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Fig. 1. Cascaded Sobol’ Point Sets. For quasi-Monte Carlo integration problems, low discrepancy samplers, such as the Sobol’ sequence with Owen
scrambling [Owen 1998; Sobol’ 1967], are widely used thanks to their ease of generating high-dimensional point sets. While being low discrepancy in high
dimension, some projections may exhibit strong uniformity defects (illustrated here by consecutive 2-dimensional projections of an 11-dimensional point
set in the first row). We propose a sampling strategy with perfect (0, m, 2)—net properties (second row) for consecutive pairs of dimensions and optimized
low discrepancy in high dimension, reducing errors in Monte Carlo rendering. The third row shows Ly-discrepancies of first 10 consecutive 2-dimensional

projections; see Figure 7 for s-dimensional discrepancies.

Rendering quality is largely influenced by the samplers used in Monte Carlo
integration. Important factors include sample uniformity (e.g., low discrep-
ancy) in the high-dimensional integration domain, sample uniformity in
lower-dimensional projections, and lack of dominant structures that could
result in aliasing artifacts. A widely used and successful construction is
the Sobol’ sequence that guarantees good high-dimensional uniformity and
consequently results in faster convergence of quasi-Monte Carlo integra-
tion. We show that this sequence exhibits low uniformity and dominant
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structures in low-dimensional projections. These structures impair quality
in the context of rendering, as they precisely occur in the 2-dimensional
projections used for sampling light sources, reflectance functions, or the
camera lens or sensor. We propose a new cascaded construction, which,
despite dropping the sequential aspect of Sobol’ samples, produces point
sets exhibiting provably perfect dyadic partitioning (and therefore, excellent
uniformity) in consecutive 2-dimensional projections, while preserving good
high-dimensional uniformity. By optimizing the initialization parameters
and performing Owen scrambling at finer levels of binary representations,
we further improve over Sobol’s integration convergence rate. Our method
does not incur any overhead as compared to the generation of the Sobol’
sequence, is compatible with Owen scrambling and can be used in rendering
applications.
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1 INTRODUCTION

The numerical evaluation of integrals is a core computer graphics re-
search problem, notably for rendering realistic images of 3D scenes.
Many physically-based rendering techniques rely on the random
sampling of an integrand, a process called Monte Carlo integration.
For path tracing, it typically consists of following paths from the
camera to light sources by randomly bouncing rays in the scene. In
many cases, obtaining noise-free images requires computing hun-
dreds to thousands of such paths. Improving the convergence rate
of this integral estimator can be achieved by replacing these random
values by samples that are particularly well distributed over the
integration domain in a highly uniform fashion. Intuitively, corre-
lating samples to avoid holes and clusters on the domain makes the
estimate more efficient. This can be formally assessed by various uni-
formity measures and associated variance reduction theorems, such
as the discrepancy and the Koksma-Hlawka inequality [Hlawka
1961].

Several techniques exist to obtain low discrepancy samples, ei-
ther relying on sequences of values uniformly covering the domain
by construction [Lemieux 2009] or finely optimizing point sets of
fixed cardinality by minimizing well chosen energies [Keller 2013].
Among these options, the Sobol’ sequence has gained significant
popularity for rendering since it is fast and produces very well dis-
tributed samples that effectively reduce noise in rendered images.

However, it has been suggested that uniformity over the inte-
gration domain is not sufficient, and that uniformity over the two-
dimensional projections used for sampling reflectance, light sources,
camera lenses or sensors, is also important to improve image qual-
ity [Ahmed and Wonka 2020; Paulin et al. 2020; Perrier et al. 2018;
Reinert et al. 2016]. In this context, we show that the popular Sobol’
sequence does not always satisfy this requirement, and that consec-
utive pairs of dimensions can produce very poor distributions in
2-dimensional projections. They may exhibit dominant structures
that may result in aliasing artifacts (see Figs. 9 and 10).

We propose to alleviate this problem by introducing a new sam-
pler based on consecutive calls to Sobol’ functions (a construction
we call cascaded Sobol’ sampling), which we prove to provide well
distributed low discrepancy point sets in consecutive pairs of di-
mensions. For now, this comes at a cost: we cannot preserve the
sequential aspect of the original Sobol’ algorithm, and hence need to
fix the number of samples in advance. Still, in addition to uniformity
over 2-dimensional projections, we preserve uniformity over the
high-dimensional integration domain by optimizing initialization
tables over a range of sample cardinalities and dimensions useful
for computer graphics applications [Joe and Kuo 2008].

We also propose a technique that improves uniformity, and hence
the convergence rate of Monte Carlo rendering. While the deter-
ministic Sobol” sequence is often accompanied with a randomiza-
tion strategy — for example, Owen scrambling [Owen 1998], see
Section 3.2 — we show that increasing the bit depth of this random-
ization technique allows one to more uniformly distribute samples
in the domain of integration and to optimize the generation.

Aside from the predetermined number of samples, our approach
can act as a drop-in replacement of Sobol’ samplers in existing
rendering engines to effectively obtain faster convergence. Our
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sampler does not incur significant overhead as compared to standard
Sobol’ samplers and is simple to implement.

We now summarize our contributions. First, we propose a cas-
caded Sobol’ sampling construction that provably yields sample
uniformity in consecutive pairs of dimensions contrary to the orig-
inal Sobol’ sequence. Second, we compute and provide optimized
initialization tables that ensure uniformity in high dimension as
well.

