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A New `-step Neighbourhood Distributed Moving Horizon Estimator

Antonello Venturino, Sylvain Bertrand, Cristina Stoica Maniu, Teodoro Alamo, Eduardo F. Camacho

Abstract— This paper focuses on Distributed State Estimation
over a peer-to-peer sensor network composed by possible low-
computational sensors. We propose a new `-step Neighbourhood
Distributed Moving Horizon Estimation technique with fused
arrival cost and pre-estimation, improving the accuracy of the
estimation, while reducing the computation time compared to
other approaches from the literature. Simultaneously, conver-
gence of the estimation error is improved by means of spreading
the information amongst neighbourhoods, which comes natural
in the sliding window data present in the Moving Horizon
Estimation paradigm.

I. INTRODUCTION

Distributed algorithms have pervaded, in the last few years,
many aspects of control engineering with applications for
multi-robot systems, sensor networks, and others, covering
topics such as control [1]–[4], state estimation [5]–[10], fault
detection and mitigation [11], cyber-attack detection and
mitigation on cyber-physical systems [12], [13], etc. Despite
their different purposes, these topics share common charac-
teristics as a consequence of the development in distributed
schemes. Indeed, they face problems like scalability and
communications between agents. If, on one hand, sharing
more data could lead to have better performance in terms
of accuracy, on the other hand the complexity could raise
as well as the communication burden. In centralised frame-
works, with the same purpose, usually a central unit manages
all the resources involved in the network; nevertheless it
can hardly deal with scalability issues due to physical and
computational limitations. Moreover it is not robust with
respect to the loss of the central unit.

For centralised state estimation problems, Moving Horizon
Estimation (MHE) techniques have been investigated over
the past years due to their capability to take into account
constraints in the finite horizon “least-square” optimisation
problem on which their formulation is based [14].

Within the context of distributed state estimation by sensor
networks, each sensor is delegated to estimate (at least
partially) the state of the system on the basis of local
measurements and information received from its neighbours.
Several works on Distributed MHE (DMHE) methods have
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been dedicated to guarantee stability of the estimation er-
ror dynamics, e.g. [6], [7], [10]. In [6] the authors have
proposed a DMHE algorithm proving that it is stable even
under weak observability conditions (due to consensus on
estimates and a consensus weight term in the DMHE formu-
lation). More recently, [10] introduced another consensus-
based mechanism in a DMHE approach to fuse local arrival
costs and guarantee stability of the estimation errors in
a fully distributed way. The main drawback of the MHE
paradigm is its computational load, since an optimisation
problem must be solved online, at each instant, to compute
the state estimate. This may be problematic when deal-
ing with limited-computational resources, especially in the
distributed case with low-computational sensors. Although
adapted optimisation methods have been developed and can
be used to reduce the computation time, an additional way
of improvement concerns the structure of the optimisation
problem itself. One idea, inter alia, is to introduce in the
MHE formulation the use of an observer, that would enable
to decrease the number of optimisation parameters. This has
been first introduced in [15] for centralised linear MHE,
considering a Luenberger observer, and then extended to
the centralised non-linear case in [16], and to the distributed
linear case in [8] as an extension of the DMHE formulated
in [6].

This paper extends the approach proposed by the authors
in [8] to the DMHE formulation of [10] which has proven
to obtain more general stability results as well as enhanced
performance compared to [6]. The current paper leads to a
reduced computation time due to a pre-estimating observer.
Another contribution concerns the improvement of the con-
vergence of the estimation error by mitigating unobserv-
ability issues. This situation could arise in sensor networks
when some nodes may have no sensing capacities (inactive
sensors), or are able to only measure some parts of the state
of the system that would make it non observable using only
these sensors. For this purpose, the new proposed DMHE
technique exploits the exchanges of information amongst
local nodes based on an `-step neighbourhood information
spreading mechanism.

The paper is structured as follows. Section II introduces
the problem formulation and proposed communication proto-
col. The proposed DMHE algorithm is presented in Section
III. Before concluding remarks, simulations examples are
presented and analysed in Section IV.

