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Fig. 1. Cascaded Sobol' Point Sets. For quasi-Monte Carlo integration problems, low discrepancy samplers, such as the Sobol' sequence with Owen scrambling [START_REF] Owen | Scrambling Sobol' and Niederreiter-Xing Points[END_REF][START_REF] Il | On the distribution of points in a cube and the approximate evaluation of integrals[END_REF], are widely used thanks to their ease of generating high-dimensional point sets. While being low discrepancy in high dimension, some projections may exhibit strong uniformity defects (illustrated here by consecutive 2-dimensional projections of an 11-dimensional point set in the first row). We propose a sampling strategy with perfect (0, 𝑚, 2)-net properties (second row) for consecutive pairs of dimensions and optimized low discrepancy in high dimension, reducing errors in Monte Carlo rendering. The third row shows 𝐿 2 -discrepancies of first 10 consecutive 2-dimensional projections; see Figure 7 for s-dimensional discrepancies.

Rendering quality is largely influenced by the samplers used in Monte Carlo integration. Important factors include sample uniformity (e.g., low discrepancy) in the high-dimensional integration domain, sample uniformity in lower-dimensional projections, and lack of dominant structures that could result in aliasing artifacts. A widely used and successful construction is the Sobol' sequence that guarantees good high-dimensional uniformity and consequently results in faster convergence of quasi-Monte Carlo integration. We show that this sequence exhibits low uniformity and dominant

INTRODUCTION

The numerical evaluation of integrals is a core computer graphics research problem, notably for rendering realistic images of 3D scenes. Many physically-based rendering techniques rely on the random sampling of an integrand, a process called Monte Carlo integration. For path tracing, it typically consists of following paths from the camera to light sources by randomly bouncing rays in the scene. In many cases, obtaining noise-free images requires computing hundreds to thousands of such paths. Improving the convergence rate of this integral estimator can be achieved by replacing these random values by samples that are particularly well distributed over the integration domain in a highly uniform fashion. Intuitively, correlating samples to avoid holes and clusters on the domain makes the estimate more efficient. This can be formally assessed by various uniformity measures and associated variance reduction theorems, such as the discrepancy and the Koksma-Hlawka inequality [START_REF] Hlawka | Funktionen von beschränkter Variation in der Theorie der Gleichverteilung[END_REF]].

Several techniques exist to obtain low discrepancy samples, either relying on sequences of values uniformly covering the domain by construction [START_REF] Lemieux | Monte Carlo and Quasi Monte Carlo Sampling[END_REF]] or finely optimizing point sets of fixed cardinality by minimizing well chosen energies [START_REF] Keller | Quasi-Monte Carlo Image Synthesis in a Nutshell[END_REF]]. Among these options, the Sobol' sequence has gained significant popularity for rendering since it is fast and produces very well distributed samples that effectively reduce noise in rendered images.

However, it has been suggested that uniformity over the integration domain is not sufficient, and that uniformity over the twodimensional projections used for sampling reflectance, light sources, camera lenses or sensors, is also important to improve image quality [START_REF] Abdalla | Screen-space blue-noise diffusion of Monte Carlo sampling error via hierarchical ordering of pixels[END_REF][START_REF] Paulin | Sliced optimal transport sampling[END_REF][START_REF] Perrier | Sequences with Low-Discrepancy Blue-Noise 2-D Projections[END_REF][START_REF] Reinert | Projective blue-noise sampling[END_REF]. In this context, we show that the popular Sobol' sequence does not always satisfy this requirement, and that consecutive pairs of dimensions can produce very poor distributions in 2-dimensional projections. They may exhibit dominant structures that may result in aliasing artifacts (see Figs. 9 and 10).

We propose to alleviate this problem by introducing a new sampler based on consecutive calls to Sobol' functions (a construction we call cascaded Sobol' sampling), which we prove to provide well distributed low discrepancy point sets in consecutive pairs of dimensions. For now, this comes at a cost: we cannot preserve the sequential aspect of the original Sobol' algorithm, and hence need to fix the number of samples in advance. Still, in addition to uniformity over 2-dimensional projections, we preserve uniformity over the high-dimensional integration domain by optimizing initialization tables over a range of sample cardinalities and dimensions useful for computer graphics applications [START_REF] Joe | Constructing Sobol' sequences with better twodimensional projections[END_REF].

We also propose a technique that improves uniformity, and hence the convergence rate of Monte Carlo rendering. While the deterministic Sobol' sequence is often accompanied with a randomization strategy -for example, Owen scrambling [START_REF] Owen | Scrambling Sobol' and Niederreiter-Xing Points[END_REF]], see Section 3.2 -we show that increasing the bit depth of this randomization technique allows one to more uniformly distribute samples in the domain of integration and to optimize the generation.

Aside from the predetermined number of samples, our approach can act as a drop-in replacement of Sobol' samplers in existing rendering engines to effectively obtain faster convergence. Our sampler does not incur significant overhead as compared to standard Sobol' samplers and is simple to implement.

We now summarize our contributions. First, we propose a cascaded Sobol' sampling construction that provably yields sample uniformity in consecutive pairs of dimensions contrary to the original Sobol' sequence. Second, we compute and provide optimized initialization tables that ensure uniformity in high dimension as well.

We evaluate our method on characteristic integration and rendering examples, showing competitive convergence rates as compared to Sobol' and other state-of-the-art samplers.

