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A general framework for imprecise regression

Mathieu Serrurier and Henri Prade

Abstract—Many studies on machine learning, and more
specifically on regression, focus on the search for a precise
model, when precise data are available. Therefore, it is well-
known that the model thus found may not exactly describe
the target concept, due to the existence of learning bias. In
order to overcome the problem of too much illusionary precise
models, this paper provides a general framework for imprecise
regression from non-fuzzy input and output data, The goal of
imprecise regression is to find a model that has the better trade-
off between faithfulness w.r.t. data and (meaningful) precision.
We propose an algorithm based on simulated annealing for
linear and non-linear imprecise regression with triangular and
trapezoidal fuzzy sets. This approach is compared with the dif-
ferent fuzzy regression frameworks, especially with possibilistic
regression. Experiments on an environmental database show
promising results.

I. INTRODUCTION

Machine learning aims at building models that describe
concepts from data. If the concept to be learnt consists in
being able to assign one of a finite number of classes to
an object, the problem is referred to classification. If the
concept takes the form of a continuous function, we face
a regression problem. The models learnt in regression are
precise and considered as certain ,in the sense that for given
input values, the models provide a unique output value.
Dealing with uncertainty and imprecision in learning is a
research field which is more and more explored. Classical
regression has been initially extended to fuzzy data by
adapting the least square fitting criterion to the fuzzy
case [4] (see also [14], [18], [1], [5] for overviews and
general discussions). Therefore, these approaches handle
fuzzy inputs and/or fuzzy outputs. The interest of this kind
of approach is limited to the cases where fuzzy data are
naturally found. A possibilistic regression method has also
been proposed [17]; its aim is to learn an imprecise model
even when the data are non-fuzzy. But this approach is
not fully satisfactory since it is very sensible to outliers
and provides a representation of imprecision based only
on intervals. Moreover, it does not take into account the
imprecision that is naturally associated with machine
learning bias.

Integration of imprecision in regression models would
allow us to take into account both the incompleteness of the
information provided by the data and the limitations of the
descriptive power of the model. From the formal machine
learning point of view, we know that the incompleteness of
the information provided by the data and the limitations of
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the descriptive power of the model implies a boundary on
the accuracy of the learning process. Thus, learning a model
that is certain and precise may be illusionary since this
model will necessarily be false. When learning imprecise
models, we overcome this limitation by describing not
only the general tendency of the data, but also the possible
variation around it. The general idea is to find the most
precise model compatible with the data and the learning bias.

In this paper we propose a general framework for impre-
cise regression. Given non-fuzzy input and output data, the
goal is to find a model as precise as possible that provides the
most faithful desecription of the data. Properties needed for
precision evaluation functions are defined. Next, we suggest
a candidate precision function and we explicitly define it
for trapezoidal and triangular fuzzy sets. We describe linear
and non-linear imprecise functions for this kind of fuzzy
sets. Since finding the global optimum is not tractable for
a deterministic algorithm in this context, a simulated anneal-
ing approach is presented. We then discuss the difference
between imprecise regression and the other types of fuzzy
regressions, especially with the possibilistic one. Lastly, we
apply the simulated annealing approach to an environmental
dataset.

II. A GENERAL FRAMEWORK FOR IMPRECISE
REGRESSION

When leaming from crisp (non-fuzzy) data, we can
consider two important kinds of biases. The first one comes
from the data description itself. More precisely, the langnage
used constitutes a bound for the descriptive power of the
data and leads to an incomplete view of the world. This
aspect is reinforced by the existence of noise that may
appear when collecting the data and by the consideration
of only a finite set of examples. The other major bias is
the complexity of the hypothesis space. Indeed, due to the
limitation of the hypothesis language and the complexity of
the algorithms, it is rarely possible to find the hypothesis
that describes exactly the concept we want to learn. One of
the major machine learning theorems [19] shows that these
biases lead to a bound on the effectiveness of the learning
method used. In this context, learning a crisp and certain
model is illusionary since this model corresponds to a fake
view of the world. It is especially obvious when considering
linear crisp regression. The bias on the data appears first
in the consideration only of a sample set of data, an in the
input variables that may not be sufficient for describing the
concept (for instance, two examples may have the same
values for input variables and different values for output
ones). In the same way, using the hypothesis space of



linear functions for algorithmic simplicity, presumes that
the concept to be learnt is linear too, which is generally not
the case. Thus, the function learnt is arbitrarily precise and
does not take into account the imprecision entailed by the
data and the hypothesis bias.

The goal of a general framework for imprecise regression
is to overcome the learning biases by considering them as
factors that have impact on the precision of the models
rather than as a boundary to the effectiveness of the
learning process. Knowing that the representation of the
examples and the hypothesis correspond necessarily to an
incomplete view of the world, we will search for imprecise
hypotheses that take into account this incompleteness.
Imprecise hypotheses can then describe in a more realistic
and faithful way the concept instead of learning arbitrary
precise hypotheses. Thus, given a set of crisp data, we
will search the model that is as precise as possible and
which provides the best description of the data. When the
imprecision tends to 0, we obtain a crisp hypothesis that
describes the concept exactly. In a formal way, imprecise
regression allows us to represent the imprecision associated
with the model by taking into account the incompleteness of
the information provided by the data and the representation
of the hypotheses.

