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A R&D software platform for shape and
topology optimization using body-fitted meshes

C. Nardoni, D. Danan, C. Mang, F. Bordeu, J. Cortial

Abstract Topology optimization is devoted to the optimal design of structures: It
aims at finding the best material distribution inside a working domain while fulfill-
ing mechanical, geometrical and manufacturing specifications. Conceptually differ-
ent from parametric or size optimization, topology optimization relies on a freeform
approach enabling to search for the optimal design in a larger space of configura-
tions and promoting disruptive design. The need for lighter and efficient structural
solutions has made topology optimization a vigorous research field in both aca-
demic and industrial structural engineering communities. This contribution presents
a Research and Development software platform for shape and topology optimization
where the computational process is carried out in a level set framework combined
with a body-fitted approach.

1 Introduction

Several shape and topology optimization methods have been proposed and are
currently employed for structural design in commercial solutions (SIMP method,
BESO method, level set method among them). Density-based optimization meth-
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ods, such as the widespread SIMP method, use as the design variable a density
field which takes intermediate values between the material and the void densities.
The fictious material densities are eventually penalized in order to enforce a binary
material/void optimized design. In the present work we opt for level-set-based struc-
tural optimization in order to avoid the introduction and the treatment of ficticious
material densities. The level set method relies on the classical sensitivity analysis
from the shape optimization framework to compute a descent direction and advect
the structural interface. The overall optimization process is driven by a gradient-type
algorithm. In the present setting the level set method is coupled with a remeshing
routine which enables the reconstruction of a body-fitted mesh at each step of the
underlying optimization process, as proposed in [4, 8]. Since the structural inter-
face is known explicitely at each step of the iterative procedure, the body-fitted ap-
proach simplifies the evaluation of the mechanical quantities of interest. Moreover,
the computational mesh of the optimized design can be readily exported together
with its finite element model for further validation analysis using a dedicated exter-
nal software application.

In this work we handle two classical problems in structural optimization. First, in
the static linear elasticity setting, we consider stress minimization problems. Avoid-
ing stress concentration plays a paramount role in the design of reliable mechanical
structures [2, 6, 13, 18, 20, 17, 21, 23]. In the present context we focus on the von
Mises stress which is a key ingredient of most failure criteria. Second, we consider
the problem of maximizing the first eigenfrequency of an elastic structure under a
volume constraint. Vibration analysis is a also crucial assessment to avoid structural
failure [16].

The proposed numerical examples are realized using PISCO, a Research and
Development software platform devoted to topology optimization that is in active
development at IRT SystemX1. Isovalue discretization, mesh adaptation and mesh
displacement are performed by the remeshing tool mmg3d2. The finite element anal-
yses are carried out using the industrial-grade solver Code_Aster 3.

2 Level set method for shape and topology optimization

This section introduces some basic notions about the level set method for shape and
topology optimization. For more detailed surveys we refer to [1, 5, 22].

1 https://www.irt-systemx.fr/project/top
2 https://www.mmgtools.org/

3 https://www.code-aster.org
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2.1 Shape sensitivity analysis

Shape optimization aims at minimizing an objective function J (Ω) over a set O
of admissible shapes. Typically the admissible shapes are constrained into a given
design space D. In order to differentiate with respect to the domain and enforce
optimality conditions, we refer here to the Hadamard’s boundary variation method
(see e.g. [1, 15]). Thus, variations of a given shapeΩ are considered under the form:

Ωθ = (I + θ)(Ω),

where θ : Rd 7→ Rd is a ’small’ diffeomorphism. Indeed, each admissible variation
Ωθ of Ω is parametrized in terms of a transformation of the form I + θ, which
remains ‘close’ to the identity. The admissible vector field θ is sought among the
Banach space W 1,∞(Rd ,Rd ) of bounded and Lipschitz functions endowed with the
norm:

| |θ | |W 1,∞ (Rd,Rd ):= | |θ | |L∞ (Rd )d+| |∇θ | |L∞ (Rd )d×d ,∀θ ∈ W 1,∞(Rd ,Rd ).

The shape derivative is then defined as follows.

Definition 1 A function F (Ω) of the domain is said to be shape differentiable at Ω
if the mapping θ 7→ F (Ωθ ), from W 1,∞(Rd ,Rd ) into R, is Fréchet differentiable at
θ = 0. The associated Fréchet differential is denoted as θ 7→ F ′(Ω)(θ) and called
the shape derivative of F; the following expansion then holds:

F (Ωθ ) = F (Ω) + F ′(Ω)(θ) + o(θ), where
|o(θ) |

| |θ | |W 1,∞ (Rd,Rd )

θ→0
−→ 0.

