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Abstract 

 

Here we present a joint analysis of the geodetic, seismological and geological data of 

the March 2021 Northern Thessaly seismic sequence, that were gathered and processed 

as of April 30, 2021. First, we relocated seismicity data from regional and local 

networks and inferred the dip-direction (NE) and dip-angle (38°) of the March 3, 2021 

rupture plane. Furthermore, we used ascending and descending SAR images acquired 

by the Sentinel-1 satellites to map the co-seismic displacement field. Our results 

indicate that the March 3, 2021 Mw=6.3 rupture occurred on a NE-dipping, 39° normal 

fault located between the villages Zarko (Trikala) and Damasi (Larissa). The event of 

March 4, 2021 occurred northwest of Damasi, along a fault oriented WNW-ESE and 

produced less deformation than the event of the previous day. The third event occurred 

on March 12, 2021 along a south-dipping normal fault. We computed 22 focal 

mechanisms of aftershocks with M≥4.0 using P-wave first motion polarities. Nearly all 

focal mechanisms exhibit normal kinematics or have a dominant normal dip-slip 

component. The use of InSAR was crucial to differentiate the ground deformation 

between the ruptures. The majority of deformation occurs in the vertical component, 

with a maximum of 0.39 m of subsidence over the Mw=6.3 rupture plane, south and 

west of Damasi. A total amount of 0.3 m horizontal displacement (E-W) was measured. 

We also used GNSS data (at 30-s sampling interval) from twelve permanent stations 

near the epicentres to obtain 3D seismic offsets of station positions. Only the first event 

produces significant displacement at the GNSS stations (as predicted by the fault 

models, themselves very well constrained by InSAR). We calculated several post-

seismic interferograms, yet we have observed that there is almost no post-seismic 

deformation, except in the footwall area (Zarkos mountain). This post-seismic 

deformation is below the 7 mm level (quarter of a fringe) in the near field and below 

the 1 mm level at the GNSS sites. The cascading activation of the three events in a SE 

to NW direction points to a pattern of domino-style earthquakes, along neighbouring 

fault segments. The kinematics of the ruptures point to a counter-clockwise change in 

the extension direction of the upper crust (from NE-SW near Damasi to N-S towards 

northwest, near Verdikoussa). 

 

Keywords: Thessaly; earthquake; InSAR; relocation; GNSS; stress transfer; blind 

fault; extension 
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Μέσω της εργασίας αυτής, παρουσιάζουμε μια πολύπλευρη ανάλυση γεωδαιτικών, 

σεισμολογικών και γεωλογικών δεδομένων της σεισμικής ακολουθίας του Μαρτίου 

2021 στη Βόρεια Θεσσαλία. Για την ανάλυση αυτή, χρησιμοποιήθηκαν δεδομένα έως 

και τις 30 Απριλίου 2021. Πρώτα, έγινε ο επαναπροσδιορισμός των σεισμικών 

επικέντρων των σεισμολογικών δεδομένων με την παροχή δεδομένων από τοπικά 

σεισμολογικά δίκτυα και βρέθηκε η φορά κλίσης (ΒΑ) και η γωνία κλίσης (38°) του 

σεισμικού ρήγματος του σεισμού της 3ης Μαρτίου 2021. Στη συνέχεια, 

χρησιμοποιήθηκαν δεδομένα εικόνων ραντάρ ανοδικής και καθοδικής τροχιάς από 

τους δορυφόρους Sentinel-1 της ESA για την χαρτογράφηση της συν-σεισμικής 

παραμόρφωσης που προκλήθηκε από τους σεισμούς. Τα αποτελέσματα μας 

υποδεικνύουν ότι η κύρια διάρρηξη του σεισμικού γεγονότος στις 3 Μαρτίου μεγέθους 

Mw=6.3 ενεργοποίησε ένα κανονικού τύπου «τυφλό» ρήγμα, που κλίνει προς τα BA 

με 39 μοίρες κλίση και βρίσκεται μεταξύ των χωριών Ζάρκο (Τρίκαλα) και Δαμάσι 

(Λάρισα). Το σεισμικό γεγονός της 4ης Μαρτίου 2021, που έγινε βορειοδυτικά του 

Δαμασίου, διέρρηξε ένα ρήγμα με μέση διεύθυνση ΔΒΔ-ΑΝΑ και παρήγαγε λιγότερη 

εδαφική παραμόρφωση σε σχέση με το πρώτο. Το τρίτο σεισμικό γεγονός έλαβε χώρα 

στις 12 Μαρτίου 2021, κατά μήκος ενός κανονικού ρήγματος που κλίνει προς το νότο. 

Στη συνέχεια, ο υπολογισμός 22 μηχανισμών γένεσης από μετασεισμούς μεγέθους 

Μ>4.0 έγινε με βάση την μέθοδο των πρώτων αποκλίσεων των P σεισμικών κυμάτων. 

Σχεδόν όλοι οι μηχανισμοί γένεσης δείχνουν κινηματική κανονικών ρηγμάτων ή ότι η 

κανονική κινηματική των ρηγμάτων είναι η επικρατούσα. Η χρήση της 

Συμβολομετρίας Ραντάρ είναι καθοριστική στην ερμηνεία των σεισμών αυτών καθότι 

με αυτή μπορέσαμε να προσδιορίσουμε χωρικά την διαφοροποίηση της παραμόρφωσης 

του εδάφους μεταξύ των σεισμικών διαρρήξεων από τον εκάστοτε σεισμό. Το 

μεγαλύτερο ποσοστό της παραμόρφωσης παρατηρήθηκε στη κατακόρυφη συνιστώσα 

της κίνησης, με μέγιστη καθίζηση 0.39 m στην περιοχή πάνω από το ρήγμα του πρώτου 

σεισμού Μw=6.3, νότια του χωριού Δαμάσι. Επίσης, μετρήθηκε μία συνολική κίνηση 

της τάξεως των 0.3 m στην οριζόντια συνιστώσα Α-Δ. Επιπρόσθετα, 

χρησιμοποιήθηκαν δεδομένα GNSS (με ρυθμό δειγματοληψίας σήματος τα 30 s) από 

12 μόνιμους σταθμούς της Θεσσαλίας έτσι ώστε να μετρηθεί το τρισδιάστατο άνυσμα 

της σεισμικής κίνησης του εκάστοτε σταθμού. Μόνο ο πρώτος σεισμός παρήγαγε 

σημαντικές μετατοπίσεις της θέσης των γεωδαιτικών σταθμών GNSS (όπως το είχαν 

προβλέψει και τα μοντέλα σεισμικών ρηγμάτων, που παρήχθησαν από τα δεδομένα της 

συμβολομετρίας ραντάρ). Επίσης, δεν παρατηρήθηκε κάποια μετασεισμική 

παραμόρφωση στα συμβολογράμματα ραντάρ, εκτός από την περιοχή που είναι το 

ανερχόμενο τέμαχος του ρήγματος του πρώτου σεισμού, στο βουνό Ζάρκο. Αυτή η 

μετασεισμική παραμόρφωση βρίσκεται κάτω από το όριο των 7 mm και κάτω από 1 

mm σε περιοχές κοντά σε GNSS σταθμούς. Η διαδοχική ενεργοποίηση των τριών 
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σεισμών με διεύθυνση από τα ΝΑ προς τα ΒΔ δείχνει ένα χαρακτηριστικό τύπο ντόμινο 

διάρρηξης, κατά μήκος γειτονικών ρηγμάτων. Η κινηματική των διαρρήξεων που 

παρήγαγαν αυτούς τους σεισμούς δείχνουν μια αριστερόστροφη αλλαγή στην 

διεύθυνση του εφελκυσμού του άνω φλοιού (από ΒΑ-ΝΔ κοντά στο χωριό Δαμάσι σε 

Β-Ν προς βορειοδυτικά, κοντά στο χωριό Βερδικούσσα). 

 

Λέξεις – Κλειδιά: Θεσσαλία, σεισμός, InSAR, επαναπροσδιορισμός σεισμών, GNSS, 

μεταφορά τάσης, «τυφλό» ρήγμα, εφελκυσμός. 

 

 

1. INTRODUCTION 

 

The region of Thessaly, in Central Greece is part of the Pelagonian zone which forms 

the western Internal Hellenides.  It is characterised by abundant occurrences of 

crystalline basement, predominantly pre-Alpine in age. The Pelagonian is defined as a 

NW-SE trending zone consisting of thrust sheets that record Alpine orogenic events and 

is bordered by the Neotethys/Vardar oceanic suture zone in the NE and the external 

Hellenides (Pindos and Adria) in the SW (Mountrakis, 1984; Kilias and Mountrakis, 

1989). The basement of the Thessaly region comprises a complexly deformed 

assemblage of quartzo-feldspathic gneiss and schist, mid-Mesozoic ultramafic ophiolite 

fragments, late Palaeozoic to Mesozoic marble and early Paleogene flysch, as well as 

mafic and calcareous schists. 

