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Fig. 1. Cascaded Sobol’ Point Sets. For quasi-Monte Carlo integration problems, low discrepancy samplers, such as the Sobol’ sequence with Owen
scrambling [Owen 1998; Sobol’ 1967], are widely used thanks to their ease of generating high-dimensional point sets. While being low discrepancy in high
dimension, some projections may exhibit strong uniformity defects (illustrated here by consecutive 2-dimensional projections of an 11-dimensional point
set in the first row). We propose a sampling strategy with perfect (0,𝑚, 2)−net properties (second row) for consecutive pairs of dimensions and optimized
low discrepancy in high dimension, reducing errors in Monte Carlo rendering. The third row shows 𝐿2-discrepancies of first 10 consecutive 2-dimensional
projections; see Figure 7 for s-dimensional discrepancies.

Rendering quality is largely influenced by the samplers used in Monte Carlo

integration. Important factors include sample uniformity (e.g., low discrep-

ancy) in the high-dimensional integration domain, sample uniformity in

lower-dimensional projections, and lack of dominant structures that could

result in aliasing artifacts. A widely used and successful construction is

the Sobol’ sequence that guarantees good high-dimensional uniformity and

consequently results in faster convergence of quasi-Monte Carlo integra-

tion. We show that this sequence exhibits low uniformity and dominant
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structures in low-dimensional projections. These structures impair quality

in the context of rendering, as they precisely occur in the 2-dimensional

projections used for sampling light sources, reflectance functions, or the

camera lens or sensor. We propose a new cascaded construction, which,

despite dropping the sequential aspect of Sobol’ samples, produces point

sets exhibiting provably perfect dyadic partitioning (and therefore, excellent

uniformity) in consecutive 2-dimensional projections, while preserving good

high-dimensional uniformity. By optimizing the initialization parameters

and performing Owen scrambling at finer levels of binary representations,

we further improve over Sobol’s integration convergence rate. Our method

does not incur any overhead as compared to the generation of the Sobol’

sequence, is compatible with Owen scrambling and can be used in rendering

applications.

CCS Concepts: • Computing methodologies→ Rendering.

Additional Key Words and Phrases: Sobol’ sequence, quasi-Monte Carlo

integration, low-discrepancy sequences, Owen scrambling, path tracing
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1 INTRODUCTION
The numerical evaluation of integrals is a core computer graphics re-

search problem, notably for rendering realistic images of 3D scenes.

Many physically-based rendering techniques rely on the random

sampling of an integrand, a process called Monte Carlo integration.

For path tracing, it typically consists of following paths from the

camera to light sources by randomly bouncing rays in the scene. In

many cases, obtaining noise-free images requires computing hun-

dreds to thousands of such paths. Improving the convergence rate

of this integral estimator can be achieved by replacing these random

values by samples that are particularly well distributed over the

integration domain in a highly uniform fashion. Intuitively, corre-

lating samples to avoid holes and clusters on the domain makes the

estimate more efficient. This can be formally assessed by various uni-

formity measures and associated variance reduction theorems, such

as the discrepancy and the Koksma-Hlawka inequality [Hlawka

1961].

Several techniques exist to obtain low discrepancy samples, ei-
ther relying on sequences of values uniformly covering the domain

by construction [Lemieux 2009] or finely optimizing point sets of

fixed cardinality by minimizing well chosen energies [Keller 2013].

Among these options, the Sobol’ sequence has gained significant

popularity for rendering since it is fast and produces very well dis-

tributed samples that effectively reduce noise in rendered images.

However, it has been suggested that uniformity over the inte-

gration domain is not sufficient, and that uniformity over the two-

dimensional projections used for sampling reflectance, light sources,

camera lenses or sensors, is also important to improve image qual-

ity [Ahmed and Wonka 2020; Paulin et al. 2020; Perrier et al. 2018;

Reinert et al. 2016]. In this context, we show that the popular Sobol’

sequence does not always satisfy this requirement, and that consec-

utive pairs of dimensions can produce very poor distributions in

2-dimensional projections. They may exhibit dominant structures

that may result in aliasing artifacts (see Figs. 9 and 10).

We propose to alleviate this problem by introducing a new sam-

pler based on consecutive calls to Sobol’ functions (a construction

we call cascaded Sobol’ sampling), which we prove to provide well

distributed low discrepancy point sets in consecutive pairs of di-

mensions. For now, this comes at a cost: we cannot preserve the

sequential aspect of the original Sobol’ algorithm, and hence need to

fix the number of samples in advance. Still, in addition to uniformity

over 2-dimensional projections, we preserve uniformity over the

high-dimensional integration domain by optimizing initialization

tables over a range of sample cardinalities and dimensions useful

for computer graphics applications [Joe and Kuo 2008].

We also propose a technique that improves uniformity, and hence

the convergence rate of Monte Carlo rendering. While the deter-

ministic Sobol’ sequence is often accompanied with a randomiza-

tion strategy – for example, Owen scrambling [Owen 1998], see

Section 3.2 – we show that increasing the bit depth of this random-

ization technique allows one to more uniformly distribute samples

in the domain of integration and to optimize the generation.

Aside from the predetermined number of samples, our approach

can act as a drop-in replacement of Sobol’ samplers in existing

rendering engines to effectively obtain faster convergence. Our

sampler does not incur significant overhead as compared to standard

Sobol’ samplers and is simple to implement.

We now summarize our contributions. First, we propose a cas-
caded Sobol’ sampling construction that provably yields sample

uniformity in consecutive pairs of dimensions contrary to the orig-

inal Sobol’ sequence. Second, we compute and provide optimized

initialization tables that ensure uniformity in high dimension as

well.

We evaluate our method on characteristic integration and render-

ing examples, showing competitive convergence rates as compared

to Sobol’ and other state-of-the-art samplers.

