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Abstract

Network embedding approaches are gaining momentum to analyse a
large variety of networks. Indeed, these approaches have demonstrated
their efficiency for tasks such as community detection, node classification,
and link prediction. However, very few network embedding methods have
been specifically designed to handle multiplex networks, i.e. networks
composed of different layers sharing the same set of nodes but having
different types of edges. Moreover, to our knowledge, existing approaches
cannot embed multiple nodes from multiplex-heterogeneous networks, i.e.
networks composed of several layers containing both different types of
nodes and edges.

In this study, we propose MultiVERSE, an extension of the VERSE
method with Random Walks with Restart on Multiplex (RWR-M) and
Multiplex-Heterogeneous (RWR-MH) networks. MultiVERSE is a fast and
scalable method to learn node embeddings from multiplex and multiplex-
heterogeneous networks.

We evaluate MultiVERSE on several biological and social networks
and demonstrate its efficiency. MultiVERSE indeed outperforms most of
the other methods in the tasks of link prediction and network reconstruc-
tion for multiplex network embedding, and is also efficient in the task of
link prediction for multiplex-heterogeneous network embedding. Finally,
we apply MultiVERSE to study rare disease-gene associations using link
prediction and clustering.
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MultiVERSE is freely available on github at https://github.com/

Lpiol/MultiVERSE.

Keywords — multi-layer network, multiplex network, heterogeneous net-
work, machine learning, network embedding, network biology, random walks

1 Introduction

Networks are powerful representations to describe, visualize, and analyse complex
systems in many domains. Recently, machine learning techniques started to be
used on networks, but these techniques have been developed for vector data and
cannot be directly applied. A major challenge thus pertains to the encoding of
high-dimensional and graph-based data into a feature vector. Network embedding
(also known as graph representation learning) provides a solution to this challenge
and allows opening the complete machine learning toolbox for network analysis.

The high efficiency of network embedding approaches has been demonstrated
in a wide range of applications such as community detection, node classification,
or link prediction. Moreover, network embedding can leverage massive graphs,
with millions of nodes [42]. Thus, with the explosion of big data, network
embeddings have been used to study many different networks, such as social [58],
neuronal [62] and molecular networks [72].

So far, network embedding approaches have been mainly applied to monoplex
networks (i.e. single networks composed of one type of nodes and edges) [75,
38, 42]. Current technological advances however generate a large spectrum of
data, which form large heterogeneous datasets. By design, monoplex networks
are not suited to represent such diversity and complexity. Multi-layer networks,
including multiplex [51] and multiplex-heterogeneous [91] networks have been
proposed to handle these more complex but richer heterogeneous interaction
datasets.

Multiplex networks are composed of several interaction layers, each layer
being a monoplex network. All the layers share the same set of nodes, but their
edges belong to different categories (Figure 1A). Multiplex representation is
pertinent to depict the diversity of interactions. For instance, in a molecular mul-
tiplex network, the different layers could represent physical interactions between
proteins, their belonging to the same molecular complexes or the correlation of
expression of the genes across different tissues. Analogously, in social multiplex
networks, a person can belong to different network layers describing different
types of relationships, such as friendships or common interests.

A heterogeneous network is a multi-layer network in which each layer is
a monoplex network with its specific type of nodes and edges (Figure 1B).
The two monoplex networks are connected by bipartite interactions, i.e. edges
linking the different types of nodes belonging to the two monoplex networks.
Such heterogeneous networks have been studied in different research fields. For
example, in network medicine, a drug-protein target heterogeneous network
has been constructed with a drug-drug similarity monoplex network, a protein-
protein interaction monoplex network and bipartite interactions between drugs
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and their target proteins [61]. In social science, citation networks are constructed
with author-author and document-document monoplex networks connected by
author-documents bipartite interactions, as in [100].

Heterogeneous and multiplex networks can be combined by connecting several
multiplex networks through bipartite interactions (Figure 1C). The combination
of networks in multiplex and multiplex-heterogeneous structures is expected to
provide a richer view on biological [91], social [2] or other real-world systems
describing complex relations among different components.

Recently, different studies proposed embedding approaches for multiplex
networks [98, 102, 2, 97] and heterogeneous networks [25, 83]. A recent method
uses multiplex-heterogeneous information to embed one category of nodes [28].
However, to our knowledge, no embedding methods are specifically dedicated
to the embedding of multiple nodes from multiplex-heterogeneous networks. In
this paper, we present MultiVERSE to learn node embeddings on multiplex
and multiplex-heterogeneous networks. MultiVERSE is a fast, scalable and
versatile embedding approach, based on the VERSE framework [89], and coupled
with Random Walks with Restart on Multiplex (RWR-M) and on Multiplex-
heterogeneous (RWR-MH) networks [91]. Our contributions are the following:

• In order to test and evaluate multiplex network embedding, we propose an
experimental setup based on 7 datasets (biological and social networks), 6
embedding methods (and 4 additional link prediction heuristics), and two
tasks: link prediction and a new approach based on network reconstruction.

• We demonstrate the higher performance of MultiVERSE over state-of-the-
art network embedding methods in the tasks of link prediction and network
reconstruction for multiplex network embedding.

• We propose, to our knowledge, the first multiplex-heterogeneous network
embedding method (with an embedding of the different types of nodes).

• We propose a method to evaluate multiplex-heterogeneous network embed-
ding on link prediction. We demonstrate the efficiency of MultiVERSE on
this task on two biological multiplex-heterogeneous networks.

• We present a biological application of MultiVERSE for the study of gene-
disease associations using link prediction and clustering.

2 Related work in network embedding

Network embedding relies on two key components: a similarity measure between
pairs of nodes in the original network and a learning algorithm. Given a network
and a similarity measure, the aim of network embedding is to learn a vector
representation of the nodes in a lower dimension space, while preserving as much
as possible the similarity. In the next sections we will present the state-of-the-art
in monoplex, multiplex and multiplex-heterogeneous network embedding.
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Figure 1: In a multiplex network (A), the different layers share the same set of
nodes but different types of edges. In an heterogeneous network (B), the two
networks are composed of different types of both nodes and edges, connected by
bipartite interactions. In a multiplex-heterogeneous network (C), all the layers of
the same multiplex network share the same set of nodes. The different multiplex
networks are connected by bipartite interactions between the two types of nodes.
For the sake of simplicity, the figure does not represent all the possible bipartite
interactions (each layer of a given multiplex is indeed linked with every layer of
the other multiplex).
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2.1 Monoplex network embedding

Many network embedding methods have been recently developed to study a large
variety of networks, from biological to social ones. The classical method deepwalk
[75] inspired a series of methods such as node2vec [38] and LINE (for Large-scale
Information Network Embedding) [87]. Deepwalk uses truncated random walks
to compute the node similarity in the original network. Then, a combination of
the skip-gram learning algorithm [66] and hierarchical softmax [68] is used to
learn the graph representations. Skip-gram is a model based on natural language
processing. It intends to maximize the probability of co-occurrence of nodes
within a walk, focusing on a window, i.e. a section of the path around the node.
Node2vec [38] upgrades deepwalk by introducing negative sampling during the
learning phase [67]. Moreover, node2vec allows biasing the random walks towards
depth or breadth-first random walks, in order to tune the exploration of the
search space. LINE [87] follows a different approach to optimize the embedding:
it computes the node similarity using an adjacency-based proximity measure
in association with negative sampling. Some embedding methods are based on
matrix-factorization, such as GraRep [10] or HOPE [74], and others on deep
neural networks such as graph convolutional networks (GCN) [50].

These embedding methods have been applied to link prediction or node
labelling tasks. Their performance rely upon multiple criteria like the size of
the network, its density, the embedding dimension or the evaluation metrics [37].
Overall, they have been designed to handle monoplex networks. However, we
now have access to a richer representation of complex systems as multiplex net-
works, and some recent methods have explored the embedding of such multiplex
networks.

