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Three notes on scheduling unit-length jobs with precedence
constraints to minimize the total completion time

Tianyu Wang1 ·Odile Bellenguez2

Abstract
In this paper, we provide three notes on scheduling unit-length jobs with precedence constraints to minimize the total
completion time. First, we propose an exact algorithm for in-trees, of which the complexity depends mainly on the graph
height, i.e., the length of the longest chain of the precedence graph. We show that this work improves the algorithm in the
literature both theoretically and experimentally. Second, we close the open problem for level-orders by showing how it is
polynomially solvable. Third, we prove that preemptive scheduling in-trees is strongly NP-hard with arbitrary number of
machines, of which the complexity was also open.

Keywords Preemptive scheduling · In-tree · Level-orders · Precedence constraints · Complexity theory

1 Introduction

We consider the problems of scheduling a set J◦ of n
unit-length jobs on a fixed number m of identical parallel
machines. The jobs are subject to precedence constraints
described by a directed acyclic graph.We focus on the prece-
dence graphs of in-trees (abbrv. i.t.), where each job has at
most one direct successor (aka. in-tree, in-forests), or level-
orders (abbrv. l.o.), where jobs on each level of a component
precede all jobs on lower levels, see Fig. 1. We use C j

to denote the completion time of job j . The criterion of
optimality is to minimize the total completion time

∑
C j .

In the 3-field notation by Ronald et al. (1979), the prob-
lems are Pm|p j = 1,i.t.| ∑C j and Pm|p j = 1,l.o.| ∑C j ,
where p j represents the length of jobs. When m is arbitrary
and preemption is allowed, the third problem considered is
P|p j = 1,i.t.,pmtn|∑C j .

The contribution of this paper lies in the establishment of
new complexity results:
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First, we propose a new algorithm for Pm|p j = 1,i.t.|∑C j ,
which runs in O(hm+1n) time and O(hm+1) space, where h
is the length of the longest chain in the graph, called graph
height. As can be seen, the complexity depends mainly on
the graph height rather than the number of jobs n. This algo-
rithm is both theoretically and experimentally faster than the
existing algorithm in the literature, of which the complexity
is O(nm). Specifically, for graphs with limited height, the
algorithm is linear in time and constant in space. This shows
that the problem is fixed-parameter tractable (Cygan et al.
2015) when it is parameterized by h + m.

Second, we prove that the open problem Pm|p j =
1,l.o.| ∑C j is polynomially solvable. On the other hand,
we prove that P|p j = 1,i.t.,pmtn|∑C j is strongly NP-hard
using a reduction from 3- Partition. This study updates the
knowledge about the complexity of precedence constrained
scheduling problems. It is worth pointing out that the prob-
lems with the total completion time criterion and preemption
assumption are naturally more complicated than those with
the makespan criterion and the non-preemptive assumption,
which have been extensively studied in the literature. The
common trick is trying to prove that minimizing total com-
pletion time and minimizing makespan are equivalent and
that preemption is redundant in an optimal schedule. How-
ever, neither works for our problem:minimizingmakespan is
polynomial solvable and preemption does reduce total com-
pletion time.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-021-00702-w&domain=pdf
http://orcid.org/0000-0001-6250-3656
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Fig. 1 Precedence constraints graph

We overview related literature. Then, we separately study
the three problems.

2 Literature review

The study of scheduling problems with precedence con-
straints can be traced back to the 60s. This paper is a part
of the effort that clarifies the complexity of scheduling prob-
lems with precedence constraints. The computational results
achieved in previous literature are summarized in Table 1.
Prot Bellenguez-Morineau (2018) survey how the structure
of precedence graph may affect the complexity. When the
number of machines or the graph height is fixed, our study
also falls in a stream of researches about parameterized
complexity. Mnich van Bevern (2018) summarized previ-
ous results on the parameterized complexity of scheduling
problems.

When preemption is not allowed, a great number of studies
investigate minimizing the makespan Cmax. For example, a
well-known linear algorithm by Hu (1961) is optimal for in-
trees and its reverse graph, out-tree (abbrv. o.t.). Kubiak et
al. (2009) define a class of graph called divide-and-conquer
and propose a polynomial algorithm.

When the problem is parameterized by the width of the
precedence graph,Bevern et al. (2016) prove that the problem
with 2 machines is W[2]-hard. When it comes to total com-
pletion time, the algorithm by Hu (1961) is still optimal for
out-tree, whileHuoLeung (2006) illustrate that it is no longer
optimal for in-trees. To solve P|p j = 1,i.t.,pmtn|∑C j ,
Baptiste et al. (2004) propose an optimal algorithm inO(nm),
which is polynomial for fixed m. These algorithms will be
presented in details later. With an arbitrarym, the problem is
recently closed byWang and Bellenguez (2019a) by proving
its NP-hardness.

When preemption is allowed, Muntz and Coffman (1970)
gives a polynomial algorithm for P|p j = 1,o.t.,pmtn|Cmax.
Soper and Strusevich (2019) consider a special case of min-

Table 1 Related computational complexity results, where “P”,“NP-h”
and “?” stand for polynomial solvable, NP-hard and open problems

Pmtn Obj Prec Result
arbitrary m fixed m

Not allowed Cmax i.t. P P

o.t. P P

l.o. NP-h P
∑

C j i.t. NP-h P*

o.t. P P

l.o. NP-h ?*

Allowed Cmax i.t. P P

o.t. P P

l.o. NP-h ?
∑

C j i.t. ?* ?

o.t. P P

l.o. NP-h ?

The three problems with “*” are considered in this paper

imizing the makespan, where schedules have at most one
preemption, separately for different numbers of machines.
But for total completion time, little result has been achieved
until (Brucker et al. 2001) solved P|p j = 1,o.t.,pmtn|∑C j

in polynomial time. Coffman et al. (2003, 2012) study the
existence of the ideal schedule, which minimizes both maxi-
mum and total completion time simultaneously, for preemp-
tive and non-preemptive problems with in-trees precedence
constraints. There exist also studies on bounds of structural
parameters of preemptive schedules, such as the minimum
number of preemptions, and a tight lower bound on shifts
(Coffman et al. 2003; Chen et al. 2016).

Nevertheless, the problem P|p j = 1,i.t.,pmtn|∑C j

remains open, to the best of our knowledge. Similarly,
to minimize makespan for level-orders, i.e., Pm|p j =
1,opposing-forest,pmtn|Cmax, is optimally solved in poly-
nomial time by Dolev Warmuth (1984). Wang Bellenguez-
Morineau (2019b) prove that with arbitrary number of
machines, the problem is strongly NP-hard no matter for
total completion time or for makespan. The complexity of
problem Pm|p j = 1,l.o.| ∑C j studied in this paper is still
open.