 

Thessaly is located at the western end of the North Anatolian Fault Zone (NAFZ; a large 

transcurrent structure in the East Mediterranean), where the right-lateral strike slip ends 

and crustal extension prevails in mainland Greece (Fig. 1; Kiratzi et al. 1991; Taymaz 

et al. 1991; Hatzfeld et al. 1999; Papadimitriou and Karakostas, 2003; Müller et al., 

2013; Konstantinou, 2017; Briole et al. 2021). The most prominent structural and 

geomorphic features strike NW-SE, such as the coastal and interior mountain ranges, 

their bounding faults and the late Tertiary sedimentary basins (Caputo and Pavlides, 

1993). However, the Middle-Late Quaternary-to-present tectonic regime has formed 

WNW-ESE and E-W high angle, normal and oblique-slip faults (Mountrakis et al., 

1993; Caputo and Pavlides, 1993; Caputo, 1995; 1996; Pavlides et al. 2004; Palyvos et 

al., 2010; Mantovani et al. 2018). The recent activity of these structures is confirmed 

by the location of both moderate and large magnitude earthquakes during the 20th 

century (Papazachos et al., 1983, 1993; Papastamatiou and Mouyaris, 1986; Pavlides, 

1993; Hatzfeld et al., 1999), and by paleoseismological data (e.g., Caputo et al., 2004; 

Caputo and Helly, 2005; Palyvos et al., 2010; Tsodoulos et al. 2016). In northern 
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Thessaly, the strike of the active structures acquires a WNW-ESE orientation (Caputo 

and Pavlides, 1993; Ganas, 2020). This orientation of crustal stretching is probably a 

kinematic response to a change in the orientation of the regional stress field with respect 

to the NW-SE extension across the neighbouring rift systems of western and central 

Macedonia (Konstantinou et al. 2016). For example, the 1995 earthquake of Grevena - 

Kozani ruptured an ENE-WSW striking normal fault (Rigo et al. 2004). New strain rate 

data for west-central Macedonia and Thessaly (D’Agostino et al. 2020) also show a 

rotation of the dilatational strain axis from NW-SE to N-S across north Thessaly. 

 

The epicentral area of the March 2021 earthquakes is characterised by low seismicity 

and low strain rates (~30 ns/yr; D’Agostino et al. 2020) while this area is located within 

the, Pindos crustal block as defined by kinematic criteria by Briole et al. (2021). The 

crustal thickness is about 35 km with the Moho dipping towards the west beneath the 

Pindos range (Grigoriadis et al. 2016). The March 3, 2021 10:16 UTC (Mw=6.3) 

shallow earthquake occurred near Damasi, about 20 km to the northwest of Larissa (Fig. 

1; Lekkas et al. 2021; Ganas et al. 2021a; Valkaniotis et al. 2021; Tolomei et al. 2021). 

Then, a Mw=6.0 shallow earthquake occurred on March 4, 2021 18:38 UTC beneath 

the sedimentary basin of the Titarissios river. On March 12, 2021 12:57 UTC a third 

event of Mw=5.6 occurred near the NW edge of the Titarissios basin. The PGA due to 

the first event was measured as ~0.14 g at one strong-motion instrument in Larissa 

(Karakostas, 2021; Fig. 1).   

 

In Table 1 we summarize the focal parameters of the three largest shocks of the 

sequence, as they have been determined by international agencies from moment tensor 

(MT) inversions.  We observe that the events are located in the upper crust, with median 

depth ranging between 10 and 11 km. Some discrepancies occur, i.e., the shallow 

centroid depth obtained for the event on March 3, 2021 by NOA (4 km) compared to 

the solution by UOA (19 km); and for the centroid depth of March 4, 2021 by UOA (15 

km) and GFZ (17 km), likely the result of unmodelled velocity structure. Both Mw and 

nodal planes of the GFZ solution for the event of 4 March 2021 diverge from the 

solutions provided by UOA, NOA and AUTH, likely the result of the poor data quality, 

the latter being likely the reason that MT is available from only four institutes for this 

event, despite its large size. In particular, the teleseismic inversions for the March 4, 

2021 18:38 UTC event might be affected by the Kermadec Island event of Mw=7.4 

(USGS), on 17:41 UTC since teleseismic inversions based mainly on surface waves are 

more vulnerable to this wave interference compared to local/regional body-wave 

inversions. The median values of the dip-angles of the MTs indicate shallow, 

intermediate-dipping normal faulting (≤40°), in agreement with the preliminary results 
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from the inversion of geodesy data and field observations that indicated the activation 

of three previously unknown normal faults (Ganas et al., 2021a). In addition, when 

considering the dip direction of the median nodal planes in Table 1, a counterclockwise 

rotation of ~30° is observed between the strike of the event on March 3, 2021 and the 

events on the 4th and 12th of March. 

 

 

Fig. 1: Shaded relief map of the northern Thessaly 2021 earthquake area. Solid stars indicate 

relocated mainshock epicentres (this study). Blue triangles indicate the locations of the 

seismological stations. Red triangles represent permanent GNSS stations. Inset box at upper 

right shows study area within Greece. Black lines are active faults from the NOAFAULTs 

database http://doi.org/10.5281/zenodo.3483136 (with ticks at the downthrown side; modified 

from Caputo, 1990; 1995) and faults determined by our field work (this study). A high-

resolution version of this figure is provided in the supplement section of this article. 

 

 

In this study we present an analysis of seismological, geological and geodetic data that 

constrain the location and geometry of the activated faults. We relocated hundreds of 

aftershocks and computed the focal mechanisms for events with M≥4.0. Due to the 

shallow depth of the earthquakes (ranging from 5 to 15 km) and the good coherence of 

the area, it was possible to accurately map the surface deformation using InSAR. The 

interferograms show three main lobes of subsidence, partially overlapping, with a NW-

SE orientation. We then processed GNSS data from twelve permanent stations located 
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at distances ranging from 15 to 40 km. The displacement data were inverted to model 

the dislocation sources assuming a homogeneous elastic half space. The inversion 

modelling confirms the activation of three normal faults, previously unknown. The 

earthquakes generated numerous secondary phenomena with vast areas of alluvial 

deposits exhibiting spectacular liquefaction features. No tectonic surface ruptures were 

found in the field, in agreement with the modelled faults. However, several NW-SE 

surface breaks were observed north of village Zarko (Fig. 1), aligned with the vanishing 

gradient of the interferometric phase of the first event (March 3, 2021). We interpret 

those as tensional cracks related to the dilatational strain of the rupture.  Our study 

highlights the rotation of the stress field in this key region of central Greece and the 

particular type of strain release, that is by clustering of earthquakes along blind normal 

faults that ruptured in an unprecedented domino pattern involving three mainshocks. 

 

2. ANALYSIS OF SEISMOLOGICAL DATA 

 

2.1.  Relocation of Seismicity  

 

The mainshocks and aftershocks of the sequence were recorded by the broad-band and 

strong motion stations of the Hellenic Unified Seismological Network (HUSN; 

http://eida.gein.noa.gr/); moreover, seven (7) temporary stations were installed on 

March 5, 2021 in the epicentral area by AUTH (Department of Geophysics of the 

Aristotle University of Thessaloniki; HT network; doi:10.7914/SN/HT). These stations 

were named as TYR1-6 (Fig. 1) and they were equipped with Nanometrics hardware 

i.e., Trillium Compact (TC120) seismometers and Centaur recorders. Two (2) more 

temporary stations were installed on March 14, 2021 by the University of Patras 

Seismology Lab (UPSL; HP network; doi:10.7914/SN/HP), with GEOBIT-instruments 

equipment, i.e., the Geotiny Seismometer (KANL; Analipsi site; Fig. 1) and the GEOsix 

datalogger combined with GEOfba200 accelerometer and TC120 Seismometer (VRKS; 

Verdikoussa site; Fig. 1). The manually picked events by Institute of Geodynamics of 

the National Observatory of Athens NOA, during the first 30 days, were used for the 

initial location. Several velocity models were examined during the location procedure 

such as Hatzfeld et al., (1997), Drakatos et al., (1998), Novotny et al., (2001), 

Karastathis et al., (2011); the comparison was initially performed on the 

HYPOINVERSE location errors and the hypocentres’ distribution. The crustal model 

suggested by Hatzfeld et al., (1997) was finally selected since it yielded the lowest 

errors (i.e., mean RMS ~ 0.13 s) with a Vp/Vs ratio value of 1.76, as also suggested by 

Hatzfeld et al. (1997). 
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Table 1 (next page). Source parameters of the three mainshocks from various agencies 

(https://www.seismicportal.eu/mtws/). (*) GFZ solution excluded (see text for 

discussion). 

  

Subsequently, the double difference relocation HYPODD (Waldhauser, 2001) 

procedure was performed for two time periods, i.e., before and after the installation of 

the local stations.  The relocation combined the P- and S- wave arrival times from 66007 

phase picks in total, derived from fourteen (14) stations within 90 km from the 

mainshocks epicentral area for the first period and ten (10) stations within 30 km for 

the operation period of the local stations (Fig. 1) including data from three strong 

motion stations in the near field (TRKA, GINA and SOFA).  HYPODD determines 

relative locations within clusters, using the double difference algorithm, developed by 

Origin time (UTC) 

YYYYMMDD 

Lat. 

(°) 

Lon. 