We recall that for a large class of functions of the domain the shape derivative admits
the following structure [1]:

∀θ ∈ W 1,∞(Rd ,Rd ), F ′(Ω)(θ) =

∫
∂Ω

vΩ(s)θn∂Ω ds, (1)

where n∂Ω is the outward normal to ∂Ω and vΩ is a scalar field depending on F
typically through a direct state and an adjoint state, both solutions of PDEs modeling
the physical system of interest.

2.2 Level set method

2.2.1 Implicit parametrization of shapes

In the level set approach, the structural interface is represented as the 0 isovalue of
a scalar function – the level set function – defined over the whole design space D.
The implicit description allows to easily track the interface evolution and naturally
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handles topology changes, as for example the merging of two interfaces. More pre-
cisely, a level set function of a shape Ω ⊂ D ⊂ R3 is a scalar function φ : D → R
enjoying the following properties




φ(x) < 0 si x ∈ Ω,
φ(x) = 0 si x ∈ ∂Ω,
φ(x) > 0 si x ∈ cΩ.

The level set function is typically initialized with the signed distance function dΩ
owing to the unitary gradient property:

|∇dΩ(x) | = 1,

which holds for all x where dΩ is differentiable.

2.2.2 Optimization procedure

Starting from a given admissible shape Ω0 and a function of the domain J, the shape
derivative allows to select a descent direction for J. This procedure enables to pro-
duce a sequence of shapes Ωk {k=0, · · · } with decreasing values of J. At each iteration
the domain is updated using the following advection equation

∂φ

∂t
+ θk |∇φ| = 0 in D, (2)

where the vector field θk is a descent direction for J, set as

θk = −wΩk
n∂Ωk

, (3)

where wΩk
and n∂Ωk

are respectively a velocity field and the normal defined in (1).
Thus, the new shape is defined implicitely by Ωk+1 = {x ∈ D : φk+1(x) < 0}.

2.2.3 Regularization of the descent direction

The field (1) is only rigorously defined on the interface ∂Ω; it has to be extended to
the whole domain to move the interface further than an infinitesimal distance. More-
over, the choice θ = −vn on ∂Ω can generate an irregular descent direction, unsuit-
able for numerical practice. To circumvent these difficulties, the literature suggests
to extend and regularize the descent direction [9]. The general idea is to replace the
optimal scalar product over L2(∂Ω) by a more regular one. In the present context
the extended and regularized scalar field is defined as the unique solution z ∈ H1(Ω)
of the following variational problem

∀w ∈ H1(D), α
∫
Ω

∇z · ∇w dx +

∫
∂Ω

zw dx =

∫
∂Ω

v∂Ωw ds, (4)
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where α > 0 is a parameter tuning the intensity of the regularization.

3 Shape evolution using body-fitted meshes

At each step of the optimization procedure an unstructured mesh of the current shape
is obtained by the explicit discretization of the 0 isovalue of the implicit domain
φk+1 [4, 8]. This routine allows to generate a tetrahedral mesh whose boundary fits
the structural interface. This goal is achieved thanks to the following steps:

• The 0 isosurface of the level set function is explicitely discretized;
• The quality of the underlying mesh is improved by means of local remeshing

operations driven by both geometrical and user requirements.

See Fig. 1 for an exemple of such a procedure. This method allows to dynamically
track the evolution of the interface even when topology changes occur. Note that
the isovalue discretization can be combined with classical metric-based adaptation
routines, allowing the user to prescribe a spatially-varying desired mesh size.

Fig. 1 Isovalues of the level-set function (left) and body-fitted mesh (right) of a given shape. The
interior part of the shape is represented in red.

The above procedure permits the evaluation of the mechanical performances of
the structure without falling back on the ersatz material approximation, which is
currently used for level-set-based topology optimization in a fixed background mesh
setting. This approximation can impact the accuracy of the finite element compu-
tation in some sensitive cases. For example, in the context of stress evaluation, in
particularly when the volume fraction of the material part inside the design space is
small, the residual stresses stored in the soft material can affect the measurement of
global stress indicators as well as the local stresses near the interface [11]. A spe-
cial attention must also be paid in the context of eigenfrequency optimization since
the presence of a soft material [7] or a density-based approach [10] can modify the
eigenfrequencies of the structure.