Preliminaries

Before we start with any problem, we first clarify the ter-
minology throughout this paper. A job is final if it has no
successor. A job is initial if it has no predecessor. Specifi-
cally, a job is final in a job set when this job does not have
any successor in this job set, and that the job itself is in this
job set. A schedule is non-idle if all machines are busy all
the time before the end of the schedule; a schedule is active



Fig. 2 Profile of an optimal schedule

if it is not possible to construct another schedule, through
changes in the order of processing on the machines, with
at least one operation finished earlier and no operation fin-
ished later (Pinedo 2016, page 24, Definition 2.3.3). As the
three problems discussed in this paper have the same objec-
tive function, total completion time, in the remainder of the
text, unless otherwise stated, optimal stands for optimal for
total completion time. Also, the propositions and lemmas in
each section yield only for the specific scheduling problem
discussed in that section.

3 Pm|pj = 1,i.t.|∑Cj

Obviously, in-trees with at most m initial jobs can be opti-
mally scheduled in linear time. This trivial case will not be
discussed. We assume that there are always more than m
initial jobs. We briefly sketch the work of Hu (1961) and
Baptiste et al. (2004).

Hu (1961) define the height of job j , denoted by h( j), as
the length of a longest chain from j to its final successor(s).
Hu’s algorithm, which iteratively executes the initial jobs
with the largest height, is proved optimal for makespan.

On the other hand, Baptiste et al. (2004) show that the
Gantt chart of an optimal schedule always takes the shape
shown in Fig. 2: The first slot with less than m jobs, denoted
by J∗, separates the schedule into 2 parts. An optimal
schedule can be restored from the given J∗: The non-idle
sub-schedule of the part of jobs executed before J∗ can be
obtained by Hu’s algorithm, and any active sub-schedule is
optimal for the part of jobs executed after J∗, which are the
successors of J∗. One job set is called an optimal set if it
restores an optimal schedule. To obtain an optimal set, Bap-
tiste et al. (2004) propose to check all sets of at most m − 1
jobs. That way, solving Pm|p j = 1,i.t.| ∑C j consists of
two steps: (1) traverse all candidate set for J∗; (2) Restore
a schedule from a given J∗. Their complexities are, respec-
tively, O(nm−1) and O(n). Accordingly, in Sect. 3.1, we
study another way to restore the schedule. Strictly speaking,
it checks whether there exists a non-idle sub-schedule for the
first parts in O(h). In 3.2, we show the theoretical basis of
reducing the search space from O(nm−1) to O(hm).

Fig. 3 Level, height and height of reverse graph

3.1 Lowest-level-last scheduling

Instead of Hu’s algorithm, we introduce another method,
which checks the existence of the non-idle schedule in lower
complexity.

We first define the level of a job j , denoted by l( j). It is
anotherway to describe the position of a job in the precedence
graph: h + 1 minus the length of the longest chain from an
initial job to j , remind that h is the graph height. See Fig. 3.
To avoid ambiguity, we specify that the terms high and low
describe l( j), not h( j). We define the total levels of a job set
J as

∑
j∈J l( j).

The lowest-level-last rule, in one word, iteratively fills the
last time slot with the m lowest final jobs from the unsched-
uled job set. In Fig 3, we see that the lowest level of the
original graph means the largest height of the reverse graph.
This rule is equivalent to Hu’s algorithm performed on the
reverse graph. As the minimum makespans of the original
graph and the reversed graph are equal, this rule produces a
non-idle schedule too, if there exists one. More importantly,
we have

Proposition 1 The existence of a non-idle schedule can be
checked in O(h).

Proof Weonly discuss the casewhere n is an integermultiple
of m. We perform lowest-level-last for h iterations, which
is in O(h) as m is fixed. Obviously, if any machine idles
anytime during these iterations, then there cannot be any non-
idle schedule. We now prove that, without the need of further
check, one can immediately claim that there exists a non-idle
schedule if there is no idleness in the last h time slots after h
iterations.

Note that the precedence graph may consist of more than
one components with different heights. If there are less than
m jobs on level l = 1, then all these jobs are scheduled in
the last time slot by the first iteration and removed from the
unscheduled job set. Similarly, each iteration removes one
lowest level with less thanm jobs. As there are at most h− 1
levelswhich contain less thanm jobs, before the hth iteration,
theremust be one iteration, at which the lowest level contains
at leastm jobs. Afterwards, see Fig. 4 for an example, before
all jobs are on the same level, there will always be more than
m final jobs on the lowest two levels. This means that the
schedule is non-idle.



Fig. 4 Non-idle schedule
checking. m = 3, the lowest
final jobs in the last (second last,
third last) slot are in black (red,
green) rectangle. They are all on
the lowest or second lowest
levels

In a non-idle schedule produced by lowest-level-last, we
observe the following lemma for later use:

Lemma 1 Let Jk be the jobs executed in the first k slots. For
any two jobs j1, j2 final in Jk such that l( j1) < l( j2), we
have C j1 ≥ C j2 .

3.2 Further analysis: lowest optimal schedule

We call the optimal sets with minimum total levels among
all optimal sets the lowest optimal sets. Then, the optimal
schedules restored from these optimal sets are called the
lowest optimal schedules. We use lowest-level-last instead
of Hu’s algorithm to restore the non-idle sub-schedule. In
this section, we analyze the properties of the lowest optimal
schedules for the theoretical basis of the algorithm.

We first take a deeper look of one lowest optimal schedule,
as shown in Fig. 5. We denote the set of jobs in the previous
slot of J∗ by J

′
, denote the jobs before J

′
by J1 and denote

the jobs after J∗ by J2. We partition J∗ into A∗ and B∗: each
job in B∗ has at least one predecessor in J′

, and jobs inA∗ do
not. Reversely, we denote the predecessors of B∗ in J′

by B
′
,

and then A
′ := J

′ \ B
′
. When there is an ambiguity, we use

(J∗)S to represent the set J∗ of the specific lowest optimal
schedule S and similar notations apply to other job sets.

Rather than directly searching an optimal set, as the first
step, we search the J∗ ∪ A

′
of a lowest optimal sched-

ule because its structural properties (Proposition 2) can be
exploited in an algorithm. To obtain J∗ ∪ A

′
, we search for

the jobs in J∗ ∪ A
′
one by one from low to high. We sort

the jobs by levels, such that J∗ ∪A
′ = { j1, j2, . . . , jk}. Sup-

pose the first i jobs { j1, j2, . . . , ji }, where i < k, are already
known. Then the key problem is where to find the next lowest
job ji+1, i.e., i + 1th lowest job.

For simplicity, we denote the first lowest jobs { j1, j2, . . . ,
ji } by L, and the next lowest job ji+1 by j . It is obvious that
j cannot be any predecessor of L. Thus, j should be chosen
from a pruned tree of the precedence graph where L and its
predecessors are removed. Moreover, we denote the set of

Fig. 5 Profile of a lowest optimal schedule

jobs on the same level as j in this pruned tree by S j and we
update the level l( j) of each job j . We have:

Proposition 2 For any lowest optimal schedule S,

1. ∀ j ∈ J∗ ∪A
′
, if |S j | ≥ 2m, then j is replaceable with any

j
′ ∈ S j . Formally, ∀ j

′ ∈ S j , there exists a lowest optimal
scheduleS ′

, of which (J∗∪A
′
)S ′ = (J∗∪A

′
)S \{ j}∪{ j ′ }.