We evaluate our method on characteristic integration and render-
ing examples, showing competitive convergence rates as compared
to Sobol” and other state-of-the-art samplers.

2 RELATED WORK

Monte Carlo Integration. The beauty of Monte Carlo integration
is its simplicity yielding a convergent estimate by just averaging
evaluations of the integrand at independent random points in the
integration domain. Yet, introducing some correlations within the
samples may improve the convergence rate (see for instance [Singh
et al. 2019]). Enhancing the uniformity of the samples can be done
in many ways. One can stratify the domain while keeping the sto-
chastic nature of the process (for example, jittered sampling or
[Christensen et al. 2018]), we can optimize a point set minimizing
some objective functions [Balzer et al. 2009; Bridson 2007; Fattal
2011; Heck et al. 2013; Ostromoukhov et al. 2004; Paulin et al. 2020;
Zhou et al. 2012], or rely on arithmetic and algebraic properties of
lattices to generate samples [Griinschlof} et al. 2008; L’Ecuyer and
Munger 2016; Liu et al. 2021] or using low discrepancy sequences
(for example, [Halton 1964; Niederreiter 1992; Sobol’ 1967]). Our
proposal belongs to the latter category since low discrepancy sam-
plers imply fast sample generation in high dimensions and result
in the fastest convergence speed thanks to the Koksma-Hlawka
inequality [Hlawka 1961] that bounds the integration error by the
product of the discrepancy of the point set and the variation of the
integrand.

Low Discrepancy Sequences and Generator Matrices. Low discrep-
ancy sequences often rely on a combinatorial approach to sets and
permutations, and Galois field arithmetic [Dick and Pillichsham-
mer 2010; Lemieux 2009; Niederreiter 1992]. Many of the construc-
tions generate points as follows: to retrieve the i-th sample in the
s-dimensional unit cube [0, 1)® of a given point set, we express i as
a vector in some integer base b and compute the j—th component of
the sample by multiplying the vector by a so-called generator matrix
using operations on finite fields. Uniformity properties of the point
set are obtained by structural properties of the generator matrices
used for all dimensions. There exist many algebraic constructions
of such matrices [Halton 1964; Niederreiter 1992; Sobol’ 1967]. Be-
sides construction, there is a number of efforts to identify good
generator matrices by optimization [Ahmed et al. 2016; Griinschlof§
et al. 2008; Perrier et al. 2018]. We propose a new construction for
generator matrices resulting in high uniformity in low-dimensional
projections and good discrepancy in high dimension, outperforming
classical approaches.

Monte Carlo Rendering. In the specific case of Monte Carlo render-
ing additional properties besides the uniformity of distribution need



to be considered. There are two main ways to sample the image
plane. One can globally sample the image and attribute samples to
the pixel they fall in [Grinschlof} et al. 2012] or one can sample
each pixel individually. The second method requires to take special
care to avoid similarity in the samples used across pixels. One thus
may randomize deterministic samplers, for example by techniques
[Cranley and Patterson 1976; Kuipers and Niederreiter 2012; Owen
1998] that preserve the uniformity of distribution. Among these
strategies, we elaborate on Owen scrambling [Owen 1998] as it
preserves the low discrepancy properties of certain point sets while
improving on practical aspects of Monte Carlo rendering [Burley
2020; Perrier et al. 2018].

In rendering, the function to be integrated exposes a low-
dimensional structure implied by how paths are traced through
a scene for light transport simulation. If samples are not highly uni-
formly distributed with respect to such low dimensional projections,
a decreased rendering quality is the consequence [Paulin et al. 2020;
Perrier et al. 2018; Reinert et al. 2016]. This leads to approaches
disregarding the requirement for high-dimensional uniformity and
using independent samples for each bounce [Ahmed and Wonka
2020] or the ZeroTwo sampler [Pharr et al. 2016]. We show that this
results in a loss of integration quality and that high-dimensional
uniformity is beneficial in addition.

More recent complementary research tackled the issue of dis-
tributing the integration error across the picture in a way that
makes it less perceptible to the human eye. These methods worked
either by optimizing sample set distributions across the pixel grid
[Heitz and Belcour 2019; Heitz et al. 2019] or by using algebraic
properties to reorder a global sampler [Ahmed and Wonka 2020].

In this paper we will introduce a new way to construct generator
matrices for low discrepancy point sets with highly uniform low-
dimensional projections across consecutive dimensions that are also
compatible with state of the art error diffusion methods.

3 PRELIMINARIES

For the purpose of the paper, we assume familiarity with the basics
of quasi-Monte Carlo integration and low discrepancy sequences,
especially with the concepts of (¢, s)-sequences and (t, m, s)-nets
that are well established in graphics [Pharr et al. 2016] and refer
to the textbooks by Niederreiter [1992], Lemieux [2009], or Dick
and Pillichshammer [2010]. In what follows, we recall the details of
the Sobol’ low discrepancy sequence and Owen scrambling that are
required to establish our contribution.

