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ABSTRACT
When querying Knowledge Bases, users are faced with large sets of
data, often without knowing their underlying structures. It follows
that users may make mistakes when formulating their queries,
therefore receiving an unhelpful response. These unhelpful re-
sponses have been categorized into five types that consider either
the number of results returned or the content of the results. These
problems have been studied individually, and a category of pro-
posed solutions involves modifying the original query in order to
produce answers better suited to the user requirement. Similarities
between the five problems suggest that techniques developed for
one problem could be used to improve the treatment of the others.
The goal of this PhD thesis is to propose a unified framework to
deal with unexpected or unsatisfactory answers. In this paper, we
analyse the state of the art on the unexpected answer problems and
discuss the similarities between them, present our first contribution
towards generalising the problems and present our future work.
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1 INTRODUCTION
A Knowledge Base (KBs) is a collection of entities and facts about
them. With the development of the Semantic Web, numerous KBs
have been created in academic and industrial fields. Well known ex-
amples of KBs include DBpedia [20], and LinkedGeoData [2]. These
KBs store information using RDF triples (subject, predicate, object)
and are queried using the SPARQL language [14]. KBs typically con-
tain billions of facts and are often structured using an ontological
schema and rules, such as those provided by RDFS [9] or OWL [3].

A new end user querying a KB is often unfamiliar with the KB’s
structure and the data within it. As such,mistakes ormisconceptions
can manifest in queries, and cause unexpected or unsatisfactory
answers. Mistakes refer to the user incorrectly writing their query,
for example creating an unwanted Cartesian product by omitting
a triple pattern, or misspelling a term. Misconceptions represent
the difference between a user’s view of a KB, and its reality [33].
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For instance if in a hospital database, the property treats can only
link a Doctor to a Patient, and a user writes a query based on the
patients that a Nurse treats, they will be frustrated to receive no
answers. Alternatively, a user may believe that the property birth-
Place uniquely describes a person’s town of birth whereas in the
KB birthPlace is used for the country, county, town, and address
of birth. A query involving birthPlace may overwhelm the user by
producing four times as many answers as expected. The issue of
unexpected answers is one of the challenges to database system
usability [17].

There are five basic types of unexpected or unsatisfactory answer
problems, each associated with a why-question.

(1) The query returns no answers (why-empty).
(2) The query returns too few answers (why-so-few).
(3) The query returns too many answers (why-so-many).
(4) An expected answer is missing from the result (why-not).
(5) An unwanted answer is included in the result (why-so).

In the first three cases, the issue is with the number of answers,
and in the last two cases it is with the content of the answers. In all
cases, the user does not understand the result of their query, and is
usually forced to modify their query through frustrating trial and
error, before achieving the desired output.

In every unexpected answer problem, the answer produced by
executing a query does not meet a user requirement. We use the
formalism of Perez et al. [27] for the result set of a query 𝑄 exe-
cuted on a triplestore 𝐷 : [[𝑄]]𝐷 . For each type of problem, we can
define a boolean function on the query answer, such that a query
either succeeds (the answers meet the user requirement) or fails
(the answers do not meet the user requirement). It is important to
note that while query failure has been used in literature to refer to
a query producing no answers, our definition of query failure relies
on the boolean property specific for each type of unexpected answer
problem. For instance, for the why-so-few problem, with a threshold
of 𝐾 answers, the boolean failure property is | [ [𝑄]]𝐷 | < 𝐾 , which
means a query fails if it produces fewer than K answers, and suc-
ceeds otherwise. In the why-so problem, with an unwanted answer
mapping `, the boolean property is ` ∉ [[𝑄]]𝐷 , which means that
a query fails if ` is included in its answers and succeeds otherwise.

There are links between the five problems. Thewhy-not andwhy-
so have strictly opposite failure conditions. This is also the case
for the why-so-few and why-so-many problems. The why-empty
problem is also an extreme case of the why-so-few problem, with
a threshold for insufficient answers set to 0. Furthermore, some
problems require a combination of failure conditions. This is the
case for cardinality problems where the number of answers must
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be between two limits, requiring a combination of why-so-few and
why-so-many. Content-based problems may also need combining
when a user wants to include some answers and exclude others.

Several studies have considered these problems separately, but a
unified framework to deal with unsatisfactory answers has yet to
be proposed. Our goal is to build upon the ideas proposed for indi-
vidual problems, and produce a unified explanation and rewriting
strategies for any query producing unexpected answers.