RELATED WORK

Monte Carlo Integration. The beauty of Monte Carlo integration is its simplicity yielding a convergent estimate by just averaging evaluations of the integrand at independent random points in the integration domain. Yet, introducing some correlations within the samples may improve the convergence rate (see for instance [START_REF] Singh | Analysis of sample correlations for Monte Carlo rendering[END_REF]). Enhancing the uniformity of the samples can be done in many ways. One can stratify the domain while keeping the stochastic nature of the process (for example, jittered sampling or [START_REF] Christensen | Progressive Multi-Jittered Sample Sequences[END_REF]), we can optimize a point set minimizing some objective functions [START_REF] Balzer | Capacity-constrained point distributions: a variant of Lloyd's method[END_REF][START_REF] Bridson | Fast Poisson Disk Sampling in Arbitrary Dimensions[END_REF][START_REF] Fattal | Blue-Noise Point Sampling Using Kernel Density Model[END_REF][START_REF] Heck | Blue Noise Sampling with Controlled Aliasing[END_REF][START_REF] Ostromoukhov | Fast Hierarchical Importance Sampling with Blue Noise Properties[END_REF][START_REF] Paulin | Sliced optimal transport sampling[END_REF][START_REF] Zhou | Point sampling with general noise spectrum[END_REF], or rely on arithmetic and algebraic properties of lattices to generate samples [START_REF] Grünschloß | t, m, s)-Nets and Maximized Minimum Distance[END_REF][START_REF] Pierre | Lattice Builder: A General Software Tool for Constructing Rank-1 Lattice Rules[END_REF][START_REF] Liu | Rank-1 Lattices for Efficient Path Integral Estimation[END_REF] or using low discrepancy sequences (for example, [START_REF] Halton | Radical-inverse quasi-random point sequence [G5[END_REF][START_REF] Niederreiter | Random Number Generation and quasi-Monte Carlo Methods[END_REF][START_REF] Il | On the distribution of points in a cube and the approximate evaluation of integrals[END_REF]). Our proposal belongs to the latter category since low discrepancy samplers imply fast sample generation in high dimensions and result in the fastest convergence speed thanks to the Koksma-Hlawka inequality [START_REF] Hlawka | Funktionen von beschränkter Variation in der Theorie der Gleichverteilung[END_REF]] that bounds the integration error by the product of the discrepancy of the point set and the variation of the integrand.

Low Discrepancy Sequences and Generator Matrices. Low discrepancy sequences often rely on a combinatorial approach to sets and permutations, and Galois field arithmetic [START_REF] Dick | Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration[END_REF][START_REF] Lemieux | Monte Carlo and Quasi Monte Carlo Sampling[END_REF][START_REF] Niederreiter | Random Number Generation and quasi-Monte Carlo Methods[END_REF]]. Many of the constructions generate points as follows: to retrieve the 𝑖-th sample in the 𝑠-dimensional unit cube [0, 1) 𝑠 of a given point set, we express 𝑖 as a vector in some integer base 𝑏 and compute the 𝑗-th component of the sample by multiplying the vector by a so-called generator matrix using operations on finite fields. Uniformity properties of the point set are obtained by structural properties of the generator matrices used for all dimensions. There exist many algebraic constructions of such matrices [START_REF] Halton | Radical-inverse quasi-random point sequence [G5[END_REF][START_REF] Niederreiter | Random Number Generation and quasi-Monte Carlo Methods[END_REF][START_REF] Il | On the distribution of points in a cube and the approximate evaluation of integrals[END_REF]. Besides construction, there is a number of efforts to identify good generator matrices by optimization [START_REF] Abdalla | Low-discrepancy blue noise sampling[END_REF][START_REF] Grünschloß | t, m, s)-Nets and Maximized Minimum Distance[END_REF][START_REF] Perrier | Sequences with Low-Discrepancy Blue-Noise 2-D Projections[END_REF]]. We propose a new construction for generator matrices resulting in high uniformity in low-dimensional projections and good discrepancy in high dimension, outperforming classical approaches.

Monte Carlo Rendering. In the specific case of Monte Carlo rendering additional properties besides the uniformity of distribution need to be considered. There are two main ways to sample the image plane. One can globally sample the image and attribute samples to the pixel they fall in [START_REF] Grünschloß | Enumerating Quasi-Monte Carlo Point Sequences in Elementary Intervals[END_REF] or one can sample each pixel individually. The second method requires to take special care to avoid similarity in the samples used across pixels. One thus may randomize deterministic samplers, for example by techniques [START_REF] Cranley | Randomization of number theoretic methods for multiple integration[END_REF][START_REF] Kuipers | Uniform distribution of sequences[END_REF][START_REF] Owen | Scrambling Sobol' and Niederreiter-Xing Points[END_REF]] that preserve the uniformity of distribution. Among these strategies, we elaborate on Owen scrambling [START_REF] Owen | Scrambling Sobol' and Niederreiter-Xing Points[END_REF]] as it preserves the low discrepancy properties of certain point sets while improving on practical aspects of Monte Carlo rendering [START_REF] Burley | Practical Hash-based Owen Scrambling[END_REF][START_REF] Perrier | Sequences with Low-Discrepancy Blue-Noise 2-D Projections[END_REF].

In rendering, the function to be integrated exposes a lowdimensional structure implied by how paths are traced through a scene for light transport simulation. If samples are not highly uniformly distributed with respect to such low dimensional projections, a decreased rendering quality is the consequence [START_REF] Paulin | Sliced optimal transport sampling[END_REF][START_REF] Perrier | Sequences with Low-Discrepancy Blue-Noise 2-D Projections[END_REF][START_REF] Reinert | Projective blue-noise sampling[END_REF]. This leads to approaches disregarding the requirement for high-dimensional uniformity and using independent samples for each bounce [Ahmed and Wonka 2020] or the ZeroTwo sampler [START_REF] Pharr | Physically Based Rendering: From Theory to Implementation[END_REF]. We show that this results in a loss of integration quality and that high-dimensional uniformity is beneficial in addition.

More recent complementary research tackled the issue of distributing the integration error across the picture in a way that makes it less perceptible to the human eye. These methods worked either by optimizing sample set distributions across the pixel grid [Heitz and Belcour 2019;Heitz et al. 2019] or by using algebraic properties to reorder a global sampler [START_REF] Abdalla | Screen-space blue-noise diffusion of Monte Carlo sampling error via hierarchical ordering of pixels[END_REF].

In this paper we will introduce a new way to construct generator matrices for low discrepancy point sets with highly uniform lowdimensional projections across consecutive dimensions that are also compatible with state of the art error diffusion methods.

PRELIMINARIES

For the purpose of the paper, we assume familiarity with the basics of quasi-Monte Carlo integration and low discrepancy sequences, especially with the concepts of (𝑡, 𝑠)-sequences and (𝑡, 𝑚, 𝑠)-nets that are well established in graphics [START_REF] Pharr | Physically Based Rendering: From Theory to Implementation[END_REF]] and refer to the textbooks by [START_REF] Niederreiter | Random Number Generation and quasi-Monte Carlo Methods[END_REF], [START_REF] Lemieux | Monte Carlo and Quasi Monte Carlo Sampling[END_REF], or [START_REF] Dick | Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration[END_REF]. In what follows, we recall the details of the Sobol' low discrepancy sequence and Owen scrambling that are required to establish our contribution.