The problem can be stated as follows. A regression data
is a set of m pairs (T'5,v1), 1 < i < m, where T; € X is
a vector of n input variables and v € IR is the real output
variable. An imprecise function F is a function from X to
(IR — [0,1]) that associates a distribution on the possible
values of the output to the inputs vector 7. This distribution
may be described by a fuzzy set, a possibility distribution or
a probability distribution. In the following, we only consider
normalized possibility distributions, which can be viewed as
a fuzzy set. This will be denoted by F(T';) = m;. Since the
goal of imprecise regression is to find a function, as precise
as possible, which describes the concept to be learnt, we
first need to define the evaluation function of the precision
of a possibility distribution. The precision of a fuzzy set
is an information theory issue, and several measures have
been proposed. Intuitively, the information provided by a
possibility distribution decreases with the surface of the
area under it. Let us first define the surface of a possibility
distribution.

Definition 1 {Possibility distribution surface): Given

IR — [0,1] a possibility distribution under =, the surface
S(m) of this function is given by :

1
S(m) :/ l(mg)der 0]
0
with for a > 0

Hra) = uly € B.7(y) 2 a})

where 1 is the Lesbegue measure and

Hmo) = limg ol (ma).
In the spirit of [21], we restate general requierement for a
precision measure.

Definition 2 (Precision measure properties): Given
IR — [0,1] a normalized possibility distribution and Pr a
precision function :

1y Pr is a function from (IR — [0,1]) to [0,1]

2y Pr(r) =1iff Jy € IR such that 7(y) =1 and ¥y’ €

R,y #y, 7(y) =0,

3) Prim)=0if Yy € B,w(y) = 1.

4y if S(r") = S{x) iff Pr(z") < Pr(n).

The first condition expresses that the precision of a fuzzy
set is bounded by [0,1]. Conditions 2 and 3 assure that
the most precise possibility distribution is a Dirac (with
a mull surface) and the less precise distribution is the one
that gives the same possibility level to all elements in IR.
The last condition states that the precision must decrease
when the surface of the possibility distribution increases.
Note that since the surface under a probability distribution
is constant, the above conditions should be adapted in order
to describe uncertain regression. Let us now define the goal
of imprecise regression.

Definition 3 (imprecise regression): Given a data set
made of m pairs (T, 1), 1 < ¢ < m, and the precision
function Pr the is goal of imprecise regression is to find the
function F' that maximizes

R(F) = i i) Prim) N

e

By maximizing together the accuracy of the imprecise func-
tion, here estimated through the terms m;(y;)’s, and its
precision, we ensure the best tradeoff between accuracy
and precision of the model. Maximum is reached when
the function describes exactly the data. In this case, we
obtain a crisp regression. Since the learning bias may prevent
reaching this maximum, the function will describe both the
general tendency of the data and the variations around it. Of
course, the quality of the tradeoff depends on the choice of
a precision evaluation function and of its scalability with the
data.

III. A SIMULATED ANNEALING APPROACH FOR
IMPRECISE REGRESSION

A. Norations

In this section, we propose an algorithm for imprecise
regression where the imprecise function to be leamt has an
output that is assumed to be a (riangular or a trapezoidal
fuzzy set. Let us first introduce some notations. Triangular-
shaped fuzzy sets are defined as follows :

0 ife<lorz>r
L e (2) = 2=l ifr<mand T >

—— ifrx>mandz <r
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Trapezoidal fuzzy sets are encoded as this :

0 fz<aorz>d

T 1 fz>borz<e
ab.c,d = g:ﬁ ife<bandz >«
% fz>candz<d

Yager [21] has proposed a specificity function for a possi-
bility distribution = defined on IV :

|
P’i"}N(ﬂ'):/ ——do
0

Tal

with |7o] = {y € IN,n(y) > a}. The problem is that this
function is not defined on IR. Thus, we need to adapt this
function to continuums. Moreover, since the output range
of the data may vary highly, we infroduce a normalization
constant. Then, the precision function used will be the
following :

1
1
Pr(m) = /0 T om0

with a constant C' € . More precisely, when applying this
function to triangular or trapezoidal fuzzy sets we obtain :

Pr(fy) = " *CE:ET;) 2)

and
n(l+Cxb—a+d—c)+Cx(c—b)
Cxib—a+d—2¢) )

We will consider two different types of imprecise functions.
An fuzzy-valued function Fj., . that associates triangular
fuzzy sets to inputs T is represented by three scalar functions
(fi, fm, fr) that describe respectively the three parameters of
the fuzzy set. Thus we have :

PT(Ta,b,c,d) =

‘Fyl,m,r(T) =< fl’ .f?‘fh f’i" > (T) = Ifﬁ(?),fm(?),fr(?)