2.2 Multiplex network embedding

The most straightforward approach to deal with multiplex networks is to merge
the different layers into a monoplex network [7]. However, this approach creates
a new network with its own topology, and loses the topological features of
the individual layers. This new topology is logically biased towards the initial
topology of the denser layers [18]. Different network embedding methods have
been introduced in order to avoid merging multiplex network layers and take
advantage of the multiplex structure [98, 102, 2, 97]. Overall, these approaches
are based on truncated random walks to compute the similarity in the multiplex
network. Ohmnet [102] relies on node2vec [38] and requires the definition of a
hierarchy of layers to model dependencies between the layers. This additional
information is an advantage when the layer hierarchy is known or easy to
establish, but this is not the case for many multiplex networks, such as social
or molecular networks. In 2018, another multiplex network embedding method,
named Scalable Multiplex Network Embedding (MNE), have been developed [98].
This approach is also based on node2vec [38]. For each network node, it extracts
one high-dimensional common embedding shared across all the layers of the
multiplex network. In addition, MNE computes a lower-dimensional embedding
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for every node in each layer of the multiplex network. Another method based on
node2vec is multi-node2vec [97]. In multi-node2vec, the multiplex embedding is
constructed by the random walks jumping from one layer to another. Multi-Net
[2] also proposes a random walks procedure in the multiplex network, inspired
from [39]. Similarly to multi-node2vec, the random walks can jump from one
layer to another. Multi-Net learns the embeddings using stochastic gradient
descent. The performances of Ohmnet [102], Multi-net [2] and MNE [98] have
been compared in the context of network reconstruction [2]. In this task, the
aim is to reconstruct one layer of the multiplex network from the embeddings of
the other layers. The results show better performances for Multi-net on a set of
social and biological multiplex networks [2].

2.3 Multiplex-heterogeneous network embedding

Some methods can perform the embedding of heterogeneous networks [25, 83].
One famous approach is metapath2vec [25]. It extends skip-gram to learn node
embeddings for heterogeneous networks using meta-paths, which are predefined
composite relations between different types of nodes. For instance, in the context
of a drug-protein target heterogeneous network, the meta-path drug-protein
target-drug in the network could bias the random walks to extract the information
related to drug combinations.

Nevertheless, to our knowledge, no approach is specifically dedicated to the
embedding of different types of nodes from multiplex-heterogeneous networks. In
the next section, we present formally MultiVERSE, a new method for multiplex
and multiplex-heterogeneous network embedding relying on VERSE [89] and
coupled with Random Walks with Restart extended to Multiplex (RWR-M) and
Multiplex-Heterogeneous graphs (RWR-MH) [91].

3 MultiVERSE

In this section, we define the key components of MultiVERSE: the VERSE
general framework in the context of multiplex graphs, the learning objective, and
our particular implementation with Random Walk with Restart for Multiplex
networks (RWR-M) and Random Walk with Restart for Multiplex-Heterogeneous
networks (RWR-MH) (Figure 2). We finally describe the MultiVERSE algorithm.

3.1 VERSE: a general framework for network embedding

The aim of VERSE network embedding is to learn a low-dimensional nonlinear
representation wi of the nodes vi to a d-dimensional continuous vector, where
d < n, using Kullback-Leibler optimization [89]. We denote d the dimension of
the embedding space, and n the dimension of the adjacency matrix. VERSE
was originally developed for the embedding of monoplex networks [89]. The
VERSE framework is nevertheless general and versatile enough to be expanded
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to multiplex and multiplex-heterogeneous networks, as shown in the following
sections.

3.1.1 Similarity distributions

Consider an undirected graph G = (V,E) with V = {vi, i = 1, . . . , n} the set of
nodes (|V | = n), and E ⊆ V × V the set of edges, and simG : V × V → R a
given similarity measure on G such that

∀u ∈ V,
∑
u∈V

simG(v, u) = 1 . (1)

Hence, the similarity for any node v is expressed as a probability distribution
simG(v, .). We note wi the vector representation of node i in the embedding
space (W is a (n× d)-matrix).

The (non-normalized) distance or similarity between two nodes embeddings
wu and wv is defined as the dot product wu ·wTv . Using the softmax function, we
obtain the normalized similarity distribution in the embedding or vector space:

simEmb(v, .) =
exp(wv · wT )∑n
i=1 exp(wv · wi)

. (2)

Finally, the output of any network embedding method is a matrix of em-
beddings W such as, ∀v ∈ V , simEmb(v, .): simEmb(v, .) ≈ simG(v, .). This
requires a learning phase, which is described in the next section.

3.1.2 Learning objective

This step updates the embeddings at each iteration in order to project simG into
the embedding space leading to the preservation of the topological structure of
the graph. In the framework of VERSE, as simE and simG are both probability
distributions, this optimization phase aims to minimize the Kullback-Leibler
divergence (KL-divergence) between these two similarities:∑

v∈VM

KL(simG(v, .) ‖ simEmb(v, .)) (3)

We can keep only the parts related to simEmb as it is the target to optimize
and simG is constant. This leads to the following objective function:

L = −
∑
v∈VM

simG(v, .) log(simEmb(v, .)) (4)

simEmb is defined as a softmax function and needs to be normalized over
all the nodes of the graph at each iteration, which is computationally heavy.
Therefore, following the VERSE algorithm [89], we used Noise Contrastive
Estimation (NCE) to compute this objective function [40, 69]. NCE trains a
binary classifier to distinguish node samples coming from the distribution of
similarity in the graph simG and those generated by a noise distribution Q. We

7



define D as the random variable representing the classes, D = 0 for a node if
it has been drawn from the noise distribution Q or D = 1 if it has been drawn
from the empirical distribution and E is the expected value. With u a node
drawn from P and v drawn from simG(u, .), with NCE we draw s < n negative
samples vneg from Q(u).

In this framework, the objective function becomes the negative log-likelihood
that we want to minimize via logistic regression:

LNCE =
∑
u∼P

v∼simG(u,.)

[
logPW (D = 1 | simE(u, v))

+ s.Evneg∼Q(u)logPW (D = 0 | simE(u, ṽ))
] (5)

where PW is computed as the sigmoid (σ(x) = (1 + e−x)−1) of the dot
product of the embeddings wu and wv, and simE(u, .) is computed without
normalization. It has been proven that the derivative of NCE converges to
gradient of cross-entropy when s increases, but in practice small values work
well [69]. Therefore, we are minimizing the KL-divergence from simG.

Overall, VERSE is a general framework for network embedding with the only
constraint that simG must be defined as a probability distribution. In this work,
we computed simG using Random Walks with Restart on Multiplex (RWR-
M) and Random Walks with Restart on Multiplex-Heterogeneous (RWR-MH)
networks [91]. We describe this particular implementation in the next section.

3.2 Random Walk with Restart on Multiplex and Multiplex-
Heterogeneous networks

3.2.1 Random Walk (RW) and Random Walk with Restart (RWR)

Let us consider a finite graph, G = (V,E), with adjacency matrix A. In a
classical RW, an imaginary particle starts from a given initial node, v0. Then,
the particle moves to a randomly selected neighbour of v0 with a probability
defined by its degree. We can define pt(v) as the probability for the random walk
to be at node v at time t. Therefore, the evolution of the probability distribution,
pt = (pt(v))v∈V , can be described as follows:

pTt+1 = MpTt (6)

where M denotes a transition matrix that is the column normalization of A.
The stationary distribution of Equation (6) represents the probability for the
particle to be located at a specific node for an infinite amount of time [60].

Random Walk with Restart (RWR) additionally allows the particle to jump
back to the initial node(s), known as seed(s), with a probability r ∈ (0, 1) at each
step. In this case, the stationary distribution can be interpreted as a measure of
the proximity between the seed(s) and all the other nodes in the graph. We can
formally define RWR by including the restart probability in Equation (6):
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pTt+1 = (1− r)MpTt + rpT0 (7)

The vector p0 is the initial probability distribution. Therefore, in p0, only the
seed(s) have values different from zero. Equation (7) can be solved in a iterative
way [91].

In our previous work, we expanded the Random Walk with Restart algorithm
to Multiplex (RWR-M) and Multiplex-Heterogeneous networks (RWR-MH) [91].
Below, we show how the output of RWR-M and RWR-MH can easily be adapted
to produce simG, the required input for the VERSE framework.

3.2.2 Random Walk with Restart on Multiplex networks (RWR-M)

We define a multiplex graph as a set of L undirected graphs, termed layers, which
share the same set of n nodes [51, 22]. The different layers, α = 1, . . . , L, are
defined by their respective n× n adjacency matrices, A[α] = (A[α](i, j))i,j=1,...,n.
A[α](i, j) = 1 if node i and node j are connected on layer α, and 0 otherwise
[3]. We do not take into account potential self-interactions and therefore set
A[α](i, i) = 0 ∀ i = 1, . . . , n. In addition, we consider that vαi represents the
node i in layer α.