II. PROBLEM STATEMENT

This section describes the state estimation problem of
a system over a sensor network. The dynamical system



is described as a discrete-time linear time-invariant (LTI)
system

xt+1 = Axt + wt, (1)

with xt ∈ X ⊆ Rnx representing the state and wt ∈ W ⊆
Rnx the disturbance or unknown input. The measurements
are performed by heterogeneous sensors, and can be mod-
elled by

yit = Cixt + vit, i = 1, . . . ,M (2)

where yit ∈ Rni
y is the measurement vector, vit ∈ Vi ⊆ Rni

y

the measurement noise and M > 1 the number of the sensors
composing the network. The superscript i refers to the sensor
i. The sets X , W and Vi are assumed to be convex sets.

In the distributed architecture, each sensor also shares data
with its neighbours. The sensor network is described by a
directed graph G = (N , E), where N = {1, 2, . . . ,M} is the
set of all nodes (sensors) and E ⊆ N × N is the set of all
edges (communication links). Specifically, the pair (i, j) ∈ E
is defined if and only if the sensor j can receive information
from the sensor i. The neighbourhood N i of the sensor i is
denoted by N i = {j ∈ N : (i, j) ∈ E} and its cardinality
M i = card(N i).

In addition to the shared data coming from the neighbour
sensors in N i, each sensor i could exploit past information
from other sensors j /∈ N i, if there exists a path that connects
these sensors to sensor i.

For this reason, denoting d(i, j) the distance, in terms of
number of edges, between node i and j, we define the `-step
neighbourhood N i

` = {j 6= i ∈ N : d(i, j) 6 `}, i.e. the set
of sensors j ∈ N for which there is a path of length at most
` to node i. Notice that N i

1 = N i.

A. Communication protocol

As mentioned above, the network is composed by possibly
different types of nodes, some of them with no sensing
capabilities, i.e. Ci = 0, or at least partially, meaning that a
sensor may observe only some part of the state vector of the
system, i.e. the pair (A,Ci) is possibly not detectable. More-
over, the network could be deployed such that some neigh-
bourhoods are composed only by nodes resulting in weak lo-
cal or regional observability properties [6], meaning that the
pair (A, C̄i) could be not detectable, where C̄i is the regional
output matrix, i.e. C̄i = [(Ci)>, (Cj1)>, . . . , (CjMi )>]>,
{j1, . . . , jMi} ∈ N i. Therefore, with the aim to enhance
collective observability [6] by the network, it is proposed that
each node i ∈ N exploits measurements received from its `-
step neighbourhood N i

` . This section details how information
coming from N i

` will be considered in the formulation of the
DMHE, by choosing ` = N , where N is the length of the
horizon of past information considered for state estimation
by the algorithm.

The communication network uses a single-hop routing
protocol, in which it is assumed that there is no delay or
packet losses. Moreover, a time synchronisation is required
for all sensors in the network, to make them able to exchange
data with their neighbours at each time instant.

Each node i ∈ N keeps information received from each
of its in-neighbours nodes in a time-sliding batch of size N
and relays this information to out-neighbours nodes at the
next time instant. Old information (i.e. received from time
instant tr < t−N ) is removed from the batch. Therefore, at
time t each node disposes of past measurements from nodes
in its `-step neighbourhood over the time window [t−N, t].
Since dealing with a single-hop routing protocol, each sensor
i ∈ N receives information only from its neighbours j ∈ N i

at each time t. Let ȳi denote the measurements collected by
sensor i from all the nodes j ∈ N i. Then, at the time instant
t, these collected measurements from nodes j are

ȳi[t−N,...,t] =

y
j1
t−N . . . yj1t
...

. . .
...

y
jMi

t−N . . . y
jMi

t

 , {j1, . . . , jMi} ∈ N i.

At the same time, each sensor j ∈ N i has data collected
from its own neighbours z ∈ N j , with z 6= i, from the
previous time step t− 1, i.e.

ȳj[t−N,...,t−1] =

y
z1
t−N . . . yz1t−1
...

. . .
...

y
zMj

t−N . . . y
zMj

t−1

 , {z1, . . . , zMj} ∈ N j .

that they can share with sensor i. This philosophy can be
reiterated back in time, and so along the communication links
in N i

t−k, ∀k = t−N, . . . , t− 1, with a maximum of N = `
back steps.

To summarise, the node i has the collection of data{
ȳi[t−N,...,t], ȳ

j
[t−N,...,t−1], . . . , ȳ

z
t−N

}
, with j, . . . , z ∈ N i

` ,
which is useful in the local MHE optimisation problem to
improve the accuracy of the estimates.