2 RELATED WORK
Monte Carlo Integration. The beauty of Monte Carlo integration

is its simplicity yielding a convergent estimate by just averaging

evaluations of the integrand at independent random points in the

integration domain. Yet, introducing some correlations within the

samples may improve the convergence rate (see for instance [Singh

et al. 2019]). Enhancing the uniformity of the samples can be done

in many ways. One can stratify the domain while keeping the sto-

chastic nature of the process (for example, jittered sampling or

[Christensen et al. 2018]), we can optimize a point set minimizing

some objective functions [Balzer et al. 2009; Bridson 2007; Fattal

2011; Heck et al. 2013; Ostromoukhov et al. 2004; Paulin et al. 2020;

Zhou et al. 2012], or rely on arithmetic and algebraic properties of

lattices to generate samples [Grünschloß et al. 2008; L’Ecuyer and

Munger 2016; Liu et al. 2021] or using low discrepancy sequences

(for example, [Halton 1964; Niederreiter 1992; Sobol’ 1967]). Our

proposal belongs to the latter category since low discrepancy sam-

plers imply fast sample generation in high dimensions and result

in the fastest convergence speed thanks to the Koksma-Hlawka

inequality [Hlawka 1961] that bounds the integration error by the

product of the discrepancy of the point set and the variation of the

integrand.

Low Discrepancy Sequences and Generator Matrices. Low discrep-

ancy sequences often rely on a combinatorial approach to sets and

permutations, and Galois field arithmetic [Dick and Pillichsham-

mer 2010; Lemieux 2009; Niederreiter 1992]. Many of the construc-

tions generate points as follows: to retrieve the 𝑖-th sample in the

𝑠-dimensional unit cube [0, 1)𝑠 of a given point set, we express 𝑖 as

a vector in some integer base 𝑏 and compute the 𝑗−th component of

the sample by multiplying the vector by a so-called generator matrix
using operations on finite fields. Uniformity properties of the point

set are obtained by structural properties of the generator matrices

used for all dimensions. There exist many algebraic constructions

of such matrices [Halton 1964; Niederreiter 1992; Sobol’ 1967]. Be-

sides construction, there is a number of efforts to identify good

generator matrices by optimization [Ahmed et al. 2016; Grünschloß

et al. 2008; Perrier et al. 2018]. We propose a new construction for

generator matrices resulting in high uniformity in low-dimensional

projections and good discrepancy in high dimension, outperforming

classical approaches.

Monte Carlo Rendering. In the specific case of Monte Carlo render-

ing additional properties besides the uniformity of distribution need

ACM Trans. Graph., Vol. 40, No. 6, Article . Publication date: September 2021.
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to be considered. There are two main ways to sample the image

plane. One can globally sample the image and attribute samples to

the pixel they fall in [Grünschloß et al. 2012] or one can sample

each pixel individually. The second method requires to take special

care to avoid similarity in the samples used across pixels. One thus

may randomize deterministic samplers, for example by techniques

[Cranley and Patterson 1976; Kuipers and Niederreiter 2012; Owen

1998] that preserve the uniformity of distribution. Among these

strategies, we elaborate on Owen scrambling [Owen 1998] as it

preserves the low discrepancy properties of certain point sets while

improving on practical aspects of Monte Carlo rendering [Burley

2020; Perrier et al. 2018].

In rendering, the function to be integrated exposes a low-

dimensional structure implied by how paths are traced through

a scene for light transport simulation. If samples are not highly uni-

formly distributed with respect to such low dimensional projections,

a decreased rendering quality is the consequence [Paulin et al. 2020;

Perrier et al. 2018; Reinert et al. 2016]. This leads to approaches

disregarding the requirement for high-dimensional uniformity and

using independent samples for each bounce [Ahmed and Wonka

2020] or the ZeroTwo sampler [Pharr et al. 2016]. We show that this

results in a loss of integration quality and that high-dimensional

uniformity is beneficial in addition.

More recent complementary research tackled the issue of dis-

tributing the integration error across the picture in a way that

makes it less perceptible to the human eye. These methods worked

either by optimizing sample set distributions across the pixel grid

[Heitz and Belcour 2019; Heitz et al. 2019] or by using algebraic

properties to reorder a global sampler [Ahmed and Wonka 2020].

In this paper we will introduce a new way to construct generator

matrices for low discrepancy point sets with highly uniform low-

dimensional projections across consecutive dimensions that are also

compatible with state of the art error diffusion methods.

3 PRELIMINARIES
For the purpose of the paper, we assume familiarity with the basics

of quasi-Monte Carlo integration and low discrepancy sequences,

especially with the concepts of (𝑡, 𝑠)-sequences and (𝑡,𝑚, 𝑠)-nets
that are well established in graphics [Pharr et al. 2016] and refer

to the textbooks by Niederreiter [1992], Lemieux [2009], or Dick

and Pillichshammer [2010]. In what follows, we recall the details of

the Sobol’ low discrepancy sequence and Owen scrambling that are

required to establish our contribution.

3.1 The Sobol’ Sequence
The Sobol’ sequence [Sobol’ 1967] is one of the most popular high-

dimensional low discrepancy sequences used for quasi-Monte Carlo

integration. The 𝑗-th component of the 𝑖-th point 𝑥𝑖 is computed by

𝑥𝑖, 𝑗 :=

𝑚−1∑︁
𝑘=0

𝑏𝑘 · 2𝑘−𝑚 ∈ [0, 1) , where (1)

(𝑏𝑚−1, . . . , 𝑏0) := (𝑎0, . . . , 𝑎𝑚−1) ·𝐶𝑇𝑗 . (2)

(𝑎0, . . . , 𝑎𝑚−1) denotes the (row) vector representation of 𝑖 in base 2

(𝑎0 being the least-significant digit). The matrix multiplication is

performed in the Galois field F2 (or GF(2)). Vector operations on

F𝑚
2

can be efficiently implemented as bit-vector XOR and AND

operations for addition and multiplication, respectively.

The so-called generator matrix𝐶 𝑗 is determined by the 𝑗-th primi-

tive polynomial over F2. The sequence of these primitive polynomi-

als is enumerated as increasing integers
1
. As the number-theoretic

construction of the generator matrices is beyond the scope of our

article (see the aforementioned standard textbooks), we focus on

the properties and algorithmic aspects of the Sobol’ sequence.