The Sobol' Sequence

The Sobol' sequence [START_REF] Il | On the distribution of points in a cube and the approximate evaluation of integrals[END_REF] is one of the most popular highdimensional low discrepancy sequences used for quasi-Monte Carlo integration. The 𝑗-th component of the 𝑖-th point 𝑥 𝑖 is computed by

𝑥 𝑖,𝑗 := 𝑚-1 ∑︁ 𝑘=0 𝑏 𝑘 • 2 𝑘-𝑚 ∈ [0, 1) , where (1) 
(𝑏 𝑚-1 , . . . , 𝑏 0 ) := (𝑎 0 , . . . , 𝑎 𝑚-1 ) • 𝐶 𝑇 𝑗 .
(2) (𝑎 0 , . . . , 𝑎 𝑚-1 ) denotes the (row) vector representation of 𝑖 in base 2 (𝑎 0 being the least-significant digit). The matrix multiplication is performed in the Galois field F 2 (or GF(2)). Vector operations on F 𝑚 2 can be efficiently implemented as bit-vector XOR and AND operations for addition and multiplication, respectively.

The so-called generator matrix 𝐶 𝑗 is determined by the 𝑗-th primitive polynomial over F 2 . The sequence of these primitive polynomials is enumerated as increasing integers 1 . As the number-theoretic construction of the generator matrices is beyond the scope of our article (see the aforementioned standard textbooks), we focus on the properties and algorithmic aspects of the Sobol' sequence.

Using the generator matrices 𝐶 𝑗 as depicted in Figure 2, we exemplify the generation process for 𝑚 = 4 and 𝑖 = 13 10 = 1101 2 that is the 14-th point of the Sobol' sequence: the computation of the first component yields

(𝑏 3 , 𝑏 2 , 𝑏 1 , 𝑏 0 ) = (1, 1, 0, 1) • 𝐶 𝑇 0 = (1, 0, 1, 1)
, resulting in 𝑥 13,0 = 0.6875. The second and third component are

(𝑏 3 , 𝑏 2 , 𝑏 1 , 𝑏 0 ) = (1, 1, 0, 1) • 𝐶 𝑇 1 = (1, 1, 0, 1) ⇒ 𝑥 13,1 = 0.8125 and (𝑏 3 , 𝑏 2 , 𝑏 1 , 𝑏 0 ) = (1, 1, 0, 1) • 𝐶 𝑇 2 = (0, 1, 1, 1) ⇒ 𝑥 13,2 = 0.4375, re- spectively.
The Sobol' sequence is a (𝑡, 𝑠)-sequence in base 2 [START_REF] Niederreiter | Random Number Generation and quasi-Monte Carlo Methods[END_REF], where 𝑠 denotes the dimension and 𝑡 is a non-negative integer determining the quality of the points. The smaller 𝑡, the more uniformly distributed is the point set. For Sobol's construction [START_REF] Il | On the distribution of points in a cube and the approximate evaluation of integrals[END_REF], the parameter 𝑡 is the sum of the degrees (minus one) of the primitive polynomials used for the generator matrices 𝐶 0 , . . . , 𝐶 𝑠-1 . As a consequence, the higher 𝑗, the higher 𝑡, limiting the uniformity, especially of low-dimensional projections. Hence, constructing a (𝑡, 𝑠)-sequence or a (𝑡, 𝑚, 𝑠)-net with minimal 𝑡 has high practical impact and is the major challenge in the quasi-Monte Carlo community.

By construction, the generator matrices 𝐶 𝑗 of the Sobol' sequence are full rank. In fact, they are infinite-dimensional and become finite only by selecting a maximum number 𝑚 of bits to operate on. [START_REF] Joe | Constructing Sobol' sequences with better twodimensional projections[END_REF] published optimized generator matrices up to dimension 𝑠 = 21201 that are widely used in finance and graphics (see Figure 2).

As the generator matrices 𝐶 𝑗 are full rank, they are bijections. Hence setting 𝑁 := 2 𝑚 , we can define 𝜎 𝑁 𝑗 as the permutation on {0, . . . , 𝑁 -1} that relates the integers

𝑖 (𝑎 𝑚-1 • • • 𝑎 0 in base 2) and 𝑏 (resp. 𝑏 𝑚-1 • • • 𝑏 0 ) by (𝑏 0 , . . . , 𝑏 𝑚-1 ) = (𝑎 0 , . . . , 𝑎 𝑚-1 ) • 𝐶 𝑇 𝑗 • 𝐽 𝑚 , (3) 
where 𝐽 𝑚 is the antidiagonal 𝑚 × 𝑚 unit matrix. This allows us to rewrite the first 𝑁 points of the Sobol' sequence as

x 𝑖 := 1 𝑁 𝜎 𝑁 0 (𝑖) 𝜎 𝑁 1 (𝑖) . . . 𝜎 𝑁 𝑠-1 (𝑖) 𝑇 .
(4)

Owen Scrambling

Owen scrambling [START_REF] Owen | Scrambling Sobol' and Niederreiter-Xing Points[END_REF]] is a method to randomize low discrepancy sequences while preserving their low discrepancy properties. It consists of constructing independent trees Π 𝑗 of random permutations, one per dimension 𝑗, and applying these permutations to the digits of the 𝑗-th component of the points. More precisely, if , 1, 2, 3, 4, and15). Yellow lines represent the so-called direction vectors, i.e. digits that may be initialized or optimized freely. The number of yellow lines is equal to the degree 𝑛 of the primitive polynomial used (e.g., 𝑥 6 + 𝑥 5 + 1 of degree 𝑛 = 6 for dimension 𝑗 = 15). Red squares correspond to the '1's in the direction vectors as proposed by [START_REF] Joe | Constructing Sobol' sequences with better twodimensional projections[END_REF]. Green squares correspond to mandatory '1's in the matrix that cannot be changed, according to Sobol's construction. Blue squares correspond to the '1's induced by the corresponding primitive polynomials within Sobol's construction. Shown matrices are of size 32 × 32, which can be used for generating up to 2 32 points. The construction is suitable for matrices of arbitrary size.