2. if |(J∗ ∪ A
′
)S | > m, then there exists a lowest optimal

schedule S ′
, such that (J∗)S ′ ⊆ Jm, where set Jm is the

set of the m lowest jobs of (J∗ ∪ A
′
)S .

Remark The first statement narrows the scope of searching
j from n to 2mh candidates: there are at most 2m candidates
on each level. The second statement enables us to stop the
search at the mth lowest jobs.

In the remainder of this section, we prove this proposition.
If not specifically indicated, our discussion is dedicated to job
j and job sets of S mentioned in Proposition 2. We start with
several lemmas.

Lemma 2 If |S j | ≥ 2m, then S j ∩ J1 �= ∅.
Proof Suppose S j ∩J1 = ∅. We can partition S j into 3 parts:
S
j

J
′ = S j ∩ J

′
, S j

J∗ = S j ∩ J∗ and S
j
J2

= S j ∩ J2. As each

job in S
j
J2

must have a predecessor in J∗, we denote these

predecessors by PJ∗ and we have |PJ∗ | ≥ |S j
J2

|. Considering
S
j
J∗ and PJ∗ are not on the same level,

|S j | = |S j

J
′ | + |S j

J∗ | + |S j
J2

|
≤ |S j

J
′ | + (|S j

J∗ | + |PJ∗ |)
≤ |J′ | + |J∗|
< 2m

��
Lemma 3 If |S j | ≥ 2m, then j /∈ B∗.

Proof Suppose by contradiction that |S j | ≥ 2m and j ∈ B∗.
According to Lemma 2, ∃ j ′ ∈ S j ∩ J1. Let one predecessor
of j in B

′
be jp, we have l( j

′
) = l( j) < l( jp). As j

′ ∈ J1

while jp ∈ J
′
, by Lemma 1, j

′
is not final in J1 ∪ J

′
, i.e., it

must have a successor j s in J
′
which is strictly lower than j .

No matter j s ∈ A
′
or j s ∈ B

′
, we find a successor of j

′
in L,

the set of jobs strictly lower than j in J∗∪A
′
. This contradicts

j
′ ∈ S j , where the predecessors of L are removed. ��

Lemma 4 If |S j | ≥ 2m and j ∈ A∗, then j is replaceable
with any final job j∗ ∈ J1, such that l( j∗) ≤ ł( j).

Proof We prove this lemma by building a lowest optimal
schedule S ′

. Let the last predecessor of j , if exists, be jp.



Because j ∈ A∗, we have jp ∈ J1. As l( jp) > l( j∗), and
both jp and j∗ are final in J1, by Lemma 1, we have C jp ≤
C j∗ .

When C jp < C j∗ or jp does not exist, we build S ′
by

interchanging j∗ and j in S. Note that the interchange does
not break the precedence constraints. Obviously, S ′

is lowest
optimal.

WhenC jp = C j∗ , jp and j∗ are executed in the same time
slot in J1, let it be the kth time slot. We reschedule jobs in the
first k time slots to obtain another lowest optimal scheduleS ′′

:
As jp and j∗ are final in J1, byLemma1, all jobs in the k+1th
time slot are not higher than j∗. Thus, at the first iteration
when the jobs in the first k time slots are rescheduled by
lowest-level-last, there are at least m final jobs which are not
higher than jp. We are free to select them lowest jobs which
include j∗ but do not include jp to fill the last time slot. After
rescheduling the previous k time slots, another lowest optimal
schedule S ′′

is obtained. Note that (J∗ ∪ J
′
)S ′′ = (J∗ ∪ J

′
)S ,

but now in S ′′
we have C jp < C j∗ . Similarly, we build the

lowest optimal schedule S ′
by interchanging j∗ and j in S ′′

.
In both cases, we built a lowest optimal schedule S ′

where
j is replaced by j∗ and the replaceability. ��
Lemma 5 If j ∈ A

′
, then j is replaceable with any job j

′ ∈
S j ∩ J1.

Proof First, j
′
is final. Otherwise, according to Lemma 1, its

final successor in J1 ∪ J
′
which is strictly lower than j will

be in J
′
. Thus, j

′
has a successor in L. This is a contradiction

to j
′ ∈ S j .
Then, the construction of S ′

will be quite similar with
the one in the proof for Lemma 4. We reschedule J1 ∪ J

′
in

S by lowest-level-last. At the first iteration, to fill the slot of
(J

′
)S ′ , we are free to choose (J

′
)S \{ j}∪{ j ′ } as them lowest

jobs because l( j
′
) = l( j). Hence, we have (J∗ ∪ A

′
)S ′ =

(J∗ ∪ A
′
)S \ { j} ∪ { j ′ } ��

We are ready to prove the proposition.

Proof. for Proposition 2 To prove the first statement where
|S j | ≥ 2m, by Lemma 3, we only need to discuss j ∈ A∗ or
j ∈ A

′
.

Case 1: j ∈ A∗. In this case, S j ∩ J
′ = S j ∩ J∗ = ∅. We

first show that j is replaceable with jobs in S j ∩ J1, then we
show that S j ∩ J2 = ∅.

Let j
′
be any job in S j ∩ J1. If j

′
is not final in J1, then

by Lemma 4, j can be replaced by the final successor of j
′

in J1. However, the replacement will lower the total levels,
which contradicts the fact that S is lowest optimal. So j

′
is

final. Again by Lemma 4, j is replaceable with j
′
.

In fact, by Lemma 4, all jobs in A∗ are on the same level
because any job in A∗ higher than j is replaceable with j

′
,

which must exist according to Lemma 2. This fact leads to
S j ∩ J2 = ∅. If there exists a job in S j ∩ J2, then it has

a predecessor jp in J∗. As l( jp) > l( j) and all jobs in A∗
are on the same level, we have jp ∈ B∗. So jp has a direct
predecessor in J

′
, denoted by jpp. We have l( jpp) > l( jp) >

l( j) = l( j
′
) but C jpp > C j ′ , which contradicts Lemma 1.

Case 2: j ∈ A
′
. Given by Lemma 5, j is replaceable

with any job in S j ∩ J1. Similarly, we show that there is no
job in S j ∩ J2. If any, this job’s predecessor in J∗ is strictly
higher than j but replaceable with j , which contradicts the
minimum total levels of J∗.

We succeed in proving the first statement. Now we turn to
the second statement. As |(J∗ ∪ A

′
)S | > m, neither A∗ nor

A
′
is empty. Then jobs in B∗ are strictly lower than jobs in

A∗ or A
′
, because their predecessors cannot be higher than

the predecessors of jobs in A∗. We just proved that they are
replaceable with any job on the same level in A

′
. Moreover,

due to the lowest optimality, jobs in A∗ are not higher than
any job in A

′
either. Thus, by replacing jobs in A∗ with jobs

in A
′
, we can build a lowest optimal schedule S ′

where J∗ is
a subset of the m lowest job of J∗ ∪ A

′
. ��

3.3 The algorithm

WhenL is known, Proposition 2 enables us to search the next
lowest job j of J∗∪A

′
in a smaller space, which is realized by

Algorithm 1. Accordingly, Algorithm 2 finds all candidates
sets.