(°) 
Source Mw 

Z 

(km) 

Strike 

(°) 

Dip 

(°) 

Rake 

(°) 

2021-03-03 10:16:08.3 39.76 22.21 

USGS 6.3 12 307 36 -100 

GCMT 6.3 12 324 48 -72 

CPPT 6.3 12 321 36 -77 

GFZ 6.3 10 310 44 -89 

UOA 6.3 19 309 36 -91 

ERD 6.2 7 332 43 -85 

IPGP 6.2 10 321 33 -78 

KOERI 6.3 10 323 53 -79 

OCA 6.2 7 315 45 -90 

INGV 6.3 10 327 53 -70 

NOA 6.3 4 305 33 -108 

AUTH 6.2 6 314 36 -88 

 

Median 6.3 10 318 39 -87 

Stdev 0.05 4 9 7 11 

2021-03-04 18:38:17.1 39.78 22.12 

UOA 6.1 15 308 50 -92 

GFZ 6.3 17 329 41 -88 

NOA 6 8 287 31 -95 

AUTH 5.9 7 287 30 -92 

 

Median 6.1 11 298 36 -92 

Stdev 0.2 5 20 9 3 

Median* 6.0 8 287 31 -92 

Stdev* 0.1 4 12 11 2 

2021-03-12 12:57:50.7 39.84 22.01 

CPPT 5.5 18 109 41 -92 

INGV 5.6 10 96 37 -133 

GFZ 5.5 10 120 40 -85 

KOERI 5.5 10 108 38 -108 

GCMT 5.6 12 87 42 -109 

 

Median 5.5 10 108 40 -108 

Stdev 0.1 4 13 2 19 
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Waldhauser and Ellsworth (2000). It improves relative location accuracy by strongly 

reducing the influence of the velocity structure on locations. The double-difference 

residuals for the pairs of earthquakes at each station were minimized by weighted least-

squares, using the method of conjugate gradient (LSQR).  The velocity model used in 

the relocation was the same with the model used in the initial location process. In total, 

855 events were relocated and clustered in the area of interest with magnitude ML 

between 0.8 and 6.0 (see Fig. S1; see Table S1 for a list of the relocated epicentres of 

the three main events). The HYPODD final results include the 89.2% of the initial 

dataset. The relocated hypocentres have an estimated mean rms residual of 4 ms and 

the mean location formal uncertainties x, y, z and t were 24 m, 25 m, 27 m and 11 ms, 

respectively for both periods. The relocated events are densely distributed, in three 

major clusters (Fig. 2 shown in boxes), activated in diverse times. The main activity is 

concentrated at the central area during the first 2-day period, March 3-4, 2021 (Fig. 3; 

cross section B1B2) where the distribution of the hypocentres indicates a NE-dipping 

structure. After the addition of the portable network (Fig. 2), we can infer the position 

of the fault plane dipping 38° towards northeast (Fig. 3d). The inferred dip-angle is 

similar to the dip-angle of the northeast-dipping nodal plane of the moment tensor 

solutions (median value 39°; see Table 1). The northern cluster (Fig. 3; cross section 

A1A2) was activated one week after the Mw=6.3 event and the distribution of the events 

is not conclusive on the dip-direction of the seismic fault. The southern cluster (Fig. 3c; 

section C1C2) was active during the whole period, depicting a steeply dipping structure. 

 

 

Fig. 2: Map of relocated seismicity. Epicentre colours are according to Julian date of 

occurrence. Sections A1A2, B1B2 and C1C2 are shown in Fig. 3. Cyan triangles indicate 

station locations. 
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Fig. 3: Cross sections of relocated seismicity (a) to (c) corresponding to profiles A1A2, 

B1B2 and C1C2 respectively (see Fig. 2 for locations). Foci colours are according to 

Julian date of occurrence.  Panel (d) displays the blue foci of (b) indicating aftershock 
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hypocentres from day 065 (March 6, 2021) onwards, together with an imaginary line 

showing the projection of the inferred fault plane with a dip-angle of 38°. 

 

2.2. Computation of Focal mechanisms 

 

The configuration of the regional HUSN seismic stations and accelerographs, allowed 

the computation of a large number of focal mechanisms using P-wave first motion 

polarities. This was possible especially after March 6, 2021 when the temporary local 

network was installed (Fig. 4). 5180 P-wave first-motion polarities were manually 

picked using Seisgram2K (Lomax, 2014). A total number of 408 focal mechanisms 

were determined using a grid search method applied on the first motion polarities 

(Kapetanidis, 2017). Out of the 408 solutions, herein, we present 22 focal mechanisms 

for events with M ≥ 4.0 as most representative of the rupture processes and afterslip. 

The stations positions on the stereo-net for the determination of the fault plane solutions 

by first motion polarities were determined using relocated hypocentres (where 

available) and the velocity model of Hatzfeld et al. (1997) by applying the TauP code 

(Crotwell et al., 1999). These focal mechanisms are shown in Fig. 4 according to their 

day of occurrence, indicating that 16 out 22 events with M ≥ 4.0 occurred with the first 

48 hours from the first mainshock. Nearly all focal mechanisms exhibit normal 

kinematics or have a dominant normal dip-slip component. Oblique-normal and strike-

slip focal mechanisms are also resolved, some being less constrained due to the 

unavailability of an adequate number of local stations until March 6, 2021. The 

parameters of 22 aftershocks are shown in Table 2 (and Table S2). 

 

Table 2. Parameters of aftershocks with M≥4.0 determined with first polarities. See 

Table S1 for full parameters. 

Year Mo Day Hr Min Sec Depth (km) Mag Strike (°) Dip (°) Rake (°) 

2021 3 3 10 20 45.93 9.4 4.7 178.8 49.5 -43.8 

2021 3 3 10 23 8.12 10.4 4.1 267.5 47.0 -139.7 

2021 3 3 10 26 18.33 9.7 4.1 2.8 52.9 -37.8 

2021 3 3 10 34 7.54 11.7 4.9 283.0 56.1 -148.8 

2021 3 3 11 12 23.08 10.3 4.3 327.1 50.8 -41.6 

2021 3 3 11 35 56.66 10.2 4.8 344.4 44.7 -87.5 

2021 3 3 18 24 8.06 11.6 5.2 328.6 54.0 -34.7 

2021 3 3 18 49 48.25 12.4 4.2 77.7 33.7 -92.0 

2021 3 3 21 0 54.67 10.2 4.0 278.3 43.7 -145.3 

2021 3 4 2 43 37.77 11.6 4.0 349.1 36.7 -71.0 

2021 3 4 9 36 15.37 13.2 4.4 130.9 48.0 -35.9 

2021 3 4 18 45 26.58 11.9 4.1 242.0 51.4 -150.8 

2021 3 4 19 23 50.99 11.6 5.0 248.8 41.9 -101.6 

2021 3 4 19 31 31.96 11.5 4.2 125.0 52.7 -38.4 
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Fig. 4: Map showing the focal mechanisms of the three mainshocks (Moment Tensor 

solutions; median values from Table 1) and twenty-two major aftershocks with M≥4.0 

(computed with the method of first motion polarities). Compressional quadrants are coloured 

according to the day of occurrence since 3 March 2021. Solid triangles indicate locations of 

the seismic instruments. 

 

 

3. PROCESSING OF INSAR DATA - ANALYSIS OF INTERFEROGRAMS 

 

InSAR is a technique of side-looking imagery collected by repeating passes of a radar satellite 

over an area. Since 1992, the technique it has been used to measure how much the ground 

surface has moved along the line-of-sight (LOS) between each pass of a satellite and can give 

vital information as to how much slip occurred on a fault. In the case of the Thessaly 2021 

earthquakes preliminary field data indicate that the ruptured faults are “blind”, i.e., they have 

no surface expression in terms of fault scarps (Ganas et al. 2021a; Valkaniotis et al. 2021). 

We used the ascending images acquired by the European Copernicus satellites Sentinel-1 (S1; 

C-band data) on the ascending tracks 102 and 175 and on the descending tracks 7 and 80.  The 

2021 3 4 20 3 8.11 11.1 4.2 331.7 53.5 -29.4 

2021 3 5 9 59 58.96 15.1 4.2 86.0 41.7 -85.4 

2021 3 5 10 1 14.49 10.3 4.2 294.8 36.0 -84.3 

2021 3 6 16 36 17.51 11.6 4.1 356.0 65.3 -22.9 

2021 3 6 19 47 39.76 9.6 4.1 3.7 47.9 -34.6 

2021 3 11 14 19 40.4 6.3 4.0 124.4 46.9 -42.0 

2021 3 15 15 43 37.71 8.0 4.3 263.2 24.5 -86.2 

2021 3 21 17 15 54.04 8.8 4.1 287.5 42.3 -69.4 



 

Geological Society of Greece   49 

 

Volume 58 

 
area of interest for InSAR is included within 21.7-22.5° in longitude and 39.5-39.9° in latitude. 

The geometrical characteristics of the S1 tracks are given in Table 3. Due to acquisition 

schedule and track geometry, the Mw=6.3 and Mw=6.0 earthquakes were captured only in 

ascending track interferograms as separate deformation events (Fig. 5; Fig. 6). 

 

Table 3. Parameters of the four available S1 tracks. 