𝑚 → ↓ . . . (a) 𝑗 = 0 (b) 𝑗 = 1 (c) 𝑗 = 2 (d) 𝑗 = 3 (e) 𝑗 = 4 (f) 𝑗 = 15
𝑚 → ↓ . . . (𝑎) 𝑗 = 0 (b) 𝑗 = 1 (c) 𝑗 = 2 (d) 𝑗 = 3 (e) 𝑗 = 4 (f) 𝑗 = 15
Fig. 3. Optimized cascaded Sobol' generator matrices 𝑀 𝑗 for generating 2 4 , 2 8 , 2 16 , and 2 32 points, respectively. Other than Sobol's construction, the generator matrices are not necessarily lower triangular matrices.

𝑎 0 • • • 𝑎 𝑚-1 are the first 𝑚 bits of the binary representation of the component 𝑗, the Owen scrambling

𝑐 0 • • • 𝑐 𝑚-1 of 𝑎 0 • • • 𝑎 𝑚-1 is de-
termined by a tree of permutations Π 𝑗 of depth 𝑚 where the boolean value, denoted 𝜋 ( •) , at each node is XORed with the corresponding digit:

𝑐 0 = 𝜋 ⊕ 𝑎 0 𝑐 1 = 𝜋 𝑎 0 ⊕ 𝑎 1 𝑐 2 = 𝜋 𝑎 0 ,𝑎 1 ⊕ 𝑎 2 . . . 𝑐 𝑚-1 = 𝜋 𝑎 0 ,𝑎 1 ,...,𝑎 𝑚-2 ⊕ 𝑎 𝑚-1
Note that the permutation 𝜋 applied to the 𝑘-th bit depends on the leading 𝑘 -

1 bits of 𝑎 0 • • • 𝑎 𝑚-1 .
An important fact to keep in mind is that Owen scrambling applied to (𝑡, 𝑠)-sequences or (𝑡, 𝑚, 𝑠)-nets does not change the quality parameter 𝑡. In many cases Owen scrambling can improve the uniformity of a point set and hence can be used to optimize point sets.

CASCADED SOBOL' SAMPLING

We propose the cascaded Sobol' sampler that combines the advantages of optimized Sobol' sequences, Owen scrambling, and optimization of the correlation between dimensions.

New Construction

Using the permutation property of the components of the Sobol' sequence established in Equation 3, our new construction iteratively applies the 𝑗-th Sobol' permutation to the result of the ( 𝑗 -1)-th permutation yielding the points

x 𝑖 := 1 𝑁 𝜎 𝑁 0 (𝑖) 𝜎 𝑁 1 • 𝜎 𝑁 0 (𝑖) . . . 𝜎 𝑁 0 (𝑖) 𝜎 𝑁 𝑠-1 • 𝜎 𝑁 𝑠-2 • . . . • 𝜎 𝑁 0 (𝑖) 𝑇 . (5) 
We then apply Owen scrambling in order to benefit from randomization without compromising the low-discrepancy properties. Denoting the application of Owen scrambling by composition, for example Π 0 • 𝜎 𝑁 0 (𝑖), this leads to the central Definition 4.1 (Cascaded Sobol' Sampling). For a fixed number of samples 𝑁 = 2 𝑚 , given the sequence of Sobol's permutations 𝜎 𝑁 𝑗 and a sequence of permutations trees Π 𝑗 for Owen scrambling, the 𝑖-th point x 𝑖 ∈ [0, 1) 𝑠 is defined as:

x 𝑖 := 1 𝑁 Π 0 • 𝜎 𝑁 0 (𝑖) Π 1 • 𝜎 𝑁 1 • 𝜎 𝑁 0 (𝑖) . . . 𝜎 𝑁 0 (𝑖) Π 𝑠-1 • 𝜎 𝑁 𝑠-1 • 𝜎 𝑁 𝑠-2 • . . . • 𝜎 𝑁 0 (𝑖) 𝑇 . (6) 
Note that for 𝑖 = 2 𝑎 𝑚-1 • • • 𝑎 0 , the composition of Sobol' permutations 𝜎 𝑁 𝑗 • . . . • 𝜎 𝑁 0 (𝑖) admits the linear algebraic formulation (𝑏 0 , . . . , 𝑏 𝑚-1 ) = (𝑎 0 . . . 𝑎 𝑚-1 ) • 𝑀 𝑗 ,

where

𝑀 𝑗 := 𝐶 𝑇 0 • 𝐽 𝑚 • 𝐶 𝑇 1 • 𝐽 𝑚 • . . . • 𝐶 𝑇 𝑗 • 𝐽 𝑚 . (8) 
Unlike the original generator matrices, the cascaded matrices 𝑀 𝑗 are not necessarily triangular, as can be seen in Figure 3. Yet, the matrices are still full rank matrices and expose a very strong property for consecutive dimensions as analyzed in the next section.

Perfect Consecutive Nets

A key property of the cascaded Sobol' sampling is that any pair of two consecutive dimensions results in a highly uniform point set. More formally, in Appendix A we prove Theorem 4.2. For any 𝑗 ∈ {0, . . . , 𝑠 -2}, the points 𝑥 𝑖,𝑗 , 𝑥 𝑖,𝑗+1 form a (0, 𝑚, 2)-net.

Being a (𝑡, 𝑚, 𝑠)-net in dimension 𝑠 = 2 with 𝑡 = 0 has important consequences for quasi-Monte Carlo integration: each twodimensional elementary interval of the form [𝛼/2 𝑚-1 , 𝛽/2 𝑚-1 ) × [𝛾/2 𝑚-1 , 𝛿/2 𝑚-1 ) ∈ [0, 1)2 with 𝛼, 𝛽, 𝛾, 𝛿 ∈ {0, . . . , 2 𝑚-1 -1} and area 2 -𝑚 contains exactly one sample point. Note that the elementary intervals include the strata regularly used for stratified jittered sampling. (0, 𝑚, 2)-nets hence expose a stratification superior to regular stratified sampling as illustrated in Figure 5.

Generator Matrix Optimization

In Sobol's construction, a generator matrix 𝐶 𝑗 is determined by two entities: an primitive primitive polynomial of a certain degree 𝑛, and the first 𝑛 rows of the matrix 𝐶 𝑇 𝑗 , which are called direction vectors (see Figure 2). While consecutive dimensions of the cascaded Sobol' sampling are guaranteed to have excellent stratification properties, this may not be the case for other projections as illustrated in Fig- ure 4. Optimizing the direction vectors allows one to alleviate the issue.