B. Problem formulation

We define as a Poorly-Observing Sensor Network a net-
work containing at least one node i ∈ N having any of the
following characteristics
• it has no sensing capabilities, i.e. Ci = 0;
• it has sensing capabilities and can provide a measure-

ment on the state of the system, i.e. Ci 6= 0, but the
pair (A,Ci) still remains non detectable;

• nodes in its neighbourhood are such that the pair
(A, C̄i) is non detectable.

The problem addressed in this paper, namely Distributed
State Estimation over a Poorly-Observing Sensor Network
can be stated as follows.

Given the discrete-time LTI system (1), the sensor network
G with linear sensors as in (2), under the assumptions that:
• the pair (A,C) is observable, where C = col(Ci)

with i ∈ N is the collective output matrix, i.e. C =
[(C1)>, . . . , (CM )>]>;

• the graph G = (N , E) is strongly connected, i.e. every
node is reachable from every other node.

The role of each sensor i ∈ N , at each time t, is to (possibly)
get measurement on the system, to exchange information
among neighbour nodes N i and to process locally available



information in order to determine a local estimate x̂it of the
real state of the system xt.

III. PROPOSED DMHE TECHNIQUE

This section presents the proposed DMHE approach. It
extends the one of [10] with consensus on the arrival costs,
by accounting for information from `-step neighbourhoods
and taking advantage of a pre-estimating observer to reduce
computation time.

A. Local optimisation problem

At time t, let x̂it−N |t, . . . , x̂
i
t|t be the sequence of estimates

of the state of system (1) to be computed by each sensor
i ∈ N over a given past horizon of length N > 1. The
estimate of the state xt to be provided by each sensor at time
t corresponds to x̂it = x̂it|t. To do so, a local minimisation
problem can be formulated for each sensor i as follows

x̂it−N |t = arg min
x̂i
t−N

J i
t (3)

s.t. x̂ik+1 = Ax̂ik + Liv̂ik +
∑

j∈N i
t−k

Lj v̂jk,

(4)

v̂jk = Cj x̂ik − y
j
k, j ∈ {i} ∪ N i

t−k,
(5)

x̂ik ∈ X , (6)

v̂jk ∈ V
j , j ∈ {i} ∪ N i

t−k, (7)
∀k = t−N, . . . , t

The sequence of state estimates x̂it−N+1|t, . . . , x̂
i
t|t is then

computed from the optimal solution x̂it−N |t and using (4).
The main difference in this formulation is that a Luen-

berger observer is used in (4) instead of the state equation
of the system, as classically used in MHE formulations and
in [10], which requires to consider the disturbance sequence
over the past horizon as additional optimisation parameters.
This reduces the computation cost, while simultaneously
preserving the accuracy of the state estimate. Under the
assumption that the gain Li is computed such that

Φi = A− LiCi, ∀i ∈ N (8)

is Schur stable, then, in order to mitigate the effects on
the estimation errors at certain frequencies or to increase
robustness for each frequency, the gain Li can be computed
off-line according to some criteria, for example H2, H∞ [17,
p. 293]. Note that the assumption of (8) being Schur can be
satisfied only when the pair (A,Ci) is observable, otherwise,
as extrema ratio, it is sufficient to design Li so as to keep
spectrum radius of Φi as low as possible.

Another difference w.r.t. [10] is that the optimisation
problem (3) uses the set N i

` instead of N i, leading to
improve the estimation accuracy. In fact, N i

` appears also

in the objective function J i
t defined as

J i
t = Γi

t(x̂
i
t−N |t) +

t∑
k=t−N

∥∥yik − Cix̂ik
∥∥2
Ri

+

t∑
k=t−N

∑
j∈N i

t−k

∥∥∥yjk − Cj x̂ik

∥∥∥2
Rj

(9)

where the weight matrices Ri (resp. Rj) can be chosen as the
inverse of the covariance matrix of the measurement noise.
The first term is the so called initial penalty function Γi

t(·),
known in the MHE environment as arrival cost. It is assumed
to be non negative and it summarises the effect of the past
measurements, before time t − N . Further details on the
arrival cost are provided in Section III-B, because it plays
a major role in the convergence and the performance of the
algorithm.

Note that, when the current time instant t is t 6 N then
the horizon length N is set to N = t.