Orbit Ascending Ascending Descending Descending 

Track 102 175 7 80 

Acq. time (UTC) 16:24 16:32 04:31 04:38 

Incidence angle 

(°) 

33.7274 41.5527 41.5469 36.8476 

Incidence vector 

east, north, up 

-0.537 

-0.126 

+0.832   

-0.646 

-0.151 

+0.748 

+0.646 

-0.151 

+0.748 

+0.584 

-0.137 

+0.800 

 

The interferograms (Fig. 5) were made using the SNAP v8.0 software (Veci et al. 2014). The 

digital elevation model (DEM) used for the processing is the Shuttle Radar Topography 

Mission (SRTM) 1 Arc-Second Global (doi: /10.5066/F7PR7TFT). During processing, the 

interferogram was formed by cross-multiplying the master image (the pre-event acquisition 

image) with the complex conjugate of the slave (the post-event image). The resulting phase 

represents the difference between the two images. Through the interferometric processing, we 

eliminate sources of noise, as much as possible, to isolate the remaining signal that is likely 

to be related to the ground displacement. We also enhanced the signal-to-noise ratio by 

applying the adaptive power spectrum filter of Goldstein and Werner (1998) with a coherence 

threshold of 0.4. For this sequence, the quality of the interferograms is good, both in terms of 

coherence and tropospheric noise. 

 

 The interferogram of the first event shows 13 fringes corresponding to ground deformation 

in the Damasi area (Fig. 5 left panel; see location of Damasi in Fig. 1). The interferogram of 

the second event shows 4 fringes corresponding to ground deformation in the Amouri area, 

about 10 km to the northwest (Fig. 6, middle panel; see location of Amouri in Fig. 1). All 

fringes correspond to motion away from the satellite (increase in the line-of-sight distance). 

The subsidence pattern is interpreted as result of co-seismic motion along two normal faults, 

running NW-SE and dipping to the northeast. The third event created a fringe pattern 

consistent with subsidence due to a south-dipping fault according to the shape and density of 

fringes (denser closer to fault’s trace; Fig. 5 right panel). The InSAR results show that the 

Titarissios river valley and large areas to the west and SW of Tyrnavos moved roughly 

downwards. 
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Fig. 5:  Coseismic interferograms (wrapped phase; cropped swath) from Sentinel-1 SAR 

imagery pairs, for the three main events of the earthquake sequence.  Left) Ascending track 

102, February 25 – March 3, 2021. Middle panel) Ascending track 102, March 3 – March 9, 

2021. Right panel) Ascending track 175, March 8 – March 26, 2021. The interferograms are 

draped over shaded relief. Red stars indicate epicentres of the three earthquakes. A high-

resolution version of this figure is provided in the supplement section of this article. 

 

 

We also used the LOS displacements from track 80 & 175 interferograms (March 2 – March 

14, 2021) for decomposition into horizontal (East-West) and vertical displacement 

components. Decomposition processing combines the ascending and descending unwrapped 

interferograms (neglecting the contribution of the North-South displacement), using 

simplified geometry and the Sentinel-1 acquisition incidence angles (Wright et al. 2004; Dalla 

Via et al. 2012). These interferograms contain the cumulative deformation from all three main 

events (Fig. 6). Later interferograms show no significant deformation in the area. The majority 

of deformation occurs in the vertical component, with a maximum of 0.39 m of subsidence 

over the Mw=6.3 rupture plane, south of Damasi (Fig. 6 a & c). A small amount of uplift is 

observed in the area NE of Farkadona (Fig. 6a; up to 4 cm). The uplift might be attributed to 

the relative motion of the two fault blocks either side of the fault surface. In normal faulting 

the maximum surface displacement is manifested as subsidence of the hanging wall, with the 

footwall being uplifted but with less amounts (e.g., King et al. 1988). The small cumulative 

uplift of the Thessaly earthquakes is probably due to the blind character and intermediate dip-

angle of the normal fault ruptures. A significant amount of E-W horizontal displacement (from 

+0.19 m to –0.1 m) is observed (Fig. 6 b & d), that is attributed to the crustal extension due to 

the normal fault ruptures. 
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Fig. 6: InSAR displacement maps from the decomposition of Track 80 & 175 interferograms 

(2 March – 14 March 2021) a) vertical component b) east-west component with NE-SW 

oriented profiles in c) and d) respectively. Positive values (red colours) of E-W displacement 

show movement towards east. A high-resolution version of this figure is provided in the 

supplement section of this article. 

 

 

4. CO-SEISMIC MOTION OF THE GNSS STATIONS 

 

We analyzed dual-frequency GPS data of twelve (12) GNSS stations, all located in Thessaly. 

One station (KLOK) belongs to both NOANET (Ganas et al. 2008) and INGV (Fig. 1). It is 

equipped with a choke-ring antenna and its 10-yr long time-series analysis indicates a very 

stable behavior (Argyrakis et al. 2020). Two GNSS stations belong to AUTH-HERMES 

network (code name ELAS and LARM), five stations belong to Tree-URANUS (FAR2, 

KARD, LARI, PIRG and TRIK), two stations to METRICA- HxGN Smartnet (BELE, 

MURG) and two stations to JGC-net (KARJ and LARJ). The data (rinex v2.11 files) were 

processed with the Gipsy version 6.0 software of the JPL/NASA (Bertiger et al., 2010). For 

Tree-URANUS stations we processed data until April 25, 2021 while for METRICA-HxGN 

SmartNET stations until the March 31, 2021. Unfortunately, there were no data available for 

ELAS after March 5, 2021. The sampling interval was 30 s, and the data were collected on a 

24-hour basis. We used the JPL final satellite orbits (flinnR) and clocks, absolute antenna 

calibration, random walk troposphere estimation and the FES2004 ocean loading model. We 

calculated the static offsets (and their uncertainties) for the three events (Table 4; Fig. 7 and 
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Fig. 8). The offsets indicate cm size motion mainly along the NE-SW direction. Station KLOK 

(Fig. 7) registered the largest displacements, as it moved 4.2 cm towards south and 3.1 cm 

towards west. In terms of Up-Down (vertical) displacement, we obtained no clear trends of 

co-seismic motion for the three events. We also processed in kinematic mode the high-rate 

data (1s sampling interval) of several stations, including station KLOK, using the CSRS-PPP 

SPARK, an online GNSS service developed by the Geodetic Survey Division of Natural 

Resources Canada. We present the results of the data processing for the March 4, 2021 shock 

in supplementary Fig. S2. Unfortunately, for the day of the March 3, 2021 earthquake station 

KLOK has a duration of observations of only 2:54:30 (hh:mm:ss), starting from 21:05:00.00 

GMT. 

 

The six best-constrained displacements of GNSS stations are shown in Fig. 7. The events of 

March 4, and March 12, 2021 are much smaller in size and do not contribute (they produce 

local InSAR fringes as seen in Fig. 5, but minor offsets were recorded in the intermediate and 

far field). The uncertainties on the displacements are (on average) 3 mm in east and north 

(~10% of a fringe). These values were used for assigning the zero of the interferograms. They 

were also used for the control of the prediction of the fault models. For modelling the fault 

parameters, InSAR is adequate for this seismic sequence while GNSS cannot constrain the 

models. There is no evidence of significant post-seismic displacement except some small 

displacements (below ¼ of a fringe) in the near field of the faults. Note that the co-seismic 

offsets on Fig. 7 appear smooth because we applied a Gaussian filter on the position time 

series; this filter reduces by a factor of two the signal-to-noise ratio of the time series, which 

is useful in case of small displacements.  

 

In addition, in the time series of E, N coordinates plotted in Fig. 7, the secular velocities of 

the stations from Briole et al. (2021) have been subtracted. The station offsets are reported in 

Table 3 together with their modelled displacements according to the derived fault models (see 

section 5 below). The map of the horizontal displacement pattern is shown in Fig. 8. The 

horizontal displacement pattern is in agreement with the normal dip-slip kinematics of the 

rupture, i.e., axis of extension oriented ~NE-SW. We note that several stations located along 

strike (i.e., NW-SE), such as LARJ and LARM, recorded smaller displacements than stations 

such as KARD and TRIK, despite the latter being further to the epicentral area. This effect is 

due to the asymmetric elastic response of the crust during seismic faulting and it was also 

observed in the case of the Samos 2020 earthquake (Ganas et al. 2021b). 
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Fig. 7: Graphs showing position time series of GNSS stations in Thessaly (north and east 

components). The time-series have been offset for clarity on the Y-axis. Vertical line indicates 

the day of the 3 March 2021 event and marks the co-seismic displacements on six stations 

having the lowest uncertainties on the estimation of the co-seismic displacements. Station 

locations are in Fig. 8. 

 

Table 4. Coordinates of the 12 GNSS stations, secular velocities (Briole et al. 2021), total 

displacement values (in mm; all three main shocks), total model values. The mean difference 

between observations and model is 0.8 cm, -1.6 cm, and -0.4 cm in east, north and up 

respectively. See Fig. 8 for station locations. 