Using the generator matrices 𝐶 𝑗 as depicted in Figure 2, we ex-

emplify the generation process for𝑚 = 4 and 𝑖 = 1310 = 11012 that

is the 14-th point of the Sobol’ sequence: the computation of the

first component yields (𝑏3, 𝑏2, 𝑏1, 𝑏0) = (1, 1, 0, 1) ·𝐶𝑇
0
= (1, 0, 1, 1),

resulting in 𝑥13,0 = 0.6875. The second and third component are

(𝑏3, 𝑏2, 𝑏1, 𝑏0) = (1, 1, 0, 1) · 𝐶𝑇
1
= (1, 1, 0, 1) ⇒ 𝑥13,1 = 0.8125 and

(𝑏3, 𝑏2, 𝑏1, 𝑏0) = (1, 1, 0, 1) · 𝐶𝑇
2

= (0, 1, 1, 1) ⇒ 𝑥13,2 = 0.4375, re-

spectively.

The Sobol’ sequence is a (𝑡, 𝑠)-sequence in base 2 [Niederreiter

1992], where 𝑠 denotes the dimension and 𝑡 is a non-negative integer

determining the quality of the points. The smaller 𝑡 , the more uni-

formly distributed is the point set. For Sobol’s construction [Sobol’

1967], the parameter 𝑡 is the sum of the degrees (minus one) of the

primitive polynomials used for the generator matrices 𝐶0, . . . ,𝐶𝑠−1.
As a consequence, the higher 𝑗 , the higher 𝑡 , limiting the uniformity,

especially of low-dimensional projections. Hence, constructing a

(𝑡, 𝑠)-sequence or a (𝑡,𝑚, 𝑠)-net with minimal 𝑡 has high practical

impact and is the major challenge in the quasi-Monte Carlo com-

munity.

By construction, the generator matrices𝐶 𝑗 of the Sobol’ sequence

are full rank. In fact, they are infinite-dimensional and become finite

only by selecting amaximumnumber𝑚 of bits to operate on. Joe and

Kuo [2008] published optimized generator matrices up to dimension

𝑠 = 21201 that are widely used in finance and graphics (see Figure

2).

As the generator matrices 𝐶 𝑗 are full rank, they are bijections.

Hence setting 𝑁 := 2
𝑚
, we can define 𝜎𝑁

𝑗
as the permutation on

{0, . . . , 𝑁 − 1} that relates the integers 𝑖 (𝑎𝑚−1 · · ·𝑎0 in base 2) and

𝑏 (resp. 𝑏𝑚−1 · · ·𝑏0) by

(𝑏0, . . . , 𝑏𝑚−1) = (𝑎0, . . . , 𝑎𝑚−1) ·𝐶𝑇𝑗 · 𝐽𝑚 , (3)

where 𝐽𝑚 is the antidiagonal𝑚 ×𝑚 unit matrix. This allows us to

rewrite the first 𝑁 points of the Sobol’ sequence as

x𝑖 :=
1

𝑁

©«
𝜎𝑁
0
(𝑖)

𝜎𝑁
1
(𝑖)
...

𝜎𝑁
𝑠−1 (𝑖)

ª®®®®¬
𝑇

. (4)

3.2 Owen Scrambling
Owen scrambling [Owen 1998] is a method to randomize low dis-

crepancy sequences while preserving their low discrepancy prop-

erties. It consists of constructing independent trees Π 𝑗 of random

permutations, one per dimension 𝑗 , and applying these permutations

to the digits of the 𝑗-th component of the points. More precisely, if

1
A058947 sequence in Sloane’s On-Line Encyclopedia of Integer Sequences [Sloane 2017]

ACM Trans. Graph., Vol. 40, No. 6, Article . Publication date: September 2021.
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𝑚 →
↓

. . .

(a) 𝑗 = 0 (b) 𝑗 = 1 (c) 𝑗 = 2 (d) 𝑗 = 3 (e) 𝑗 = 4 (f) 𝑗 = 15

Fig. 2. Sobol’ generator matrices: the triangular binary matrices𝐶𝑇
𝑗
introduced by Joe and Kuo [2008] (dimensions 𝑗 = 0, 1, 2, 3, 4, and 15). Yellow lines

represent the so-called direction vectors, i.e. digits that may be initialized or optimized freely. The number of yellow lines is equal to the degree 𝑛 of the
primitive polynomial used (e.g., 𝑥6 + 𝑥5 + 1 of degree 𝑛 = 6 for dimension 𝑗 = 15). Red squares correspond to the ‘1’s in the direction vectors as proposed
by Joe and Kuo [2008]. Green squares correspond to mandatory ‘1’s in the matrix that cannot be changed, according to Sobol’s construction. Blue squares
correspond to the ‘1’s induced by the corresponding primitive polynomials within Sobol’s construction. Shown matrices are of size 32 × 32, which can be used
for generating up to 232 points. The construction is suitable for matrices of arbitrary size.

𝑚 →
↓

. . .

(𝑎) 𝑗 = 0 (b) 𝑗 = 1 (c) 𝑗 = 2 (d) 𝑗 = 3 (e) 𝑗 = 4 (f) 𝑗 = 15

Fig. 3. Optimized cascaded Sobol’ generator matrices𝑀𝑗 for generating 24, 28, 216, and 2
32 points, respectively. Other than Sobol’s construction, the

generator matrices are not necessarily lower triangular matrices.

ACM Trans. Graph., Vol. 40, No. 6, Article . Publication date: September 2021.
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𝑎0 · · ·𝑎𝑚−1 are the first𝑚 bits of the binary representation of the

component 𝑗 , the Owen scrambling 𝑐0 · · · 𝑐𝑚−1 of 𝑎0 · · ·𝑎𝑚−1 is de-
termined by a tree of permutations Π 𝑗 of depth𝑚 where the boolean

value, denoted 𝜋 ( ·) , at each node is XORed with the corresponding

digit:

𝑐0 = 𝜋 ⊕ 𝑎0
𝑐1 = 𝜋𝑎0 ⊕ 𝑎1
𝑐2 = 𝜋𝑎0,𝑎1 ⊕ 𝑎2

...