Algorithm 1: Find the next lowest job j
Input: Chosen lowest jobs L
Output: X such that j ∈ X

1 Calculate the pruned tree by removing jobs in L and their
predecessors;

2 foreach k = 1, . . . , h do
3 Let Xk be the set of jobs on the kth level in the pruned tree;
4 if |Xk | < 2m then
5 Add all jobs in Xk to X;
6 end
7 if |Xk | ≥ 2m then
8 Arbitrarily pick a job in Xk and add it to X;
9 end

10 end

The space complexity of Algorithm 2 is O((2hm)m2m),
which is O(hm) when m is a constant. Note that Algorithm
1 involves tree-pruning, which takes linear time, so the time
complexity of Algorithm 2 is O(hmn).

To recognize the optimal set, we check the existence of
the non-idle schedule of J1 ∪ J

′
in O(h) time, as shown

by Proposition 1. Note that the total completion time of a
non-idle schedule of km jobs is km(1+k)

2 , which can be calcu-
lated in O(1). Since J2 contains less than hm jobs, the active
schedule of J2 and its total completion time can be obtained
in O(h) too. Finally, we have:



Algorithm 2: Get candidate sets
Output: C: candidate choices of an optimal set J∗
/* Ck: the candidate choices of Jm, where k

is the cardinality */
1 C0 ← {∅};
2 foreach k = 1, . . . ,m do
3 Ck ← ∅;
4 foreach L ∈ Ck−1 do
5 Applying Algorithm 1, calculate X according to L;
6 foreach j ∈ X do
7 Add { j} ∪ L to Ck ;
8 Add all subsets of { j} ∪ L to C;
9 end

10 end
11 end

Fig. 6 Example

Theorem 1 Pm|p j = 1, i .t .| ∑C j can be solved in O
(hm+1n) time and O(hm+1) space.

3.3.1 Example

We hereby illustrate how the algorithm restores candidate
sets on the in-trees example shown in Fig. 6 with m = 3
machines.

Whenever there are more than 2m = 6 jobs on the first
level of the pruned tree, we choose the job with the smallest
label. For example, at the first iteration of Line 2 inAlgorithm
2, we choose job 1 as the lowest job on the first level. As other
levels contain at most 3 jobs, they are all added. Thus, after
the first iteration, C1 = {1, 11, 12, 13, 14, 15}. At the second
iteration, for instance, when L = {14}, the first level of the
pruned tree is {8, 9, 10}, which is now less than 2m jobs. So,
they are all added. The search tree built by algorithm 2 is
illustrated in Fig. 7 where k is the cardinality.

After traversing all subsets of candidate Jm , there are

totally 46 subsets listed below. It is much less than

(
2
15

)

+
(

1
15

)

= 225, required by the brute-force search proposed

by Baptiste et al. (2004). We list all the candidate sets in the
appendix.

Fig. 7 Search tree of Jm

Table 2 Average height of instances

n 35 45 55 65 75 85 95 105 115

h 4.3 5.1 5.2 6.3 7.3 7.4 7.9 8.5 8.6

3.4 Experiments

The algorithm has lower time and space complexity than
the brute-force search proposed by Baptiste et al. (2004),
which suggests that it runs faster when n → ∞. However, it
involves extra calculation in each step, such as tree-pruning.
It is stillmeaningful to see the numerical comparisonon small
instances.

We implement the two algorithms and test them on
randomly generalized in-trees instances. The instances are
the sub-trees of the first n nodes generated by a Galton–
Watson branching process, where the number of offspring
is uniformly distributed in {0, 1, . . . , n − 1}. Note that this
generator can output any specific tree form with non-zero
probability.

The test environment is: Intel(R) Core(TM) i7-8550U at
1.80GHz with 16GB RAM. For each number n of jobs and
each numberm of machines, we create 10 different instances
with average height reported in Table 2.

We compare the runtime to solve the instance by two algo-
rithms in Fig. 8a with different n,m pair, and record the
runtime of our algorithm for different n but same m = 3
in Fig. 8b. Note that the runtime is shown in log scale. Both
algorithms explodewith n, while the new algorithm performs
considerably better, even with small instances. We also find
that to some extent, the randomness of instances affects the
runtime.

4 Pm|pj = 1,l.o.|∑Cj

Dolev Warmuth (1985) proposed a dynamic programming
algorithm which solves the problem P|p j = 1, l.o.|Cmax in
O(mqnq), where q is the number of components of level-
orders. Then, using the reduction theorem and properties of
median, they prove that Pm|p j = 1, l.o.|Cmax can be solved
in polynomial time. In this section, we study the problem
Pm|p j = 1,l.o.| ∑C j , where the objective is total com-



(a)

(b)

Fig. 8 Experiment results

pletion time. We show that a similar dynamic programming
algorithm in O(mqnq) also works for minimizing

∑
C j .

Then, based on the structure of an optimal schedule, we show
that the problem Pm|p j = 1,l.o.| ∑C j is polynomial solv-
able.

Let S be an optimal schedule for an instance of Pm|p j =
1, l.o.| ∑C j . Denote the makespan of S by t∗. J◦ and Jk

stands for the set of total jobs and the set of jobs in the kth
time slot in S resp., where k = 1, . . . , t∗.

Proposition 3 The sub-schedule of S for jobs in J◦ \ J1 is an
optimal schedule for the sub-instance of jobs in J◦ \ J1.

This proposition is obvious. If the sub-schedule is not opti-
mal, then replacing the sub-schedule ofS with an optimal one
will reduce the total completion time, which contradicts the
optimality of S. Based on Proposition 3, the dynamic pro-
gramming algorithm,Algorithm3, finds an optimal schedule.

Remark Line 5 only searches subsets with different alloca-
tions, where allocation means the numbers of jobs picked
from components. Remind that a component in level-orders
graph is amaximalweakly connected sub-graph, as presented
in Sect. 1. Thus, the complexity of this step is not O(2n), but
O(mq). To justify, using the term defined previously, the ini-
tial jobs in the same component are replaceable with each
other, and the candidates with the same allocation are equiv-
alent [Corrollary 4.1]Dolev Warmuth 1985. Line 6 and 11
require calculation of optimal sub-schedules. They are recur-
sive calls of Algorithm 3 itself. To see the complexity of the

Algorithm 3: Solving Pm|p j = 1, l.o.| ∑C j

1 if the number of initial jobs is at most m then
2 J1 ← set of all initial jobs;
3 end
4 if there are more than m initial jobs then

/* allocation : the numbers of jobs
picked from components */

/* X : the candidate choices of J1 */
5 foreach X of initial jobs with different allocations do
6 if the optimal schedule of J◦ \ X has minimum

∑
C j

among all the X then
7 J1 ← X;
8 end
9 end

10 end
11 Concatenate J1 with the optimal schedule of J◦ \ J1;

dynamic programming algorithm, we investigate its look-up
table. It contains all possible cases of sub-problems repre-
sented by tuple (n1, n2, . . . , nq), where ni is the number of
jobs in the i th component for i = 1, . . . , q. As ni ≤ n, the
size of the look-up table is then nq , and the total complexity
is O(mqnq).