Station Coordinates Velocity ITRF2014 Total co-seismic motion Model 

Code Owner Long. Lat. vE vN East North Up East North Up 

  ° ° mm yr-1 mm yr-1 mm mm mm mm mm mm 

BELE Metrica 23.133 39.295 18.8 ± 0.5 0.3 ± 0.6 1 ± 1 0 ± 1 0 ± 3 0 0 0 

ELAS AUTH 22.206 39.892 22.7 ± 0.5 6.1 ± 0.6 12 ± 5 34 ± 5 0 ± 15 18 33 8 

FAR2 Uranus 22.384 39.296 19.5 ± 0.8 3.1 ± 0.8 1 ± 1 -5 ± 1 8 ± 3 -1 -1 1 

KARD Uranus 22.082 39.470 20.4 ± 0.4 6.1 ± 0.5 -9 ± 1 -26 ± 1 3 ± 3 -10 -22 0 

KARJ JCG 21.745 39.355 n/a n/a 0 ± 5 -5 ± 5 0 ± 15 -7 -8 2 

KLOK NOA/INGV 22.014 39.565 21.1 ± 0.2 6.6 ± 0.2 -31 ± 1 -42 ± 1 -2 ± 3 -32 -38 6 

LARI Uranus 22.400 39.637 20.5 ± 0.4 4.7 ± 0.4 5 ± 1 4 ± 1 3 ± 3 5 5 4 

LARJ JCG 22.413 39.622 n/a n/a 3 ± 5 1 ± 5 1 ± 15 3 4 4 

LARM AUTH 22.388 39.614 21.3 ± 0.2 5.3 ± 0.3 -1 ± 2 3 ± 2 6 ± 6 0 6 3 

MURG Metrica 21.554 39.739 21.7 ± 0.4 7.9 ± 0.4 -1 ± 2 1 ± 2 0 ± 6 -4 -2 1 

PIRG Uranus 22.589 39.919 22.4 ± 0.4 6.0 ± 0.4 11 ± 1 5 ± 1 1 ± 3 11 8 0 

TRIK Uranus 21.798 39.555 20.0 ± 0.6 7.4 ± 0.8 -13 ± 1 -13 ± 1 5 ± 3 -14 -12 0 
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Fig. 8: GNSS total displacement map showing also topography/bathymetry, the focal 

mechanisms (beachballs; compressional quadrants in red) and the epicentres of the Thessaly 

2021 earthquakes. Triangles indicate permanent GNSS station locations. Vectors indicate the 

horizontal displacement of GNSS stations with 67% confidence scaling. Notice the large 

displacements obtained for stations located normal to the strike of the seismic faults. 

 

 

5. INSAR DATA INVERSION - FAULT MODELS 

 

In the Damasi earthquake sequence there are three main events, that occurred on March 3 (Mw 

=6.3), March 4 (Mw=6.0) and March 12, 2021 (Mw=5.6). In our inversion models, we use as 

initial values for the angles (azimuth, dip) the median angles of the available focal mechanisms 

(Table 1). The choice of the dip-angle is also justified by the results of seismicity relocation, 

as we infer a 38°-dipping fault plane towards the NE (Fig. 3d). Ten (10) interferograms are 

used and inverted to estimate the parameters of the faults responsible for the earthquakes 

(Table 4). The coherence of those interferograms is, on average, outstanding. Weather during 

the period of interest was most of the time cold and dry and therefore the tropospheric effects 
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are very small. The ground surfaces are partly rocky, which also greatly contributes to the 

overall coherence. In each of the ten interferograms, we pick the fringes where they are visible 

and unambiguous. The fringe number zero (0) is accurately determined on the basis of the 

displacements recorded at the GNSS stations (see section GNSS above). Then, this zero is 

controlled and fine-tuned during the modelling/minimisation process. We also made several 

post-seismic interferograms, until May 1, 2021, and we have seen that there is almost no post-

seismic deformation, even in the near field. The post-seismic displacements are below the 7 

mm level (quarter of fringe) in the near field and below the 1 mm level at the GNSS sites. 

 

Table 5. Interferograms used for the modelling of the faults. Events: 1 is for March 3 (Mw 

=6.3), 2 if for March 4 (Mw=6.0), 3 is for March 12, 2021 (Mw=5.6). The bias is the value (in 

mm) of the offset applied to the picked fringes to minimize the residuals in the modelling. 

Tracks A102 and A175 are ascending, D007 and D080 descending. 

Track Start End Picked 

points 

r.m.s. fit bias Event 

 Date Orbit Date Orbit  mm mm  

A102 19/02/21 25678 03/03/21 25853 453 40.6 6 1 

A102 03/03/21 25853 09/03/21 36924 106 7.4 14 2 

A102 25/02/21 36749 09/03/03 36924 783 41.9 7 1+2 

A175 24/02/21 25751 08/03/21 25926 834 42.4 6 1+2 

D007 03/03/21 36829 09/03/21 25933 376 42.1 -9 1+2 

D080 24/02/21 36727 08/03/21 36902 490 37.2 -5 1+2 

A102 09/03/21 36924 15/03/21 26028 45 7.7 9 3 

A175 08/03/21 25926 14/03/21 36997 31 4.3 -15 3 

D007 09/03/21 25933 15/03/21 37004 48 5.1 3 3 

D080 08/03/21 36902 14/03/21 26006 51 6.2 0 3 

 

 

Each earthquake is supposed to correspond to a homogeneous dislocation on a rectangular 

fault buried in an elastic half-space. The formalism used is the one established by Okada 

(1992). The inversion is made with the method developed by Briole et al. (1986) using the 

code Inverse6 (Briole, 2017). For the first and second events, only track A102 contains those 

earthquakes separated from the others. We inverted the corresponding interferograms 

(parameters in Table 5) to estimate a first model for each of those events. Then, we combined 
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the two events and made a joint inversion of the four interferograms available on the four 

tracks to fine-tune the parameters of the two faults. Although mixing the two faults in one 

single inversion may reduce the discrimination potential of the inversion, this is balanced by 

the fact that the combination of the four tracks allows to assess in a more robust manner the 

zero bias of the four sets of picked fringes (column bias in Table 5). This robustness is 

enhanced by the fact that there are ascending and descending data which greatly stabilizes the 

inversion and provides robustness.  

 

The parameters of the best-fitting models are in Table 6. The modelled fault sources are shown 

in Fig. 9 as shaded rectangles. The fault sizes are: 9.6 km long by 10.5 km wide (March 3 

event), 11.9 km by 4.0 km (March 4 event) and 4.3 km by 5.5 km (March 12 event), 

respectively. The longer fault size of the March 4 event is due to the particular rupture 

characteristics; the March 3 event occupied a larger rupture area due to most slip occurring 

down-dip of the fault plane. 

 

Table 6. Source Parameters of the fault models based on the inversion of geodetic data. 

Parameter Unit March 3 

event 

March 4 

event 

March 12 

event 

Notes 

Centre of upper 

edge  

Longitude ° 22.134 ± 

0.010 

22.066 ± 

0.010 

22.002 ± 

0.010 

 

Latitude ° 39.665 ± 

0.010 

39.760 ± 

0.010 

39.827 ± 

0.010  

 

Up km 3.0 ± 1.0 4.2 ± 1.5 1.3 ± 1.0  

Azimuth ° 318 298 108 Not inverted (used 

values from 

seismology) 
Dip angle ° 39 36 40 

Length km 9.6 ± 1.0 11.9 ± 1.5 4.3 ± 1.0  

Width km 10.5 ± 2.0 4.0 ± 1.0 5.5 ± 1.0  

Strike slip m 0.082 -0.021 0. (not 

inverted) 

Positive = left 

lateral 

Dip slip m 1.173 0.591 0.25 Positive = normal 

Geodetic moment N m 3.56 1018 0.84 1018 0.18 1018  
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Fig. 9: Surface projection of the faults (shaded rectangles) of the three events. Dashed red line 

is the intersection of the fault plane at the surface (when projected up-dip). A high-resolution 

version of this figure is provided in the supplement section of this article. 

 

 

6. GEOLOGICAL AND MACROSEISMIC OBSERVATIONS 

 

6.1 Geological effects 

 

Following the Mw=6.3 earthquake of March 3, 2021 the most prominent earthquake 

environmental effects were the widespread liquefaction phenomena and lateral spreading that 

was triggered over Titarissios and Pinios river valleys (Fig. 10; Valkaniotis et al. 2021). The 

Titarissios and Pinios basins have Pliocene-Quaternary fluvial and lacustrine sediments 

deposited directly on the metamorphic basement (Caputo et al. 2021). During post-earthquake 

surveys, we mapped more than 500 sites with liquefaction fissures and craters and lateral 

spreading deformation/cracks. A number of sites with high density of liquefaction fissures 

were surveyed by the UAS (Unmanned Aircraft System) model DJI 4 Pro V2.0. Co-seismic 
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interferograms revealed two large areas, along the Titarissios river valley to the north and 

Pinios river valley to the south (orange-shaded polygons in Fig. 10), with very low to no 

coherence. We suggest that lack of coherence in those areas is related to widespread surface 

deformation and change due to liquefaction. In addition, low InSAR coherence over 

Titarissios valley suggests repeated liquefaction and lateral spreading during the second 

(Mw=6.0) earthquake on March 4, 2021. Careful examination of post-earthquake Sentinel-2 

optical imagery (10-m ground resolution) revealed a number of sites with evidence of 

liquefaction fissures and craters. Our field survey lasted during the period March 3 – 15, 2021 

and validated these satellite observations. The vast majority of liquefaction and lateral 

spreading surveyed sites are found along the Titarissios valley from Amouri to Damasouli 

villages (Fig. 9 & 10), and Pinios river valley from Farkadona to Koutsochero (Fig. 9 & 10). 