3.1 The Sobol’ Sequence

The Sobol” sequence [Sobol’ 1967] is one of the most popular high-
dimensional low discrepancy sequences used for quasi-Monte Carlo
integration. The j-th component of the i-th point x; is computed by

m-1
Xjj = Z by - 2™ € [0,1), where 1)
k=0
(bm-1,---,bo) = (ag, ..., am-1) - C} . ()
(ag, . .., am—1) denotes the (row) vector representation of i in base 2

(ao being the least-significant digit). The matrix multiplication is
performed in the Galois field Fo (or GF(2)). Vector operations on
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" can be efficiently implemented as bit-vector XOR and AND
operations for addition and multiplication, respectively.

The so-called generator matrix C; is determined by the j-th primi-
tive polynomial over Fy. The sequence of these primitive polynomi-
als is enumerated as increasing integers!. As the number-theoretic
construction of the generator matrices is beyond the scope of our
article (see the aforementioned standard textbooks), we focus on
the properties and algorithmic aspects of the Sobol” sequence.

Using the generator matrices C; as depicted in Figure 2, we ex-
emplify the generation process for m = 4 and i = 1319 = 1101, that
is the 14-th point of the Sobol’ sequence: the computation of the
first component yields (b3, by, b1, bo) = (1,1,0,1) - Cg =(1,0,1,1),
resulting in x139 = 0.6875. The second and third component are
(b3, by, b1, bo) = (1, 1,0, 1) . C{ = (1, 1,0, l) = x13,1 = 0.8125 and
(bg, bg,bl,bo) = (l, 1,0, 1) . C; = (0, 1,1, 1) = x13,2 = 0.4375, re-
spectively.

The Sobol’ sequence is a (t, s)-sequence in base 2 [Niederreiter
1992], where s denotes the dimension and t is a non-negative integer
determining the quality of the points. The smaller ¢, the more uni-
formly distributed is the point set. For Sobol’s construction [Sobol’
1967], the parameter ¢ is the sum of the degrees (minus one) of the
primitive polynomials used for the generator matrices Cy, . .., Cs—1.
As a consequence, the higher j, the higher ¢, limiting the uniformity,
especially of low-dimensional projections. Hence, constructing a
(t,s)-sequence or a (t, m, s)-net with minimal ¢ has high practical
impact and is the major challenge in the quasi-Monte Carlo com-
munity.

By construction, the generator matrices C; of the Sobol’ sequence
are full rank. In fact, they are infinite-dimensional and become finite
only by selecting a maximum number m of bits to operate on. Joe and
Kuo [2008] published optimized generator matrices up to dimension
s = 21201 that are widely used in finance and graphics (see Figure
2).

As the generator matrices C; are full rank, they are bijections.
Hence setting N := 2™, we can define O']N as the permutation on
{0,..., N — 1} that relates the integers i (a;;—1 - - - ap in base 2) and
b (resp. by—1 - - - by) by

(bos ..., bm-1) = (a0, .. ., am-1) 'C]T “Jm s (3

where ]y, is the antidiagonal m X m unit matrix. This allows us to
rewrite the first N points of the Sobol’ sequence as

g’ (i)
| o )
Xj == N ( )
UsJL(i)

3.2 Owen Scrambling

Owen scrambling [Owen 1998] is a method to randomize low dis-
crepancy sequences while preserving their low discrepancy prop-
erties. It consists of constructing independent trees II; of random
permutations, one per dimension j, and applying these permutations
to the digits of the j-th component of the points. More precisely, if

1 A058947 sequence in Sloane’s On-Line Encyclopedia of Integer Sequences [Sloane 2017]
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(@ j=0 (b) j=1 ©Jj=2 @j=3 (e) j=4 ) j=15

Fig. 2. Sobol’ generator matrices: the triangular binary matrices CJT introduced by Joe and Kuo [2008] (dimensions j = 0, 1,2, 3, 4, and 15). Yellow lines
represent the so-called direction vectors, i.e. digits that may be initialized or optimized freely. The number of yellow lines is equal to the degree n of the
primitive polynomial used (e.g., x® + x> + 1 of degree n = 6 for dimension j = 15). Red squares correspond to the ‘1’s in the direction vectors as proposed
by Joe and Kuo [2008]. Green squares correspond to mandatory ‘1’s in the matrix that cannot be changed, according to Sobol’s construction. Blue squares
correspond to the ‘1’s induced by the corresponding primitive polynomials within Sobol’s construction. Shown matrices are of size 32 x 32, which can be used
for generating up to 232 points. The construction is suitable for matrices of arbitrary size.

m—

l

.I Il
I. | | I
I. .IIII
- o
- ek
.I I.III. - I
- il o2
B
...I Id.—I- Ia- I-
3£ g B Eu fn Eu fx
(a)j=0 b)j=1 (©j=2

Fig. 3. Optimized cascaded Sobol’ generator matrices M; for generating 2% 28 216 and 232 points, respectively. Other than Sobol’s construction, the

generator matrices are not necessarily lower triangular matrices.
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ap - - - am—-1 are the first m bits of the binary representation of the
component j, the Owen scrambling ¢q - - - ¢;n—1 of ag - - - am—1 is de-
termined by a tree of permutations IT; of depth m where the boolean
value, denoted 7(.),at each node is XORed with the corresponding
digit:

co=mDap

€1 = Tgy, ® a1

C2 = Tgy,a; D a2

Cm—1 = Tag,ay,....am—s D Am-1

Note that the permutation 7 applied to the k-th bit depends on the
leading k — 1 bits of ag - - - am—1.

