. 9 presents a qualitative comparison of the proposed
Elastica-Convexity geodesic model and state-of-the-art geodesic
models including the RandersGeo and original elastica models on
images sampled from the dataset [15]. The annotations shown in
column 2 are exploited to initialize these models. In this exper-
iment, there is no background scribble provided for interactive
segmentation. It is known that the RandersGeo model heavily
depends on the region-based homogeneity features and the edge-

based features, as described in Section 6.1. Accordingly, when
these features are unreliable for defining the target boundaries,
low quality of segmentation results may be yielded by this model,
due to the absence of the convexity shape prior. This is also the
case for the classical elastica model in conjunction with edge-
based features, though the use of the curvature regularity may
slightly increase the smoothness of the segmentation contours, as
depicted in column 4. While in column 5, the smooth and tight
segmentation contours are obtained from the proposed Elastica-
Convexity model, which can suitably delineate the target bound-
aries, thanks to the integration of convexity shape prior, curvature
regularization and image features. Note that in this experiment the
classical elastica geodesic model was applied with hybrid image
features which include both the image gradients features and the
region-based homogeneity features.

Fig. 10 depicts the comparison results obtained from the
Graph-Convexity model, the RandersGeo model, the classical
elastica geodesic model with hybrid image features, and the
proposed Elastica-Convexity model. Among the results shown in
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Fig. 10. Qualitative comparison results with state-of-the-art geodesic models. Columns 1 show the original images with the initial annotations. The
blue and red curvilinear structures denote the scribbles inside and outside the target regions. The cyan dots and the corresponding arrows indicate
the source points. Columns 2 to 5: Image segmentation results from different models.

rows 1 to 3, we observe that the proposed Elastica-Convexity
model can produce accurate segmentation contours. While for the
other compared models, some segments of the desired boundaries
are missed. The images in rows 1 to 3 are sampled from the
Weizmann dataset [46]. In rows 4 and 5 of Fig. 10, we illustrate
the segmentation results on synthetic images blurred by gaps and
noise. The goal is to search for the boundaries of the ellipse
and polygon shapes as shown in rows 4 and 5, respectively. In
these synthetic images, the Graph-Convexity model can produce
convex shapes as segmentations. However, these shapes fail to
completely recover the true objective regions, due to sensitivity
to the locations of the scribbles. Finally, we found that the
RandersGeo and classical elastica models produce non-convex
contours, thus missing some parts of the desired boundaries, due
to the influence of the gaps. Note that in Figs 8 to 10, we utilize the
GMM-based image appearance model for computing the region-
based homogeneity features.

7.3 Quantitative Comparisons
In this section, we present the quantitative comparison results of
different models. These experiments are conducted using different

initial annotations. In each test, we apply the Jaccard scores for
the measurement of the accuracy of the segmentation results. Let
SR and GR respectively denote the segmented region generated
from the tested models and the ground truth region. The Jaccard
score, denoted by JS ∈ [0, 1], is an estimation of the quality that
the region SR recovers the ground truth region GR, which reads

JS(SR,GR) :=
|SR∩GR |
|SR∪GR |

, (73)

where |SR | is the area of the region SR.
Table 1 presents the quantitative comparison results of the

proposed Elastica-Convexity model with the Graph-Convexity
model, the RandersGeo model, and the classical elastica models.
This experiment is conducted on the images shown in Fig. 10, by
varying the source point p along the ground truth boundary. For
each test image, we select 10 (physical) points from its ground
truth boundary and manually assign to each point a tangent. We
further assume that these sampled points distribute evenly along
the boundary. By running the compared models 10 times per
test image upon these source points, the average and standard
deviation values of Jaccard scores are obtained. From Table 1, we
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TABLE 2
Quantitative comparison of different models (applied with Scribbles-

and Landmark points-based annotations) by the average and standard
deviation values of Jaccard scores on the Convexity dataset.

Annotations Scribbles Five Landmark Points

Models
JS

Ave. Std. Ave. Std.

Graph-Convexity 85.10% 0.08 71.40% 0.15

RandersGeo 86.71% 0.10 86.95% 0.07

Classical Elastica 88.44% 0.08 90.38% 0.04

Elastica-Convexity 90.66% 0.06 92.17% 0.03

TABLE 3
Quantitative comparison of different models (applied with landmark
points-based annotations) by the average and standard deviation

values of Jaccard scores on the Convexity dataset.

Num. Points Three Points Four Points

Models
JS

Ave. Std. Ave. Std.

RandersGeo 79.94% 0.12 82.56% 0.10

Classical Elastica 81.70% 0.11 86.72% 0.07

Classical Elastica (Edge) 75.86% 0.13 83.20% 0.08

Elastica-Convexity 84.05% 0.10 88.82% 0.05

can see that the proposed model achieve the best performance
in terms of the average values of the scores. Particularly, the
Graph-Convexity and the proposed Elastica-Convexity models
outperform the RandersGeo and classical elastica models in the
synthetic images, because the latter are attracted by non-convex
apparent gaps along the boundary.