Thus, we can represent a multiplex graph by its adjacency matrix:

A = A[1], . . . , A[L] (8)

and define it as GM = (VM , EM ), where:

VM = {vαi , i = 1, . . . , n, α = 1, . . . , L} ,

EM =
{

(vαi , v
α
j ), i, j = 1, . . . , n, α = 1, . . . , L, A[α](i, j) 6= 0

}⋃
{

(vαi , v
β
i ), i = 1, . . . , n, α 6= β

}
.

RWR-M should ideally explore in parallel all the layers of a multiplex graph
to capture as much topological information as possible. Therefore, a particle
located in a given node, vαi , may be able to either walk to any of its neighbours

within the layer α or to jump to its counterpart node in another layer, vβi with
β 6= α [21]. Additionally, the particle can restart in the seed node(s) on any layer
of the multiplex graph. In order to match these requirements, we previously
defined a multiplex transition matrix and expanded the restart probability vector,
allowing us to apply Equation (6) on multiplex graphs [91].

In this study, we independently run the RWR-M algorithm n times, using
each time a different node as seed. This allows measuring the distance from every
single node to all the other nodes in the multiplex graph. This node-to-node
distance matrix is actually a probability distribution describing the particle
position in the steady state, where

∑
u∈VM

simG(v, u) = 1 ∀ v ∈ VM , therefore
fulfilling the requirements of the VERSE input. We set the RWR-M parameters
to the same values used in our original study (r = 0.7, τ = (1/L, 1/L, . . . , 1/L),
δ = 0.5) [91].
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3.2.3 Random Walk with Restart on Multiplex-Heterogeneous net-
works (RWR-MH)

A heterogeneous graph is composed of two graphs with different types of nodes
and edges. In addition, it also contains a bipartite graph in order to link the
nodes of different type (bipartite edges) [54]. In our previous study [91], we
described how to extend the RWR to a graph which is both multiplex and
heterogeneous. However, this study considered only one multiplex graph in the
multiplex-heterogeneous graph. For the present work, we additionally expanded
RWR-MH to a complete multiplex-heterogeneous graph, i.e. both components
of the heterogeneous graph can be multiplex (Figure 1, C), based on the work of
[27]. Let us consider a L-layers multiplex graph, GM = (VM , EM ), with n× L
nodes, VM = {vαi , i = 1, . . . , n, α = 1, . . . , L}. We also define a second L-layers
multiplex graph, withm×L nodes, UM =

{
uαj , j = 1, . . . ,m, α = 1, . . . , L

}
. We

additionally need a bipartite graph GB = (VM ∪ UM , EB) with EB ⊆ VM × UM .
The edges of the bipartite graph only connect pairs of nodes from the different
sets of nodes, VM and UM . It is to note that the bipartite edges should link nodes
with every layer of the multiplex graphs. We therefore need L identical bipartite

graphs, G
[α]
B = (VM ∪ UM , E[α]

B ) to define the multiplex-heterogeneous graph.
We can then describe a multiplex-heterogeneous graph, GMH = (VMH , EMH),
as:

VMH = {VM ∪ UM}

EMH =
{
∪α=1,...,LE

[α]
B ∪ EVM

∪ EUM

}
In the RWR-MH algorithm, the particle should be allowed to move in any of

the multiplex graphs as described in the RWR-M section. In addition, it may be
able to jump from a node in one multiplex graph to the other multiplex graph
following a bipartite edge. We also have to bear in mind that the particle could
now restart in different types of node(s), i.e. we can have seed(s) of different
category (see Figure 1, C). We accordingly defined a multiplex-heterogeneous
transition matrix and expanded the restart probability vector. This gave us
the opportunity to extent and apply Equation (6) on multiplex-heterogeneous
graphs [91, 27].

In the context of MultiVERSE, we independently run the RWR-MH algorithm
n+m times. In each execution, we select a different seed node until all the nodes
from both multiplex graphs have been used as individual seeds. As a result,
we can define a node-to-node distance matrix matching VERSE input criteria,
i.e
∑
u∈VMH

simG(v, u) = 1 ∀ v ∈ VEM . We set the RWR-MH parameters to
the same values used in the original study (r = 0.7, τ = (1/L, 1/L, . . . , 1/L),
δ = 0.5, λ = 0.5, η = 0.5) [91].

3.3 MultiVERSE algorithm

Algorithm 1 presents the pseudo-code of MultiVERSE based on the random
walks with restart on multiplex and multiplex-heterogeneous networks [91] and
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Figure 2: Overview of MultiVERSE

Kullback-Leibler optimization from the VERSE algorithm [89].
Our implementation of VERSE with NCE is slightly different from the

original one. We perform sequentially first the RWR-M or RWR-MH for all the
nodes of the graphs in order to obtain the similarity distribution simGM

. The
output of this step is the probability matrix p, where pu is the probability vector
representing the similarities between u and all the other nodes. The matrix
of the embedded representation of the nodes, W , is randomly initialized. For
each iteration, from one node u sampled randomly from a uniform distribution
U , we filter the probability vector pu. We keep the Nmax highest probabilities
because the shape of the distribution of probabilities falls very fast to very low
probabilities. Doing so, we can speed up the calculation by filtering out the
lowest probabilities. We normalize this resulting probability vector ṗu, and
sample one node v according to its probability in pu. We set empirically the
parameter Nmax = 300 for large graphs (number of nodes exceeding 5000). For
smaller graphs, we set this parameter to 10%− 20% of the number of nodes of
the graphs, depending on the shape of the distribution. These two steps (lines 6
and 7) were not in the original VERSE. We parallelized the repeat loop (line 4)
and added a parallelized for loop after line 5 in order to run the code from line 6
to 12 in parallel P times. In our simulations, we set P = 100.

Then, we update Wu and Wv according to algorithm 2 by reducing their
distances in the embedding space. We added the bias for NCE: biaspos = log(N)
and biasneg = log(N/s).

Then, s negative nodes are sampled from Q(u) and we update the corre-
sponding embeddings by increasing their distances in the embedding space. The
update can also be seen as the training part with lr as the learning rate of the
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Algorithm 1 MultiVERSE algorithm

1: Input: a multiplex graph, Nmax, s
2: W ← N (0, 1)
3: p← RWR-M(H)(GM )
4: repeat
5: u ∼ U
6: ṗu = Normalize(pu(1, ..., Nmax))
7: vpos ∼ ṗu
8: Wu,Wvpos ← Update(u, vpos, 1, biaspos)
9: for i=1, ... , s do

10: vneg ∼ Q(u)
11: Wu,Wvneg

← Update(u, vneg, 0, biasneg)
12: end for
13: until Maximum step reached

Algorithm 2 Update

1: Input: u, v, D, bias, lr
2: g ← [D − σ(Wu ·Wv − bias)] ∗ lr
3: Wu ← g ·Wv

binary classifier of the NCE estimation as described in equation 5. The whole
process is repeated until the maximum steps are reached.

MultiVERSE is freely available on github at https://github.com/Lpiol/
MultiVERSE.

4 Experimental setup

We propose a benchmark to compare the performance of MultiVERSE and
other embedding methods for multiplex and multiplex-heterogeneous networks.
The performances are evaluated with link prediction for both multiplex and
multiplex-heterogeneous networks, and with network reconstruction for multiplex
networks.

4.1 Evaluation of multiplex network embedding

In the next sections, we describe the datasets, the evaluation tasks and the
methods used for comparison.

4.1.1 Multiplex network datasets

We used 7 multiplex networks (4 biological, 3 social) to evaluate the different
approaches of multiplex network embedding. The networks CKM, LAZEGA,
C.ELE, ARXIV, and HOMO have been extracted from the CoMuNe lab database
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https://comunelab.fbk.eu/data.php. We constructed the other two networks,
DIS and MOL.