Liquefaction fissures and craters were more prominent inside the Pinios river valley, due to 

the presence of finer fluvial sediments, while the Titarissios valley has a dominance of coarser-

grained material deposited on the flood plain (gravels, coarse sand). Preliminary examination 

of local palaeogeography and surficial geology revealed a possible correlation between 

liquefaction manifestations and fluvial geomorphology – palaeochannels (Valkaniotis et al. 

2021). Witness reports from local residents describe the strong manifestation of sand and 

water ejection immediately after the Mw=6.3 earthquake. We suggest that localised ground 

deformation and displacement due to lateral spreading is responsible for a large number of 

geotechnical failures, mostly related to bridge and road embankments. 

 

Landslides from the March 2021 earthquake sequence were rather limited, despite the 

magnitude and shallow crustal depth of the events. We mapped about 40 sites of landslides 

and rockfalls around the epicentral area (Fig. 10), from field observations and post-earthquake 

Sentinel-2 optical imagery (March 4 and March 14, 2021 acquisitions). Apart from a series of 

debris and avalanches in the steep gorge of Pinios west of village Amygdalea (Fig. 9 & 10), 

and a number of large boulders uphill the Zarko village, most locations involved landslides 

and rockfalls of small extent and size. A small number of ground cracks were also surveyed 

around the epicentral area (Fig. 10). Most of those might be related to local gravitational 

phenomena but without solid evidence to suggest a clear relation with larger slides or lateral 

spreading. We found two localities that deserve more attention. First, ground cracks were 

observed and surveyed at two locations along the western sector of the Tyrnavos fault trace 

(red triangles in Fig. 10; Caputo, 1993), north of village Damasi, immediately after the M6.3 

earthquake (on the afternoon of March 3, 2021). The cracks are oriented approx. N308°E and 

show an opening of less than 1 cm. However, these cracks show no vertical offset. Therefore, 

the cracks may be related to triggered shallow slip along a section of the Tyrnavos fault by the 

March 3 rupture or to ground failure due to strong ground motion as this locality is situated 

above the rupture plane (see its extent in Fig. 9). More importantly, two sets of ground 
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fractures were surveyed north of village Zarko, with an average orientation of N355°E. These 

tensional cracks coincide with a zone of co-seismic and post-seismic secondary slip mapped 

with InSAR (location 4 in Fig. 10; Fig. 14d). This deformation zone possibly coincides with 

the surface projection of the Mw=6.3 rupture plane (see dashed red line in Fig. 9) and we 

examine the data in section 7.3 below. 

 

 

Fig. 10: Overview of field observations of the geological/environmental effects from the 

March 2021 earthquake sequence.  The majority of earthquake effects are found within an 

area of approximately 20 km x 20 km. Epicentres of the main three events are shown with 

green star symbols (source AUTH). Simplified geological map is based on IGME maps. All 

field data were collected by SV, GP and AG during March 3-15, 2021. Simplified geology 

from the IGME map sheets compiled by Migiros (1985), Plastiras (1985), Stamatis (1987), 

Triantafillis (1987) and Vidakis (1998). 
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Fig. 11: Field photographs showing a & b) Liquefaction fissures with ejected sand in 

Titarissios river valley c & d) Liquefaction fissures with ejected sand in Pinios river (Piniada 

valley) e & f) Large sand boil craters in Pinios river sediments g) distributed deformation and 

ground cracks from lateral spreading in Pinios river terrace near Piniada h) localised graben 

structure in the head scarp of a lateral spreading (Pinios river valley north of Koutsochero). 

See village locations in Fig. 10. 
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Fig. 12: Field photographs showing a) Upthrown rocks in a gentle slope near Tsouma 

Monastery (Location 3 in Fig. 10) b) Rockfalls and debris along a mountainous road south of 

Damasi c) Rockfalls and wedge chips in a road cut north of Grizano d) Tension cracks north 

of Zarko, possibly along the surface projection of the M6.3 rupture plane (Location 4 in Fig. 

10) e) Lateral spreading phenomena along the Pinios river valley, north of Koutsochero. f) 

Liquefaction at the base of the bridge pillars. Larissa – Trikala new highway bridge over Pinios 

river, west of Koutsochero (location 5 in Fig. 10). 
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6.2 Macroseismic observations and structural damage 

 

The strong earthquakes and aftershocks of March 2021 revealed the seismic vulnerability of 

the critical infrastructure (e.g., bridges) and building stock in Thessaly. A summary of the 

structural damage observations obtained from the earthquake engineering field survey are 

presented below. 

 

Bridges: Damage to bridges was reported and observed after the first earthquake on 

Wednesday 3 March 2021. Operation of the bridges that suffered damages around the 

epicentral area was suspended for a few hours after the earthquake, until an evaluation of their 

structural performance was performed by state engineer teams. The majority of the bridges 

suffered only surficial or minor structural damages, rapidly repaired during the first days after 

the main earthquake. The Titarissios bridge near Mesochori (Fig. 10) suffered moderate 

damage, due to extensive lateral spreading and liquefaction on its embankment, and remained 

closed to traffic (as of 30 June 2021). Most of the damage in bridges encountered in the 

epicentral area can be attributed to foundation and large displacements of their structural 

components due to lateral spreading / liquefaction along Pinios and Titarisios rivers (Fig. 11; 

Fig. 12). 

 

Reinforced concrete (RC) buildings: The response of reinforced concrete buildings when 

subjected to earthquakes is highly dependent on the distribution of stiffness and mass in both 

the horizontal and vertical direction. RC buildings designed as per the more recent Greek 

seismic codes and the Eurocodes didn’t experience any significant damage. Some damage 

occurred mainly to non-structural elements of RC buildings such as in-plane and out-of-plane 

failure of infill panels (Fig. 13a). In some cases, damages were observed in open ground floors 

(pilotes) in RC buildings designed and constructed before 1985.  

 

The lack of shear reinforcement accompanied with loss of stiffness due to open ground floors 

led to shear failures of columns and beam to column joints. Lack of appropriate shear links 

resulted in buckling of the longitudinal rebars of the columns. The strong beams remained 

undamaged while severe damage and plastic hinges developed at the top of the columns (Fig. 

13b). In other cases, and where not enough reinforcement was installed in shear walls, 

diagonal shear cracking occurred. 

 

Masonry buildings: A significant amount of unreinforced masonry buildings can be found 

in the villages of the epicentral area. Such buildings can be grouped into three main categories: 

a) residential; b) schools; and c) churches. Masonry is a brittle and anisotropic material which 

is strong in compression and weak in tension. Masonry buildings were made of masonry units 
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(e.g., bricks, stones, concrete blocks, adobe) bonded together with or without mortar joints. 

At low levels of stress, masonry is behaving as a linear elastic matter. Its behaviour is 

becoming highly non-linear with the development of cracks and the redistribution of stresses 

in the uncracked regions during ground vibrations. Cracks in masonry buildings may open and 

close according to the type of stresses applied to them. Typically, cracks greater than 0.2 mm 

in width are visible to the naked eye. If such cracks open and propagate through the structure, 

they may reduce its load-carrying capacity and could lead to collapse. The preliminary damage 

assessment presented here is based on the patterns of cracks and dislocation observed on the 

exterior of the buildings, since access to the interior was not allowed at the time of the visit. 

 

Residential masonry buildings: Typical domestic masonry buildings in rural areas of 

Thessaly are single- or two-story ones. These were constructed with uncoarsed rubble 

(irregularly shaped) unreinforced stone masonry and multi-leaf walls. The thickness of the 

walls is usually 0.5 m, but in some cases, it can be larger and even up to 1 m. Also, residential 

buildings in the region are characterised by large openings with or without lintels above them. 

In most cases, such buildings were constructed before 1959 and thus without any seismic 

provision. Since these buildings were not built using modern building codes, they suffered 

significant damage and even collapse. The extent of damage varies from one building to the 

other and from region to region.  

 

Field investigations carried out after the earthquake demonstrated that poor construction 

techniques, poor material quality of multi-leaf masonry walls and lack of maintenance was 

the main reason for their structural damage, which in cases led to complete collapse. In 

particular, pounding, diagonal shear cracking in piers between window openings, 

delamination of the outer leaf of the walls as well as out-of-plane partial or complete collapse 

of walls observed in most of the residential unreinforced masonry buildings in Damasi and 

Mesochori (see Fig. 13d - 13f). In such places, walls were constructed with mud mortar, which 

is of very low strength and has very low resistance to humidity.  

 

Another reason for the development of such out-of-plane failures are the absence of horizontal 

binding elements and, inadequate connections at wall intersections. Also, many of the 

buildings in the region lacked stiff in plane diaphragms at the floor and roof level. So, during 

earthquake, each of the load bearing walls acted independently in the in-plane and out-of-

plane direction under the which led the buildings to collapse (See Fig. 13f).  