An alternative to conformal remeshing consists in keeping the computational
support unchanged while enriching the finite element space in the vicinity of the
interface with ad-hoc chosen basis functions (X-FEM-type methods [12, 19, 23]).
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The main drawback of these methods is their intrusiveness making them difficult to
couple with existing physical solvers.

4 Stress-based optimization

Let Ω ⊂ R3 be a shape such that ∂Ω = ΓD ∪ ΓN ∪ Γ. Let uΩ be the displacement
field solution of the following linear elasticity problem




−div(σ(uΩ)) = 0 in Ω,
σ(uΩ) · n = g on ΓN ,
σ(uΩ) · n = 0 on Γ,

uΩ = 0 on ΓD .

(5)

where ε(u) = 1
2 (∇u + ∇uT ) is the linearized strain tensor and σ is the stress tensor

obeying to the following Hooke’s law with Lamé parameters λ, µ:

σ(u) = 2µε(u) + λ tr(ε(u))I .

Let us denote by σvm (u) the Von Mises equivalent stress associated to σ(u). Since
stress measurements are intrinsically of local nature, a typical stress constraint over
a region Ω translates into the following non differentiable form

max
x∈Ω(x)

σvm (x) ≤ σ̄vm ,∀x ∈ Ω. (6)

From a numerical point of view, incorporating such a condition at each stress evalua-
tion point leads to an unacceptably large number of constraints that further increases
with the refinement of the underlying computational mesh. In order to overcome
these difficulties constraints aggregation techniques can be considered. A popular
choice [2, 21] consists in regularizing the criterion (6) by penalizing the following
integral functional:

J (Ω) =

( ∫
Ω

jα (σ(uΩ)) dx
) 1
α

=

( ∫
Ω

σαvm (uΩ) dx
) 1
α

, (7)

where jα = σαvm and α ≥ 1 is a scalar parameter. By a classical calculation (see
for example [2]) the functional (7) is shape differentiable. In the present context the
descent direction θ is sought in the space

Θad = {θ = 0 on ΓN ∪ ΓD }.

Thus the shape derivative of (7) reads

∀θ ∈ Θad , J ′(Ω)(θ) =
1
α

J (Ω)1−α
∫
Γ

(σαvm (uΩ) + σ(uΩ) : ε(pΩ))θ · n ds. (8)
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The adjoint state pΩ is solution of the following problem




−div(σ(pΩ)) = div(Aj ′α (σ(uΩ)) in Ω,
σ(pΩ) · n = Aj ′α (σ(uΩ)) · n on Γ ∪ ΓN ,

pΩ = 0 on ΓD ,
(9)

where j ′α denotes the derivative of jα with respect to σ.

Remark 1 As noted in [18], increasing the exponent α can lead to overly large values
of the integrand in (8). To avoid degrading the numerical accuracy, one can consider
an alternative, mathematically equivalent formulation such that the integrand is de-
fined as:

jα =

(
σvm

σ̄

)α
, (10)

where σ̄ is a normalization parameter.

5 k-th eigenfrequency maximization

In this section we focus on a criterion that requires a modal search analysis. Let
Ω ⊂ R3 be a shape such that ∂Ω = ΓD ∪ Γ. The eigenmodes and eigenfrequencies
of Ω are determined by solving the following problem




−div(σ(uΩ)) = ω2ρuΩ in Ω,
uΩ = 0 on ΓD ,

σ(uΩ)n = 0 on Γ,
(11)

where ρ denotes the material density. Note that (11) admits a countable set of solu-
tions (ωk ,uk )k ∈N. When the positive values ωk are sorted such that ωk < ωk+1, ∀k,
then uk is called the k-th eigenvector or eigenmode. The quantity

fk =
ωk

2π

is called the k-th eigenfrequency of the structure. Moreover each eigenmode is nor-
malized as follows ∫

Ω

ρ|uk |2dx = 1, ∀k . (12)

In order to maximize the k-th eigenfrequency we consider the minimization of fol-
lowing functional of the domain

Jk (Ω) = −ω2
k . (13)

A classical computation (see for example [3]) shows that if the eigenvalue associated
to the k-th eigenmode is simple, then (13) is shape differentiable and the shape
derivative reads
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∀θ ∈ Θad , J ′(Ω)(θ) =

∫
Γ

(ω2
k ρ|ukΩ |

2 − σ(ukΩ) : ε(ukΩ))θ · nds, (14)

where Θad is the set
Θad = {θ = 0 on ΓD }.