So when q ≤ m, Algorithm 3 solves Pm|p j =
1, l.o.| ∑C j in polynomial time. Now we are interested in
the case where q > m.

When q > m, S starts with at least one non-idle slot. We
apply the same idea of solving Pm|p j = 1, i .t .| ∑C j : If S
itself is a non-idle schedule, it can be found in polynomial
time because it is optimal for makespan too. Otherwise, let
its first non-idle time slot with less than m jobs be J∗. Then,
the jobs after J∗ are its successors, and the rest jobs are exe-
cuted before J∗. Given J∗ of S, an optimal schedule can be
restored: the non-idle sub-schedule before J∗ can be obtained
polynomially (Dolev Warmuth 1985); the jobs after J∗ can
be optimally solved by Algorithm 3 in polynomial time too,
because they form a sub-graph of less than m components.
As the brute-force traversal of J∗ runs in O(nm), we have

Theorem 2 Pm|p j = 1, l.o.| ∑C j can be solved in poly-
nomial time.

5 P|pj = 1,i.t.,pmtn|∑Cj

We show the strong NP-hardness of P|p j = 1,i.t.,pmtn| ∑C j

by a reduction from 3- Partition. A formulation of a 3-
Partition instance is: Consider a set α of 3q elements. Each
element a ∈ α has an integer weight wa with b

2 ≥ wa ≥ b
4 ,

where integer b :=
∑

a∈α wa
q . The decision question asks if

α has a partition, i.e., α1, . . . , αq such that
∑

a∈αi
wa = b,

i = 1, . . . , q. From this 3- Partition instance, wewill build
an instance of P|p j = 1,i.t.,pmtn|∑C j and show their
equivalence.



Fig. 9 U-jobs and v-jobs

To begin with, define some constants: multiplier d :=
q20b2; weights Wa := wad, B := bd; large number K :=
B5; number of machines m := B + 3q and objective value
σ := ∑

a∈α

∑KWa
i=1 i + (1 + K )

∑q
i=1 i B.

We build jobs and their precedence constraints. For each
element a ∈ α, we build a chain of WaK jobs. The jobs in
this chain are named v-jobs: v1a, . . . , v

WaK
a . Then we build

Wa u-jobs: u1a, . . . , u
Wa
a . They precede v1a , and form an in-

tree component, see Fig. 9. The decision question asks if
there exists an acceptable schedule, i.e., a schedule whose
total completion time is at most σ . Note that the reduction is
pseudo-polynomial (polynomial to b) because of the strong
NP-hardness of 3- Partition.

In the remainder of this section, we show there exists an
acceptable schedule if and only if α has a partition. We show
how to build an acceptable schedule with a partition in 5.1
and find a partition from an acceptable schedule in 5.2.

5.1 3-PARTITION �⇒ P|pj = 1,i.t.,pmtn| ∑ Cj

We build a schedule from a partition, then we show it is
acceptable, i.e.,

∑
C j ≤ σ .

For each αi , we execute the three corresponding in-tree
components from the i th slot without any interruption. There
are B u-jobs in one slot. As at most 3q v-jobs can be executed
in parallel, the schedule respects the number ofmachines. See
the a Gantt chart in Fig. 10.

Clearly, the schedule is not optimal, yet acceptable: Let
U◦ (V◦) be the set of all u-jobs (v-jobs). We compute

∑
C j

separately for U◦ and V◦, and define them as σU◦ and σV◦ :

Fig. 10 Gantt chart of an acceptable schedule. The horizontal and ver-
tical axes represent time and machine resp. Each color block contains
the jobs in the three trees corresponding to a subset of the partition. As
is shown, in the first time slot, B machines execute the u-jobs of α1
and 3q machines idle. In the second time slot, B machines execute the
u-jobs of α1, while 3 other machines start the v-chain of α1 and the rest
3q − 3 machines idle, etc.

σU◦ :=
∑

u∈U◦
Cu =

q∑

k=1

∑

a∈αk

Wa∑

i=1

Cuia
=

q∑

k=1

∑

a∈αk

Wa∑

i=1

k

=
q∑

k=1

k
∑

a∈αk

Wa∑

i=1

1 = B
q∑

k=1

k

(1)

σV◦ :=
∑

v∈V◦
Cv =

q∑

k=1

∑

a∈αk

WaK∑

i=1

Cvia

=
q∑

k=1

∑

a∈αk

WaK∑

i=1

(Cu1a
+ i) =

q∑

k=1

∑

a∈αk

WaK∑

i=1

(k + i)

=
q∑

k=1

k
∑

a∈αk

WaK∑

i=1

1 +
∑

a∈α

WaK∑

i=1

i

=
q∑

k=1

kK B +
∑

a∈α

WaK∑

i=1

i

(2)

We see at once σU◦ + σV◦ = σ .

5.2 P|pj = 1,i.t.,pmtn| ∑ Cj �⇒ 3-PARTITION

Our reduction takes some similarity with that by Wang and
Bellenguez (2019a) for the non-preemptive problem, where
the authors also show how a non-preemptive acceptable
schedule implies a partition. Intuitively, we may want to
eliminate the preemptions in an acceptable schedule with-
out increasing the total completion time, and then their result
could be applicable to our problem. Unfortunately, preemp-
tion does improve the total completion time and sometimes
cannot be eliminated.

However, this improvement does not have decisive influ-
ence. Preemptions can advance jobs to only a tiny extent, but



cannot change any non-acceptable schedule into an accept-
able one without a partition.

We observe that the v-jobs dominate the total completion
time as they are much more than u-jobs. The execution of
a v-chain is decided by the completion time of its last pre-
decessor. In an acceptable schedule of the non-preemptive
problem, its last predecessor is executed in its previous time
slot. Then, by the machine number constraint, we obtain a
partition. Here, for the preemptive problem, the logic is the
same. We need to (1) define a substitute of time slot, namely
big group, where the machine number constraint is still sub-
jected, (2) show that the execution of the majority part of
each big group releases exactly three v-chains whose corre-
sponding element in α forms a partition.

The first step requires that big groups are properly defined
and executed like time slots, which is depicted by Proposition
4. To quantitatively specify the majority part of big group in
the second step, we further introduce small groups which are
principally in a big group. Then the second step is realized
by Proposition 5. We leave their proofs later in Sect. 5.3.