Remark 1: The local optimisation problem can be formu-
lated using information coming only from neighbour sensors,
in other words ` = 1. For later comparisons, we denote by
DMHE`

pre the minimisation problem (3) having N i
` , with

` = N , and by DMHE1
pre the one with N i

` equal to N i,
i.e. ` = 1. Indeed, DMHE1

pre could be a combination of the
methods of [10] and [8].

B. Fused arrival cost

The objective function (9) contains the arrival cost term
Γi
t(·). In the MHE approach, it usually penalizes deviations

from some a priori information x̄it−N on the state at the
beginning of the horizon as detailed in [14] and can be
formulated as in [10] by

Γi
t(x) =

∥∥x− x̄it−N∥∥2P i
t−N

, (10)

with P i
t−N a positive definite weight matrix. The a priori

state x̄it−N can be computed as a one step prediction from
the solution of the optimisation problem at the previous
instant. In classical (D)MHE approaches, this prediction is
done using the state equation. In the proposed algorithm with
pre-estimation formulation, this prediction is computed as

x̄it−N = (A− LiCi)x̂it−N−1|t−1. (11)

The matrix P i
t−N is defined as the inverse of the covariance

matrix of the prediction x̄it−N and can be computed recur-
sively, as we explain later on, initialised as P i

0 in order to
quantify the confidence on the initial a priori information x̄i0.

In a distributed setting, this cost has an essential role to
propagate information amongst the sensors in the network in
order to ensure convergence of the state estimations to the
real state of the system, since the local observability for one
node or observability amongst the neighbourhood depends on
the network topology and sensing capabilities. As in [10], the
idea is then to fuse the arrival costs of the neighbourhood



N i in a convex combination

Γi
t(x) = πi,i

∥∥x− x̄it−N∥∥2P i
t−N

+
∑
j∈N i

πi,j
∥∥∥x− x̄jt−N∥∥∥2

P j
t−N

,

(12)

where all the weights πi,i and πi,j are strictly positive and
fulfil the condition

πi,i +
∑
j∈N i

πi,j = 1, ∀i ∈ N . (13)

Consequently, the initial penalty function is defined as a
consensus on the arrival costs by means of relation (12)
ensuring that the local arrival cost is a weighted average of
the local arrival costs from neighbours.

In the following, the covariance matrix P i
t−N is recursively

updated using only local information available at time t to
sensor i. Consider the observability matrix F i associated to
the pair (A− LiCi, Ci) along the horizon length N and its
relative collective output weight matrix

F i =


Ci

Ci(A− LiCi)
...

Ci(A− LiCi)N

 , Ψi = diag(Ri, . . . , Ri︸ ︷︷ ︸
N+1 times

).

Then a preliminary consensus weight matrix can be com-
puted by using only data locally available at node i from the
previous time instant

Ωi
t−N−1 = πi,iP i

t−N−1 +
∑
j∈N i

πi,jP j
t−N−1 +

(
F i
)>

ΨiF i.

(14)
Following [10], we now introduce a scalar α such that 0 <
α < 1 and a positive definite matrix S for any t, and adapt
the equations to the proposed algorithm with pre-estimation.
Then the updated consensus covariance matrix is defined by

P i
t−N =

α

8

[
Ai

L

(
Ωi

t−N−1
)−1 (

Ai
L

)>
+ S−1

]−1
, (15)

where Ai
L = A− LiCi.

C. DMHE algorithm

Finally, we can describe the modus operandi of the pro-
posed distributed algorithm. First of all, it is worth to mention
that the steps of the algorithm could be run in a parallel
scheme by each sensor i ∈ N , after they have sent and
received the information from the neighbours at each time
t, with the assumptions on the network and communication
protocol provided in Section II-A.

The steps of the DMHE`
pre procedure are described in

Algorithm 1. To get the one-step DMHE1
pre procedure, it is

sufficient to remove the step 10 and to use N i instead of
N i

` .
Remark 2: All nodes are synchronised at the step 12,

since each sensor i needs the data from its neighbours
j ∈ N i. This is the only communication step.