An important fact to keep in mind is that Owen scrambling ap-
plied to (t, s)-sequences or (¢, m, s)-nets does not change the quality
parameter t. In many cases Owen scrambling can improve the uni-
formity of a point set and hence can be used to optimize point
sets.

4 CASCADED SOBOL’ SAMPLING

We propose the cascaded Sobol’ sampler that combines the advan-
tages of optimized Sobol’ sequences, Owen scrambling, and opti-
mization of the correlation between dimensions.

4.1 New Construction

Using the permutation property of the components of the Sobol’
sequence established in Equation 3, our new construction iteratively
applies the j-th Sobol” permutation to the result of the (j — 1)-th
permutation yielding the points

ap (i)
O’{V o og\r(i)

®)

asl\iloasl\izo”.oaé\](i)
We then apply Owen scrambling in order to benefit from randomiza-
tion without compromising the low-discrepancy properties. Denot-
ing the application of Owen scrambling by composition, for example
Il o O'év (i), this leads to the central

Definition 4.1 (Cascaded Sobol’ Sampling). For a fixed number of
samples N = 2", given the sequence of Sobol’s permutations o¥
and a sequence of permutations trees IT; for Owen scrambling, the

i-th point x; € [0, 1)° is defined as:

Iyo oN (i)
IT;o U{V o ogv(i)
(6)

1
Xj = —
N

N N N
[s-10 ol ,00 ,0...00, (i)

Note that for i =3 am-1 - - - ao, the composition of Sobol’ permu-
No. ..o aé\f (i) admits the linear algebraic formulation

tations o
(bo,....bm-1) = (a0 ...am-1) - Mj, (7
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where

Mj:=COT~Jm-c1T~]m~...-cJT-Jm. (8)
Unlike the original generator matrices, the cascaded matrices M;
are not necessarily triangular, as can be seen in Figure 3. Yet, the ma-
trices are still full rank matrices and expose a very strong property
for consecutive dimensions as analyzed in the next section.

4.2 Perfect Consecutive Nets

A key property of the cascaded Sobol” sampling is that any pair of
two consecutive dimensions results in a highly uniform point set.
More formally, in Appendix A we prove

THEOREM 4.2. Forany j € {0,...,s — 2}, the points (x,-,j,xi,jﬂ)
form a (0, m, 2)—net.

Being a (¢, m, s)-net in dimension s = 2 with t = 0 has impor-
tant consequences for quasi-Monte Carlo integration: each two-
dimensional elementary interval of the form [a/2™71, f/2™71) x
[y/2m=1,6/2™ 1) € [0,1)? with , B,1,6 € {0,...,2™ 1 — 1} and
area 27" contains exactly one sample point. Note that the elemen-
tary intervals include the strata regularly used for stratified jittered
sampling. (0, m, 2)-nets hence expose a stratification superior to
regular stratified sampling as illustrated in Figure 5.

4.3 Generator Matrix Optimization

In Sobol’s construction, a generator matrix C; is determined by two
entities: an primitive primitive polynomial of a certain degree n, and
the first n rows of the matrix C]T, which are called direction vectors
(see Figure 2). While consecutive dimensions of the cascaded Sobol’
sampling are guaranteed to have excellent stratification properties,
this may not be the case for other projections as illustrated in Fig-
ure 4. Optimizing the direction vectors allows one to alleviate the
issue.

The goal of our offline optimization is to provide the direction
vectors that insure the best low discrepancy in high dimensions.
This process resembles the seminal work by Joe and Kuo for the
Sobol’/Owen construction [Joe and Kuo 2008]. Once it is done, the
direction vectors are tabulated (for instance, Joe and Kuo’s direction
vectors are hardcoded in the PBRT Sobol’ implementation). The
same is true for our construction: once such an optimization is per-
formed, and the resulting initialization table is shared, the user can
efficiently generate low discrepancy point sets in high dimensions.

Our optimization minimizes the generalized Lj-discrepancy
[Hickernell 1998] for any dimension up to a certain bound and
for any number N = 2™ of points. Applying a greedy search and
starting from dimension 2, we go up to dimension 100. For each
dimension, we test all primitive polynomials up to degree 10, that is
161 polynomials?. For each polynomial, we assign n random direc-
tion vectors (according to the degree of the polynomial). For this
particular assignment we then calculate the resulting L-discrepancy
for all point sets of cardinality 2° to 218. Among the billions of tested
configurations, we accept the one with the minimal Ly-discrepancy,
for all N, and for all tested polynomials among 161 available.

2Sequence A000020 in Sloane’s On-Line Encyclopedia of Integer Sequences [Sloane
2017] determines the number of primitive polynomials of degree n over Fy, which is
2,1,2,2,6,6,18,16,48, 60, ....
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dim 0 1 2 3

(a) Sobol’ with Owen scrambling

(b) Cascaded Sobol’ using [Joe and Kuo 2008]

(c) Optimized Cascaded Sobol’ (Sect. 4.3)

Fig. 4. Uniformity of projections. We show the 2-dimensional projections of 256 5-dimensional points when using the Sobol’ construction with Owen
scrambling (a), our construction according to Definition 4.1 using the original generator matrices by Joe and Kuo [2008](/), and our cascaded Sobol’
sampler with optimized matrices. Both (b) and (c) highlight perfect (0, m, 2)-net properties for consecutive pairs of dimensions (e.g. (0,1),(1,2),(2,3), and (3,4)).
Optimizing the generator matrices allows us to fix potential uniformity issues in other projections (for example, (1,4) in (b)).