The quantitative performance of the proposed Elastica-
Convexity model as shown in Table 1 is indeed promising, but
insufficient to fully access the ability of the proposed models
in finding suitable results under various initial annotations. For
this purpose, we perform the quantitative comparison of the
proposed Elastica-Convexity model to the Graph-Convexity, Ran-
dersGeo and classical elastica geodesic models on the Convexity
dataset [15], under different initial annotations. The comparison
results are presented in Table 2. In the second column of this
table, the scribbles are obtained from the Convexity dataset,
augmented with the external scribbles generated from the source
point p. In this experiment, the geodesic path-based approaches
do not use the exterior scribbles from the Convexity dataset for
the segmentation process, in contrast with the Graph-Convexity
method. For each test image, we sample 5 source points p which
are evenly distributed at the ground truth contour. Each source
point together with the scribbles will produce a JS value, and we
take the average of the obtained 5 JS values as the mean accuracy
score for this test image. The Ave. and Std. values in this table
represent the average and standard deviation of the mean accuracy
scores of all the images in the Convexity dataset. In the third
column of Table 2, the tested models are configured in terms of
landmark points. Similar to the scribbles-based case, we randomly
choose 5 sets of landmark points for each image, where each set
is comprised of 5 points. In addition, we take one point as the
physical position p of the source point, and manually specify the
corresponding angle θp. One can see that in both annotations,
the proposed Elastica-Convexity model obtains the highest mean

accuracy scores among all the tested models.
In Table 3, we show the quantitative comparison with different

geodesic models over the Convexity dataset, using the landmark
points-based annotation for initialization. In this experiment, we
perform the segmentation process using 3 and 4 points, respec-
tively shown in the second and third columns, to configure the
tested models. In a test, the used 3 (or 4) points are chosen as a
subset of the sampled points used in the experiment of Table 2.
Note that the geodesic paths from the model named Classical
Elastica (Edge), relying only on the image gradients, are the initial
curves for the Classical Elastica model. In this table, we also
observe that the proposed Elastica-Convexity model outperforms
the other compared geodesic models, even when using fewer
landmark points.

7.4 Discussion on Computation Times
The computation complexity in our model is dominated by the
estimation of the GMM-based velocity and the running of the
HFM algorithm in the course of the curve evolution. We focus on
the analysis on the HFM algorithm, since the velocity estimation is
embarrassingly parallel and could thus easily be accelerated using
GPU programming. The computation complexity O(IK N lnN)
of the HFM method depends on the number N of discretization
points of the grid, and the number IK of points in the stencil (16).
Practical run times also modestly depend on the test case specific
parameters, such as the such as the relaxation parameter ε > 0
used for the curvature penalized models [31], the profile of the
cost function and walls, and more importantly the use of a narrow
band which constrains the front propagation to a small subregion.
The experiments were conducted on an Intel Core i9 3.6GHz
architecture with 96GB RAM, using a C++ implementation. We
take the image shown in Fig. 1 as an example to report the
execution time, where the size of the grid is 346× 599× 60. The
HFM method associated to the Elastica-Convexity model requires
around 38 seconds for tracking the geodesic path as indicated by
the red line in Fig. 1d. No narrow band was considered in this test,
which relied on a gradients-based velocity. A GPU implementation
of the eikonal solver [47] led to a strong acceleration, and to
running times compatible with user interaction. In the same
example Fig. 1d, computation time is reduced to 2.5 seconds on a
laptop equipped with an Nvidia 2060 Max-Q GPU.

8 CONCLUSION

In this paper, we show the possibility of imposing the convex-
ity shape prior to existing curvature-penalized geodesic mod-
els, known as the Reeds-Sheep forward, Dubins car and Euler-
Mumford elastica models. The expected planar convex contours
are obtained as the physical projections of the geodesic curves
from the proposed geodesic models. We addressed two crucial
issues in order to generate such geodesic curves, including (i)
the construction of new geodesic metrics which admit particular
constraint derived from the convexity shape prior, and (ii) the
design of the set collecting all admissible orientation-lifted curves
whose physical projections satisfy the closedness and simplicity
restriction. Furthermore, we introduced two ways to apply the
proposed geodesic models for interactive image segmentation,
such that the user intervention, involving either landmark points
or scribbles, can be efficiently incorporated in the computation of
geodesic curves. Experimental results on both synthetic and real
images illustrated the advantages of the proposed models, when
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comparing to the graph-based models with convexity shape prior
and state-of-the-art geodesic models.

The future work will be dedicated to the development of more
feasible image segmentation strategies based on the proposed
geodesic models with convexity shape prior, in conjunction with
more complicated image appearance models.

ACKNOWLEDGEMENT

The authors would like to thank the editor and all the reviewers
for their valuable times to review this manuscript.

REFERENCES

[1] T. F. Chan, B. Y. Sandberg, and L. A. Vese, “Active contours without
edges for vector-valued images,” J. Vis. Commun. Image Represent.,
vol. 11, no. 2, pp. 130–141, 2000.

[2] T. F. Chan, S. Esedoglu, and M. Nikolova, “Algorithms for finding global
minimizers of image segmentation and denoising models,” SIAM J. Appl.
Math., vol. 66, no. 5, pp. 1632–1648, 2006.