• CKM physician innovation (CKM): This multiplex network describes
how physicians in four towns in Illinois used the new drug tetracycline [14].
It is composed of 3 layers corresponding to three questions asked to the
physicians: i) to whom do you usually turn when you need information or
advice about questions of therapy? ii) who are the three or four physicians
with whom you most often find yourself discussing cases or therapy in the
course of an ordinary week – last week for instance? iii) would you tell me
the first names of your three friends whom you see most often socially?

• Lazega network (LAZEGA): This multiplex social network is composed
of 3 layers based on co-working, friendship and advice between partners
and associates of a corporate law partnership [29].

• Caenorabidis Elegans connectome (C.ELE): This is a neuronal mul-
tiplex network composed of 3 layers corresponding to different synaptic
junctions [11, 20]: electrical, chemical poladic and chemical monadic.

• ArXiv network (ARXIV): This multiplex network is composed of 8
layers corresponding to different ArXiv categories. The dataset has been
restricted to papers with ’networks’ in the title or abstract, up to may
2014 [19]. The original data from the CoMuNe Lab database is divided in
13 layers. We extracted the 8 layers (1-2-3-5-6-8-11-12) having more than
1000 edges.

• Disease multiplex network (DIS): We constructed a disease multiplex
network composed of 3 layers: i) A disease-disease network based on a
projection of a disease-drug network from the Comparative Toxicogenomics
Database (CTD) [16] extracted from BioSNAP [103]. In this network, an
edge between two diseases is created if the Jaccard Index between the
neighborhoods of the two nodes in the original bipartite network is superior
to 0.4. Two diseases are thereby linked if they share a similar set of drugs.
This projection has been done using NetworkX [41]. ii) A disease-disease
network where the edges are based on shared symptoms. The network has
been constructed from the bipartite disease-symptoms network from [101].
Similarly to [101], we use the cosine distance to compute the symptom-based
diseases similarity for this network. We kept for the disease-disease network
all interactions with a cosine distance superior to 0.5 iii) A comorbidity
network from epidemiological data extracted from [45].

• Homo sapiens network (HOMO): We collected 4 layers from the
original network on CoMuNe Lab [20], keeping physical association, direct
interaction, association and co-localization layers. The data are initially
extracted from BioGRID [85]

• Human molecular multiplex network (MOL): We also constructed
another molecular network composed of 3 layers: i) A protein-protein inter-
action (PPI) layer corresponding to the fusion of 3 datasets: APID (apid.
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Dataset Layers Nodes Edges

CKM
1 215 449
2 231 498
3 228 423

LAZEGA
1 71 717
2 69 399
3 71 726

C.ELE
1 253 514
2 260 888
3 278 1703

ARXIV

1 1558 3013
2 5058 14387
3 2826 6074
4 1572 4423
5 3328 7308
6 1866 4420
7 1246 1947
8 4614 11517

DIS
1 3891 117527
2 4155 101104
3 434 3137

HOMO

1 12345 48528
2 14770 83414
3 1626 1953
4 5680 18381

MOL
1 14704 122211
2 7926 194500
3 8537 63561

Table 1: Description of the multiplex networks datasets

dep.usal.es) (Level 2, human only), Hi-Union and Lit-BM (http://www.
interactome-atlas.org/download). ii) A pathways layer extracted from
NDEx [77] and corresponding to the human Reactome data [15]. iii) A
molecular complexes layer constructed from the fusion of Hu.map [26] and
Corum [34], using OmniPathR [90].

The number of nodes and edges of the different layers composing these
multiplex networks are detailed in table 1.

4.1.2 Methods for comparison

We compare MultiVERSE with 6 methods designed for monoplex network
embedding (deepwalk, node2vec, LINE) and multiplex network embedding
(Ohmnet, MNE, Multi-node2vec), and 4 link prediction heuristic scores (in the
link prediction task).
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Network embedding methods

• deepwalk [75]: This method is based on non-biased random walks, and
apply the skip-gram algorithm [66] to learn the embeddings. We set the
context window to 10, and the number of random walks to start at each
node to 10.

• node2vec [38]: This method is an extension of deepwalk with a pair
of parameters p and q that will bias the random walks for Breadth-first
Sampling or Depth-first Sampling. We set p = 2 and q = 1 to promote
moderate explorations of the random walks from a node, as stated in [38],
and the other parameters as for deepwalk.

• LINE [87]: LINE is not based on random walks, but computes the simi-
larities using an adjacency-based proximity measure in association with
negative sampling. It approximates the first and second order proximities
in the network from one node. First order proximity refers to the local
pairwise proximity between the vertices in the network (only neighbours),
and second order proximity look for nodes sharing many connections. We
set the negative ratio to 5.

• OhmNet [102]: This approach takes into account the multi-layer structure
of multiplex networks. It is a random walk-based method that uses
node2vec to learn the embeddings layer by layer. We applied the same
parameters as in node2vec. The user has to define a hierarchy between
layers. We created a 2-level hierarchy for all multiplex networks, in the
same way as [2].

• MNE [98]: This method is also designed for multiplex networks and uses
node2vec to learn the embeddings layer by layer. For each node, MNE
computes a high-dimensional common embedding and a lower-dimensional
additional embedding for each type of relation of the multiplex network.
The final embedding is computed using a weighted sum of these two
high-dimensional and low-dimensional embeddings. We used the default
parameters.

• Multi-node2vec [97]: This multiplex network embedding method is also
based on node2vec. The random walks can jump to different layers and
explore in this way the multiplex neighborhood. The length of the random
walks is set to 100.

We used OpenNE (https://github.com/thunlp/OpenNE) to implement
deepwalk, node2vec and LINE. The other methods have been implemented
from the source code associated to the different publications.

Link prediction heuristics

In order to evaluate the relevance of the aforementioned network embedding
methods, we also compared them with four classical and straightforward link
prediction heuristic scores for node pairs [38]. Table 2 provides formal definitions
of these heuristic scores.
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Score Definition

Jaccard Coefficient (JC) |N (u)∩N (v)|
|N (u)∪N (v)|

Common neighbours (CN) |N (u) ∩N (v)|
Adamic Adar (AA)

∑
t∈|N (u)∩N (v)|

1
log |N (t)|

Preferential attachment (PA) |N (u)|.|N (v)|

Table 2: Link prediction heuristic scores defined in terms of neighborhood for
two nodes u and v. We denote N (u) the set of neighbour nodes of node u ∈ V
in the graph G(V,E)

4.1.3 Evaluation tasks

We evaluate the different methods on multiplex networks by measuring their
performances in two different tasks: link prediction and network reconstruction.
For all the evaluations, we set the embedding dimension to d = 128 as in
[38, 102, 75], and used the package EvalNE v0.3.1 [63].

From node embeddings to edge predictions

MultiVERSE and the other embedding methods allow learning vector represen-
tations of nodes from networks. We aim here to test their performance on link
prediction and network reconstruction. We hence need to predict whether an
edge exists between every pairs of node embeddings. To do so, given two nodes
u and v, we define an operator ◦ over the corresponding embeddings f(u) and
f(v). This gives a representation g : V × V → Rd, with d the dimension of the
embeddings, V the set of nodes and g(u, v) = f(u) ◦ f(v). Our test set contains
both true and false edges (present and absent edges, respectively). We apply
five different operators ◦: Hadamard, Average, Weighted-L1, Weighted-L2 and
Cosine (Table 3)).

The outputs of the embedding operators are used to feed a binary classifier
for the evaluation tasks. This classifier aims to predict if there is an edge or not
between two nodes embeddings. Similarly, we use the output of the four link
prediction heuristic scores described in Table 2 with a binary classifier to predict
edges in a multiplex network.

Link prediction

We first evaluate the performance of the different methods to predict correctly
edges removed from the original multiplex networks (Figure 3). We remove 30%
of the links in each layer of the original networks. We applied the Andrei Broder
algorithm [8] in order to randomly select the links to be removed while keeping a
connected graph in each layer. This step provides the multiplex training network,
to which we apply the 3 categories of methods (see Figure 3):

• The methods specifically designed for monoplex network embedding (node2vec,
deepwalk and LINE) are applied individually on each layer of the multiplex
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Operators Symbol Definition

Hadamard � [f(u) � f(v)]i = fi(u)∗fi(v)
2

Average � [f(u) � f(v)]i = fi(u) + fi(v)
Weighted-L1 ‖ . ‖1 ‖ fi(u).fi(v) ‖1 i =| fi(u)− fi(v) |
Weighted-L2 ‖ . ‖2 ‖ fi(u).fi(v) ‖2 i =| fi(u)− fi(v) |2

Cosine cos cos[f(u), f(v)]i = fi(u)∗fi(v)
‖fi(u)‖‖fi(v)‖

Table 3: Embedding operators used to predict edges in the tasks of link prediction
and network reconstruction. The definitions describe the ith components of
g(u, v).

networks. We thereby obtain one embedding per layer and average them
(arithmetic mean) in order to obtain a single embedding for each node.
We then apply the embedding operators. We refer to these approaches
in the results section as node2vec-av, deepwalk-av and LINE-av. gned
for multiplex network embedding (Ohmnet, MNE, Multi-node2vec) are
applied directly on the training multiplex network. We then apply the
embedding operators.