Fig. 5. (0,m,2)-nets in base 2 are important particular cases of (t,m,s)-nets
where 2-dimensional point sets of cardinality N = 2 are organized in such
away that all elementary dyadic partitions of size 1/N of the [0, 1)° domain
contain exactly 2¢ = 2° = 1 sampling point, as illustrated here for 16 points.
For a more detailed explanation, see Niederreiter [1992], Lemieux [2009], or
Dick and Pillichshammer [2010].

Computational resources needed for optimization depend on the
quality criterion, which is the ratio between the Ly-discrepancy
obtained in our construction and that of the reference Sobol’’/Owen
one, for all tested cardinality numbers. A typical timing for finding a
good solution may vary from a few seconds (“loose” quality criterion)
to many hours (tight quality criterion) per dimension. The results
presented in this publication for 100 dimensions have been obtained
with extremely tight quality criterion; it required about one week
of computation using a farm of 300 modern 16-core computers or
approximatively 50,000 CPU hours.

Figure 4 illustrates the outcome of this optimization procedure:
using the generator matrices given by [Joe and Kuo 2008] (Figure 4-
(b)), consecutive pairs of dimensions define (0, m, 2)-nets, but with
uniformity defects in other projections (for example, the pair (1,4)).
The optimized matrices, denoted by C; hereafter, lead to high qual-
ity samples for all consecutive pairs of projections (Figure 4-(c)).
Figure 7 (right) presents quantitative results in high dimensions.

It is worth mentioning that the Ly-discrepancy of all consecutive
2-dimensional projections of our point sets is clearly superior to
that of Sobol’ s construction with Owen scrambling, thanks to our
unique property of (0, m, 2)-nets in all consecutive 2-dimensional
projections, as derived in the previous section.

ACM Trans. Graph., Vol. 40, No. 6, Article . Publication date: September 2021.

In the supplementary material (https://projet.liris.cnrs.fr/
cascaded), we provide our optimized initialization table for the
first 100 dimensions in the file format introduced by Joe and
Kuo [2008]. Each entry of this initialization table contains, one
dimension per line, the index of the dimension, the degree of the
primitive polynomial associated with this dimension, the primitive
polynomial itself, followed by a list of direction vectors. The table
contains all necessary information for generating the C;f.

4.4 Implementation of the Cascaded Sobol’ Sampler

Algorithm 1 shows the Cascaded Sobol’ Sampler that combines all
previous ingredients: for a given number N of samples, the iterative
construction of Definition 4.1 is used with the optimized generator
matrices C;f as described above.

ALGORITHM 1: Generation of the sample x; € [0,1)°, where
0<i<2™m
Data: Optimized generator matrices Cy, . ..

C%_., 32-bit Owen

scrambling permutation trees I, . . ., Hz_i
Result: (xg,...,xs-1)
a= (am-1,...,a9) < BASE2INTTOVEC32(i);
be—a-Ju; // product in F,

for j —0tos—1do
beb-CT s
q < Base2VEcToINT32(D);
p < T (q);
xj — kb

end

// products in F,

By considering Owen scrambling not only for the first log, N
digits of the sample coordinates (see Sect. 3.2), but for all digits,
we can further improve the distribution of the sample points. The
interest is twofold: first, it allows us to use fixed precision operands
for fast bitwise operations when performing computations on Fa.


https://projet.liris.cnrs.fr/cascaded
https://projet.liris.cnrs.fr/cascaded

Second, applying Owen scrambling to the least significant bits (digits
between m = log, N and 32) performs an additional random micro-
jittering across the strata of volume 1/N as illustrated in Figure 6.
Technically speaking, this is equivalent to generating random bits
for the (32 — m) least significant bits. This allows for an optimized
implementation of Owen scrambling that does neither generate nor
store permutation beyond the m most significant bits.

(@ (b) ()

Fig. 6. Micro-jittering by 32-bit Owen scrambling. 16 samples of a
(0, 4, 2)-net with Owen scrambling applied to the m = 4 first bits (a). Scram-
bling 32 bits, the samples become jittered in their respective strata (b). The
properties transfer to the cascaded Sobol’ sampler (c).

For Monte Carlo rendering, this micro-jittering also has an impor-
tant impact as detailed in Section 5.2. Note that fixing the precision
is not a limitation of the approach since for sample counts greater
than 232, we can fall back to the classical Owen scrambling.

We implemented Owen scrambling [Owen 1995] using one seed
for a pseudo-number random generator to generate the tree of ran-
dom permutations. An alternative implementation could consider
hash-based scrambling as proposed by Burley [2020]. Compared to
the classic Sobol’ sequence, generating 16 (4 bits) Owen scrambled
samples in s = 6 dimensions is 1.5 slower on the average. Our current
implementation of the Owen scrambled cascaded Sobol’ sampling
(32 bits) is 2 times slower than the original Sobol’ sequence (but
generates still more than 7M samples per second on a single core
AMD Ryzen 5800X). There is room for further optimizations, such as
caching the generator matrices M; and skipping the explicit matrix
products of Eq. (8).