The goal of our offline optimization is to provide the direction vectors that insure the best low discrepancy in high dimensions. This process resembles the seminal work by Joe and Kuo for the Sobol'/Owen construction [START_REF] Joe | Constructing Sobol' sequences with better twodimensional projections[END_REF]. Once it is done, the direction vectors are tabulated (for instance, Joe and Kuo's direction vectors are hardcoded in the PBRT Sobol' implementation). The same is true for our construction: once such an optimization is performed, and the resulting initialization table is shared, the user can efficiently generate low discrepancy point sets in high dimensions.

Our optimization minimizes the generalized 𝐿 2 -discrepancy [START_REF] Hickernell | A generalized discrepancy and quadrature error bound[END_REF]] for any dimension up to a certain bound and for any number 𝑁 = 2 𝑚 of points. Applying a greedy search and starting from dimension 2, we go up to dimension 100. For each dimension, we test all primitive polynomials up to degree 10, that is 161 polynomials 2 . For each polynomial, we assign 𝑛 random direction vectors (according to the degree of the polynomial). For this particular assignment we then calculate the resulting 𝐿 2 -discrepancy for all point sets of cardinality 2 0 to 2 18 . Among the billions of tested configurations, we accept the one with the minimal 𝐿 2 -discrepancy, for all 𝑁 , and for all tested polynomials among 161 available. Fig. 4. Uniformity of projections. We show the 2-dimensional projections of 256 5-dimensional points when using the Sobol' construction with Owen scrambling (𝑎), our construction according to Definition 4.1 using the original generator matrices by [START_REF] Joe | Constructing Sobol' sequences with better twodimensional projections[END_REF](𝑏), and our cascaded Sobol' sampler with optimized matrices. Both (𝑏) and (𝑐) highlight perfect (0, 𝑚, 2)-net properties for consecutive pairs of dimensions (e.g. (0,1),(1,2),(2,3), and (3,4)).

Optimizing the generator matrices allows us to fix potential uniformity issues in other projections (for example, [START_REF] Grünschloß | t, m, s)-Nets and Maximized Minimum Distance[END_REF]4) in (𝑏)).

Fig. 5. (0,m,2)-nets in base 2 are important particular cases of (t,m,s)-nets where 2-dimensional point sets of cardinality 𝑁 = 2 𝑚 are organized in such a way that all elementary dyadic partitions of size 1/𝑁 of the [0, 1) 𝑠 domain contain exactly 2 𝑡 = 2 0 = 1 sampling point, as illustrated here for 16 points. For a more detailed explanation, see [START_REF] Niederreiter | Random Number Generation and quasi-Monte Carlo Methods[END_REF], [START_REF] Lemieux | Monte Carlo and Quasi Monte Carlo Sampling[END_REF], or [START_REF] Dick | Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration[END_REF].

Computational resources needed for optimization depend on the quality criterion, which is the ratio between the 𝐿 2 -discrepancy obtained in our construction and that of the reference Sobol'/Owen one, for all tested cardinality numbers. A typical timing for finding a good solution may vary from a few seconds ("loose" quality criterion) to many hours (tight quality criterion) per dimension. The results presented in this publication for 100 dimensions have been obtained with extremely tight quality criterion; it required about one week of computation using a farm of 300 modern 16-core computers or approximatively 50,000 CPU hours.

Figure 4 illustrates the outcome of this optimization procedure: using the generator matrices given by [START_REF] Joe | Constructing Sobol' sequences with better twodimensional projections[END_REF] (Figure 4-(b)), consecutive pairs of dimensions define (0, 𝑚, 2)-nets, but with uniformity defects in other projections (for example, the pair [START_REF] Grünschloß | t, m, s)-Nets and Maximized Minimum Distance[END_REF]4)). The optimized matrices, denoted by 𝐶 * 𝑗 hereafter, lead to high quality samples for all consecutive pairs of projections (Figure 4-(c)). Figure 7 (right) presents quantitative results in high dimensions.

It is worth mentioning that the 𝐿 2 -discrepancy of all consecutive 2-dimensional projections of our point sets is clearly superior to that of Sobol' s construction with Owen scrambling, thanks to our unique property of (0, 𝑚, 2)-nets in all consecutive 2-dimensional projections, as derived in the previous section.

In the supplementary material (https://projet.liris.cnrs.fr/ cascaded), we provide our optimized initialization table for the first 100 dimensions in the file format introduced by Joe and Kuo [2008]. Each entry of this initialization table contains, one dimension per line, the index of the dimension, the degree of the primitive polynomial associated with this dimension, the primitive polynomial itself, followed by a list of direction vectors. The table contains all necessary information for generating the 𝐶 * 𝑗 .

Implementation of the Cascaded Sobol' Sampler

Algorithm 1 shows the Cascaded Sobol' Sampler that combines all previous ingredients: for a given number 𝑁 of samples, the iterative construction of Definition 4.1 is used with the optimized generator matrices 𝐶 * 𝑗 as described above.

ALGORITHM 1: Generation of the sample x 𝑖 ∈ [0, 1) 𝑠 , where 0 ≤ 𝑖 < 2 𝑚 . Data: Optimized generator matrices 𝐶 * 0 , . . . , 𝐶 * 𝑠-1 , 32-bit Owen scrambling permutation trees Π 0 , . . . , Π 𝑠-1 Result:

(𝑥 0 , . . . , 𝑥 𝑠-1 ) a = (𝑎 𝑚-1 , . . . , 𝑎 0 ) ← Base2IntToVec32(𝑖); b ← a • 𝐽 𝑚 ; // product in F 2 for 𝑗 ← 0 to 𝑠 -1 do b ← b • 𝐶 * 𝑇 𝑗 • 𝐽 𝑚 ; // products in F 2 𝑞 ← Base2VecToInt32(b); 𝑝 ← Π 𝑗 (𝑞); 𝑥 𝑗 ← 1 2 𝑚 𝑝; end
By considering Owen scrambling not only for the first log 2 𝑁 digits of the sample coordinates (see Sect. 3.2), but for all digits, we can further improve the distribution of the sample points. The interest is twofold: first, it allows us to use fixed precision operands for fast bitwise operations when performing computations on F 2 .

