Reinforcement Learning Enhancements to CQSim

Naunidh Singh and Dustin Favorite Illinois Institute of Technology

INTRODUCTION

Recently, there has been some attention given to reinforcement learning agents in cluster scheduling. [START_REF] Fan | Deep Reinforcement Agent for Scheduling in HPC[END_REF][START_REF] Zhang | Rlscheduler: Learn to schedule hpc batch jobs using deep reinforcement learning[END_REF][START_REF] Fan | DRAS-CQSim: A Reinforcement Learning based Framework for HPC Cluster Scheduling[END_REF] Cluster schedulers are low-level applications in high performance computing systems that decide when and which user jobs are allocated to system resources. Traditionally, cluster schedulers are designed and tuned by hand to ensure some performance outcomes like high system utilization and low job starvation. However, as HPC systems become increasingly complex and handle more diverse workloads, the difficulty of designing and tuning their schedulers has become prohibitive. There is an increasing need for a scheduling system that maintains the speed and simplicity of a traditional cluster scheduler but also provides hands-off optimization. One such solution is a reinforcement learned cluster scheduler. Over the past decade, reinforcement learning (RL) has proved to be the state-of-the-art approach to dynamic decision making problems. Fan et al. present DRAS, a reinforcementlearned agent for cluster scheduling. [START_REF] Fan | Deep Reinforcement Agent for Scheduling in HPC[END_REF] DRAS yields performance gains over traditional scheduling approaches by up to 45% and demonstrates that RL scheduling may in fact be a reasonable answer to this new scheduling dilemma. To substantiate the claims made in the DRAS paper, a full investigation into RL applications for HPC scheduling is in order. In this paper we present RL enhancements to CQSim, a trace-based HPC scheduling simulator. [START_REF] Fan | Application Checkpoint and Power Study on Large Scale Systems[END_REF][START_REF] Yang | Integrating dynamic pricing of electricity into energy aware scheduling for hpc systems[END_REF][START_REF] Fan | Scheduling Beyond CPUs for HPC[END_REF][START_REF] Allcock | Experience and Practice of Batch Scheduling on Leadership Supercomputers at Argonne[END_REF] The goal of these enhancements is to reduce the complexity and cost of implementing a RL agent for HPC scheduling and open up this topic for further analysis. Here we detail the implementations of these enhancements along with some supplemental findings and future work.

The remainder of this paper is organized as follows. We start by introducing background and related work in §2. §3 presents the implementation of enhancement. We conclude the paper in §4 and the future work in §5.

BACKGROUND

This section introduces OpenAI in §2.1 and RLlib §2.2. Then, we introduce CQSim in §2.3.

OpenAI -Gym.Env

OpenAI's gym is a package to create custom reinforcement learning agents. The Gym toolkit is used for developing and comparing Reinforcement Learning algorithms. It is implemented in Python and R and can be used to make the code for training RL models short, simple and easy-to-read. The environment must contain all the necessary functionality to run an agent and allow it to learn. A gym environment will basically be a class with 4 functions. The first function is the initialization function of the class, which will take no additional parameters and initialize a class. It also sets the initial state of the RL model. The second function is the step function, that will take an action variable and will return following variables: the next state, the reward for the current state, a boolean representing whether the current episode of our model is done. The other functions are reset, which resets the state and other variables of the environment to the start state and render, which gives out relevant information about the behavior of our environment so far. Each custom environment must implement the following gym interface:

1 import gym 2 from gym import spaces ...

RLlib

RLlib is a reinforcement learning API. Built upon Ray, a framework for building distributed applications, RLlib seeks to provide scalable learning to reinforcement learning methods through high-level API calls that handle distributing the training workload. RLlib uniquely provides RL routines that otherwise would have to be written by hand in either Tensorflow or PyTorch. We theorized that RLlib could increase the portability of the simulator and also provide avenues to develop distributed learning applications. In practice, RLlib does not increase the simulator's ease of use. Using RLlib requires domain knowledge that adds to the cost of implementation. We would not recommend using RLlib for any application that is not explicitly focused on distributed learning.

CQSim

We compare these scheduling policies through trace-based simulation. Specifically, a trace-based, event-driven scheduling simulator called CQSim is used in our experiments. [START_REF] Fan | Trade-Off Between Prediction Accuracy and Underestimation Rate in Job Runtime Estimates[END_REF][START_REF] Li | The Effect of System Utilization on Application Performance Variability[END_REF][START_REF] Fan | Exploiting Multi-Resource Scheduling for HPC[END_REF][START_REF] Fan | ROME: A Multi-Resource Job Scheduling Framework for Exascale HPC System[END_REF][START_REF] Fan | Hybrid Workload Scheduling on HPC Systems[END_REF] CQSim contains a queue manager and a scheduler that can plug in different scheduling policies. It emulates the actual scheduling environment. A real system takes jobs from user submission, while CQSim takes jobs by reading the job arrival information in the trace. Rather than executing jobs on system, CQSim simulates the execution by advancing the simulation clock according to the job runtime information in the trace. [START_REF] Fan | Job Scheduling in High Performance Computing[END_REF] 3. IMPLEMENTATION

Implementation by refactoring 3.1.1 Overview

This implementation focuses on changing the control flow of CQSim to match the chronology required by the Gym interface. While the primary data structures of CQSim can remain unchanged the simulation logic would be completely refactored. Figure 1 describes the proposed control flow. The primary design goals are:

1. The simulator should enter step upon receiving a new job to be scheduled, and return from step to the runner when requesting a scheduling decision from the agent.