𝑐𝑚−1 = 𝜋𝑎0,𝑎1,...,𝑎𝑚−2 ⊕ 𝑎𝑚−1
Note that the permutation 𝜋 applied to the 𝑘-th bit depends on the

leading 𝑘 − 1 bits of 𝑎0 · · ·𝑎𝑚−1.
An important fact to keep in mind is that Owen scrambling ap-

plied to (𝑡, 𝑠)-sequences or (𝑡,𝑚, 𝑠)-nets does not change the quality
parameter 𝑡 . In many cases Owen scrambling can improve the uni-

formity of a point set and hence can be used to optimize point

sets.

4 CASCADED SOBOL’ SAMPLING
We propose the cascaded Sobol’ sampler that combines the advan-

tages of optimized Sobol’ sequences, Owen scrambling, and opti-

mization of the correlation between dimensions.

4.1 New Construction
Using the permutation property of the components of the Sobol’

sequence established in Equation 3, our new construction iteratively

applies the 𝑗-th Sobol’ permutation to the result of the ( 𝑗 − 1)-th
permutation yielding the points

x𝑖 :=
1

𝑁

©«
𝜎𝑁
0
(𝑖)

𝜎𝑁
1
◦ 𝜎𝑁

0
(𝑖)

... 𝜎𝑁
0
(𝑖)

𝜎𝑁
𝑠−1 ◦ 𝜎

𝑁
𝑠−2 ◦ . . . ◦ 𝜎

𝑁
0
(𝑖)

ª®®®®¬
𝑇

. (5)

We then apply Owen scrambling in order to benefit from randomiza-

tion without compromising the low-discrepancy properties. Denot-

ing the application of Owen scrambling by composition, for example

Π0 ◦ 𝜎𝑁
0
(𝑖), this leads to the central

Definition 4.1 (Cascaded Sobol’ Sampling). For a fixed number of

samples 𝑁 = 2
𝑚
, given the sequence of Sobol’s permutations 𝜎𝑁

𝑗

and a sequence of permutations trees Π 𝑗 for Owen scrambling, the

𝑖-th point x𝑖 ∈ [0, 1)𝑠 is defined as:

x𝑖 :=
1

𝑁

©«
Π0◦ 𝜎𝑁

0
(𝑖)

Π1◦ 𝜎𝑁
1
◦ 𝜎𝑁

0
(𝑖)

... 𝜎𝑁
0
(𝑖)

Π𝑠−1◦ 𝜎𝑁
𝑠−1 ◦ 𝜎

𝑁
𝑠−2 ◦ . . . ◦ 𝜎

𝑁
0
(𝑖)

ª®®®®¬
𝑇

. (6)

Note that for 𝑖 =2 𝑎𝑚−1 · · ·𝑎0, the composition of Sobol’ permu-

tations 𝜎𝑁
𝑗
◦ . . . ◦ 𝜎𝑁

0
(𝑖) admits the linear algebraic formulation

(𝑏0, . . . , 𝑏𝑚−1) = (𝑎0 . . . 𝑎𝑚−1) ·𝑀𝑗 , (7)

where

𝑀𝑗 := 𝐶𝑇
0
· 𝐽𝑚 ·𝐶𝑇1 · 𝐽𝑚 · . . . ·𝐶

𝑇
𝑗 · 𝐽𝑚 . (8)

Unlike the original generator matrices, the cascaded matrices 𝑀𝑗

are not necessarily triangular, as can be seen in Figure 3. Yet, the ma-

trices are still full rank matrices and expose a very strong property

for consecutive dimensions as analyzed in the next section.

4.2 Perfect Consecutive Nets
A key property of the cascaded Sobol’ sampling is that any pair of

two consecutive dimensions results in a highly uniform point set.

More formally, in Appendix A we prove

Theorem 4.2. For any 𝑗 ∈ {0, . . . , 𝑠 − 2}, the points
(
𝑥𝑖, 𝑗 , 𝑥𝑖, 𝑗+1

)
form a (0,𝑚, 2)−net.

Being a (𝑡,𝑚, 𝑠)-net in dimension 𝑠 = 2 with 𝑡 = 0 has impor-

tant consequences for quasi-Monte Carlo integration: each two-

dimensional elementary interval of the form [𝛼/2𝑚−1, 𝛽/2𝑚−1) ×
[𝛾/2𝑚−1, 𝛿/2𝑚−1) ∈ [0, 1)2 with 𝛼, 𝛽,𝛾, 𝛿 ∈ {0, . . . , 2𝑚−1 − 1} and
area 2

−𝑚
contains exactly one sample point. Note that the elemen-

tary intervals include the strata regularly used for stratified jittered

sampling. (0,𝑚, 2)-nets hence expose a stratification superior to

regular stratified sampling as illustrated in Figure 5.

4.3 Generator Matrix Optimization
In Sobol’s construction, a generator matrix𝐶 𝑗 is determined by two

entities: an primitive primitive polynomial of a certain degree 𝑛, and

the first 𝑛 rows of the matrix 𝐶𝑇
𝑗
, which are called direction vectors

(see Figure 2). While consecutive dimensions of the cascaded Sobol’

sampling are guaranteed to have excellent stratification properties,

this may not be the case for other projections as illustrated in Fig-

ure 4. Optimizing the direction vectors allows one to alleviate the

issue.

The goal of our offline optimization is to provide the direction

vectors that insure the best low discrepancy in high dimensions.

This process resembles the seminal work by Joe and Kuo for the

Sobol’/Owen construction [Joe and Kuo 2008]. Once it is done, the

direction vectors are tabulated (for instance, Joe and Kuo’s direction

vectors are hardcoded in the PBRT Sobol’ implementation). The

same is true for our construction: once such an optimization is per-

formed, and the resulting initialization table is shared, the user can

efficiently generate low discrepancy point sets in high dimensions.

Our optimization minimizes the generalized 𝐿2-discrepancy

[Hickernell 1998] for any dimension up to a certain bound and

for any number 𝑁 = 2
𝑚

of points. Applying a greedy search and

starting from dimension 2, we go up to dimension 100. For each

dimension, we test all primitive polynomials up to degree 10, that is

161 polynomials
2
. For each polynomial, we assign 𝑛 random direc-

tion vectors (according to the degree of the polynomial). For this

particular assignment we then calculate the resulting 𝐿2-discrepancy

for all point sets of cardinality 2
0
to 2

18
. Among the billions of tested

configurations, we accept the one with the minimal 𝐿2-discrepancy,

for all 𝑁 , and for all tested polynomials among 161 available.