 

Schools: Damages observed in school buildings made of masonry in Thessaly follow the 

typical damage typology of the masonry residential buildings. Significant damage occurred at 

the exterior and interior walls of the school of Damasi which was built in 1938 and is shown 
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in Fig. 13g. During the earthquake, parts of the load bearing walls of the building failed in the 

out-of-plane direction while some in-plane diagonal and bi-diagonal shear cracks and out-of-

plane failure occurred at the piers. In the interior of the building, major diagonal shear cracks 

at the masonry walls as well as non-structural damages such as delamination of coating and 

overturning of chairs, desks and equipment occurred. The structure has been characterised as 

unsuitable and has been demolished. 

 

Churches: The earthquake of March 3, 2021 proved to be particularly devastating for 

religious buildings made of masonry in Thessaly. Although religious buildings usually consist 

of well-constructed material, many of them do not meet any seismic standards since they were 

constructed over 80 years ago and were eventually deemed dangerous or unsuitable for 

immediate use. The damages in churches that were observed are typical for stone constructions 

and include: damage at their upper part in the system of arches and domes which are anyhow 

vulnerable to earthquake action, cracks in the corners of the windows and doors openings, 

cracking and rotation of bell towers which in cases led to their collapse (Fig. 13h). Temporary 

measures were installed in many churches with damages a few days after the earthquake to 

avoid further damage and collapse due to aftershock activity. 
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Fig. 13: a) Detachment of infill wall from RC frame in Damasi; b) Lack of proper detailing in 

an open ground floor in Damasi; c) Cross-section of a typical multi-leaf wall; d) Delamination 

of the outer leaf of the wall in a domestic building in Damasi; e) Out-of-plane collapse of 

masonry walls in Damasi; f) Out-of-plane collapse due to poor connection between the roof 

and masonry walls in Damasi; g) Damages in the School of Damasi; h) Out of plain failure of 

St Nickolas Church in Koutchochero. 



 

Geological Society of Greece   66 

 

Volume 58 

 
7. DISCUSSION 

 

7.1. Domino-style Faulting and Coulomb stress Transfer 

 

Static stress changes due to the mainshock have been computed using the Coulomb failure 

criterion (CFF or Coulomb failure function; King et al., 1994; Ganas et al. 2006b; Toda et al., 

2011; Taymaz et al. 2021), assuming the source parameters listed in Table 6 and effective 

coefficient of friction μ’=0.4. Most active faults in the north Thessaly area strike ±30° with 

respect to the seismic fault of the 3 March 2021 event (Fig. 1 and Table 1), so it is reasonable 

to model static stress transfer on receiver faults with similar kinematics as those of the first 

two events (Fig. 14), but also on faults optimally oriented to the regional stress field 

(~N184°E; Kapetanidis and Kassaras, 2019; see Fig. S3 for a map of static stress transfer on 

optimal fault planes). As in section 5, we assume that failure of the crust occurs by shear, so 

that the mechanics of the process can be approximated by the Okada (1992) expressions for 

the displacement and strain fields due to a finite rectangular source inside an elastic, 

homogeneous and isotropic half-space. The ΔCFF results presented in Fig. 14 at depth of 9 

km, i.e., the average depth of aftershocks (see Fig. 3; also Fig. S4) show: a) positive stress 

changes (loading) along strike of the March 3, 4 and 12, 2021 seismic faults, of the order of 

several bar and b) negative stress changes (stress shadows) across the strike of faults. 

Therefore, it is suggested that this stress transfer model explains well the on- and mainly off-

plane distribution of aftershocks at that depth.  

 

Moreover, this sequence increased Coulomb stress on segments to the northwest and southeast 

of the ruptures, which are potential sites of future earthquakes (with similar kinematics), and 

decreased Coulomb stress orthogonally to the rupture plane. We suggest that the Mw=6.3 

earthquake promoted failure at the crustal volume of the Mw=6.0 earthquake which struck 32 

hours later. It is notable the absence of aftershocks inside the area of the northern shadow 

(blue lobe), around the town of Elassona. We also find that the stress transfer results explain 

the cascade-type triggering of the three shocks in a domino-model of earthquake occurrence, 

from SE (Damasi area) towards the NW. The triggering pattern is probably influenced by the 

rupture kinematics of the first event, with a large slip patch located close to the SE tip of the 

second fault. A SE to NW directivity could have possibly resulted in a cascading (domino) 

rupture of the neighbouring segment (March 4 fault) which in turn triggered slip on the 

isolated segment of the March 12, 2021 event (see Fig. 15 for a faut segment map). 

 

We note that the Larissa active fault has been loaded with stress transferred (red lobe in Fig. 

14a) after the first event; therefore, it has been brought closer to failure (see the map in Fig. 

S3). Furthermore, a small cluster of aftershocks is observed directly SE of the main rupture, 
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within the ΔCFF +1.0 bar lobe; however, this activity lies on the footwall of NNE-dipping 

Larissa fault. We interpret that this indicates a likely smaller, unmapped structure. It is also 

very interesting, that there is no activity along the Larissa fault proper which is located in 

ΔCFF red (stress-loaded) areas (Fig. 14). 

 

 

Fig. 14: Coulomb stress changes (ΔCFF) at 9-km depth (roughly corresponding to the average 

depth of aftershocks) associated with the northern Thessaly earthquakes a) after the 1st event, 

b) after the 2nd event and c) after the 3rd event, respectively. The palette of Coulomb stress 

values is linear in the range −1 to +1 bar. The stress change has been computed for receiver 

faults with the same kinematics as the source models (see Table 6). Red rectangle is the surface 

projection of the rupture plane, and green line is its surface trace (projected up-dip). Green 

circles are relocated aftershocks for the periods of a) March 3 - March 4, 2021 17:41 UTC b) 

4 March, 18:38 UTC – 12 March, 12:57 UTC and c) 12 March, 12:57 – 16 March 2021. 

Profiles A-B, C-D and E-F are used for the ΔCFF cross-sections of Fig. S4. Colour scale in 

bar (1 bar = 0.1 MPa); blue areas: ΔCFF unloading (relaxed); red areas: ΔCFF loading. 

 

 

 

7.2 Active faulting in northern Thessaly and the 2021 seismic faults  

 

Clustering of earthquakes along neighboring fault segments in Greece that ruptured in a 

domino pattern involving two or three mainshocks has been observed in 1894 (Atalanti; Ganas 

et al. 2006), 1978 (Mygdonia; Soufleris et al. 1982; Tranos et al. 2003), 1981 (Alkyonides; 

Jackson et al. 1982), 2014 (Cephalonia; Valkaniotis et al. 2014; Lekkas and Mavroulis, 2016) 

among other cases.  In Thessaly, there was a cluster of strong events during the period 1954-

1957 (Pavlides, 1993; Papadimitriou and Karakostas, 2003) along normal faults, oriented ~E-

W. In Northern Thessaly there are no data (at least instrumental) indicating earthquake 

clustering, so the 2021 seismic sequence was unprecedented.  

 

The activation of three blind faults during the March 2021 seismic sequence indicates the 

continuity of active structures west of the known active faults of Northern Thessaly, i.e., the 

Rodia, Tyrnavos and Larissa faults (Fig. 15). The inversion modelling of InSAR data suggests 

the activation of intermediate-angle normal faults, previously unknown, or likely exploiting 
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crustal structures inherited from previous events (Tolomei et al., 2021). The lack of fault 

characterisation in this area in Greek active fault databases (Caputo and Pavlides, 2013; 

Ganas, 2020) probably reflects the subtle nature of surface deformation without the 

development of large basins and well-defined erosional features. The intermediate-angle 

rupture planes of the 2021 seismic faults also do not contribute to the considerable build-up 

of footwall topography, either. This intermediate-angle geometry of the 2021 seismic sources 

probably continues towards the west (i.e., between Trikala and Deskati; Fig. 1; Antihassia 

mountains) as the subdued landscape is dominant; however, the strain rates are comparable 

(~30 ns/yr). Early InSAR studies (Salvi et al., 2004; Ganas et al. 2006) mapped surface 

deformation on the mountains west of Elassona and Tyrnavos, however, no GNSS stations 

were in operation at that time, so as to validate the SAR results. 

 

 

Fig. 15: Shaded relief map showing active faults according to the GreDASS (orange lines and 

shaded areas; Caputo and Pavlides, 2013) and NOAFAULTs databases (with ticks on the 

downthrown side). Solid stars indicate epicentres of the three main shocks. Rectangles 

indicate the surface projection of seismic faults (this study). A high-resolution version of this 

figure is provided in the supplement section of this article. 
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7.3 Ground cracks marking localized co-seismic and post-seismic deformation 

 

On March 13, 2021 we mapped ground cracks at two locations north of village Zarko (Fig. 10 

locality 4; Fig. 12d); about 4 km north of the village inside the Pelagonian basement rocks 

(schists and gneisses). At the second location (Fig. 12d; approx. 39.6460°N - 22.1251°E) we 

found two fracture traces, roughly oriented N-S. The fracture length is 15 m (Fig. 16). Then, 

each fracture trace was mapped in detail by means of a DEM created by close-range 

photogrammetric data (Fig. 16a). We used a camera Lenovo Tab M8 FHD and the Agisoft 

Photoscan 1.6.4 to process the data. The terrain model (cell-size 2 mm) was imported in 

ArcGIS Pro where the fracture trace was analysed for its spatial characteristics (orientation). 