Second, applying Owen scrambling to the least significant bits (digits between 𝑚 = log 2 𝑁 and 32) performs an additional random microjittering across the strata of volume 1/𝑁 as illustrated in Figure 6. Technically speaking, this is equivalent to generating random bits for the (32 -𝑚) least significant bits. This allows for an optimized implementation of Owen scrambling that does neither generate nor store permutation beyond the 𝑚 most significant bits. For Monte Carlo rendering, this micro-jittering also has an important impact as detailed in Section 5.2. Note that fixing the precision is not a limitation of the approach since for sample counts greater than 2 32 , we can fall back to the classical Owen scrambling.

We implemented Owen scrambling [START_REF] Owen | Randomly Permuted (𝑡, 𝑚, 𝑠)-Nets and (𝑡, 𝑠)-Sequences[END_REF]] using one seed for a pseudo-number random generator to generate the tree of random permutations. An alternative implementation could consider hash-based scrambling as proposed by [START_REF] Burley | Practical Hash-based Owen Scrambling[END_REF]. Compared to the classic Sobol' sequence, generating 16 (4 bits) Owen scrambled samples in 𝑠 = 6 dimensions is 1.5 slower on the average. Our current implementation of the Owen scrambled cascaded Sobol' sampling (32 bits) is 2 times slower than the original Sobol' sequence (but generates still more than 7M samples per second on a single core AMD Ryzen 5800X). There is room for further optimizations, such as caching the generator matrices 𝑀 𝑗 and skipping the explicit matrix products of Eq. ( 8).

The code for the cascaded Sobol' sampler and the optimized matrices up to dimension 𝑠 = 100 are provided (https://projet.liris. cnrs.fr/cascaded). For dimensions greater than 100, we use the Sobol' matrices from [START_REF] Joe | Constructing Sobol' sequences with better twodimensional projections[END_REF].

NUMERICAL EXPERIMENTS AND DISCUSSION

We provide numerical evidence for the practical advantages of the cascaded Sobol' sampler. We therefore measure the uniformity of distribution by integrating smooth and discontinuous test functions and computing the generalized 𝐿 2 -discrepancy. Then, we illustrate the advantages of randomization across pixels by full precision scrambling. Finally, we demonstrate the benefits of the excellent low-dimensional projections with overall high-dimensional low discrepancy that the cascaded Sobol' sampler provides by construction.

Integrating Test Functions and Discrepancy

In Figure 7, we assess the performance of the new sampler by integrating test functions and measuring the uniformity of distribution. For comparison, we consider other state-of-the art and popular samplers: random uniform sampling, Poisson disk sampling by dart throwing, samplers relying on stratification (Jittered sampling, PMJ02 [START_REF] Christensen | Progressive Multi-Jittered Sample Sequences[END_REF], OrthogonalArrays [START_REF] Jarosz | Orthogonal Array Sampling for Monte Carlo Rendering[END_REF]), samplers relying on a low discrepancy sequence (in particular, the Sobol' sequence with Owen scrambling, rank-1 lattices [START_REF] Keller | Stratification by rank-1 lattices[END_REF]] (with optimized vectors from [L'Ecuyer and Munger 2016]), PMJ02, ZeroTwo [START_REF] Pharr | Physically Based Rendering: From Theory to Implementation[END_REF], and our cascaded Sobol' sampler), and optimized point sets such as Sliced Optimal Transport Sampling (SOT) [START_REF] Paulin | Sliced optimal transport sampling[END_REF]. Following the strategy proposed by [START_REF] Paulin | Sliced optimal transport sampling[END_REF], random multivariate Gaussians of the form 𝑔(𝑥) = exp -1 2 (𝑥 -𝜇) 𝑇 Σ -1 (𝑥 -𝜇) with bounded covariance matrix eigenvalues represent the class of smooth functions, while random Heaviside functions represent the class of discontinuous functions. The experiments are conducted across a range of dimensions and the uniformity of the point sets is measured by the generalized 𝐿 2 -discrepancy.

With respect to the integration of test functions, the cascaded Sobol' sampler is among the best sampling strategies while outperforming previous samplers in terms of generalized 𝐿 2 -discrepancy. For the integration tests, SOT is the most competitive set of samples (𝑠 ∈ {2, 6, 20} for smooth integrands), but requires a costly optimization process that does not scale to high-dimensional sampling, which may limit its practicality in production rendering. From that perspective, cascaded Sobol' sampling has the same level of code complexity and is as fast to evaluate as the classic Sobol' with Owen scrambling.

Full-precision Scrambling

For path-tracing based Monte Carlo rendering, we use cascaded Sobol' sampling on a per-pixel basis, i.e. we generate 𝑁 samples of dimension 𝑠 for each pixel. As reviewed in Section 2, several strategies exist to randomize point sets such that they are uncorrelated across pixels in order to reduce visual artifacts in rendering. These strategies can be optimized by searching for shifts or pseudorandom number seeds such that the error is distributed across the image plane in a much more visually agreeable way [START_REF] Abdalla | Screen-space blue-noise diffusion of Monte Carlo sampling error via hierarchical ordering of pixels[END_REF][START_REF] Georgiev | Blue-Noise Dithered Sampling[END_REF]Heitz and Belcour 2019;Heitz et al. 2019].

Similar to previous work, the cascaded Sobol' sampler relies on Owen scrambling to create uncorrelated point sets. As Owen scrambling preserves the low discrepancy properties, it does not alter the per-pixel convergence of Monte Carlo estimators. However, limited precision scrambling may be prone to aliasing artifacts, because the number or possible coordinates per dimension is limited to 𝑁 different values. This is illustrated in Figures 6 and9. We resolve this issue by considering a 32-bit Owen scrambling as discussed in Section 4.4. This remedies the artifacts problem as illustrated in Figure 8 as now 2 32 positions are possible in each dimension (before floating point conversion, see Equation 1). Furthermore, the uniformity of distribution is improved almost surely.