2 STATE OF THE ART
Our work falls in the scope of cooperative query answering, where
the focus is on making a database response understandable and
useful to users, even if they are unfamiliar with its content and tech-
nical requirements. Motro categorized cooperative query answering
methods into two groups [24]. The first seeks to aid users when they
formulate their requirements and queries, and includes methods
such as example queries [25, 35]. The second category analyses user
queries to detect anomalies. The latter methods can be used when
a user is not satisfied with their query’s answer. Existing work has
two main focuses: answer explanation, and query modification.

2.1 Answer explanation
Answer explanations can either be based on the data manipulated,
or on the query formulated by a user.

Data based explanations exist for the why-not and why-so prob-
lems. In the case of why-so, several techniques can be used to iden-
tify the provenance of a piece of data [34]. In the why-not problem,
a data-based explanation can identify operations on a database that
lead to some missing information [16]. Since data based methods do
not consider the user query, they cannot help to fix it if it contains
a mistake or misconception. In that case, query based explanations
are particularly useful, as the root cause of unsatisfactory answers is
the user’s lack of understanding of the database’s structure, content,
or query process.

Failure causes were introduced to deal with the why-empty prob-
lem [19, 23]. Rather than return a potentially misleading answer,
users are provided with the false presuppositions included in their
query. This led to the definition of Minimal Failing Subqueries
(MFS) in relational databases [13]. The MFS are the smallest parts
of a query that cause it to fail. They have then been used in the
context of certain and uncertain KBs [10, 11]. Query-based failure
causes have also been considered for the why-not problem, first
in relational databases [5] then in KBs [32]. In the RDF context,
a divide-and-conquer approach is used, first studying the query’s
triple patterns, then its SPARQL operators. A failure cause shows
users which triple pattern or operator causes an answer to be ab-
sent. To our knowledge, no query based failure causes have been
studied for the why-so-many, why-so-few and why-so problems.

2.2 Query modification
Query modification involves rewriting a query submitted by the
user in order to remove the mistakes and misconceptions it may
contain. This step is successful if the results of the modified query
are better suited to the user requirements. There are three ways
to redefine a query: relaxation (the new query’s answers contain
the answers of the previous query), refinement (the new query’s

answers are contained in the answers of the previous query) or
modification (the new query’s answers contain some of the answers
of the previous query and add others). The query rewriting process
can have varying user involvement, from simply providing users
with explanations and leaving rewriting up to them, to a purely
automatic process where the user is absent, through interactive
processes where users guide the process by providing preferences.

For the why-not problem in relational databases, the ConQueR
system [30] modifies queries to obtain the missing answer as part
of the results of the new query. A similarity metric based on editing
distance, and imprecision metric are jointly used to rank modified
queries. First, the system attempts to find a modified query where
only the selection predicates are changed, and if none exist then
modifies other parts of the query. In the field of knowledge graphs,
recent work on the why-not and why-so problems has proposed
exact algorithms and heuristics to refine a user’s query [29]. They
incrementallymodify a query in order to obtain some of the answers
originally missed. They also define metrics to measure the rewriting
cost, and the answer closeness or precision.

For the plethoric answers problem (why-so-many), in the field
of fuzzy queries, intensification strategies are used to strengthen
patterns present in the user query to make them more restrictive
[6, 22]. Alternatively, new patterns are added to the query [8]. They
are chosen based on a measure of correlation between predicates
so that they are semantically close to the original query and reduce
the number of answers. In the field of graph queries, a method
based on removing elements of the initial query finds the largest
parts of the query that succeed. They are called maximum common
connected subgraphs (MCCS) and are provided to the user as alter-
native non failing queries [31]. A similar notion is considered in the
empty answers problem (why-empty), called maXimal Succeeding
Subqueries. They are the largest succeeding queries obtained by
removing parts of the original query [13].

The MFS defined for the empty answers problem have been used
as part of several automated query modification systems dealing
with relational databases [7, 18]. In the context of RDF, the addi-
tional cost of computing MFS has been weighed against the time
saved by avoiding executing queries that are known to fail once
the MFS are known, and a hybrid method computing the MFS at
key points in the relaxation has been presented [11]. This work
uses an existing measure of similarity between queries based on
information content measure [15]. Another use of MFS in the empty
answer problem is as part of an interactive query rewriting frame-
work [18, 21]. At each step in the query relaxation users choose the
parts to be relaxed. These works show that the efficiency of query
modification methods can be improved if an answer explanation
step has been previously performed.