We can no longer study, say, the u-jobs in the qth time
slot, yet we can study the last m executed u-jobs. To put
forward the definitions of groups, we first list the u-jobs by
their completion time and name the list as Lu; then we list
the v-jobs by their starting time and name the list as Lv. The
u-jobs (v-jobs) with the same completion (starting) time can
be arbitrarily arranged. Let #( j) return the sequence number
of job j in its list, e.g., #(u) = 5 if u is the fifth job in Lu.
Clearly, each job is in either Lv or Lu.

For u1 ∈ U◦ directly precedes v1, u2 ∈ U◦ directly pre-
cedes v2, and #(u1) < #(u2), we assume #(v1) < #(v2).
This is called grouping assumption, which can be realized
by interchanging such u-job in S by limited times.

We cut Lu into q segments, such that the length of each
segment equals to m except the first one. The big group Gi

is defined as the set of jobs in the i th segment, i = 1, . . . , q.
Formally,Gi := {u|#(u) ∈ [|G1|+1+(i−2)m, |G1|+(i−
1)m]} where i = 2, . . . , q; and G1 := {u|#(u) ∈ [1, |G1|]}
where |G1| := B−3q

∑q−1
i=1 i . The big groups are illustrated

by big red braces in Fig. 11. The similarity of big groups and
time slot is depicted by:

Proposition 4 These two statements about Gi hold:

S1 all jobs in Gi are finished before t = i + iδ, where

δ := q8

d ;
S2 at least |Gi |−d u-jobs in Gi are finished after t = i−�,

where � := q10b
d .

Proposition 4 gives a sketch of when jobs in Gi are exe-
cuted. As stated above, due to the preemption, the jobs in
Gi are not necessarily executed in the i th time slot, while
Proposition 4 indicates that loosely speaking, they are prin-

(a)

(b)

(c)

Fig. 11 Lu. Jobs are represented by dots and groups are enclosed in
braces

cipally in that time slot. Precisely, the completion time of the
majority part (at least |Gi | − d) of jobs in Gi falls in a very
narrow interval [i + iδ, i − �], whose width iδ + � is small
because d = q20b2 is large in comparison with q and b.

If, ideally, each big group Gi corresponds to the u-jobs
of three in-tree components, say, the in-tree components of
a1, a2, a3, then we will be able to find a partition by Proposi-
tion 4.We hereby give an informal proof:AsGi is principally
in a time slot, and the capacity of each time slot is the num-
ber of machines m = B + 3q, the number of u-jobs of Gi ,
corresponding to a1, a2, a3, is

Wa1 + Wa2 + Wa3 ≈ B + 3q (3)

Remind that Wa = wad, B = bd, and again, note that d �
q, (3) is in fact

Wa1 + Wa2 + Wa3 = B (4)

which is equivalent towa1 +wa2 +wa3 = b. Thus, a partition
is found. Of course, this ideal assumption that each big group
corresponds to the u-jobs of three in-tree components does



not hold all the time. Fortunately, there does exist a relation
between group and in-tree component, which is revealed by
Proposition 5.

To establish Proposition 5, we firstly we introduce small
groups and formally define the terms principally above: cut
Lu into qb equal-length segments and define small group gi
as the set of jobs in the i th segment, i = 1, . . . , qb. Formally,
gi := {u|#(u) ∈ [(i − 1)d + 1, id]} and |gi | = d. The small
groups are illustrated by small braces in Fig. 11. As a result
of our grouping assumption, the jobs in the same small group
are from the same in-tree component. Furthermore, we have:
Cu ≤ C

′
u ≤ C

′′
u , whereC

′
u is the completion timeof the last u-

job in the same small group with u, and C
′′
u is the completion

time of the last u-job in the same component with u.
Since the cardinality of big groups are not integer multiple

of small groups, we hereby define the relation: Small group
gi ′ is said to be principally in big group Gi if |gi ′ ∪ Gi | ≥
d − q4, noted as gi ′ ⊆̂Gi . There are always b small groups
principally in a big group, and they are illustrated by dark
black braces in Fig. 11.

With all the preliminaries above, the relation between big
groups, small groups, and in-tree components is revealed by:

Proposition 5 ∀gi ⊆̂Gi ′ and ∀u ∈ gi , we have

i
′ − � ≤ C

′′
u ≤ i

′ − � + 1

3

Note that u is not necessarily in Gi ′ . Proposition 4 merely
depicts how a majority of jobs in a big group is executed,
while the relation between big group and the in-tree com-
ponent is unclear. Proposition 5 more precisely shows that
the earliest start time of successor (v-job) of the correspond-
ing in-tree component is in an interval, which associates big
groups with in-tree components and allows us to find a par-
tition. Define

αi :=
{

a|C ′′
u1a

∈
[

i − �, i − � + 1

3

]}

i = 1, . . . , q

Proposition 6 α1, . . . , αq is a partition of α.

Proof It is easy to check that
∑

a∈αi
wa = b if and only if

∑
a∈αi

Wa = B, and now we prove the latter for any i =
1, . . . , q.

We denote the small groups which are principally in Gi

by Gi and denote the corresponding u-jobs of αi byUi . For-
mally, Gi := g(i−1)b+1 ∪ g(i−1)b+2 · · · ∪ gib, Ui := {uia |a ∈
αi ; ∀i ≤ wa}.

As
∑

a∈αi

Wa = |Ui | and |Gi | = B, it suffices to show

Ui = Gi .Ui ⊃ Gi is given byProposition 5. To seeUi ⊆ Gi ,
we only need to observe that Ui ∩ Ui ′ = Gi ∩ Gi ′ = ∅ for

any i �= i
′
, and that

⋃q
i=1Ui = ⋃q

i=1 Gi = U◦. ��

We conclude

Theorem 3 P|p j = 1,i.t.,pmtn|∑C j is strongly NP-hard.

5.3 Proofs for Propositions 4 and 5

Proposition 4 has two statements: S1 states that the jobs can-
not be executed too late, and S2 states that the (majority
part of) jobs cannot be executed too early. To prove S1, the
deduction is natural: If the jobs are executed too late, then
the objective function is violated. To this purpose, we focus
on a property of an acceptable schedule deduced from the
constraint of the objective function. Then we show that the
property is violated without S1. This property is formally the
inequality (9). To prove S2, we need to show that, the jobs
cannot start too early because the machines are busy exe-
cuting jobs in previous groups, and there is little space for
Gi . This depends on how previous groups are executed, and
a mathematical deduction is used. How the previous groups
occupy the machines is quantified by (5).

Proposition 5 is an inequality about C
′′
u , the earliest start

time of the successor. This inequality is obtained from the fact
that the v-chain is extremely long with a multiplier K � B.
A small increment ofC

′′
u can cause a large increase of the total

completion time. In other words, the constraint of objective
function can be converted to a constraint of

∑
u∈U◦ C

′′
u , which

is (6). Similarly, the proof for the right side of Proposition 5
shows that a single C

′′
u > i

′ − � + 1
3 causes a contradiction

to (6), the constraint of the total
∑

u∈U◦ C
′′
u . The left side of

Proposition 5 can be directly deduced from S2 of Proposition
4.