The code for the cascaded Sobol’ sampler and the optimized
matrices up to dimension s = 100 are provided (https://projet.liris.
cnrs.fr/cascaded). For dimensions greater than 100, we use the Sobol’
matrices from [Joe and Kuo 2008].

5 NUMERICAL EXPERIMENTS AND DISCUSSION

We provide numerical evidence for the practical advantages of the
cascaded Sobol’ sampler. We therefore measure the uniformity of
distribution by integrating smooth and discontinuous test functions
and computing the generalized Ly-discrepancy. Then, we illustrate
the advantages of randomization across pixels by full precision
scrambling. Finally, we demonstrate the benefits of the excellent
low-dimensional projections with overall high-dimensional low dis-
crepancy that the cascaded Sobol’ sampler provides by construction.

Cascaded Sobol’ Sampling « 7

5.1 Integrating Test Functions and Discrepancy

In Figure 7, we assess the performance of the new sampler by in-
tegrating test functions and measuring the uniformity of distribu-
tion. For comparison, we consider other state-of-the art and popu-
lar samplers: random uniform sampling, Poisson disk sampling by
dart throwing, samplers relying on stratification (Jittered sampling,
PMJ02 [Christensen et al. 2018], OrthogonalArrays [Jarosz et al.
2019]), samplers relying on a low discrepancy sequence (in particular,
the Sobol’ sequence with Owen scrambling, rank-1 lattices [Keller
2004] (with optimized vectors from [L’Ecuyer and Munger 2016]),
PMJ02, ZeroTwo [Pharr et al. 2016], and our cascaded Sobol’ sam-
pler), and optimized point sets such as Sliced Optimal Transport
Sampling (SOT) [Paulin et al. 2020]. Following the strategy pro-
posed by Paulin et al. [2020], random multivariate Gaussians of
the form g(x) =eXp(—% (x - y)TZ_l (x — p)) with bounded covari-
ance matrix eigenvalues represent the class of smooth functions,
while random Heaviside functions represent the class of discontin-
uous functions. The experiments are conducted across a range of
dimensions and the uniformity of the point sets is measured by the
generalized Ly-discrepancy.

With respect to the integration of test functions, the cascaded
Sobol’ sampler is among the best sampling strategies while outper-
forming previous samplers in terms of generalized Ly-discrepancy.
For the integration tests, SOT is the most competitive set of samples
(s € {2,6,20} for smooth integrands), but requires a costly opti-
mization process that does not scale to high-dimensional sampling,
which may limit its practicality in production rendering. From that
perspective, cascaded Sobol’ sampling has the same level of code
complexity and is as fast to evaluate as the classic Sobol’ with Owen
scrambling.

5.2 Full-precision Scrambling

For path-tracing based Monte Carlo rendering, we use cascaded
Sobol’ sampling on a per-pixel basis, i.e. we generate N samples
of dimension s for each pixel. As reviewed in Section 2, several
strategies exist to randomize point sets such that they are uncorre-
lated across pixels in order to reduce visual artifacts in rendering.
These strategies can be optimized by searching for shifts or pseudo-
random number seeds such that the error is distributed across the
image plane in a much more visually agreeable way [Ahmed and
Wonka 2020; Georgiev and Fajardo 2016; Heitz and Belcour 2019;
Heitz et al. 2019].

Similar to previous work, the cascaded Sobol” sampler relies on
Owen scrambling to create uncorrelated point sets. As Owen scram-
bling preserves the low discrepancy properties, it does not alter the
per-pixel convergence of Monte Carlo estimators. However, limited
precision scrambling may be prone to aliasing artifacts, because
the number or possible coordinates per dimension is limited to N
different values. This is illustrated in Figures 6 and 9. We resolve
this issue by considering a 32-bit Owen scrambling as discussed
in Section 4.4. This remedies the artifacts problem as illustrated
in Figure 8 as now 232 positions are possible in each dimension
(before floating point conversion, see Equation 1). Furthermore, the
uniformity of distribution is improved almost surely.

ACM Trans. Graph., Vol. 40, No. 6, Article . Publication date: September 2021.
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Fig. 7. Monte Carlo integration of canonical functions and discrepancy tests. We consider various integration tests in dimensions 2, 4, 6, and 20 to

evaluate Monte Carlo integration error as a function of the number of sample points N. The Gaussian integrands column (left) depicts the error averaged over
1024 integrations of random multivariate Gaussian distributions in the [0, 1)® domain; each curve indicates the error of a different sampler over the 1024

integral evaluations. The Heaviside integrands column (middle) depicts the error averaged over 1024 integrations of random Heaviside functions going through
the center of the [0, 1)° domain. Note that Orthogonal Arrays refers to the CMJND sampler of Jarosz et al. [2019], PMJ02 refers to the method of Christensen

et al. [2018], and SOT refers to Paulin et al. [2020]. The ZeroTwo sampler corresponds to PBRT’s ZeroTwoSequenceSampler which considers a (0,2)-sequence

per pair of dimensions with a random pairing across the pair of dimensions [Pharr et al. 2016]. Rank1 uses rank-1 lattices [Keller 2004] generated via the
implementation of [L’Ecuyer and Munger 2016]. The uniformity of distribution is measured by the generalized Ly-discrepancy (right) as defined in [Hickernell

1998].