• The link prediction heuristic scores JC, CN, AA and PA are applied
individually on each layer of the multiplex networks. We then average the
scores, as JC-av, CN-av, AA-av, and PA-av.

From the outputs of the embedding operators and heuristic scores, we feed
and train a binary classifier and then test it on the 30% of test edges that have
been removed previously. The binary classifier is a logistic regressor.

The evaluation metrics for link prediction is ROC-AUC as it is commonly used
for embedding evaluation on link prediction and to validate network embedding
[98, 38].The ROC-AUC is computed as the area under the ROC curve, which
plots the true positive rate (TPR) against the false positive rate (FPR) at various
threshold settings. An AUC value of 1 represent a model that classifies perfectly
the samples.

Network reconstruction

Network reconstruction is another approach to evaluate network embedding
methods [95, 2, 36]. In this case, the goal is to quantify the amount of topological
information captured by the embedding methods. This is equivalent to predict
if we can go back from the embedding to the original adjacency matrix of each
layer of the multiplex graph.

Theoretically, to reconstruct the networks, one would need to apply link
prediction to every possible edge in the graphs. This is however in practice not
scalable to large graphs. Indeed, it would correspond to n(n − 1)/2 potential
edges to classify (for undirected networks of n nodes without self-loops). In
addition, the networks in our study are sparse, with much more false (absent)
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Figure 3: General approach for link prediction on multiplex networks

than true (present) edges, leading to large class imbalance. In this context,
ROC-AUC can be misleading, as large changes in the ROC Curve or ROC-AUC
score can be caused by a small number of correct or incorrect predictions [30].
In order to account for class imbalance, we used the precision@K [95]. This
evaluation metric is based on the sorting in descending order of all predictions
and consider the first K best predictions to evaluate how many true edges (the
minority class) are predicted correctly by the binary classifier. From the outputs
of the embedding operators, we perform network reconstruction by training a
binary classifier on a subset of the original networks (Figure 4). We choose a
subset of 95% of the edge pairs from the original adjacency matrix of each layer
for the smaller multiplex networks (CKM, LAZEGA and C.ELE) to construct
the training graph. As the class imbalance increases with the number of nodes
and sparsity of the networks, we choose smaller subsets for the largest networks,
respectively 5% of edges for the ARXIV network and 2.5% for the other networks,
as in previous publications [36, 95]. For each layer, K is defined as the maximum
of true edges in this subset of edge pairs. We use a Random Forest algorithm as
a binary classifier for network reconstruction, as it is known to be less sensitive
to class imbalance [71]. In network reconstruction, the results correspond to the
training phase of the classifier, there is no test phase.

4.2 Evaluation of multiplex-heterogeneous network embed-
ding

4.2.1 Multiplex-heterogeneous network datasets

• Gene-disease multiplex-heterogeneous network: We use the two
multiplex networks presented in the previous sections: the disease (DIS)
and molecular multiplex networks (MOL) (Table 1). In addition, we
extracted the curated gene-disease bipartite network from the DisGeNET
database [76] in order to connect the two multiplex networks. This bipartite

18



Figure 4: Network reconstruction.

interaction network contains 75445 interactions between 5188 diseases and
9179 genes. We obtain a multiplex-heterogeneous network, as represented
in Figure 1C.

• Drug-target multiplex-heterogeneous network: We use the same
molecular multiplex network (MOL) from the previous multiplex-heterogeneous
network. We constructed the following 3-layers drug multiplex network: (i)
the first layer (2795 edges, 877 nodes) has been extracted from Bionetdata
(https://rdrr.io/cran/bionetdata/man/DD.chem.data.html) and the
edges correspond to Tanimoto chemical similarities between drugs if supe-
rior to 0.6, (ii) the second layer (678 edges, 362 nodes) comes from [12]
and the edges are based on drug combinations as reported in clinical data,
(iii) the third layer (13397 edges, 658 nodes) is the adverse drug–drug
interactions network available in [12]. The drug-target bipartite network
has been extracted from the same publication [12], and contains 15030
bipartite interactions between 4412 drugs and 2255 protein targets.

4.2.2 Evaluation task

We validate the multiplex-heterogeneous network embedding using link pre-
diction. We remove randomly 30% of the edges but only from the bipartite
interactions to obtain a training graph. We then train a Random Forest on the
training graph, and test on the 30% removed edges. Based on the multiplex-
heterogeneous networks described previously, the idea behind this evaluation is
to test if we can predict gene-disease and drug-gene links. However, compar-
isons with other approaches are not possible as, to our knowledge, no existing
multiplex-heterogeneous network embedding method are currently available in
the literature.
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4.3 Case study: discovery of new gene-disease associa-
tions

Link prediction

Our aim for this case-study is to predict new gene-disease links. We thereby
applied MultiVERSE on the full gene-disease multiplex-heterogeneous network
without removing any edges, and trained a binary classifier (Random Forest)
using edges from the bipartite interactions. Then, we test all possible gene-disease
edges that are not in the original bipartite interactions and involve Progeria
and Xeroderma pigmentosum VII diseases. Finally, we select the top 5 new
gene-disease associations for each disease.

Clustering

We also applied MultiVERSE to the gene-disease multiplex-heterogeneous gene-
disease network, followed by spherical K-means [9] to cluster the vector represen-
tations of nodes. K-means clustering is an approach based on cosine similarity
and well-adapted to high-dimensional clustering [99]. We define the number of
clusters for spherical K-means to 350, in order to obtain cluster sizes that can
be analysed from a biological point of view.

5 Results

5.1 Evaluation results for multiplex network embeddings

5.1.1 Link prediction

We evaluate the performance of the different methods (link prediction heuristics
and network embedding) on the task of link prediction applied to the set of
multiplex networks. First, we can observe that the heuristics are not efficient for
link prediction, with ROC-AUC only slightly better than random classification
(Table 4).

The methods based on embedding always perform better than these baselines.
In addition, the ROC-AUC is in most of the cases higher when the models take
into account the multiplex network structure rather than the monoplex-average,
as observed in [98]. For instance, using the Hadamard operator, the ROC-
AUC average over all the networks of the three monoplex-average approaches
(node2vec-av, deepwalk-av, LINE-av) is 0.8025, whereas the average of the three
multiplex-based approaches (Ohmnet, MNE, Multi-node2vec) is 0.8381. The
ROC-AUC score average of MultiVERSE in this context is 0.9011. Nevertheless,
node2vec-av and deepwalk-av perform very well and even outperform multiplex-
based approaches on various scenarios, for instance on the C.ELE and ARXIV
networks.