Based on (5), (6) and (9), the proofs for Propositions 4 and
5 are essentially the relaxations of inequalities, where some
intermediate sets such as X , GA

k , G
B
k , G

AB
k are created. We

start with the proofs for the inequalities, then we give the
formal proofs for Propositions 4 and 5.

LetU ⊆ U◦ be a set of u-jobs andC ′
U

:= max{Cu |u ∈ U}.
The amount of work in U executed before time t∗ is denoted
by T (U, t∗), then

C
′
U

≥ t∗ + 1 − T (U, t∗)
|U| (5)

Proof After t∗, the number of machine working in parallel to
execute U is at most |U|. The total amount of work is: |U| ≤
(C

′
U
−t∗)|U|+T (U, t∗),which impliesC

′
U

≥ t∗+1− T (U,t∗)
|U| .

��

∑

u∈U◦
Cu ≤

∑

u∈U◦
C

′
u ≤

∑

u∈U◦
C

′′
u ≤ B

q∑

i=1

i + 1 (6)



Proof For legibility,wedenote the equivalent termsC
′′
u1a

,C
′′
u2a

,

. . . ,C
′′
uWa
a

byC
′′
ua . To simplify the expression of the total com-

pletion time, we denote the difference Dvia
:= Cvia

− i for

each via . So,
∑

v∈ V◦ Cv = ∑
v∈V◦ Dv + ∑

a∈α

∑KWa
i=1 i . As

S is acceptable and σ = σU◦ +σV◦ , the total completion time
of S is

∑

u∈U◦
Cu +

∑

v∈V◦
Dv +

∑

a∈α

KWa∑

i=1

i ≤ σU◦ + σV◦ (7a)

by (2),

∑

u∈U◦
Cu +

∑

v∈V◦
Dv ≤ σU◦ + K

q∑

i=1

i B (7b)

so

∑

v∈V◦
Dv ≤ σU◦ + K

q∑

i=1

i B (7c)

(7c) divided by K is

∑

v∈V◦
Dv

K
≤ σU◦

K
+

q∑

i=1

i B (7d)

we see σU◦ � K from (1), thus,

∑

v∈V◦
Dv

K
≤ 1 +

q∑

i=1

i B (7e)

Remember

Dvia
:= Cvia

− i ≥ (Sv1a
+ i) − i = Sv1a

we have:

∑

v∈V◦
Dv =

∑

a∈α

KWa∑

i=1

Dvia
≥

∑

a∈α

KWa∑

i=1

Sv1a
=

∑

a∈α

KWaSv1a

=
∑

a∈α

KWaC
′′
ua =

∑

a∈α

K
KWa∑

i=1

C
′′
ua

=
∑

a∈α

K
KWa∑

i=1

C
′′
uia

= K
∑

u∈U◦
C

′′
u

(8)

We obtain (6) from (7e) and (8). ��

Bi + q6 ≥
∑

u∈Gi

C
′
u ≥ Bi − q5 (9)

Proof The deduction of (9) is based on an inequality in the
literature. To introduce it, we define L◦ as the list of all u-
jobs and v-jobs in the order of their completion time, and
#◦( j) returns the sequence number of job j in L◦. Define Ji
as the set of m jobs starting from the i th one in L◦, formally,
Ji := { j |#◦( j) ∈ [i, i + m − 1]}, where i = 1, . . . , (K +
1)B − m + 1. We have the following inequality ([Lemma
4]Brucker et al. 2003):

∑

j∈Ji
C j ≥ i + m − 1 (10)

As for each u-job u, #(u) ≤ #◦(u), where “≥” takes “=”
only when there is no v-job executed before u. The kth job
in L◦ cannot be finished earlier than the kth job in Lu. So,
for i �= 1, we have:

∑

u∈Gi

C
′
u ≥

∑

u∈Gi

Cu ≥
∑

j∈J
i
′
C j (11)

where i
′
is the sequence number in L◦ of the first job in Gi .

Recall definition of Gi , we have i
′ = |G1| + 1 + (i − 2)m,

and |G1| ≥ B − q5. Combining (10) and (11):

∑

u∈Gi

C
′
u ≥ i

′ + m − 1 = |G1| + (i − 1)m > i B − q5 (12)

It is worth pointing out that (12) yields for i = 1 too, because
Cu ≥ 1 for u ∈ G1.

Then consider an arbitrary i∗, and sum up (12) for all
i �= i∗, we have

∑

i �=i∗

∑

u∈Gi

C
′
u ≥

∑

i �=i∗
Bi − q5(q − 1) (13)

Using
∑

u∈U◦ C
′
u ≤ B

∑q
i=1 i + 1 from (6), minus (13),

∑

u∈Gi∗
C

′
u ≤ Bi∗ + q5(q − 1) + 1 ≤ Bi∗ + q6 (14)

We get (9) from (14) and (12). ��

Proof for Proposition 4 Nowwe give the formal proof. When
i = 1, S2 is evident. To prove S1, we take a zoom-in view
of G1, see Fig. 12a. The last u-job in G1 is denoted by u∗
and u∗ ∈ gi∗ . Define X := gi∗ ∩G1. Suppose by absurd that
Cu∗ ≥ i + δ. Then:

∑

u∈X
C

′
u ≥ |X |Cu∗ ≥ |X |(i + δ)



(a)

(b)

(c)

(d)

Fig. 12 Zoom-in of big group

and

∑

u∈G1

C
′
u =

∑

u∈X
C

′
u +

∑

u∈G1−X

C
′
u

≥ |X |(1 + δ) + (|G1| − |X |) · 1
≥ |G1| + δ|X |

Bydefinition ofG1, observe that gi∗⊆̂G1, |X | ≥ d−q4 �
d
q , so

∑

u∈G1

C
′
u ≥ |G1| + δ

d

q

≥ (B − q4) + (q7)

≥ B + q6

It contradicts (9). We finish the proof for i = 1.
Now, we suppose that the proposition holds for i =

1, . . . , k − 1, then we prove the i = k. We first prove S2
by showing that the dth job of Gk , denoted by uk , is finished
after k − �. To make use of (5), we study the set of the first
d jobs in Gk , denoted by Gd

k , so that we have Cuk = C
′
Gd
k
.