Note that the above problem is self-adjoint, meaning that the evaluation of the shape
derivative does not require the computation of an adjoint state. Note also that func-
tional (13) extends without difficulty to the optimization of a continuously differen-
tiable function of eigenfrequencies.

6 Numerical implementation

PISCO includes the following components:

• An algorithmic toolbox specialized in the treatment of level sets
• A generic interface to finite element solvers
• Algorithms for the resolution of constrained optimization problems
• Physical and geometrical optimization criteria
• An interface to the remeshing tool mmg3d

The components devoted to the physical analysis computations and the constrained
optimization algorithms are implemented in a generic fashion in dedicated mod-
ules. These components are linked to the topology optimization problems and cri-
teria in a non-intrusive way. The non-intrusiveness of the implementation is proved
by the coupling with several external physical solvers such as Code_Aster and
FreeFem++. In the present context, all physical evaluations are performed using
the finite element solver Code_Aster, developed at EDF France. The choice of
Code_Aster is motivated by the large range of availables physics and by the rich-
ness of the available post-processing routines.

The numerical optimization algorithm handles the balancing between the min-
imization of the objective and the non-violation of the constraints. Popular penal-
ization methods such as the Augmented Lagrangian reformulate a constrained op-
timization problem into a sequence of unconstrained optimization problems by in-
corporating the constraints as penalizations of the objective function. In the present
context, we rely on a gradient-flow algorithm designed to decrease both the value of
the objective function and the violation of the constraints [14].

6.1 Overview of the numerical algorithm

As far as the numerical setting is concerned, the initial shape Ω0 is supplied through
its signed distance function φ0, e.g. as a P1 piecewise affine function on the mesh
of the design space D. A remeshing procedure is employed to compute a new mesh
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T0 of the design space in which the structural interface is explicitely discretized.
The mesh T0 contains naturally a computational mesh of the shape Ω0 as a subdo-
main. The complete numerical procedure allows to generate a sequence of meshes
Tk {k=0, · · · }. Each mesh Tk contains a submesh corresponding to a body-fitted dis-
cretization of the shape Ωk . At each iteration k the domain evolution is achieved
numerically by the following steps:

1. Computation of the signed distance function to the shape Ωk on the vertices of
the mesh Tk ;

2. Evaluation of the direct and the adjoint physical states on the computational mesh
of the shape Ωk ;

3. Evaluation of the objective function and constraints values on the shape Ωk ;
4. Evaluation of physical and geometrical sensitivities on the vertices of the struc-

tural interface;
5. Combination of physical and geometrical sensitivities and resolution of (4) on
Tk in order to select a descent direction θk ;

6. Selection of a pseudo time tk and resolution of the advection equation (2) on the
mesh Tk to get a P1 piecewise affine function of the domain φk+1;

7. Check geometrical conditions for the acceptance of the implicit shape φk+1;
8. When all the geometrical requirements are fulfilled, remesh Tk and generate a

new mesh Tk+1 to fit the structural interface of the implicit domain φk+1.

The algorithms ends whenever a maximum number of design steps is reached or
when the merit function measuring jointly the decrease of the objective function
and the non-violation of the constraints fails to decrease.

Remark 2 The variational formulation (4) is solved using P1 finite elements. The
level set transport equation (2) is solved by a spatial first-order numerical scheme
based on the method of characteristics. The variational formulations associated to
the evaluation of values and sensitivities of each optimization criterion are dis-
cretized using linear or high-order elements, depending on user requirements.

6.2 Stress sensitivity evaluation on the structural interface

In stress-based optimization problems the integrand appearing in (8) has to be eval-
uated on the structural interface. To achieve this goal the sensitivity field in (8) is
extrapolated from the stress evaluation points to the structural interface nodes. The
nodal extrapolation is achieved by a least-squares approach based on a finite ele-
ment interpolation. Eventually, for a given node, the nodal value is computed by
weighting the values over the elements sharing the node. We consider the following
smoothing function inside each finite element

ŝ(x) =

n∑
i=1

Ni (x) ŝi (x), (15)
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where ŝi are the nodal unknown values, Ni the shape function at node i in the con-
sidered finite element. For each finite element, these unknowns are defined as the
minimizer of a discrete functional

χ(σ̃) ≡
nGP∑
k=1

(s(ξk ) − s̃(ξk ))2 =

nGP∑
k=1

(s(ξk ) −
n∑
i=1

s̃i Ni (ξk ))2, (16)

where nGP and ξk {k=1, · · · ,nGP }
are respectively the number and the coordinates of

the evaluation points (i.e. the Gauss integration points) inside the element. Under
the assumption n < nGP , the minimization of (16) implies the resolution of the
following linear system (hereafter written in matrix form)