ACM Trans. Graph., Vol. 40, No. 6, Article . Publication date: September 2021.



Def. 4.1
+ Owen m msb

Cascaded Sobol’
+ Owen 32 bits

Cascaded Sobol’ Sampling « 9

16spp (zoom)

Fig. 8. Per-pixel scrambling artifacts: on two different scenes (s = 6 and s = 10) and low sample counts N € {4, 16}, classic Owen scrambling applied to
the m = log, N most significant bits (MSB) produces aliasing issues (first two rows) that no longer exist when using our max (32, log, N)-bit scrambling. Note
that even with the cascaded construction but only scrambling the log, N most significant bits, the artifacts are still visible (middle row). CC-BY "The breakfast

room" scene by Wig42.

5.3 Importance of High-dimensional Low Discrepancy

We now discuss how the intrinsic structure of cascaded Sobol” helps
path tracing in Monte Carlo rendering. By construction, our sam-
pler is a low discrepancy point set with perfectly stratified pairs of
consecutive projections. Implementing a path tracer, dimensions are
consumed in a consecutive fashion, too, for example, consecutive
scattering events along a path consume two consecutive dimensions
at a time. The same goes for sampling area light sources or lenses.

For that reason, sampling strategies with good low-dimensional
projections, especially for two dimensions, have attracted consider-
able interest [Ahmed and Wonka 2020; Joe and Kuo 2008; Perrier
et al. 2018; Reinert et al. 2016]. An almost perfect sampler in that
respect is the ZeroTwo sampler [Pharr et al. 2016] that has been
combined with screen space properties [Ahmed and Wonka 2020]:
each pair of components corresponds to a perfect (0, 2)-sequence
derived from the first two dimensions of the Sobol’ sequence with
a random pairing between pairs of dimensions (per-pixel random
pairing). However, even with perfect low discrepancy of pairs of
dimensions, Figure 7 shows that the ZeroTwo sampler has a bad
uniformity across all dimensions — due to a lack of overall low
discrepancy.

In Figure 9, we evaluate the impact of our sampler on rendering,
and compare it to the Sobol’ sequence and the cascaded Sobol’ sam-
pler applied to a Cornell box scene with high frequency content
on the gray wall as suggested in [Burley 2020] with one-bounce

indirect lighting (thus requiring 6-dimensional samples). As dis-
cussed in Sect. 5.2, the Owen scrambled Sobol’ sampling exhibits
aliasing issues. ZeroTwo does not expose such artifacts, however
the lack of high uniformity across all 6 dimensions causes disturb-
ing high frequency artifacts visible on the back wall. The cascaded
Sobol’ sampler does not have such issues as it has the same qual-
ity as ZeroTwo with respect to low-dimensional projections (see
Theorem 4.2) without sacrificing high-dimensional uniformity.

In Figure 10, we provide more qualitative and quantitative re-
sults of various scenes including longer paths and hence higher
dimensions. For the qualitative analysis, we color each pixel ac-
cording to the sampler achieving the minimal mean square error
(MSE) at 256spp for the first three, and 4096spp for the fourth one,
as compared to a ground truth image (black pixels correspond to
equivalent MSE across all samplers). The graphs show MSE plots for
various sample counts indicating that the cascaded Sobol’ sampler
outperforms its closest competitors. From the qualitative images and
for low-dimensional rendering problems, we can relate the better
performances of cascaded Sobol’ sampler in both the projection
and full space to pixels corresponding integration problems where
the global uniformity matters. In higher dimensions, the cascaded
Sobol’ sampler still has lower MSE but it is more complex to relate
this to some specific optical effects.

To summarize, the best results are achieved with perfect pairs of
projections without sacrificing high-dimensional uniformity, which
is exactly what the cascaded Sobol” sampler provides.

ACM Trans. Graph., Vol. 40, No. 6, Article . Publication date: September 2021.
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4spp 16spp

Sobol’ + Owen

ZeroTwo

Cascaded Sobol’

4spp (zoom) 16spp (zoom)

Fig. 9. Cornell box with high frequency sub-pixel texture pattern: highly discontinuous integrands can cause aliasing at low sample counts (the yellow

rectangle highlights the region used for the zooms).

6 LIMITATIONS

First, our construction only produces point sets. However, thanks
to the flexibility of our cascaded approach, there is room for more
advanced constructions that unify both sequentiality and the (0,m,2)-
net property in 2D projections.

As detailed in Section 4.3, our offline generator matrix optimiza-
tion process has some internal parameters, which can be adapted
to specific application areas. As long as direction vectors are gen-
erated, our sampler definition (Definition 4.1) and its fundamental
properties (Theorem 4.2) remain the same.

Our optimization is slow when the uniformity criteria are tight.
Speeding up this process has not been the focus of the new con-
struction, but bears a lot of potential. In any case, this optimization
needs to be done only once, and we provide a table of well-optimized
parameters for the first 100 dimensions.