3 FAILURE CAUSE DEFINITION
In existing work, attempts to explain query failure and to modify
queries have been suggested for individual problems. Starting by
identifying failure causes can improve the performance of query
modification strategies. However, this failure cause identification
step has not been studied for all the unexpected answer problems.
As such, the existing query modification methods rely on trial and
error. Our first goal is to establish a method of identifying failure
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SELECT * WHERE {
?d treats ?p . # t1
?d experience ?e . # t2
?d supervises ?n . # t3
?n providesCare ?pt . # t4
?n service ERNurse } # t5

Figure 1: Query Q

∅

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

𝑡1𝑡2 𝑡1𝑡3 𝑡1𝑡4 𝑡1𝑡5 𝑡2𝑡3 𝑡2𝑡4 𝑡2𝑡5 𝑡3𝑡4 𝑡3𝑡5 𝑡4𝑡5

𝑡1𝑡2𝑡3 𝑡1𝑡2𝑡4 𝑡1𝑡2𝑡5 𝑡1𝑡3𝑡4 𝑡1𝑡3𝑡5 𝑡1𝑡4𝑡5 𝑡2𝑡3𝑡4 𝑡2𝑡3𝑡5 𝑡2𝑡4𝑡5 𝑡3𝑡4𝑡5

𝑡1𝑡2𝑡3𝑡4 𝑡1𝑡2𝑡3𝑡5 𝑡1𝑡2𝑡4𝑡5 𝑡1𝑡3𝑡4𝑡5 𝑡2𝑡3𝑡4𝑡5

𝑡1𝑡2𝑡3𝑡4𝑡5

𝑄 : Failure 𝑄 : Success 𝑄 : MFIS 𝑄 : XSS

Figure 2: Lattice of subqueries of Q

causes that will support any unexpected answer problem. Our first
contribution is the extension of the definition of failure causes used
for the empty answers problem to the plethoric answers problem.

Several existing approaches rely on decomposing an initial fail-
ing query into parts to identify failure causes. In both thewhy-empty
problem [13] and the why-not problem [32] conjunctive queries
are decomposed by removing triple patterns incrementally. We
have used this decomposition of SPARQL queries as the base of our
approach. From an original query 𝑄 given in figure 1, written as a
conjunction of its triple patterns 𝑡1 𝐴𝑁𝐷 𝑡2 𝐴𝑁𝐷 𝑡3 𝐴𝑁𝐷 𝑡4 𝐴𝑁𝐷 𝑡5
or 𝑡1𝑡2𝑡3𝑡4𝑡5 for short, we build its lattice of subqueries as shown
in figure 2. From this decomposition of the initial query, the next
step is defining failure causes. To that end, a boolean condition
indicating query failure is defined for every query in the lattice of
subqueries. Its exact definition depends on the unexpected answer
problem we are dealing with.

A widely used notion in the empty answers problem, is the
minimal failing subquery (MFS) [4, 7, 10, 11, 13, 18, 19, 21, 23]. MFS
are subqueries that fail, that have no failing subqueries. In the empty
answers problem, when dealing with conjunctive queries, Godfrey
showed that if a query fails (in this case fails means produces no
answers) then all its superqueries fail. In this case, we say that the
failure condition is monotonic. With a monotonic failure condition,
any query containing an MFS fails, so MFS are a good way to
describe failure causes.

When studying the plethoric answers problem, we noted that
its failure condition (a query produces more than a threshold K
answers) is not monotonic. This is also the case for the insufficient
answers problem, whose failure condition is that a query produces
fewer than a threshold K answers. For a problem whose failure
condition is not monotonic, a failing query can have a succeeding
superquery. As such, an MFS can be a part of a succeeding query
so the notion of MFS is no longer adequate to describe a failure

cause. We have introduced a new concept, that of minimal failure
inducing subquery (MFIS) to describe failure causes in cases where
the failure cause is not monotonic. A failure inducing subquery
(FIS) of a query𝑄 is one of its subqueries𝑄 ′ such that all subqueries
of 𝑄 that are superqueries of 𝑄 ′ fail. An MFIS is then defined as
an FIS that does not have any other FIS as a subquery. In the case
of a monotonic failure condition, the definitions of MFIS and MFS
are strictly equivalent. Since this definition of failure cause no
longer relies on a monotonic failure condition it can be used in any
unsatisfactory answer problem.