Remark 3: The path length ` of the `-step neighbourhood
N i

` can also be chosen lower than the horizon length N of the

Algorithm 1 DMHE`
pre procedure

1: Off-line: ∀i ∈ N
2: compute the Luenberger gain Li

3: store the a priori initial estimation x̂i0|0 = x̂0 of x0
and the covariance matrix P i

0 = P0 of x0
4: receive from the neighbours j ∈ N i: Lj , Cj , Rj ,
Vj

5: Initialization: ∀i ∈ N , at the first time step t = 0
6: collect a first local measurement yi0
7: receive from the neighbours j ∈ N i their measure-

ments yj0
8: Online: ∀i ∈ N , ∀t > 0
9: collect the local measurement yit

10: gather past information received at time t− 1 from
j ∈ N i, as in Section II-A

11: compute the prediction x̄it−N and the consensus
weight matrix P i

t−N according to (11) and (15), resp.
12: receive from the neighbours j ∈ N i the collected,

gathered and computed data in the steps 9, 10 and 11
13: compute the fused arrival cost Γi

t according to (12)
14: solve the local MHE, minimising J i

t as in (9) subject
to the constraints (4)-(7)

15: store the solution x̂it−N |t and the estimate x̂it|t

DMHE, i.e. 1 6 ` 6 N . One can design then the DMHE`
pre

in order to have a good trade-off between the accuracy of the
estimation and the amount of data exchanged in the network.
This trade-off depends on the observability conditions and
the network topology.

IV. SIMULATIONS

In this section an evaluation of the proposed DMHE
algorithm is provided via simulations examples. To compare
it with existing results in literature, the scenario in [10] is
considered. The goal is to track a 2D moving target using a
sensor network, that could model, for example, a distributed
camera network. As illustrated in Fig.1, the network is
composed of 100 sensors randomly disposed with a uniform
distribution on a plane of [−500, 500] × [−500, 500] m, in
which only the green nodes are active sensors (i.e. with sens-
ing capabilities), while the white nodes are inactive sensors
(i.e. null output matrix). In the following it is considered
that a communication link between two nodes exists if the
distance between them is less than a given communication
radius equal to 160 m.

The 2D moving target is modelled as a double integrator
system. The state of the system is represented by x =
[px py vx vy]> which corresponds to the Cartesian coor-
dinates of its position and velocity vectors. The dynamics of

the target are described by model (1) with A =

[
I2 TsI2
0 I2

]
,

where Ts = 1 s is the sampling time used for discretization of
the continuous-time dynamics of the target. The input distur-
bance wt in (1) is a four dimensional vector and is assumed
to be modelled by a noise vector with uniform distribution
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Fig. 1. Topology of the sensor network composed by 100 nodes.

in W = [−0.5, 0.5]× [−0.5, 0.5]× [−0.5, 0.5]× [−0.5, 0.5].
The 10 active sensors provide measurements of the target’s
position in conformity with the matrix Ci = [I2 02,2] while
the remaining 90 inactive sensors have no ability to measure,
i.e. their output matrix is Ci = 02,4. The measurement noise
vit of each sensor i is a two dimensional vector with a
uniform distribution in Vi = [−10, 10]× [−10, 10].

Two simulation cases are further analysed.
Case 1. A first simulation considers a horizon length

N = 4; the a priori information about the state x̂i0 is
set equal to [0 0 0 0]> for each node; the initial arrival
cost weight matrix is P i

0 = diag(10−5, 10−5, 1, 1), taking
into account different magnitudes of the states; the matrices
Q and Ri are set for each sensor i as the inverse of the
covariance matrices of wt and vit, respectively. Q is used
in [6], [8] and [10] for (D)MHE algorithms without pre-
estimation. This weight matrix penalises the norm on the
sequence of disturbance input terms in the cost function of
these algorithms. All these parameters are identically set in
all the considered algorithms. The consensus weights πi,j

are chosen to be equal among the neighbourhood, satisfying
(13).

In order to compare the proposed DMHE1
pre (namely Dis-

tributed Moving Horizon Estimation with pre-estimation) and
DMHE`

pre (namely DMHE with `-neighbourhood diffusion
and pre-estimation) algorithms with existing techniques, the
simulation has been run also for the centralised MHE of [14]
and the DMHE of [6], [8] and [10]. To avoid confusion, the
DHME in [8] is an extension of the one of [6] using the
pre-estimation strategy and it is called DMHEpre in [8].

The performance metrics that have been taken into ac-
count are the Position Root Mean Square Error (PRMSE)
averaged over the M =100 nodes of the network, denoted
by PRMSE(t) = 1

M

∑
i∈N

∥∥∥Ci
(
xt − x̂it|t

)∥∥∥ , and the com-
putation time τ(t) averaged also over the entire network.