2
Sequence A000020 in Sloane’s On-Line Encyclopedia of Integer Sequences [Sloane
2017] determines the number of primitive polynomials of degree n over F2 , which is

2, 1, 2, 2, 6, 6, 18, 16, 48, 60, ....
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dim 0 1 2 3

1

2

3

4

(a) Sobol’ with Owen scrambling (b) Cascaded Sobol’ using [Joe and Kuo 2008] (c) Optimized Cascaded Sobol’ (Sect. 4.3)

Fig. 4. Uniformity of projections. We show the 2-dimensional projections of 256 5-dimensional points when using the Sobol’ construction with Owen
scrambling (𝑎) , our construction according to Definition 4.1 using the original generator matrices by Joe and Kuo [2008](𝑏) , and our cascaded Sobol’
sampler with optimized matrices. Both (𝑏) and (𝑐) highlight perfect (0,𝑚, 2)-net properties for consecutive pairs of dimensions (e.g. (0,1),(1,2),(2,3), and (3,4)).
Optimizing the generator matrices allows us to fix potential uniformity issues in other projections (for example, (1,4) in (𝑏)).

Fig. 5. (0,m,2)-nets in base 2 are important particular cases of (t,m,s)-nets
where 2-dimensional point sets of cardinality 𝑁 = 2

𝑚 are organized in such
a way that all elementary dyadic partitions of size 1/𝑁 of the [0, 1)𝑠 domain
contain exactly 2

𝑡 = 2
0 = 1 sampling point, as illustrated here for 16 points.

For a more detailed explanation, see Niederreiter [1992], Lemieux [2009], or
Dick and Pillichshammer [2010].

Computational resources needed for optimization depend on the

quality criterion, which is the ratio between the 𝐿2-discrepancy

obtained in our construction and that of the reference Sobol’/Owen

one, for all tested cardinality numbers. A typical timing for finding a

good solutionmay vary from a few seconds (“loose” quality criterion)

to many hours (tight quality criterion) per dimension. The results

presented in this publication for 100 dimensions have been obtained

with extremely tight quality criterion; it required about one week

of computation using a farm of 300 modern 16-core computers or

approximatively 50,000 CPU hours.

Figure 4 illustrates the outcome of this optimization procedure:

using the generator matrices given by [Joe and Kuo 2008] (Figure 4-

(b)), consecutive pairs of dimensions define (0,𝑚, 2)-nets, but with
uniformity defects in other projections (for example, the pair (1,4)).

The optimized matrices, denoted by 𝐶∗
𝑗
hereafter, lead to high qual-

ity samples for all consecutive pairs of projections (Figure 4-(c)).

Figure 7 (right) presents quantitative results in high dimensions.

It is worth mentioning that the 𝐿2-discrepancy of all consecutive

2-dimensional projections of our point sets is clearly superior to

that of Sobol’ s construction with Owen scrambling, thanks to our

unique property of (0,𝑚, 2)-nets in all consecutive 2-dimensional

projections, as derived in the previous section.

In the supplementary material (https://projet.liris.cnrs.fr/

cascaded), we provide our optimized initialization table for the

first 100 dimensions in the file format introduced by Joe and

Kuo [2008]. Each entry of this initialization table contains, one

dimension per line, the index of the dimension, the degree of the

primitive polynomial associated with this dimension, the primitive

polynomial itself, followed by a list of direction vectors. The table

contains all necessary information for generating the 𝐶∗
𝑗
.

4.4 Implementation of the Cascaded Sobol’ Sampler
Algorithm 1 shows the Cascaded Sobol’ Sampler that combines all

previous ingredients: for a given number 𝑁 of samples, the iterative

construction of Definition 4.1 is used with the optimized generator

matrices 𝐶∗
𝑗
as described above.

ALGORITHM 1: Generation of the sample x𝑖 ∈ [0, 1)𝑠 , where
0 ≤ 𝑖 < 2

𝑚
.

Data: Optimized generator matrices𝐶∗
0
, . . . ,𝐶∗

𝑠−1, 32-bit Owen
scrambling permutation trees Π0, . . . ,Π𝑠−1

Result: (𝑥0, . . . , 𝑥𝑠−1)
a = (𝑎𝑚−1, . . . , 𝑎0) ← Base2IntToVec32(𝑖) ;
b← a · 𝐽𝑚 ; // product in F2
for 𝑗 ← 0 to 𝑠 − 1 do

b← b ·𝐶∗𝑇
𝑗
· 𝐽𝑚 ; // products in F2

𝑞 ← Base2VecToInt32(b) ;
𝑝 ← Π 𝑗 (𝑞) ;
𝑥 𝑗 ← 1

2
𝑚 𝑝 ;

end

By considering Owen scrambling not only for the first log
2
𝑁

digits of the sample coordinates (see Sect. 3.2), but for all digits,

we can further improve the distribution of the sample points. The

interest is twofold: first, it allows us to use fixed precision operands

for fast bitwise operations when performing computations on F2.
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Second, applying Owen scrambling to the least significant bits (digits

between𝑚 = log
2
𝑁 and 32) performs an additional random micro-

jittering across the strata of volume 1/𝑁 as illustrated in Figure 6.

Technically speaking, this is equivalent to generating random bits

for the (32 −𝑚) least significant bits. This allows for an optimized

implementation of Owen scrambling that does neither generate nor

store permutation beyond the𝑚 most significant bits.

(a) (b) (c)

Fig. 6. Micro-jittering by 32-bit Owen scrambling. 16 samples of a
(0, 4, 2)-net with Owen scrambling applied to the𝑚 = 4 first bits (a). Scram-
bling 32 bits, the samples become jittered in their respective strata (b). The
properties transfer to the cascaded Sobol’ sampler (c).

For Monte Carlo rendering, this micro-jittering also has an impor-

tant impact as detailed in Section 5.2. Note that fixing the precision

is not a limitation of the approach since for sample counts greater

than 2
32
, we can fall back to the classical Owen scrambling.