7 CONCLUSIONS

Inspired by the popular Sobol’ sequence and Owen scrambling, we
constructed a new sampling method. Unlike previous methods, our
sampling technique offers several unique and advantageous features.
First, the point sets generated by our construction have a proven
(0, m, 2)-net property for any consecutive pair of dimensions in a
multi-dimensional setting. This property leads to unprecedented
uniformity as shown in Section 5. Second, by optimizing the di-
rection vectors as explained in Section 4.3, we are able to keep
the Ly-discrepancy at the level of the construction by Sobol’ (for
dimensions up to 5, our Ly-discrepancy clearly surpasses that of
the Sobol’” sequence with Owen scrambling; for higher dimensions

ACM Trans. Graph., Vol. 40, No. 6, Article . Publication date: September 2021.

the Lp-discrepancy differs by a small amount). We demonstrate the
benefits of the proposed sampler by examples in rendering using
path tracing.

In future work, we hope to overcome the limitation of finite point
sets by constructing infinite point sequences with the aforemen-
tioned advantages. Furthermore, we like to extend our sampler to
incorporate screen space blue noise characteristics [Ahmed and
Wonka 2020; Georgiev and Fajardo 2016; Heitz et al. 2019].

Our construction offers benefits that reach beyond computer
graphics. We are confident that this work will inspire specialists
in other domains which use quasi-Monte Carlo integration, e.g., in
finance and physics.
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A PROOF OF THEOREM 4.2

First, we show that any two consecutive dimensions have the same
canonical structure:
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Fig. 10. Importance of high-dimensional low discrepancy. Each row shows path tracing results for different path lengths, i.e. different dimensions s.
In the second and third column pixels are colored by the sampler with the lowest mean square error (MSE), while the last column graphs the MSE with
respect to the number of samples per pixel. The MSE is computed with respect to a reference solution using 64k samples per pixel. The second column clearly
indicates that low discrepancy across all dimensions in addition to low discrepancy in low-dimensional projections is clearly superior to only paying attention
to the low dimensional projections. The third column shows that our cascaded Sobol’ sampler is a safe bet across all dimensions, especially including the
lower dimensional setting. The overall reliability and versatility of the cascaded Sobol’ sampler is confirmed by the MSE plots in the last column. CC-BY

"Country-Kitchen" scene by Jay-Artist. "The breakfast room" scene by Wig42.

LEMMA A.1. Points generated by two consecutive dimensions j and
J + 1 of our sampler are the same as those generated by

%{(i,gﬁl (i)) lie {o,...,N—l}} :

Proor. All O.]J:I are permutations on the set {0...N — 1} and

hence {Ullcv (i)|ie{o,...,N— l}} ={0,..., N — 1}. Consequently,

the composition O’;V 0---0 aév is a permutation on the same set

{0,..., N — 1}. Therefore, the point set
1 . ;
ﬁ(Gf‘fo...ogé‘f(l),gjl‘il0...055(,))
fori € {0,...,N — 1} is equivalent to the set

1
{ﬁ (i,aj.‘frl (i)) lie{o,...,N- 1}} ,
which concludes the proof. O

For the canonical point set of Lemma A.1 we now show
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LemMa A2, {ﬁ (i, N, (i)) lief{o,.. N- 1}} is a (0,m,2)-net.

Proor. Following the formulation of Eq.(2), the point set

{(f,ajﬁl (i)) lie {o,...,N—l}}

is generated by the two generator matrices

(R |

0

Go =
IR | PR 0
and

1  SRERERRRRE *

0, :

Gy =Cj=|:"
Lk
Qevvvnnnnnns 0 1

By definition, G is an upper triangular matrix in Fy. Let d =
(k,m — k) and let M4 be the matrix composed of the k first lines of
Go and m — k first lines of Gy, i.e.

Ocevenns 01
LT o
0 PR o
0 .
157 0% eennnn 0
Mé =
1 L SRRREEE *
0 .
Lo *
O
[ 0 1

Obviously, det(M9) is equivalent to the determinant of the lower

left block of the matrix M? that is a triangular matrix with 1 on the

diagonal. Hence, det(M?) =1 for any choice of d for 0 < k < m.
By Niederreiter [1992, Thm. 4.28] it follows that

%{(,’,gﬁl (i)) lie {0,..A,N—1}}

is a (0,m,2)-net. o

Our proof of Lemma A.2 uses a fundamental result from Nieder-
reiter [1992] and Griinschlof et al. [2008], which we recall here for
the sake of completeness:

THEOREM A.3 ( [NIEDERREITER 1992, THM. 4.28][ GRUNSCHLOSS
ET AL. 2008, TaM. 1] ). Let PN be a Cy, ..., Cs—1-generated point set
of cardinality N = 2™ in base 2 and dimension s, then Py is a (0,
m, s)-net in base 2 if for alld = (dy, ..., ds) € N with ||d||; = m the
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following holds:
0 0
C!,l ........ Cl_,m
0. 0
dy,1 di,m
det (Md) # 0, where Me = . :
-1 -1
Ciqlevennnn o
—1 :—1
les,l ....... les,m

is an m X m matrix consisting of the first dj rows of the generator
matrix Cj for0 < j <.

It is now straightforward to prove Theorem 4.2.

Proor. Without loss of generality, selecting one j € {0,...,s—2},
we have

(i, X1 j1)
1 ; .
= N (Hjoaj.\]O-~oaéV(z),Hj+1 oojl-il O"'OO'(J)V(I)) .
By Lemma A.1 and Lemma A.2 the point set formed by the two
consecutive dimensions forms a (0, m, 2)-net in base b = 2. m]
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