[3] D. Cremers, M. Rousson, and R. Deriche, “A review of statistical
approaches to level set segmentation: integrating color, texture, motion
and shape,” Int. J. Comput. Vis., vol. 72, no. 2, pp. 195–215, 2007.

[4] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient N-D image
segmentation,” Int. J. Comput. Vis., vol. 70, pp. 109—-131, 2006.

[5] C. Couprie, L. Grady, L. Najman, and H. Talbot, “Power watershed:
A unifying graph-based optimization framework,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 33, no. 7, pp. 1384–1399, 2011.

[6] T. Schoenemann, F. Kahl, S. Masnou, and D. Cremers, “A linear
framework for region-based image segmentation and inpainting involving
curvature penalization,” Int. J. Comput. Vis., vol. 99, no. 1, pp. 53–68,
2012.

[7] N. Y. El-Zehiry and L. Grady, “Contrast driven elastica for image
segmentation,” IEEE Trans. Image Process., vol. 25, no. 6, pp. 2508–
2518, 2016.

[8] W. Zhu, X.-C. Tai, and T. Chan, “Image segmentation using euler’s
elastica as the regularization,” J. Sci. Comput., vol. 57, no. 2, pp. 414–
438, 2013.

[9] R. Prevost, R. Cuingnet, B. Mory, L. D. Cohen, and R. Ardon, “Tagged
template deformation,” in Proc. MICCAI. Springer, 2014, pp. 674–681.

[10] X. Bresson, P. Vandergheynst, and J.-P. Thiran, “A variational model for
object segmentation using boundary information and shape prior driven
by the Mumford-Shah functional,” Int. J. Comput. Vis., vol. 68, no. 2, pp.
145–162, 2006.

[11] T. Chan and W. Zhu, “Level set based shape prior segmentation,” in Proc.
CVPR, vol. 2. IEEE, 2005, pp. 1164–1170.

[12] D. Cremers, F. R. Schmidt, and F. Barthel, “Shape priors in variational
image segmentation: Convexity, lipschitz continuity and globally optimal
solutions,” in Proc. CVPR. IEEE, 2008, pp. 1–6.

[13] D. Chen, J.-M. Mirebeau, and L. D. Cohen, “Finsler geodesics evolution
model for region based active contours,” in Proc. BMVC, 2016.

[14] ——, “Global minimum for a Finsler elastica minimal path approach,”
Int. J. Comput. Vis., vol. 122, no. 3, pp. 458–483, 2017.

[15] L. Gorelick, O. Veksler, Y. Boykov, and C. Nieuwenhuis, “Convexity
shape prior for binary segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 39, no. 2, pp. 258–271, 2016.

[16] O. Veksler, “Star shape prior for graph-cut image segmentation,” in Proc.
ECCV. Springer, 2008, pp. 454–467.

[17] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zisserman,
“Geodesic star convexity for interactive image segmentation,” in Proc.
CVPR. IEEE, 2010, pp. 3129–3136.

[18] L. A. Royer, D. L. Richmond, C. Rother, B. Andres, and D. Kainmueller,
“Convexity shape constraints for image segmentation,” in Proc. CVPR,
2016, pp. 402–410.

[19] L. Gorelick and O. Veksler, “Multi-object convexity shape prior for
segmentation,” in Proc. EMMCVPR. Springer, 2017, pp. 455–468.

[20] H. Isack, O. Veksler, M. Sonka, and Y. Boykov, “Hedgehog shape priors
for multi-object segmentation,” in Proc. CVPR, 2016, pp. 2434–2442.

[21] H. Isack, L. Gorelick, K. Ng, O. Veksler, and Y. Boykov, “K-convexity
shape priors for segmentation,” in Proc. ECCV, 2018, pp. 36–51.

[22] S. Luo, X.-C. Tai, L. Huo, Y. Wang, and R. Glowinski, “Convex shape
prior for multi-object segmentation using a single level set function,” in
Proc. CVPR, 2019, pp. 613–621.

[23] X. Shi and C. Li, “Convexity preserving level set for left ventricle
segmentation,” Magn. Reson. Imaging, vol. 78, pp. 109–118, 2021.

[24] S. Yan, X.-C. Tai, J. Liu, and H.-Y. Huang, “Convexity shape prior
for level set-based image segmentation method,” IEEE Trans. Image
Process., vol. 29, pp. 7141–7152, 2020.

[25] E. Bae, X.-C. Tai, and Z. Wei, “Augmented lagrangian method for
an euler’s elastica based segmentation model that promotes convex
contours,” Inverse. Probl. Imaging, vol. 11, no. 1, pp. 1–23, 2017.

[26] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” Int. J. Comput. Vis., vol. 1, no. 4, pp. 321–331, 1988.

[27] L. D. Cohen and R. Kimmel, “Global minimum for active contour
models: A minimal path approach,” Int. J. Comput. Vis., vol. 24, no. 1,
pp. 57–78, 1997.

[28] J. Melonakos, E. Pichon, S. Angenent, and A. Tannenbaum, “Finsler
active contours,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 3,
pp. 412–423, 2008.
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