2. All other scheduling events (job submissions and completions) occur in correct sequence between scheduling decisions. 3. Simulation output should be identical between the original and new simulators for a static agent like first come, first served.

Code Structure

The class CqSim Env inherits the Gym.Env interface and implements all the abstract methods. It holds the data structure classes JobTrace and NodeStruc as self.jobs and self.nodes, respectively. Cqsim sim.py is replaced by CQSimEnv. Code from other modules (Backfill, Basic algorithm) is extracted and have methods in CQSimEnv.

Implementation

1. Once CqsimEnv is initialized, it proceeds to either cqsim main.train or cqsim main.infer. (e) Repeat.

3. This control loop continues until the workload trace has been exhausted. 4. Final results are written to file and console, and reward results are printed to screen.

Experimental Results

Table 1 details the results of the validation experiment for the PG trainer in DRAS and in this implementation. All hyperparameters (learning rate, gamma, neural net size and shape, loss) are identical. Both weights were trained on the same 10k jobs from the Theta system at ANL. The expected outcome is that performance results would be nearly identical given identical training parameters. However, the DRAS version is overall more performant. Inconsistencies in performance results indicate that this system has some point of failure in the simulation environment. It is recommended that the simulation is debugged before any further use.

Implementation using multithreading 3.2.1 Overview

This section discusses an alternate approach to couple CqSim Simulator with OpenAi Gym Interface to implement a Custom Gym Environment which can enable training of Reinforcement Learning Models using Libraries such as Tensorflow. The notion behind the implementation is similar to the Producer-Consumer problem where the CqSim behaves as Consumer and Gym.Env.Step provides the Producer. Both CqSim and Gym.Env run on 2 separate threads and interact using shared variables.

Code Structure

The class CqSim Env inherits the Gym.Env interface and implements all the abstract methods. It holds the CqSim.Cqsim sim class object as its variable -self.simulator.

From the original implementation in CQSim Code, the class Cqsim.Cqsim sim is altered in the following ways:

1. Cqsim sim class inherits the classes Thread and Pause.

2. Thread class enables implementation of the object to be run on a parallel thread.

3. The Thread.run method from the parent class is overwritten and executes the class method -Cqsim sim.cqsim sim().

Which is the main function that coordinates the different components of the simulator.

4. Class Pause() is implemented to control the synchronization between the Cqsim Env main thread and Cqsim Env.simulator thread.

Implementation

1. Once Cqsim Env is initialized, it initiates the thread for Cqsim sim.

2. qsim sim thread runs through the simulation steps:

(a) Imports submit event.

(b) Reaches event job().

(c) Initiates start scan().

3. At this point the Cqsim Env thread is notified and Cqsim sim thread gets paused and waits for the notification for resuming from Cqsim Env.step() 4. Cqsim Env thread is initially paused and waits for the notification from Cqsim sim thread.

Once Cqsim

Env is resumed, it takes the current state of Cqsim sim using the shared variable Cqsim Env.simulator.simulato Figure 5: A screenshot of the Rendered Info at a random step while running GymEnv.

6. This state is passed to the Model for making the selection of the job, and the shared variable is updated.

7. At this point the Cqsim Env thread is paused and the simulator thread resumes and reaches to the next event or next state.

Thread Pause

The Pause class helps implement the pausing and resuming of the Cqsim Env (Producer) and Cqsim sim (Consumer) threads and synchronize their communication.

The Pause class makes use of python Conditional Variables. It maintains 2 conditional variables -Pause.prod cv and Pause.cons cv.

In order to implement the Producer-Consumer approach, when one condition variable is paused the other one is resumed and vice versa.

The Pause class also maintains a special variable -intial check (boolean). This variable is used to pause the Cqsim env.get state() method to the point when the Cqsim sim thread is initiated and the first set of jobs is loaded.

Step Function Components

1. Gym State: A separate class has been created to maintain the necessary variables for managing a complete state information required for the RL model. An object of this class is instantiated at each event when a decision is required to be made by the RL model.

State Reward:

In order to compute the reward a for the reward at a particular step, the function 'get reward(action)' is defined as part of the GymState class. The function expects as an argument the action suggested by the RL model and then using the state information calculates the reward.

3. Render Info: An important feat of this implementation is to provide a visual representation of the current state. The render function accesses the current state information and using the graphing library Matplotlib, is able to provide a comprehensible set of plots describing the important parameters which can be visually examined during the run time of the RL Model training. This can help the user understand how effectively the model is being trained and can also analyze the updates on the CQsimulator state, environment and RL model parameters during runtime.