We implemented Owen scrambling [Owen 1995] using one seed

for a pseudo-number random generator to generate the tree of ran-

dom permutations. An alternative implementation could consider

hash-based scrambling as proposed by Burley [2020]. Compared to

the classic Sobol’ sequence, generating 16 (4 bits) Owen scrambled

samples in 𝑠 = 6 dimensions is 1.5 slower on the average. Our current

implementation of the Owen scrambled cascaded Sobol’ sampling

(32 bits) is 2 times slower than the original Sobol’ sequence (but

generates still more than 7M samples per second on a single core

AMD Ryzen 5800X). There is room for further optimizations, such as

caching the generator matrices𝑀𝑗 and skipping the explicit matrix

products of Eq. (8).

The code for the cascaded Sobol’ sampler and the optimized

matrices up to dimension 𝑠 = 100 are provided (https://projet.liris.

cnrs.fr/cascaded). For dimensions greater than 100, we use the Sobol’

matrices from [Joe and Kuo 2008].

5 NUMERICAL EXPERIMENTS AND DISCUSSION
We provide numerical evidence for the practical advantages of the

cascaded Sobol’ sampler. We therefore measure the uniformity of

distribution by integrating smooth and discontinuous test functions

and computing the generalized 𝐿2-discrepancy. Then, we illustrate

the advantages of randomization across pixels by full precision

scrambling. Finally, we demonstrate the benefits of the excellent

low-dimensional projections with overall high-dimensional low dis-

crepancy that the cascaded Sobol’ sampler provides by construction.

5.1 Integrating Test Functions and Discrepancy
In Figure 7, we assess the performance of the new sampler by in-

tegrating test functions and measuring the uniformity of distribu-

tion. For comparison, we consider other state-of-the art and popu-

lar samplers: random uniform sampling, Poisson disk sampling by

dart throwing, samplers relying on stratification (Jittered sampling,

PMJ02 [Christensen et al. 2018], OrthogonalArrays [Jarosz et al.

2019]), samplers relying on a low discrepancy sequence (in particular,

the Sobol’ sequence with Owen scrambling, rank-1 lattices [Keller

2004] (with optimized vectors from [L’Ecuyer and Munger 2016]),

PMJ02, ZeroTwo [Pharr et al. 2016], and our cascaded Sobol’ sam-

pler), and optimized point sets such as Sliced Optimal Transport

Sampling (SOT) [Paulin et al. 2020]. Following the strategy pro-

posed by Paulin et al. [2020], random multivariate Gaussians of

the form 𝑔(𝑥)=exp
(
− 1

2
(𝑥 − 𝜇)𝑇 Σ−1 (𝑥 − 𝜇)

)
with bounded covari-

ance matrix eigenvalues represent the class of smooth functions,

while random Heaviside functions represent the class of discontin-

uous functions. The experiments are conducted across a range of

dimensions and the uniformity of the point sets is measured by the

generalized 𝐿2-discrepancy.

With respect to the integration of test functions, the cascaded

Sobol’ sampler is among the best sampling strategies while outper-

forming previous samplers in terms of generalized 𝐿2-discrepancy.

For the integration tests, SOT is the most competitive set of samples

(𝑠 ∈ {2, 6, 20} for smooth integrands), but requires a costly opti-

mization process that does not scale to high-dimensional sampling,

which may limit its practicality in production rendering. From that

perspective, cascaded Sobol’ sampling has the same level of code

complexity and is as fast to evaluate as the classic Sobol’ with Owen

scrambling.

5.2 Full-precision Scrambling
For path-tracing based Monte Carlo rendering, we use cascaded

Sobol’ sampling on a per-pixel basis, i.e. we generate 𝑁 samples

of dimension 𝑠 for each pixel. As reviewed in Section 2, several

strategies exist to randomize point sets such that they are uncorre-

lated across pixels in order to reduce visual artifacts in rendering.

These strategies can be optimized by searching for shifts or pseudo-

random number seeds such that the error is distributed across the

image plane in a much more visually agreeable way [Ahmed and

Wonka 2020; Georgiev and Fajardo 2016; Heitz and Belcour 2019;

Heitz et al. 2019].

Similar to previous work, the cascaded Sobol’ sampler relies on

Owen scrambling to create uncorrelated point sets. As Owen scram-

bling preserves the low discrepancy properties, it does not alter the

per-pixel convergence of Monte Carlo estimators. However, limited

precision scrambling may be prone to aliasing artifacts, because

the number or possible coordinates per dimension is limited to 𝑁

different values. This is illustrated in Figures 6 and 9. We resolve

this issue by considering a 32-bit Owen scrambling as discussed

in Section 4.4. This remedies the artifacts problem as illustrated

in Figure 8 as now 2
32

positions are possible in each dimension

(before floating point conversion, see Equation 1). Furthermore, the

uniformity of distribution is improved almost surely.
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Fig. 7. Monte Carlo integration of canonical functions and discrepancy tests.We consider various integration tests in dimensions 2, 4, 6, and 20 to
evaluate Monte Carlo integration error as a function of the number of sample points 𝑁 . The Gaussian integrands column (left) depicts the error averaged over
1024 integrations of random multivariate Gaussian distributions in the [0, 1)𝑠 domain; each curve indicates the error of a different sampler over the 1024
integral evaluations. The Heaviside integrands column (middle) depicts the error averaged over 1024 integrations of random Heaviside functions going through
the center of the [0, 1)𝑠 domain. Note that Orthogonal Arrays refers to the CMJND sampler of Jarosz et al. [2019], PMJ02 refers to the method of Christensen
et al. [2018], and SOT refers to Paulin et al. [2020]. The ZeroTwo sampler corresponds to PBRT’s ZeroTwoSequenceSampler which considers a (0,2)-sequence
per pair of dimensions with a random pairing across the pair of dimensions [Pharr et al. 2016]. Rank1 uses rank-1 lattices [Keller 2004] generated via the
implementation of [L’Ecuyer and Munger 2016]. The uniformity of distribution is measured by the generalized 𝐿2-discrepancy (right) as defined in [Hickernell
1998].
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Fig. 8. Per-pixel scrambling artifacts: on two different scenes (𝑠 = 6 and 𝑠 = 10) and low sample counts 𝑁 ∈ {4, 16}, classic Owen scrambling applied to
the𝑚 = log

2
𝑁 most significant bits (MSB) produces aliasing issues (first two rows) that no longer exist when using our max(32, log

2
𝑁 )-bit scrambling. Note

that even with the cascaded construction but only scrambling the log
2
𝑁 most significant bits, the artifacts are still visible (middle row). CC-BY "The breakfast

room" scene by Wig42.