Gaussian integrands

Heaviside et al. [2018], and SOT refers to [START_REF] Paulin | Sliced optimal transport sampling[END_REF]. The ZeroTwo sampler corresponds to PBRT's ZeroTwoSequenceSampler which considers a (0,2)-sequence per pair of dimensions with a random pairing across the pair of dimensions [START_REF] Pharr | Physically Based Rendering: From Theory to Implementation[END_REF]]. Rank1 uses rank-1 lattices [START_REF] Keller | Stratification by rank-1 lattices[END_REF]] generated via the implementation of [START_REF] Pierre | Lattice Builder: A General Software Tool for Constructing Rank-1 Lattice Rules[END_REF]. The uniformity of distribution is measured by the generalized 𝐿 2 -discrepancy (right) as defined in [START_REF] Hickernell | A generalized discrepancy and quadrature error bound[END_REF]]. the 𝑚 = log 2 𝑁 most significant bits (MSB) produces aliasing issues (first two rows) that no longer exist when using our max(32, log 2 𝑁 )-bit scrambling. Note that even with the cascaded construction but only scrambling the log 2 𝑁 most significant bits, the artifacts are still visible (middle row). CC-BY "The breakfast room" scene by Wig42.

Importance of High-dimensional Low Discrepancy

We now discuss how the intrinsic structure of cascaded Sobol' helps path tracing in Monte Carlo rendering. By construction, our sampler is a low discrepancy point set with perfectly stratified pairs of consecutive projections. Implementing a path tracer, dimensions are consumed in a consecutive fashion, too, for example, consecutive scattering events along a path consume two consecutive dimensions at a time. The same goes for sampling area light sources or lenses.

For that reason, sampling strategies with good low-dimensional projections, especially for two dimensions, have attracted considerable interest [START_REF] Abdalla | Screen-space blue-noise diffusion of Monte Carlo sampling error via hierarchical ordering of pixels[END_REF][START_REF] Joe | Constructing Sobol' sequences with better twodimensional projections[END_REF][START_REF] Perrier | Sequences with Low-Discrepancy Blue-Noise 2-D Projections[END_REF][START_REF] Reinert | Projective blue-noise sampling[END_REF]]. An almost perfect sampler in that respect is the ZeroTwo sampler [START_REF] Pharr | Physically Based Rendering: From Theory to Implementation[END_REF]] that has been combined with screen space properties [Ahmed and Wonka 2020]: each pair of components corresponds to a perfect (0, 2)-sequence derived from the first two dimensions of the Sobol' sequence with a random pairing between pairs of dimensions (per-pixel random pairing). However, even with perfect low discrepancy of pairs of dimensions, Figure 7 shows that the ZeroTwo sampler has a bad uniformity across all dimensions -due to a lack of overall low discrepancy.

In Figure 9, we evaluate the impact of our sampler on rendering, and compare it to the Sobol' sequence and the cascaded Sobol' sampler applied to a Cornell box scene with high frequency content on the gray wall as suggested in [START_REF] Burley | Practical Hash-based Owen Scrambling[END_REF]] with one-bounce indirect lighting (thus requiring 6-dimensional samples). As discussed in Sect. 5.2, the Owen scrambled Sobol' sampling exhibits aliasing issues. ZeroTwo does not expose such artifacts, however the lack of high uniformity across all 6 dimensions causes disturbing high frequency artifacts visible on the back wall. The cascaded Sobol' sampler does not have such issues as it has the same quality as ZeroTwo with respect to low-dimensional projections (see Theorem 4.2) without sacrificing high-dimensional uniformity.

In Figure 10, we provide more qualitative and quantitative results of various scenes including longer paths and hence higher dimensions. For the qualitative analysis, we color each pixel according to the sampler achieving the minimal mean square error (MSE) at 256spp for the first three, and 4096spp for the fourth one, as compared to a ground truth image (black pixels correspond to equivalent MSE across all samplers). The graphs show MSE plots for various sample counts indicating that the cascaded Sobol' sampler outperforms its closest competitors. From the qualitative images and for low-dimensional rendering problems, we can relate the better performances of cascaded Sobol' sampler in both the projection and full space to pixels corresponding integration problems where the global uniformity matters. In higher dimensions, the cascaded Sobol' sampler still has lower MSE but it is more complex to relate this to some specific optical effects.

To summarize, the best results are achieved with perfect pairs of projections without sacrificing high-dimensional uniformity, which is exactly what the cascaded Sobol' sampler provides. 

LIMITATIONS

First, our construction only produces point sets. However, thanks to the flexibility of our cascaded approach, there is room for more advanced constructions that unify both sequentiality and the (0,m,2)net property in 2D projections.

As detailed in Section 4.3, our offline generator matrix optimization process has some internal parameters, which can be adapted to specific application areas. As long as direction vectors are generated, our sampler definition (Definition 4.1) and its fundamental properties (Theorem 4.2) remain the same.

Our optimization is slow when the uniformity criteria are tight. Speeding up this process has not been the focus of the new construction, but bears a lot of potential. In any case, this optimization needs to be done only once, and we provide a table of well-optimized parameters for the first 100 dimensions.

CONCLUSIONS

Inspired by the popular Sobol' sequence and Owen scrambling, we constructed a new sampling method. Unlike previous methods, our sampling technique offers several unique and advantageous features. First, the point sets generated by our construction have a proven (0, 𝑚, 2)-net property for any consecutive pair of dimensions in a multi-dimensional setting. This property leads to unprecedented uniformity as shown in Section 5. Second, by optimizing the direction vectors as explained in Section 4.3, we are able to keep the 𝐿 2 -discrepancy at the level of the construction by Sobol' (for dimensions up to 5, our 𝐿 2 -discrepancy clearly surpasses that of the Sobol' sequence with Owen scrambling; for higher dimensions the 𝐿 2 -discrepancy differs by a small amount). We demonstrate the benefits of the proposed sampler by examples in rendering using path tracing.

In future work, we hope to overcome the limitation of finite point sets by constructing infinite point sequences with the aforementioned advantages. Furthermore, we like to extend our sampler to incorporate screen space blue noise characteristics [START_REF] Abdalla | Screen-space blue-noise diffusion of Monte Carlo sampling error via hierarchical ordering of pixels[END_REF][START_REF] Georgiev | Blue-Noise Dithered Sampling[END_REF]Heitz et al. 2019].

Our construction offers benefits that reach beyond computer graphics. We are confident that this work will inspire specialists in other domains which use quasi-Monte Carlo integration, e.g., in finance and physics. Lemma A.2. 1 𝑁 𝑖, 𝜎 𝑁 𝑗+1 (𝑖) | 𝑖 ∈ {0, . . . , 𝑁 -1} is a (0,m,2)-net.