In order to accurately measure the fracture’s strike, we created 12 segments with a relatively 

homogeneous strike (Fig. 16b). Each fracture segment had its strike computed by the software 

using the entirety of its length.  

 

We measured at 20 points the direction of fracture opening (the tension axis) using 

photogrammetry and we compared the findings with our field measurements (7 points; by use 

of a compass) at nearly identical sites.  The measurements were imported in WinTensor v5.9.2 

(Delvaux and Sperner, 2003) and rose diagrams were created showing the tensile axes 

azimuths (Fig. 16a) of both field and photogrammetry measurements. The azimuth of the 

mean tensile axis (Fig. 16a) is N75°E. In addition, detailed measurements of the fracture’s 

azimuth were also taken, both photogrammetrically (12) and on site (7; Fig. 16b). The mean 

strike of the fracture is N343°E (a secondary strike is N320°E; Fig. 16b). The mean aperture 

(opening) of the cracks is 0.018 m (20 measurements). 

 

Moreover, the Zarko ground cracks were mapped where we have observed a vanishing 

gradient on both the co-seismic and post-seismic interferograms of the 1st event (March 3, 

2021 10:16 UTC; Fig. 6 and Fig. 17). This evidence suggests that the cracks are due to primary 

tectonic motion along the fault and they are not due to ground shaking. We attribute their 

formation to dilatational strains that develop at the tip of the rupture plane which we infer that 

it is located very close to the ground surface, perhaps a few hundred metres deep (see dashed 

red-line in Fig. 15). Other than this locality, we observed a lack of significant post-seismic 

deformation on our geodetic data. This is something different than the recent Aegean and 

Ionian Sea earthquakes (see a compilation in Briole et al. 2021; also, Ganas et al. 2021b). This 

lack of detectability of post-seismic deformation may be due to a combination of factors such 

as a) lack of GNSS stations near to the seismic faults (for example, in the Samos earthquake 

case the nearest GNSS station was located 4 km from the top-fault edge; Ganas et al. 2021b), 

b) the moderate magnitudes of the events (5.6≤M≤6.3) and c) the intermediate-angle of fault 

dip (ranging from 36° to 40°). 
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Fig. 16: Surface break data north of village Zarko a) the fracture trace consisting of two 

segments (thin purple lines) with points (green dots) where the tension axis was measured. 

The rose diagram (10° interval) shows the azimuths of the individual tensile axes (27 

measurements in total) b) the fracture trace showing the 12 segment groups that were used for 

the calculation of the strike (19 measurements in total). See Fig. 12d for a field photograph. 

See Fig. 17 for location. 
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Fig. 17: Post-seismic interferogram (track 102, ascending orbit) showing alignment of phase 

gradient (thick black line) with location of surface cracks observed in the field (see Fig. 12d 

for a field photograph). 

 

 

8. CONCLUSIONS 

 

1. Our results indicate that the March 3, 2021 Mw=6.3 rupture occurred on a northeast-

dipping, intermediate-angle normal fault located between the villages Zarko (Trikala) and 

Damasi (Larissa).  

2. The event of March 4, 2021 Mw=6.0 occurred northwest of Damasi, along a fault oriented 

WNW-ESE and produced less deformation than the event of the previous day.  

3. The third event (Mw=5.6) occurred on March 12, 2021 along a south-dipping normal fault. 

4. The use of InSAR was crucial to differentiate the ground deformation between the 

ruptures. The majority of deformation occurs in the vertical component, with a maximum 
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of 0.39 m of subsidence over the Mw=6.3 rupture plane, south of Damasi. A total amount 

of 0.3 m horizontal displacement (E-W) was measured in the same region. 

5. The inversion modelling of InSAR data indicates the activation of intermediate-angle 

normal faults, previously unknown.  

6. No tectonic ruptures with lateral displacement were found in the field, in agreement with 

the modelled faults as blind structures. 

7. We mapped two fracture sets to the north of village Zarko which comprise tensile cracks. 

We attribute their formation to dilatational strains that develop at the tip of the rupture 

plane which we infer that it is located very close to the ground surface, 

8. Only the March 3, 2021 Mw=6.3 event produced significant displacement at the GNSS 

stations. 

9. We made several post-seismic interferograms, but we have seen that there is almost no 

post-seismic deformation, except in the footwall area (Zarkos mountain; Fig. 17). In 

general, it is below the 7 mm level (quarter of fringe) in the near field and below the 1 

mm level at the GNSS sites. 

10. The March 2021 earthquakes generated numerous secondary phenomena with vast areas 

of alluvial deposits (mainly along the Piniada valley) exhibiting spectacular liquefaction 

features. 
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Table S1. List with relocation data for the three main events of the March 2021 northern 

Thessaly sequence. Time is UTC. 

 

 

 

Table S2. Focal mechanisms of 22 aftershocks with M≥4.0. 

Year Mo Day Hr Mn Sec Latitude Longitude Dep Mag Strike1 Dip1 Rake1 Strike2 Dip2 Rake2 

2021 3 3 10 20 45.93 39.694 22.174 9.4 4.7 178.8 49.5 -43.8 300.7 58.2 -130.2 

2021 3 3 10 23 8.12 39.692 22.154 10.4 4.1 267.5 47.0 -139.7 147.5 61.8 -50.7 

2021 3 3 10 26 18.33 39.641 22.218 9.7 4.1 2.8 52.9 -37.8 117.9 60.7 -136.3 

2021 3 3 10 34 7.54 39.707 22.232 11.7 4.9 283.0 56.1 -148.8 174.3 64.5 -38.2 

2021 3 3 11 12 23.08 39.707 22.150 10.3 4.3 327.1 50.8 -41.6 86.4 59.0 -132.5 

2021 3 3 11 35 56.66 39.691 22.208 10.2 4.8 344.4 44.7 -87.5 160.9 45.4 -92.5 

2021 3 3 18 24 8.06 39.723 22.087 11.6 5.2 328.6 54.0 -34.7 80.7 62.6 -138.5 

2021 3 3 18 49 48.25 39.734 22.101 12.4 4.2 77.7 33.7 -92.0 260.1 56.3 -88.7 

2021 3 3 21 0 54.67 39.748 22.127 10.2 4.0 278.3 43.7 -145.3 161.7 66.8 -51.8 

2021 3 4 2 43 37.77 39.719 22.221 11.6 4.0 349.1 36.7 -71.0 145.9 55.6 -103.6 

2021 3 4 9 36 15.37 39.782 22.123 13.2 4.4 130.9 48.0 -35.9 246.7 64.2 -132.0 

2021 3 4 18 45 26.58 39.828 22.000 11.9 4.1 242.0 51.4 -150.8 132.8 67.6 -42.4 

2021 3 4 19 23 50.99 39.829 21.927 11.6 5.0 248.8 41.9 -101.6 84.2 49.1 -79.8 

2021 3 4 19 31 31.96 39.801 22.039 11.5 4.2 125.0 52.7 -38.4 240.7 60.4 -135.8 

2021 3 4 20 3 8.11 39.729 22.115 11.1 4.2 331.7 53.5 -29.4 80.2 66.8 -139.7 

2021 3 5 9 59 58.96 39.825 22.021 15.1 4.2 86.0 41.7 -85.4 259.8 48.5 -94.1 

2021 3 5 10 1 14.49 39.768 22.076 10.3 4.2 294.8 36.0 -84.3 107.8 54.2 -94.1 

2021 3 6 16 36 17.51 39.659 22.243 11.6 4.1 356.0 65.3 -22.9 96.0 69.3 -153.5 

2021 3 6 19 47 39.76 39.829 22.064 9.6 4.1 3.7 47.9 -34.6 118.5 65.1 -132.3 

2021 3 11 14 19 40.40 39.768 22.076 6.3 4.0 124.4 46.9 -42.0 246.0 60.8 -128.5 

2021 3 15 15 43 37.71 39.762 22.149 8.0 4.3 263.2 24.5 -86.2 79.0 65.6 -91.7 

2021 3 21 17 15 54.04 39.771 22.102 8.8 4.1 287.5 42.3 -69.4 80.6 51.0 -107.8 

 

 

  

 

Event LAT (°) LON (°) DEPTH (km) YEAR MO  DAY  Hr  Min  SS.SS ML (NOA) 

1 
39.7495 22.1791 10.7 2021 3    3   10   16   7.400 6.0 

2 
39.8227 22.1261 13.0 2021 3    4   18   38  16.600 5.9 

3 
39.8152 21.9738 7.1 2021 3   12   12   57  49.060 5.2 
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Fig. S1: Magnitude distribution histogram of the relocated events (ML after National 

Observatory of Athens manual measurements). 
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Fig. S2: Graph showing East, North, Up position time series of station KLOK during the 

period of the 2nd event (March 4, 2021 18:38 UTC). 
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Fig. S3: Coulomb stress transfer on optimally-oriented planes to regional extension 

(N183.9°E). Calculation at a depth of 9 km. 
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Fig. S4: Vertical cross-sections of Coulomb stress transfer through the fault planes of Fig. 14. 

The green line shows the respective fault plane. Stars denote the hypocentre of the respective 

major earthquake, while green circles represent smaller aftershocks. Horizontal dashed line 

shows the depth of 9 km where map slices are shown in Fig. 14. 
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