5.3 Importance of High-dimensional Low Discrepancy
We now discuss how the intrinsic structure of cascaded Sobol’ helps

path tracing in Monte Carlo rendering. By construction, our sam-

pler is a low discrepancy point set with perfectly stratified pairs of

consecutive projections. Implementing a path tracer, dimensions are

consumed in a consecutive fashion, too, for example, consecutive

scattering events along a path consume two consecutive dimensions

at a time. The same goes for sampling area light sources or lenses.

For that reason, sampling strategies with good low-dimensional

projections, especially for two dimensions, have attracted consider-

able interest [Ahmed and Wonka 2020; Joe and Kuo 2008; Perrier

et al. 2018; Reinert et al. 2016]. An almost perfect sampler in that

respect is the ZeroTwo sampler [Pharr et al. 2016] that has been

combined with screen space properties [Ahmed and Wonka 2020]:

each pair of components corresponds to a perfect (0, 2)-sequence
derived from the first two dimensions of the Sobol’ sequence with

a random pairing between pairs of dimensions (per-pixel random

pairing). However, even with perfect low discrepancy of pairs of

dimensions, Figure 7 shows that the ZeroTwo sampler has a bad

uniformity across all dimensions – due to a lack of overall low

discrepancy.

In Figure 9, we evaluate the impact of our sampler on rendering,

and compare it to the Sobol’ sequence and the cascaded Sobol’ sam-

pler applied to a Cornell box scene with high frequency content

on the gray wall as suggested in [Burley 2020] with one-bounce

indirect lighting (thus requiring 6-dimensional samples). As dis-

cussed in Sect. 5.2, the Owen scrambled Sobol’ sampling exhibits

aliasing issues. ZeroTwo does not expose such artifacts, however

the lack of high uniformity across all 6 dimensions causes disturb-

ing high frequency artifacts visible on the back wall. The cascaded

Sobol’ sampler does not have such issues as it has the same qual-

ity as ZeroTwo with respect to low-dimensional projections (see

Theorem 4.2) without sacrificing high-dimensional uniformity.

In Figure 10, we provide more qualitative and quantitative re-

sults of various scenes including longer paths and hence higher

dimensions. For the qualitative analysis, we color each pixel ac-

cording to the sampler achieving the minimal mean square error

(MSE) at 256spp for the first three, and 4096spp for the fourth one,

as compared to a ground truth image (black pixels correspond to

equivalent MSE across all samplers). The graphs showMSE plots for

various sample counts indicating that the cascaded Sobol’ sampler

outperforms its closest competitors. From the qualitative images and

for low-dimensional rendering problems, we can relate the better

performances of cascaded Sobol’ sampler in both the projection

and full space to pixels corresponding integration problems where

the global uniformity matters. In higher dimensions, the cascaded

Sobol’ sampler still has lower MSE but it is more complex to relate

this to some specific optical effects.

To summarize, the best results are achieved with perfect pairs of

projections without sacrificing high-dimensional uniformity, which

is exactly what the cascaded Sobol’ sampler provides.
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Fig. 9. Cornell box with high frequency sub-pixel texture pattern: highly discontinuous integrands can cause aliasing at low sample counts (the yellow
rectangle highlights the region used for the zooms).

6 LIMITATIONS
First, our construction only produces point sets. However, thanks

to the flexibility of our cascaded approach, there is room for more

advanced constructions that unify both sequentiality and the (0,m,2)-

net property in 2D projections.

As detailed in Section 4.3, our offline generator matrix optimiza-

tion process has some internal parameters, which can be adapted

to specific application areas. As long as direction vectors are gen-

erated, our sampler definition (Definition 4.1) and its fundamental

properties (Theorem 4.2) remain the same.

Our optimization is slow when the uniformity criteria are tight.

Speeding up this process has not been the focus of the new con-

struction, but bears a lot of potential. In any case, this optimization

needs to be done only once, and we provide a table of well-optimized

parameters for the first 100 dimensions.

7 CONCLUSIONS
Inspired by the popular Sobol’ sequence and Owen scrambling, we

constructed a new sampling method. Unlike previous methods, our

sampling technique offers several unique and advantageous features.

First, the point sets generated by our construction have a proven

(0,𝑚, 2)-net property for any consecutive pair of dimensions in a

multi-dimensional setting. This property leads to unprecedented

uniformity as shown in Section 5. Second, by optimizing the di-

rection vectors as explained in Section 4.3, we are able to keep

the 𝐿2-discrepancy at the level of the construction by Sobol’ (for

dimensions up to 5, our 𝐿2-discrepancy clearly surpasses that of

the Sobol’ sequence with Owen scrambling; for higher dimensions

the 𝐿2-discrepancy differs by a small amount). We demonstrate the

benefits of the proposed sampler by examples in rendering using

path tracing.

In future work, we hope to overcome the limitation of finite point

sets by constructing infinite point sequences with the aforemen-

tioned advantages. Furthermore, we like to extend our sampler to

incorporate screen space blue noise characteristics [Ahmed and

Wonka 2020; Georgiev and Fajardo 2016; Heitz et al. 2019].