ŝ = M−1Ps. (17)

Note that the matrices P ∈ Rn×nGP , Pik = Ni (ξk ) and M = PPT ∈ Rn×n can
be pre-calculated in the reference finite element, resulting in a very efficient extrap-
olation procedure. Note that the above general procedure can be used for the ex-
trapolation of stress-based quantities (equivalent stresses, elastic density energy for
exemple) from Gauss integration points to mesh nodes. In stress-based optimization
problems, the described procedure is used to extrapolate the stress-based integrand
appearing (8) to the structural interface nodes.

Remark 3 An alternative approach consists in replacing the discrete functional (16)
by the following functional

χ̄(s̃) ≡
∫
e

(s − s̃)2dx =

∫
e

(s −
n∑
i

Ni s̃i )2dx. (18)

where e denotes any element. In this case the matrices M et P need to be evaluated
on each finite element making the extrapolation procedure more expensive.

7 Numerical results

This section presents the numerical examples.

7.1 Mininum stress design of an L-shaped beam

Let us consider an L-shaped design domain D with a bounding box of size 2 m ×

1 m × 2 m. The beam is clamped on the plane z = 2 m and submitted to a vertical
load g = (0,0,10) kN on a small circular region of radius r = 0.1 m on the plane x =

2 m, as represented in Fig. 2–left. The Young modulus is equal to 210 GPa and the
Poisson ratio equals 0.3. The Dirichlet and Neumann boundaries are sourrounded by
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two non-optimisable regions, as represented in Fig. 2–right. Here the linear elastic
system (5) is solved using P2 finite elements. A 5-point Gauss integration rule is
used in each tetrahedral finite element.

Fig. 2 Boundary conditions for the L-beam test case (left). Design space in light grey and non-
optimizable regions in dark grey (right).

The goal is to minimise the global Von Mises indicator (7) under a volume con-
straint. The target volume is set to 0.7 m3. For the value α = 2 in the objective
function (7), the optimized design is represented in Fig. 3 and for α = 12 the opti-
mized design is represented in Fig. 4. Note that for a small value of the parameter
α (α = 2 here) the optimized design is reminicent of one obtained when minimiz-
ing compliance. As the parameter α increases (α = 12 here) the obtained design is
modified in order to avoid stress concentration regions (in the vicinity of the sharp
angle here), which are not captured using a compliance-type criterion.

7.2 Maximum eigenfrequency design of a cantilever beam

Let us consider a design space of size 2 m × 0.5 m × 1 m. The structure is clamped
on the right plane x = 0 m and includes a concentrated tip mass localized at point
(2 m,0 m,0.5 m), as represented in Fig. 5.

The material density of the structure is set to 0.42 kg.m−3. The point mass is set
to 420 kg. The Young modulus is fixed to 32000 Pa and the Poisson coefficient to
0.3. The goal is to maximize the first eigenfrequency of the structure under a volume
constraint. The target volume equals 1

2V0 with V0 the volume of the full design space.
The optimized design achieved after 90 iterations is represented in Fig. 6.

Remark 4 Since the level set approach enables the generation of arbitrary topolo-
gies, some intermediate shapes can exhibit several disconnected components. In this
case, all components connecting the supports of boundary conditions constitute the



12 C. Nardoni, D. Danan, C. Mang, F. Bordeu, J. Cortial

Fig. 3 Two views of the optimized design with α = 2 (top). Level set function and body-fitted
mesh of the optimized design (middle). Von Mises stress and convergence history for the L-beam
test case with α = 2 (bottom).
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Fig. 4 Two views of the optimized design with α = 12 (top). Von Mises stress and convergence
history for the L-beam test case with α = 12 (bottom).

Fig. 5 Boundary conditions for the cantilever test case: clamped face (on the left) and point mass
(on the right).
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Fig. 6 Two views of the optimized design (top). Optimized design inside the design space. First
eigenmode amplified by a factor of 70 and convergence history for the test case described in Section
7.2 (bottom).
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actual, useful shape. The others are spurious components that are detected and re-
moved before remeshing to avoid the existence of artificial rigid body modes during
the eigenvalues analysis.

8 Conclusions

A computational solution for shape and topology optimization using level sets and
body-fitted meshes has been discussed and illustrated on some classical albeit chal-
lenging optimization problems.
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