MultiVERSE combined with the Hadamard operator outperforms the other
methods for all the tested networks but CKM. In addition, MultiVERSE is
the best approach when combined with three out of five operators (Hadamard,
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Operators Method CKM LAZEGA C.ELE ARXIV DIS HOMO MOL

Link prediction heuristics

CN-av 0.4944 0.6122 0.5548 0.5089 0.5097 0.5113 0.5408
AA-av 0.4972 0.6105 0.549 0.5081 0.5428 0.5112 0.5404
JC-av 0.4911 0.523 0.5424 0.5113 0.5425 0.5113 0.5433
PA-av 0.5474 0.6794 0.5634 0.5139 0.496 0.5185 0.5278

Hadamard

node2vec-av 0.7908 0.6372 0.8552 0.9775 0.9093 0.8638 0.8753
deepwalk-av 0.7467 0.6301 0.8574 0.9776 0.9107 0.8638 0.8763
LINE-av 0.5073 0.4986 0.5447 0.8525 0.9013 0.8852 0.8918

Ohmnet 0.7465 0.7981 0.833 0.9605 0.9333 0.9055 0.8613
MNE 0.5756 0.6356 0.794 0.9439 0.9099 0.8313 0.8736
Multi-node2vec 0.8182 0.7884 0.8375 0.9581 0.8528 0.8592 0.8835

MultiVERSE 0.8177 0.8269 0.8866 0.9937 0.9401 0.917 0.9259

Weighted-L1

node2vec-av 0.7532 0.737 0.8673 0.9738 0.885 0.6984 0.7976
deepwalk-av 0.7226 0.7094 0.8635 0.9751 0.8888 0.7142 0.8089
LINE-av 0.6091 0.5776 0.6192 0.7539 0.8586 0.7439 0.7792

Ohmnet 0.7421 0.7849 0.8128 0.8488 0.8503 0.7007 0.6983
MNE 0.6289 0.6523 0.8019 0.7805 0.8313 0.7619 0.8182
Multi-node2vec 0.8611 0.8089 0.8261 0.9659 0.8628 0.8472 0.8997

MultiVERSE 0.7043 0.7789 0.7516 0.8647 0.7754 0.683 0.7273

Weighted-L2

node2vec-av 0.7556 0.6851 0.8691 0.9743 0.8867 0.7048 0.8028
deepwalk-av 0.7221 0.6904 0.864 0.9771 0.8891 0.7145 0.813
LINE-av 0.5851 0.5756 0.6275 0.7609 0.8621 0.7429 0.7835

Ohmnet 0.7505 0.7788 0.8166 0.8439 0.8599 0.7041 0.6992
MNE 0.601 0.5397 0.7999 0.7815 0.8333 0.7483 0.8122
Multi-node2vec 0.8637 0.8091 0.8282 0.968 0.8675 0.8525 0.9004

MultiVERSE 0.7125 0.7801 0.7441 0.8661 0.7808 0.6918 0.7475

Average

node2vec-av 0.59 0.6596 0.6842 0.6615 0.8256 0.8308 0.777
deepwalk-av 0.5954 0.657 0.6784 0.6582 0.8267 0.8307 0.7737
LINE-av 0.5465 0.6581 0.6699 0.6465 0.8477 0.8653 0.8276

Ohmnet 0.5764 0.656 0.7334 0.6772 0.8533 0.8825 0.7962
MNE 0.5882 0.6615 0.7028 0.6723 0.8242 0.8024 0.783
Multi-node2vec 0.5571 0.6584 0.7365 0.6657 0.8222 0.8216 0.7589

MultiVERSE 0.5963 0.6728 0.7438 0.6752 0.8586 0.8643 0.812

Cosine

node2vec-av 0.7805 0.7335 0.8515 0.9711 0.8643 0.7368 0.8105
deepwalk-av 0.7465 0.7066 0.8416 0.9724 0.8667 0.7512 0.8079
LINE-av 0.545 0.5126 0.5477 0.8198 0.7409 0.6745 0.816

Ohmnet 0.7898 0.7352 0.8094 0.9642 0.859 0.7829 0.7909
MNE 0.6203 0.6506 0.7877 0.8951 0.8347 0.6474 0.8102
Multi-node2vec 0.8532 0.7931 0.7815 0.9435 0.7151 0.8477 0.8884

MultiVERSE 0.8148 0.8171 0.8719 0.9909 0.8775 0.8776 0.9103

Table 4: ROC-AUC scores for link prediction on the 7 reference multiplex
networks, for link prediction heuristics (CN-av, AA-av, JC-av, PA-av) and
network embedding methods combined with different operators (Hadamard,
Weighted-L1, Weighted-L2, Average, and Cosine). For each network, the best
score is in bold; for each operator, the best scores are underlined.

Average, Cosine). These results suggest that RWR-M is able to better capture
the topological features of the networks under study.

5.1.2 Network reconstruction

We next evaluate the performances of the different embedding methods on the
task of network reconstruction applied to multiplex networks. As described
in section 4.1.3, we now rely on the evaluation metric, precision@K. The
experimental results are shown in Table 5.
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On one hand, for the small networks (i.e., CKM, LAZEGA and C.ELE),
the best precision is achieved with LINE-av in combination with any of the
operators but Cosine. In particular, LINE-av obtains a perfect score for the
CKM network using the Weighted-L2 or Hadamard operators. MNE is in second
position with more than 99% of precision using the Weighted-L1 or Weighted-L2
operators. LINE-av also presents good performances for the C.ELE network
with a precision of 93.67% using the Weighted-L2 operator, almost 20% higher
than the second best method on this network (Multi-node2vec with a score of
0.7568 using the Weighted-L2 operator).

On the other hand, we can group together the results obtained for the large
networks (DIS, ARXIV, HOMO and MOL). In this case, MultiVERSE achieves
the best performance in combination with different operators. Large networks
are sparse, leading to high class imbalance (4.1.3). Still, MultiVERSE achieves
a good score for the HOMO and DIS networks, with precision@K of 0.8729 and
0.6784, respectively. The precision obtained on the molecular network (MOL) is
the lowest, with a precision@K of 0.4143. The complexity of the task is possibly
higher as the number of nodes and class imbalance increase.

Overall, the lowest scores are obtained by MNE and, in general, the Cosine
operator performs poorly for all methods. The network reconstruction process
is a complex task, and the performance depends on the size and density of the
different layers composing the multiplex network. Nevertheless, MultiVERSE
obtains good results for most of the networks without any processing of the
imbalanced data.

5.2 Evaluation results for multiplex-heterogeneous network
embedding

The task of link prediction on multiplex-heterogeneous networks is applied to
MultiVERSE only, as to our knowledge no other methods exist for the embedding
of multiple nodes from multiplex-heterogeneous networks. MultiVERSE has a
score of ROC-AUC superior to 0.9 with the Hadamard and Average operators
(Table 6), meaning that the method can predict with high precision the gene-
disease and drug-disease links from the corresponding multiplex-heterogeneous
networks.

5.3 Case study results: discovery of new gene-disease as-
sociations

5.3.1 Discovery of new gene-disease associations with link prediction

The results of the evaluations on multiplex-heterogeneous network link prediction
show that MultiVERSE combined with the Hadamard and Average operators
reach ROC-AUC scores superior to 0.9 (Table 6). We here investigate in detail
the top 5 new gene-disease associations predicted by MultiVERSE combined
with these operators for Hutchinson-Gilford Progeria Syndrome (HGPS) and
Xeroderma pigmentosum VII (Table 7) .
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Operators Method
CKM
(95%)

LAZEGA
(95%)

C.ELE
(95%)

ARXIV
(5%)

DIS
(2,5%)

HOMO
(2,5%)

MOL
(2.5%)

Hadamard

node2vec-av 0.6764 0.9174 0.4526 0.8207 0.5578 0.7599 0.2989
deepwalk-av 0.6564 0.9351 0.4416 0.7886 0.5486 0.7636 0.3164
LINE-av 1.0 0.9924 0.8924 0.8204 0.4955 0.5191 0.4006

Ohmnet 0.7842 0.8334 0.5329 0.9156 0.4811 0.6979 0.2591
MNE 0.9505 0.9094 0.2728 0.7891 0.4218 0.3641 0.1316
Multi-node2vec 0.8352 0.8811 0.6875 0.8605 0.6063 0.7584 0.3123

MultiVERSE 0.9687 0.9695 0.7436 0.9015 0.6734 0.8729 0.3674

Weighted-L1

node2vec-av 0.5923 0.9494 0.5129 0.6922 0.5859 0.8123 0.3194
deepwalk-av 0.5791 0.9784 0.4896 0.6878 0.5921 0.7984 0.3206
LINE-av 0.9985 0.9953 0.9229 0.7837 0.4921 0.6839 0.3586

Ohmnet 0.7355 0.8581 0.5785 0.8771 0.6025 0.8019 0.3769
MNE 0.9926 0.975 0.4722 0.8593 0.4377 0.5241 0.1861
Multi-node2vec 0.8636 0.9235 0.7379 0.7684 0.6356 0.7649 0.2671