Proof. Following the formulation of Eq.( 2 Obviously, det(𝑀 𝑑 ) is equivalent to the determinant of the lower left block of the matrix 𝑀 𝑑 that is a triangular matrix with 1 on the diagonal. Hence, det(𝑀 𝑑 ) = 1 for any choice of 𝑑 for 0 ≤ 𝑘 ≤ 𝑚.

By Niederreiter [1992, Thm. 4.28] it follows that 1 𝑁 𝑖, 𝜎 𝑁 𝑗+1 (𝑖) | 𝑖 ∈ {0, . . . , 𝑁 -1} is a (0,m,2)-net. □

Our proof of Lemma A.2 uses a fundamental result from Niederreiter [1992] and [START_REF] Grünschloß | t, m, s)-Nets and Maximized Minimum Distance[END_REF], which we recall here for the sake of completeness:

Theorem A.3 ( [Niederreiter 1992, Thm. 4.28][Grünschloss et al. 2008, Thm. 1] ). Let 𝑃 𝑁 be a 𝐶 0 , ..., 𝐶 𝑠-1 -generated point set of cardinality 𝑁 = 2 𝑚 in base 2 and dimension s, then 𝑃 𝑁 is a (0, m, s)-net in base 2 if for all 𝑑 = (𝑑 1 , ..., 𝑑 𝑠 ) ∈ N 𝑠 0 with ∥𝑑 ∥ 1 = 𝑚 the It is now straightforward to prove Theorem 4.2.

Proof. Without loss of generality, selecting one 𝑗 ∈ {0, . . . , 𝑠 -2}, we have

𝑥 𝑖,𝑗 , 𝑥 𝑖,𝑗+1 = 1 𝑁 Π 𝑗 • 𝜎 𝑁 𝑗 • • • • • 𝜎 𝑁 0 (𝑖) , Π 𝑗+1 • 𝜎 𝑁 𝑗+1 • • • • • 𝜎 𝑁 0 (𝑖) .
By Lemma A.1 and Lemma A.2 the point set formed by the two consecutive dimensions forms a (0, 𝑚, 2)-net in base 𝑏 = 2. □

Fig. 2 .

 2 Fig. 2. Sobol' generator matrices: the triangular binary matrices 𝐶 𝑇 𝑗 introduced by Joe and Kuo [2008] (dimensions 𝑗 = 0, 1, 2, 3, 4, and 15). Yellow lines represent the so-called direction vectors, i.e. digits that may be initialized or optimized freely. The number of yellow lines is equal to the degree 𝑛 of the primitive polynomial used (e.g., 𝑥 6 + 𝑥 5 + 1 of degree 𝑛 = 6 for dimension 𝑗 = 15). Red squares correspond to the '1's in the direction vectors as proposed by[START_REF] Joe | Constructing Sobol' sequences with better twodimensional projections[END_REF]. Green squares correspond to mandatory '1's in the matrix that cannot be changed, according to Sobol's construction. Blue squares correspond to the '1's induced by the corresponding primitive polynomials within Sobol's construction. Shown matrices are of size 32 × 32, which can be used for generating up to 2 32 points. The construction is suitable for matrices of arbitrary size.

Fig. 6 .

 6 Fig.6. Micro-jittering by 32-bit Owen scrambling. 16 samples of a (0, 4, 2)-net with Owen scrambling applied to the 𝑚 = 4 first bits (a). Scrambling 32 bits, the samples become jittered in their respective strata (b). The properties transfer to the cascaded Sobol' sampler (c).

Fig. 8 .

 8 Fig.8. Per-pixel scrambling artifacts: on two different scenes (𝑠 = 6 and 𝑠 = 10) and low sample counts 𝑁 ∈ {4, 16}, classic Owen scrambling applied to the 𝑚 = log 2 𝑁 most significant bits (MSB) produces aliasing issues (first two rows) that no longer exist when using our max(32, log 2 𝑁 )-bit scrambling. Note that even with the cascaded construction but only scrambling the log 2 𝑁 most significant bits, the artifacts are still visible (middle row). CC-BY "The breakfast room" scene by Wig42.

Fig. 9 .

 9 Fig. 9. Cornell box with high frequency sub-pixel texture pattern: highly discontinuous integrands can cause aliasing at low sample counts (the yellow rectangle highlights the region used for the zooms).

.

  ), the point set 𝑖, 𝜎 𝑁 𝑗+1 (𝑖) | 𝑖 ∈ {0, . . . , 𝑁 -1} is generated by the two generator matrices 𝐺 0By definition, 𝐺 1 is an upper triangular matrix in F 2 . Let 𝑑 = (𝑘, 𝑚 -𝑘) and let 𝑀 𝑑 be the matrix composed of the 𝑘 first lines of 𝐺 0 and 𝑚 -𝑘 first lines of 𝐺 1 , i.e.

1 𝑑 𝑠 , 1 𝐶 𝑠- 1 𝑑

 111 𝑠 ,𝑚 is an 𝑚 × 𝑚 matrix consisting of the first 𝑑 𝑗 rows of the generator matrix 𝐶 𝑗 for 0 ≤ 𝑗 < 𝑠.

  Monte Carlo integration of canonical functions and discrepancy tests. We consider various integration tests in dimensions 2, 4, 6, and 20 to evaluate Monte Carlo integration error as a function of the number of sample points 𝑁 . The Gaussian integrands column (left) depicts the error averaged over 1024 integrations of random multivariate Gaussian distributions in the [0, 1) 𝑠 domain; each curve indicates the error of a different sampler over the 1024 integral evaluations. The Heaviside integrands column (middle) depicts the error averaged over 1024 integrations of random Heaviside functions going through the center of the [0, 1) 𝑠 domain. Note that Orthogonal Arrays refers to the CMJND sampler of[START_REF] Jarosz | Orthogonal Array Sampling for Monte Carlo Rendering[END_REF], PMJ02 refers to the method of Christensen
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A058947 sequence in Sloane's On-Line Encyclopedia of Integer Sequences [Sloane
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Sequence A000020 in Sloane's On-Line Encyclopedia of Integer Sequences [Sloane 2017] determines the number of primitive polynomials of degree n over F 2 , which is 2,1, 2, 2, 6, 6, 18, 16, 48, 60, .... 
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A PROOF OF THEOREM 4.2

First, we show that any two consecutive dimensions have the same canonical structure:

for 𝑖 ∈ {0, . . . , 𝑁 -1} is equivalent to the set