Our construction offers benefits that reach beyond computer

graphics. We are confident that this work will inspire specialists

in other domains which use quasi-Monte Carlo integration, e.g., in

finance and physics.
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A PROOF OF THEOREM 4.2
First, we show that any two consecutive dimensions have the same

canonical structure:
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Fig. 10. Importance of high-dimensional low discrepancy. Each row shows path tracing results for different path lengths, i.e. different dimensions 𝑠 .
In the second and third column pixels are colored by the sampler with the lowest mean square error (MSE), while the last column graphs the MSE with
respect to the number of samples per pixel. The MSE is computed with respect to a reference solution using 64k samples per pixel. The second column clearly
indicates that low discrepancy across all dimensions in addition to low discrepancy in low-dimensional projections is clearly superior to only paying attention
to the low dimensional projections. The third column shows that our cascaded Sobol’ sampler is a safe bet across all dimensions, especially including the
lower dimensional setting. The overall reliability and versatility of the cascaded Sobol’ sampler is confirmed by the MSE plots in the last column. CC-BY
"Country-Kitchen" scene by Jay-Artist. "The breakfast room" scene by Wig42.

Lemma A.1. Points generated by two consecutive dimensions 𝑗 and
𝑗 + 1 of our sampler are the same as those generated by

1

𝑁

{(
𝑖, 𝜎𝑁𝑗+1 (𝑖)

)
| 𝑖 ∈ {0, . . . , 𝑁 − 1}

}
.

Proof. All 𝜎𝑁
𝑘

are permutations on the set {0 . . . 𝑁 − 1} and
hence

{
𝜎𝑁
𝑘
(𝑖) | 𝑖 ∈ {0, . . . , 𝑁 − 1}

}
= {0, . . . , 𝑁 − 1}. Consequently,

the composition 𝜎𝑁
𝑗
◦ · · · ◦ 𝜎𝑁

0
is a permutation on the same set

{0, . . . , 𝑁 − 1}. Therefore, the point set
1

𝑁

(
𝜎𝑁𝑗 ◦ · · · ◦ 𝜎

𝑁
0
(𝑖) , 𝜎𝑁𝑗+1 ◦ · · · ◦ 𝜎

𝑁
0
(𝑖)

)
for 𝑖 ∈ {0, . . . , 𝑁 − 1} is equivalent to the set{

1

𝑁

(
𝑖, 𝜎𝑁𝑗+1 (𝑖)

)
| 𝑖 ∈ {0, . . . , 𝑁 − 1}

}
,

which concludes the proof. □

For the canonical point set of Lemma A.1 we now show
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Lemma A.2.

{
1

𝑁

(
𝑖, 𝜎𝑁

𝑗+1 (𝑖)
)
| 𝑖 ∈ {0, . . . , 𝑁 − 1}

}
is a (0,m,2)-net.

Proof. Following the formulation of Eq.(2), the point set{(
𝑖, 𝜎𝑁𝑗+1 (𝑖)

)
| 𝑖 ∈ {0, . . . , 𝑁 − 1}

}
is generated by the two generator matrices

𝐺0 :=

©«

0 0 1

0

0

1 0 0

ª®®®®®®®®¬
and

𝐺1 := 𝐶 𝑗+1 =

©«

1 ★ ★

0

★

0 0 1

ª®®®®®®®¬
.

By definition, 𝐺1 is an upper triangular matrix in F2. Let 𝑑 =

(𝑘,𝑚 − 𝑘) and let𝑀𝑑
be the matrix composed of the 𝑘 first lines of

𝐺0 and𝑚 − 𝑘 first lines of 𝐺1, i.e.

𝑀𝑑 =

©«

0 0 1

0

0

1 0 0

1 ★ ★

0

★

0 0 1

0

★

ª®®®®®®®®®®®®®®®®¬

.

Obviously, det(𝑀𝑑 ) is equivalent to the determinant of the lower

left block of the matrix𝑀𝑑
that is a triangular matrix with 1 on the

diagonal. Hence, det(𝑀𝑑 ) = 1 for any choice of 𝑑 for 0 ≤ 𝑘 ≤ 𝑚.

By Niederreiter [1992, Thm. 4.28] it follows that

1

𝑁

{(
𝑖, 𝜎𝑁𝑗+1 (𝑖)

)
| 𝑖 ∈ {0, . . . , 𝑁 − 1}

}
is a (0,m,2)-net. □

Our proof of Lemma A.2 uses a fundamental result from Nieder-

reiter [1992] and Grünschloß et al. [2008], which we recall here for

the sake of completeness:

Theorem A.3 ( [Niederreiter 1992, Thm. 4.28][Grünschloss

et al. 2008, Thm. 1] ). Let 𝑃𝑁 be a 𝐶0, ...,𝐶𝑠−1-generated point set
of cardinality 𝑁 = 2

𝑚 in base 2 and dimension s, then 𝑃𝑁 is a (0,
m, s)-net in base 2 if for all 𝑑 = (𝑑1, ..., 𝑑𝑠 ) ∈ N𝑠

0
with ∥𝑑 ∥1 =𝑚 the

following holds:

𝑑𝑒𝑡

(
𝑀𝑑

)
≠ 0, where𝑀𝑑 =

©«

𝐶0

1,1
𝐶0

1,𝑚

𝐶0

𝑑1,1
𝐶0

𝑑1,𝑚

𝐶𝑠−1
1,1

𝐶𝑠−1
1,𝑚

𝐶𝑠−1
𝑑𝑠 ,1

𝐶𝑠−1
𝑑𝑠 ,𝑚

ª®®®®®®®®®®®®®¬
is an 𝑚 ×𝑚 matrix consisting of the first 𝑑 𝑗 rows of the generator
matrix 𝐶 𝑗 for 0 ≤ 𝑗 < 𝑠 .

It is now straightforward to prove Theorem 4.2.

Proof. Without loss of generality, selecting one 𝑗 ∈ {0, . . . , 𝑠−2},
we have(

𝑥𝑖, 𝑗 , 𝑥𝑖, 𝑗+1
)

=
1

𝑁

(
Π 𝑗 ◦ 𝜎𝑁𝑗 ◦ · · · ◦ 𝜎

𝑁
0
(𝑖) ,Π 𝑗+1 ◦ 𝜎𝑁𝑗+1 ◦ · · · ◦ 𝜎

𝑁
0
(𝑖)

)
.

By Lemma A.1 and Lemma A.2 the point set formed by the two

consecutive dimensions forms a (0,𝑚, 2)-net in base 𝑏 = 2. □
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