MultiVERSE 0.8545 0.9638 0.7444 0.8705 0.6678 0.7913 0.3559

Weighted-L2

node2vec-av 0.5886 0.9436 0.5097 0.6983 0.5953 0.8193 0.352
deepwalk-av 0.5829 0.9672 0.5146 0.6877 0.5857 0.805 0.3233
LINE-av 1.0 0.9962 0.9367 0.7749 0.4945 0.6697 0.392

Ohmnet 0.7418 0.8687 0.5724 0.8694 0.6209 0.8143 0.3701
MNE 0.9926 0.9764 0.4646 0.8818 0.4351 0.5529 0.176
Multi-node2vec 0.8644 0.93 0.7568 0.7548 0.6361 0.7896 0.2922

MultiVERSE 0.8653 0.969 0.754 0.8776 0.6784 0.7876 0.3701

Average

node2vec-av 0.8408 0.917 0.4817 0.889 0.5587 0.6809 0.2686
deepwalk-av 0.8331 0.9379 0.501 0.8853 0.5318 0.6714 0.2795
LINE-av 0.9855 0.9382 0.7103 0.8725 0.5093 0.5677 0.3244

Ohmnet 0.9412 0.8287 0.5825 0.906 0.4989 0.6551 0.2887
MNE 0.9179 0.9151 0.2966 0.7146 0.4175 0.352 0.1444
Multi-node2vec 0.9767 0.8937 0.6726 0.9498 0.6243 0.6216 0.2901

MultiVERSE 0.978 0.9059 0.5326 0.9758 0.6316 0.7204 0.4143

Cosine

node2vec-av 0.5103 0.4936 0.18 0.2537 0.1825 0.116 0.0441
deepwalk-av 0.4807 0.4776 0.1741 0.2835 0.1854 0.1036 0.0462
LINE-av 0.3291 0.4974 0.1867 0.2638 0.2384 0.1476 0.0454

Ohmnet 0.5696 0.509 0.1718 0.2655 0.1984 0.1311 0.044
MNE 0.3169 0.4536 0.1768 0.2445 0.1957 0.1667 0.044
Multi-node2vec 0.5127 0.52 0.186 0.273 0.195 0.1032 0.0461

MultiVERSE 0.6395 0.5026 0.1818 0.254 0.1983 0.1522 0.0474

Table 5: precision@K scores for network reconstruction on the 7 reference
multiplex networks, for the network embedding methods combined with different
embeddings operators (Hadamard, Weighted-L1, Weighted-L2, Average, and
Cosine). For each network, the best score is in bold; for each operator, the
best score is underlined. The percentage of edges used for the reconstruction is
indicated under the name of the network.

Hutchinson-Gilford Progeria Syndrome

HGPS is a rare genetic disease characterized by postnatal growth retardation,
midface hypoplasia, micrognathia, premature atherosclerosis, coronary artery
disease, lipodystrophy, alopecia and generalized osteodysplasia [23]. HGPS is
caused by mutations in the LMNA genes that cause the production of a toxic
form of the Lamin A protein called Progerin.
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Operators Gene-Disease Bipartite Drug-target Bipartite

Hadamard 0.9117 0.9235
Weighted-L1 0.8183 0.7057
Weighted-L2 0.8172 0.7056

Average 0.9413 0.9308
Cosine 0.6727 0.8016

Table 6: ROC-AUC scores for link prediction using MultiVERSE on 2 multiplex-
heterogeneous reference networks. Link predictions are computed for the bipartite
interactions of the multiplex-heterogeneous networks. The scores higher than
0.9 are highlighted in bold.

HGPS Xeroderma p. VII

Average Hadamard Average Hadamard

NOS2 IGKV1-16 PTEN NOS2
IDH3B CAPZB TP53 MTHFR
TNF NOS2 SOD1 ERCC2

HYAL2 HSPB1 IFNG FOXC1
KRAS CDC42BPB POMC GUCA2A

Table 7: Top 5 predictions of new gene-disease associations for HGPS and
Xeroderma pigmentosum VII by MultiVERSE combined with Average and
Hadamard operators.

MultiVERSE top predictions reveal interesting candidate genes, including
NOS2, TNF, KRAS, CDC42BPB, and HSPB1. NOS2 is predicted by both
operators. It encodes a nitric oxide synthase expressed in liver. It has been
associated with longevity [70]. TNF is a member of the tumor necrosis factor
superfamily, and produces a multifunctional proinflammatory cytokine. TNF
is also known to be involved in aging [17] and has been previously linked to
Progeria [73]. KRAS is an oncogene of the RAS family, and, as LMNA, it is
farnesylated [6]. CDC42BPB produces a serine/threonine protein kinase, and is
a downstream effector of CDC42. CDC42BPB is linked to Myotonic Dystrophy
[56], which presents some progeroid features [65]. This gene has also been recently
related to a neurodevelopmental disorder associated to hypolasia [13], one of the
major phenotype of HGPS. Finally, HSPB1 encodes a small heat shock protein
involved in stress resistance and actin organization [49]. HSPB1 is also linked to
Charcot-Marie Tooth disease [43], as LMNA [4].

Xeroderma pigmentosum VII

Xeroderma Pigmentosum (XP) is characterized by extreme sensitivity to sunlight,
resulting in sunburns, pigment changes in the skin and a greatly elevated incidence
of skin cancers. It is a genetically heterogeneous autosomal recessive disorder.
Several types exist, and the MeSH term Xeroderma pigmentosum VII corresponds
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to the group G, caused by mutations in the ERCC5 gene, and with symptoms
that overlap Cockayne syndrome [52, 93].

MultiVERSE identified various interesting candidates for this disease (Table
7). PTEN is a tumor suppressor mutated in a large number of cancers. It
has been linked to melanoma and XP [64]. TP53 also a tumor suppressor and
is related to many cancers, in particular skin cancers [33]. It has also been
associated to XP [81]. IFNG encodes a cytokine that is a part of the type II
interferon class. Altered immune reactivity has been shown in XP patients,
and the production of interferon-gamma in peripheral blood cells is impaired in
the absence of UV exposure for XP patients [31]. The gene SOD1 encodes the
superoxide dismutase, which has the function to destroy free superoxide radicals.
SOD1 has been associated to spontaneous skin damage and delays wound healing
in SOD1-deficient mices [44]. ERCC2 produces the XPD protein, involved in
XP group D [88]. FOXC1 is a member of Forkhead box family transcription
factor. It is a DNA binding transcriptional factor that is involved in a wide
range of cellular and developmental processes including skin development [5].
In addition, FOXC1 is involved in melanoma [96], one of the major phenotypes
of XP. POMC encodes a protein called Pro-opiomelanocortin, also related to
melanoma [82].

5.3.2 Discovery of new gene-disease associations with clustering

Another illustration of the multiplex-heterogeneous network embedding is cluster-
ing. To this goal, we identify clusters with K-means (see section 4.3), and focus
more particularly on the clusters containing HGPS and Xeroderma pigmentosum
VII disease nodes. Clustering is particularly interesting as it can be applied
directly on the embeddings without supervised training. This is also in line with
the results from [72] where clustering from embeddings outperforms the other
methods for the detection of biological communities.

Cluster containing the HGPS disease node

The cluster containing the HGPS disease node (see Figure 5) contains the LMNA
gene node. LMNA mutations have been observed in many different diseases
that also belong to the identified cluster, for example the Heart-hand syndrome
(Slovenian type)[79], the Charcot-Marie-Tooth disease type I [24], LMNA-related
muscular distrophy, and different cardiac diseases related to LMNA mutations
[92].

We also analysed the list of genes in the cluster with g:Profiler ([78], default
parameters). We found significant enrichments in several annotations related to
cardiac functions, such as regulation of heart rate and contraction. The most
significant enrichment is cardiac muscle contraction and involves the following
genes: GAA, NOS1AP, PLN, RYR2, SCN1B, SCN4B, SCN5A, TNNT2, and
CASQ2. In HGPS, death occurs typically as a result of cardiac or cerebrovascular
complications [35].
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Figure 5: Cluster containing the HGPS disease node. Disease-Disease edges from
the disease multiplex network are represented in green (shared symptoms) and
blue (CTD projection). Gene-Gene edges from the molecular multiplex network
are represented in pink (Reactome pathways), red (protein-protein interactions)
and orange (molecular complexes). Gene-Disease bipartite interactions are
represented with black dashed lines.