Models

We first seek to validate our new simulator by reimplementing a RL agent used in DRAS. The policy gradient (PG) model is a reinforcement learning agent that outputs the likelihood of selecting each job awaiting execution given the state of the environment. By either sampling from these probabilities (as is done in training) or simply selecting the determined best candidate by the highest probability (as is done in testing) the environment receives a job to begin scheduling and can proceed to the next state. The model is illustrated in Figure 6.

Among the RL models we intend to develop as part of the future works, we proposed an approach to merge neural-nets for the inference stage. Since we aim to tackle the scenario where the input to the neural network is of fundamentally 2 different types -Jobs info and Node info, and contain information at different scales and ranges, a model with two networks that may have different architectures can possibly handle the 2 different data types. This method aligns the layers of the original networks and merges them into a unified model by sharing the representative codes of weights. The shared weights are further re-trained to fine-tune the performance of the merged model. The proposed method effectively produces a compact model. As it preserves the general architectures and leverages the co-used weights of well-trained networks, a substantial training overhead can be reduced to shorten the system development time. [START_REF] Chou | Unifying and merging well-trained deep neural networks for inference stage[END_REF]

CONCLUSION

In our investigation of reinforcement learned cluster schedulers we found many areas that necessitate greater inspection. We hope that our work illuminates areas that require more attention, guides future work, and creates an easier environment for implementing those studies.

FUTURE WORK

The most pressing item for our simulator is beginning further analysis of reinforcement learning agents. Experiments should be designed to test for optimizations in the observation, reward, neural net, and training methodology. The following are steps for evaluating training methods:

• A2C: advantage actor-critic improves upon vanilla PG by integrating a second model into the training routine. The critic provides a reward estimate that can be used for more potent and accurate training.

• PPO: PPO is another actor-critic routine that introduces a novel clipping operation to the loss. The goal of PPO is to reduce the impact of saturated gradients upon the model.

We also propose the following topics should be individually studied:

• Deep learning models: the models presented here and in previous work have much room for optimization.

• Reward: Properly studying the effect of different reward functions on training and performance results could reveal much for use in real world application.

• Observation: Concerning the information observed from the environment and the input to the deep learning models there is much to study in terms of features, their shape, and normalization.

• Multi-resource: The current design schedules one type of resources. As the HPC systems becomes more complicated. For example, burst buffer, IO and SSD are incorporating to the next generation HPC systems. [START_REF] Qiao | Preliminary Interference Study About Job Placement and Routing Algorithms in the Fat-Tree Topology for HPC Applications[END_REF][START_REF] Yu | System-wide Trade-off Modeling of Performance, Power, and Resilience on Petascale Systems[END_REF][START_REF] Qiao | Joint Effects of Application Communication Pattern, Job Placement and Network Routing on Fat-Tree Systems[END_REF] Scheduling multiple resources could potentially improves scheduling performance.

Additionally, we do not believe that our enhancements to CQSim are final. There are further improvements to be made to increase ease of use.

3 4 5 " 7 8

 357 class CustomEnv (gym . Env) : "" Custom Environment that follows gym interface """ 6 metadata = { ' render . modes ': [' human ']} def init (self , arg1 , arg2 , ...) : 9 super (CustomEnv , self) . _init_ () # Define action and observation space # They must be gym . spaces objects # Example when using discrete actions : self . action_space = spaces . Discrete (N_DISCRETE_ACTIONS) # Example for using image as input : self . observation_space = spaces . Box (low =0 , high =255 , shape =(HEIGHT , WIDTH , N_CHANNELS) , dtype = np . uint8) def step (self , action) : ... return observation , reward , done , info def reset (self) : ... return observation # reward , done , info can 't be included def render (self , mode = ' human ') : ... def close (self) :

Figure 1 :

 1 Figure 1: Proposed protocol for scheduling jobs in Gym environment.

2 .

 2 Training or inference begins with an initial observation from CQSimEnv.reset and then proceeds through the rest of the scheduling scenario by: (a) Providing the observation to the model and getting an output. (b) Providing the actionable output to the environment. (c) Receiving a new observation. (d) If training, the agent will attempt model.train

Figure 2 :

 2 Figure 2: CQSimEnv Class structure.DRAS PG New PG Metric 10k-40k 40k-70k Average 10k-40k 40k-70k Average Max Wait 612609 1527674 1070141.5 988297 3650872 2319584.5 Avg. Wait 22413 53545 37979. 446343 174666 310504.5 Utilization 88.7% 91.8% 90.25% 86.40% 81.41% 83.91% Table 1: Results from validation experiment.

Figure 3 :

 3 Figure 3: Overview of the flow for the multithreading approach.

Figure 4 :

 4 Figure 4: CqSim Env Class structure.

Figure 6 :

 6 Figure 6: PG neural network.

Figure 7 :

 7 Figure 7: An overview of the Merged DNN model approach.

Table 1 :

 1 Results from validation experiment.

	5 988297	3650872 2319584.5