The dual notion of MFS which was also introduced to deal with
the empty answers problem, is called maximum succeeding sub-
query (XSS). An XSS of a query𝑄 is one of its succeeding subqueries
that is not a subquery of any other succeeding query. The concept
of XSS does not depend on the monotony of the failure condition,
so it can also be used in every answer problem. In terms of query
failure, the set of MFIS and the set of XSS provide the same infor-
mation. They do not necessarily determine the success or failure of
every subquery of the initial query, but do identify all failure causes
(parts of a query that if present mean that the query will fail). There
can be exponentially many MFS and XSS [13], and we have shown
that is also the case for MFIS. So no algorithm can compute MFIS
and XSS in polynomial time in the worst case.

For the plethoric answers problem, we have shown that leverag-
ing query and data properties can improve performance in certain
cases [26]. These properties allow us to determine that a query fails
without executing it, based on the failure of another query. They
require conditions based on the variables contained in the queries,
or the cardinalities of predicates. We created improved algorithms
based on these properties and implemented them in Java with three
triplestores (JenaTDB, Jena Fuseki, and Virtuoso). These algorithms
have been experimentally evaluated first using synthetic data and
queries from the WatDiv benchmark [1], then real data from DBpe-
dia and query logs from the Linked SPARQLQueries Dataset project
[28]. Our two algorithms ran respectively 36% and 44% faster than
a baseline algorithm which executes all subqueries. Our implemen-
tation is available at https://forge.lias-lab.fr/projects/tma4kb with a
tutorial to reproduce our experiments. Previous work on the empty
answers problem in the RDF context produced similar results. It
showed that query properties can be used to compute MFS and XSS
effectively [10, 11]. These experimental results are promising in
regards to the applicability of an approach based on failure causes
to deal with unexpected answer problems.

4 FUTUREWORK
Our work so far has involved taking a method used for the why-
empty problem and apply it to the plethoric answers problem. The
existing notions were too restrictive for this new problem, so we
introduced some new definitions and properties. We end up with
a method applicable to both problems, which we have shown is
usable in practise.

Our goal is to build a framework identifying failure causes in
unsatisfactory answer problems, through the following steps:

(1) to determine the search space, i.e. the set of queries under
consideration,
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(2) to establish a partial order relationship between the queries
in the search space,

(3) to define a failure condition, a boolean property expressed
over the set of queries,

(4) to provide a failure cause definition, i.e. the MFIS,
(5) to develop particular inference rules describing the links

between queries and query failure.

Currently, the search space is the lattice of subqueries, which
contains the original query and its subqueries obtained by removing
patterns. In the long run, this search space can be extended by
considering queries with additional triple patterns or modified
triple patterns from the original query. The partial order is also
related to triple pattern inclusion. This supposes that the queries
considered are conjunctive queries, which means that they do not
contain SPARQL operators such as UNION, OPTIONAL, FILTER.
This hypothesis is used in some existing solutions[11, 13], but it is a
significant restriction, as a study of SPARQL queries has shown that
a large proportion of SPARQL queries contain these operators [12].
We have therefore started the extension of subquery definition to
support these operators.

For each problem, the failure condition is linked to the result set
of a query [[𝑄]]𝐷 and considers either its cardinality or its content.
We have shown that the MFIS can be used as failure causes for
the empty answers and plethoric answers problems, and we are
working on applying them to the other three problems. The last
step of determining inference rules will allow us to determine the
success or failure of a query based on the success or failure of one
of the queries it is linked to. This can make the computation of
MFIS and XSS much more efficient.

After completing the answer explanation step, we will consider
query modification based on these explanations, drawing from
existing query rewriting algorithms.We plan to offer users a varying
degree of participation in the query modification. Expert users
can simply be provided with failure causes and fix their queries
themselves, whereas more novice users may prefer an automatic
approachwhere themodified query is computedwithminimal input
from them. Evaluation of the query modification will be performed
with various metrics introduced in existing work, such as similarity,
imprecision [32], answer closeness and editing cost [29].
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