Cluster containing the Xeroderma pigmentosum VII disease node

We also analysed the cluster containing the Xeroderma pigmentosum VII disease
node (Figure 6). The cluster contains different diseases, including sunburns,
Xeroderma pigmentosum type IV, trichothiodystrophies and Pena-Shokeir syn-
drome. All these diseases have been previously related to Xeroderma phenotypes
[52, 53, 48].

Several genes known for their implications in XP are present in the cluster,
such as ERCC1 to ERCC6 or XPC [86]. Using the complete list of genes in the
cluster as an input for g:Profiler ([78], default parameters), we identified several
significantly enriched annotations. Among them, we can cite nucleotide-excision
DNA repair or response to ultraviolet radiation. XP patients show important
impairments in these biological processes [52].

CD151 is another gene of interest. It has no edges with the genes known to be
mutated in XP, but has been shown to be involved in skin repair [32], squamous
cell carcinoma [57] and is essential for the correct assembly of human basement
membranes in kidney and skin [47]. In addition, CD151 could be involved in
inner ear development [47]. Xeroderma is associated to inner ear malfunction
[94].
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Figure 6: Cluster containing the Xeroderma pigmentosum VII disease node.
Disease-Disease edges from the disease multiplex network are represented in
blue (CTD projection). Gene-Gene edges from the molecular multiplex network
are represented in pink (Reactome pathways), red (protein-protein interactions)
and orange (molecular complexes). Gene-Disease bipartite interactions are
represented with black dashed lines.

6 Discussion and conclusion

We present in this study MultiVERSE, a new approach for multiplex and
multiplex-heterogeneous network embedding. MultiVERSE is fully parallelized
and scalable, even if the current implementation requires the generation of dense
matrices, which can raise memory issues when dealing with very large networks.

For multiplex network embedding, we compared MultiVERSE with state-of-
the-art methods using link prediction and network reconstruction. We show that
MultiVERSE outperforms various methods specifically developed for multiplex
network embedding. As RWR-M applies a random walk in pseudo-infinite time,
it might allow MultiVERSE to effectively capture node properties and a better
representation of the topological structure of the multiplex network.

A natural extension of this work would be to consider multiplex networks
composed of both directed and undirected layers. In a biological context, this
would allow considering metabolic and signalling pathways networks into a
multiplex structure without losing the information about the information flow.
In addition, for the optimization phase, we set a neighborhood parameter Nmax
that depends on the size of the network. A potential improvement could be to
develop an adaptive version of the parameter Nmax that would depend on node
topological properties.

For multiplex-heterogeneous network embedding, MultiVERSE allows the
embedding different types of nodes. We demonstrate its efficiency for link
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prediction and illustrates its usefulness for the study of gene-disease associations.
We here limited the multiplex-heterogeneous network to two multiplex and one
bipartite network. Another natural extension of our work would be to generalize
RWR for multiplex-heterogeneous for n multiplex networks and n(n − 1)/2
bipartite linking them (n ∈ N). Doing so, one could easily integrate many
different types of nodes. The previous discussion about directed networks is in
addition also valid for multiplex-heterogeneous network embedding.

By integrating different types of edges for multiplex network embedding or by
integrating different types of both edges and nodes for multiplex-heterogeneous
network embedding, MultiVERSE could have a wide variety of applications in
diverse domains such as network biology and medicine, social science, computer
science, neuroscience or physics. Our illustration of MultiVERSE embedding to
study gene-disease associations could easily be applied to drug repositioning and
drug discovery, for instance with a multiplex drug-drug network, a drug-target
bipartite and a molecular multiplex. In this way, genes, diseases and drugs
could be projected in the same vector space for further studies. In neuroscience,
multiplex-heterogeneous network embedding could be applied to study the links
between genes and neurons [1]. In social science, multiplex networks are gaining
interest to understand human behaviour [84]. Multiplex-heterogeneous network
embedding could give insights on epidemic spread [46, 59], socio-economic systems
[80] or socio-ecological systems [55].
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Navigability of interconnected networks under random failures. Proceedings
of the National Academy of Sciences of the United States of America 111,
23 (2014), 8351–6.

[23] De Sandre-Giovannoli, A., Bernard, R., Cau, P., Navarro, C.,
Amiel, J., Boccaccio, I., Lyonnet, S., Stewart, C. L., Munnich,
A., Le Merrer, M., et al. Lamin a truncation in hutchinson-gilford
progeria. Science 300, 5628 (2003), 2055–2055.

30



[24] De Sandre-Giovannoli, A., Chaouch, M., Kozlov, S., Vallat,
J.-M., Tazir, M., Kassouri, N., Szepetowski, P., Hammadouche,
T., Vandenberghe, A., Stewart, C. L., et al. Homozygous defects
in lmna, encoding lamin a/c nuclear-envelope proteins, cause autosomal
recessive axonal neuropathy in human (charcot-marie-tooth disorder type
2) and mouse. Journal of the Peripheral Nervous System 7, 3 (2002),
205–205.

[25] Dong, Y., Chawla, N. V., and Swami, A. metapath2vec: Scalable
representation learning for heterogeneous networks. In Proceedings of the
23rd ACM SIGKDD international conference on knowledge discovery and
data mining (2017), pp. 135–144.

[26] Drew, K., Lee, C., Huizar, R. L., Tu, F., Borgeson, B., McWhite,
C. D., Ma, Y., Wallingford, J. B., and Marcotte, E. M. Integra-
tion of over 9,000 mass spectrometry experiments builds a global map of
human protein complexes. Molecular systems biology 13, 6 (2017).

[27] Dursun, C., Shimoyama, N., Shimoyama, M., Schläppi, M., and
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Wood, N., and Reilly, M. Mutations in the hsp27 (hspb1) gene cause
dominant, recessive, and sporadic distal hmn/cmt type 2. Neurology 71,
21 (2008), 1660–1668.

[44] Iuchi, Y., Roy, D., Okada, F., Kibe, N., Tsunoda, S., Suzuki, S.,
Takahashi, M., Yokoyama, H., Yoshitake, J., Kondo, S., et al.
Spontaneous skin damage and delayed wound healing in sod1-deficient
mice. Molecular and cellular biochemistry 341, 1-2 (2010), 181–194.

[45] Jensen, A. B., Moseley, P. L., Oprea, T. I., Ellesøe, S. G.,
Eriksson, R., Schmock, H., Jensen, P. B., Jensen, L. J., and
Brunak, S. Temporal disease trajectories condensed from population-
wide registry data covering 6.2 million patients. Nature communications 5,
1 (2014), 1–10.

32



[46] Johnson, C. K., Hitchens, P. L., Evans, T. S., Goldstein, T.,
Thomas, K., Clements, A., Joly, D. O., Wolfe, N. D., Daszak, P.,
Karesh, W. B., et al. Spillover and pandemic properties of zoonotic
viruses with high host plasticity. Scientific reports 5 (2015), 14830.

[47] Karamatic Crew, V., Burton, N., Kagan, A., Green, C. A.,
Levene, C., Flinter, F., Brady, R. L., Daniels, G., and Anstee,
D. J. Cd151, the first member of the tetraspanin (tm4) superfamily
detected on erythrocytes, is essential for the correct assembly of human
basement membranes in kidney and skin. Blood 104, 8 (2004), 2217–2223.

[48] Kashiyama, K., Nakazawa, Y., Pilz, D. T., Guo, C., Shimada,
M., Sasaki, K., Fawcett, H., Wing, J. F., Lewin, S. O., Carr,
L., et al. Malfunction of nuclease ercc1-xpf results in diverse clinical
manifestations and causes cockayne syndrome, xeroderma pigmentosum,
and fanconi anemia. The American Journal of Human Genetics 92, 5
(2013), 807–819.

[49] Katsogiannou, M., Andrieu, C., Baylot, V., Baudot, A., Dusetti,
N. J., Gayet, O., Finetti, P., Garrido, C., Birnbaum, D.,
Bertucci, F., Brun, C., and Rocchi, P. The functional landscape
of Hsp27 reveals new cellular processes such as DNA repair and alterna-
tive splicing and proposes novel anticancer targets. Molecular & cellular
proteomics: MCP 13, 12 (Dec. 2014), 3585–3601.

[50] Kipf, T. N., and Welling, M. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).
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