See Fig. 12b.
Beforehand, we examine T (Gk, tk−1) for preparation,

where tk−1 := k − 1 + δ(k − 1). As S1 holds for i =
1, . . . , k − 1, there are at least

∑k−1
i=1 |Gi | u-jobs finished

before tk−1. We have

T (Gk, tk−1) ≤ tk−1m −
k−1∑

i=1

|Gi | (15a)

by m = B + 3q and
k−1∑

i=1
|Gi | > (k − 1)B − q4,

T (Gk, tk−1) ≤ (k − 1 + δ(k − 1))(B + 3q)

− (k − 1)B + q4

≤ δ(k − 1)B + (k − 1 + δ(k − 1))3q + q4

< δ(k − 1)B + q5

(15b)

Now apply (5) on Gd
k :

Cuk = C
′
Gd
k

≥ tk−1 + 1 − T (Gd
k , tk−1)

d
(16a)

as T (Gd
k , tk−1) ≤ T (Gk, tk−1) and by (15b),

Cuk ≥ k + δ(k − 1) − δ(k − 1)B + q5

d

> k − δ(k − 1)B + q5

d

(16b)

as δ(k − 1) ≤ q9

d ,

δ(k − 1)B + q5

d
≤ q9b + q5

d
≤ � (16c)

Thus,

Cuk > k − � (16d)

We proved S2. We turn to proving S1. We calculate the
completion time of the last job u∗ in Gk , see Fig. 12c. To
this purpose, we consider the two subsets of Gk : GA

k :=
g(k−1)b+1 ∪ g(k−1)b+2 ∪ . . . gkb−1. It is the union of all small
groups which are entirely in Gk ; GB

k := gkb ∩ Gk .

∑

u∈GA
k

C
′
u = d

kb−1∑

i=(k−1)b+1

C
′
gi

≥ d
kb−1∑

i=(k−1)b+1

(tk−1 + 1 − T (gi , tk−1)

d
)

≥ d(k + δ(k − 1))(b − 1)

−
kb−1∑

i=(k−1)b+1

T (gi , tk−1)

(17a)



by
kb−1∑

i=(k−1)b+1
T (gi , tk−1) ≤ T (Gk, tk−1) and (15b):

∑

u∈GA
k

C
′
u ≥(k + δ(k − 1))(b − 1)d − δ(k − 1)B − q5

≥(k + δ(k − 1))(B − d) − δ(k − 1)B − q5

=kB + δ(k − 1)B − kd − δ(k − 1)d

− δ(k − 1)B − q5

=kB − kd − δ(k − 1)d − q5

(17b)

Calculate (9)–(17b):

∑

u∈Gk−GA
k

C
′
u ≤kB + q6 − [kB − kd − δ(k − 1)d − q5]

=kB + q6 − kB + kd + δ(k − 1)d + q5

=q6 + kd + δ(k − 1)d + q5

=q6 + (k + δ(k − 1))d + q5

=q6 + (k + δ(k − 1))(d − q4)

+ (k + δ(k − 1))q4 + q5

<q6 + (k + δ(k − 1))(d − q4) + 2q5

<(k + δ(k − 1))(d − q4) + 2q6

(17c)

as GB
k ⊆ Gk − GA

k ,

∑

u∈GB
k

C
′
u ≤

∑

u∈Gk−GA
k

C
′
u ≤ (k + δ(k − 1))(d − q4) + 2q6

(17d)

by gkb⊆̂Gk and |GB
k | = |gkb ∩ Gk | ≥ d − q4,

∑

u∈GB
k

C
′
u ≥ |GB

k |Cu∗ ≥ (d − q4)Cu∗ (17e)

Combining (17d) and (17e),

(d−q4)Cu∗ ≤
∑

u∈GB
k

C
′
u ≤ (k+δ(k−1))(d−q4)+2q6 (17f)

As d − q4 ≥ d
q and δ := q8

d , we get

Cu∗ ≤ (k + δ(k − 1))(d − q4) + 2q6

d − q4

≤ k + δ(k − 1) + 2q7

d
≤ k + kδ

(17g)

We have proved S1 and completed the proof for Proposition
4. ��

Proof for Proposition 5 By S2 in Proposition 4, the dth job is
finished after i

′ − �. As gi ⊆̂Gi ′ ,

C
′′
u ≥ C

′
u ≥ C

′
gi ≥ i

′ − � (18)

Now we prove the right side. Suppose by absurd that
∃gi∗⊆̂Gi ′ , ∃u ∈ gi∗ with C

′′
u > i

′ − � + 1
3 . We show that

this causes an increase of
∑

u∈U◦ C
′′
u by

d
3 , which leads to an

contradiction to (6).
For any big group Gk , define its subset GAB

k := {u ∈
Gk |u ∈ g, g⊆̂Gk}, as illustrated in Fig. 12d.
∑

u∈Gk

C
′′
u ≥

∑

u∈GAB
k

C
′′
u (19a)

By (18),

∑

u∈GAB
k

C
′′
u ≥ |GAB

k |(k − �) (19b)

As |GAB
k | = m −

q−k+1∑

k=1
3qk > B − q4,

|GAB
k |(k − �) ≥ (B − q4)(k − �) ≥ B(k − �) − q5 (19c)

which is

∑

u∈Gk

C
′′
u ≥ B(k − �) − q5 (19d)

Specially,

∑

u∈G
i
′
C

′′
u ≥

∑

u∈GAB
i
′ −gsi∗

C
′′
u +

∑

u∈gsi∗
C

′′
u

≥ (i
′ − �)(|GAB

i ′ | − |gsi∗ |) +
(

i
′ − � + 1

3

)

|gsi∗ |

= (i
′ − �)|GAB

i ′ | + 1

3
|gsi∗ |

≥ (i
′ − �)(B − q4) + 1

3
(d − q4)

≥ (i
′ − �)B + 1

3
d − q5

(20)

where gsi∗ := gi∗ ∩ Gi ′ .



Then calculate the total by adding (20) to (19d):

∑

u∈U◦
C

′′
u ≥

∑

k �=i ′
B(k − �) + (i

′ − �)B + 1

3
d − 2q5

=
q∑

k=1

B(k − �) + 1

3
d − 2q5

≥
q∑

k=1

Bk +
(
1

3
d − qB� − q6

)

>

q∑

k=1

Bk + 1

A contradiction to (6). ��

6 Final remarks

We developed an algorithm for the scheduling problem
Pm|p j = 1,i.t.| ∑C j , with a complexity O(hm+1n). This
leads to the conclusion that the complexity is principally
determined by the height of the graph. Using a similar
idea, we show how problem Pm|p j = 1,l.o.| ∑C j can be
solved in polynomial time. Moreover, we proved the strong
NP-hardness of P|p j = 1,i.t.,pmtn| ∑C j . Both are new
complexity results. For future research, there are still inter-
esting open problems as shown in Table 1.

Appendix

The candidate sets of the example in Fig. 6. {1}, {2}, {3},
{4}, {5}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, {15}, {1,
2}, {1, 3}, {1, 8}, {1, 9}, {1, 10}, {1, 12}, {1, 13}, {2, 3},
{2, 12}, {2, 13}, {3, 12}, {3, 13}, {4, 5}, {4, 11}, {5, 11},
{8, 11}, {8, 12}, {8, 9}, {8, 12}, {8, 11}, {8, 14}, {9, 10},
{9, 11}, {9, 12}, {9, 14}, {10, 11}, {10,12}, {10, 13}, {10,
14}, {11, 12}, {11, 13}, {12, 13}, {13, 14}.
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