Figure 2 shows the time behaviour of the PRMSE of all
considered algorithms. The proposed DMHE1

pre technique
offers similar results as the DMHE of [10], with a faster
convergence (about 4 seconds) with respect to the DMHE
of [6] and [8] (about 18 seconds to converge). Further, we
can notice that DMHE`

pre ensures improved performance in

terms of convergence time among the considered distributed
algorithms.
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Fig. 2. PRMSE time behaviour comparison.
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Fig. 3. Computation time comparison.

Evaluating the computation times in Fig. 3 shows that the
algorithms with pre-estimation (red, purple and blue dots)
are always less computationally demanding compared to
their respective version without pre-estimation (yellow and
green dots). Indeed, adding the pre-estimation reduces the
computation time of about 30%. In particular, the proposed
DMHE1

pre technique (purple dots) converges faster and has
comparable performances with the DMHE of [8]. Moreover,
it is worth to notice that DMHE`

pre has the best convergence
time from all the considered approaches (see Fig. 2) and
needs almost the same computation time as DMHE1

pre and
DMHE of [8].

Case 2. A second simulation of nine trials has been
performed using the same parameters but changing the fixed
window size N = {2, 3, . . . , 10}, to the end of evaluating
how the horizon length affects the performance of the con-
sidered DMHE algorithms. In addition, the initial state of the
system x0 is randomly generated with uniform distribution
over the plan [−500, 500] × [−500, 500] m and in velocity
[−1, 1] × [−1, 1] m/s. The simulation duration is chosen to
be tf = 20s.

To emphasise the influence of the horizon length N on
the estimations, Fig. 4 shows the evolution of the sum of the
PRMSE, i.e.

∑
t∈(0,tf ]PRMSE(t), of each algorithm with re-

spect to N . As for N = 4, the proposed technique DMHE`
pre

has always the best performance with respect to the dis-
tributed algorithms. Moreover, even considering information
belonging to neighbours, i.e. N i

` = N i, the DMHE1
pre

method has comparable results in terms of PRMSE with the



DMHE of [10]. In fact, this is noticeable in the zoom part
on Fig. 4 because the PRMSEs are one above the other.
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Fig. 4. Comparison of the sum of PRMSE for a different horizon length
N .
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Fig. 5. Comparison of the sum of computation time for a different horizon
length N .

Finally, the Fig. 5 points out the differences amongst
the sum of the computation time τ , i.e.

∑
t∈(0,tf ] τ(t),

of all algorithms when changing the horizon length N .
As expected, the algorithms with pre-estimation are less
computation demanding for every N since their local op-
timisation problems involves less optimisation parameters.
Another significant aspect to observe in Fig. 5 is that the
difference on τ amongst algorithms with and without pre-
estimation increases with N . In addition, the Fig. 5 shows
also the bounds representing the minimum and maximum
computation time of the DMHE algorithms. It can be noticed
that these bounds are tighter and less varying w.r.t. N for the
algorithms with pre-estimation.

To summarise, the numerical simulations have shown
that the proposed DMHE algorithm, DMHE`

pre, with pre-
estimation and `-step neighbourhood information diffusion,
is able to solve the considered distributed estimation prob-
lem while, at the same time, it turns out to be lower
computation demanding and gives better estimation accuracy
w.r.t. other existing methods [6], [10].

V. CONCLUSIONS AND PERSPECTIVES

The proposed `-step neighbourhood Distributed Moving
Horizon Estimation (DMHE) algorithm is able to solve the
Distributed State Estimation problem for a linear system
over a poorly-observing sensor network. In particular, the
simulation results have shown that the proposed DMHE

technique with pre-estimation DMHE1
pre is able to converge

with analogous performance with respect to the DMHE of
[10] and, simultaneously, to reduce by a significant factor
the computation time. The best result comes from the `-step
neighbourhood DMHE algorithm DMHE`

pre that, spreading
out information from neighbourhood to neighbourhood, both
improves accuracy (in terms of the Position Root Mean
Square Error) and reduces computation time.

Current work concerns stability and robustness analysis
of the proposed approach. Further developments focus on
implementing the proposed `-step neighbourhood Distributed
Moving Horizon Estimation on a real application with multi-
sensor system.
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