In the same way, an fuzzy-valued function F, .4 that
associates trapezoidal fuzzy sets to inputs T is described

as follows :

Fa,b,c,d(?) =< fo. Jo. fes fa (T})

=Ty o f ot 7

STy T a3y
The different scalar functions may be taken for instance as

linear functions of the forms

AT =<ap,...,z2p>)=agtar+z1+ ... Fa,*z,

or may be given by neural networks. When using linear func-
tions, finding optimal fi, fm, fr OF fa, f5, fe, fq constitutes a
hard problem which is not solvable by classical optimization
methods. In the same way, the back-propagation algorithm
is not applicable in this case since we need to optimize three
or four neural networks with one target quality function. We
propose to solve the problem by using a simulated annealing
algorithm.

Alg. 1 Simulated annealing(V, E, Xo, To, Tiin)
1. X =X,
20 T'="14
3: while 1" < T,.;,, do
4: Y = random element in V (X))
5. dbE=E(X) - EY)
6. if dF > 0 then
7 ~
8
9

P=c%F
A = random value in [0,1]
if A < P then

10: X=Y

11 end if

12:  else

13: X=Y

14:  end if

15.  decrease the value of T
16: end while
17: return X

B. Algorithm

1) Simulated annealing: Simulated annealing [15] is a
meta-heuristic method developed for optimization problems.
The general form of simulated annealing algorithm is as in
Alg. 1. This method is inspired from a well-known physical
phenomenon, coming from metallurgy. Let us consider a
function £ : s — IR to be minimized, and representing the
energy of a statistical mechanical system in a given state s.
The probability for the system to go from the state s to the
state s at the temperature ? is given by the Boltzman-Gibbs
distribution P(s) = =P where k is the Boltzmann
constant (in Alg. 1. the constant k is merged with the
parameter 77). For high values of 7', all states have a high
probability to be accepted. On the opposite side, when 7' is
close to zero, only states improving the current minimization
of the function will be accepted. The convergence to the
global optima is granted when using a logarithmic decrease
of the temperature. Given an initial temperature 7p, the
temperature at step ¢ of the algorithm is 7} = » + 141
for ¢ > 1 and 0 < r < 1. With this method, we are not
sure to find the global minimum, but we can expect to
find at least a local one better than the one computed by
a greedy algorithm. The values of temperatures To, Tinin,
and r are critical and depend on the problem we want to
solve. The initial state can be chosen randomly, since a
“good” initial state will be “forgotten” at a high temperature.

2) Application to imprecise regression: As pointed out
previously, classical optimization approaches or back-
propagation are not usable in this context. Thus, we use a
simulated annealing approach. Then, the goal is to determine
the function F' that maximizes equation 2 in the space of the
imprecise functions. In order to use simulated annealing, we
first need to define the neighborhood V' of a function F.
For the function of the form Fi,, , and F;, .4 we define



neighborhood as follows :

V(Fi,m,r) =< V(.ﬁ)v V(fm)’ V(ff‘) >

and

V(Fa,b,c,d) =< V(fa)v V(fb)v V(fc): V(fd) >

The neighborhood of a linear function is obtained by ran-
domly adding or removing a fixed small value to all the
coefficients. In the same manner, neighborhood of a neural
netwaork is computed by randomly adding or removing a fixed
small value to every weight that links the different nodes of
the networks. The use of a fixed small value for the variations
is due to the fact that simulated annealing is designed for
discrete exploration of the space. Given the type of fuzzy-
valued function wanted (triangular or trapezoidal-shaped),
parametrized in a way this is linear or not, the corresponding
neighborhood is used in the simulated annealing algorithm.

IV. RELATED WORKS

In this section, we emphasize the differences between
the imprecise regression apporach presented in this paper
and the other approaches to fuzzy regression. Two types
of approaches can be distinguished : fuzzy least square
regression and possibilistic regression.

The first type of fuzzy regression deals with fuzzy output
data, and maybe fuzzy inputs, which have to be described
by a fuzzy regression function. Such a method has been
proposed for dealing with imprecise data by several authors
[3], [4]. The Diamond’s method is based on the extension of
the Lo metrics to fuzzy sets. Thus, once a distance between
fuzzy sets is defined, the method used for fuzzy regression
is the least square error minimization. The problem has been
solved in [4] for linear regression with fuzzy inputs and/or
fuzzy output. This approach has been extensively studied in
the linear case [20], [7], [8], [16]. Non-linear approaches
have also been proposed by using for instance neural
networks [6], [11], SVM’s [10] and genetic algorithms [2].
The major advantage of the least square method is that it is
the natural mathematical extension of the crisp regression.
In this context, when data inputs and output are not fuzzy,
fuzzy least square regression is equivalent to classical least
square regression (even if crisp data are viewed as particular
fuzzy numbers). This constitutes the principal difference
with our approach. In fact, imprecise regression aims at
representing the imprecision associated with the model. This
contrast with fuzzy least square regression that deals with
the imprecision/fuzziness of the data.

The second type of approach, named possibilistic
regressio, was imitially proposed by Tanaka [17]. The goal
of this approach is to associate the data with a pair of upper
and lower regression function, while minimizing the total
spread of the output. In order to do that, a lower bound and
an higher bound of the regression function are computed.
This method can be used with crisp data and/or with fuzzy

data. A linear model [17] has been initially proposed. In
the first step, the linear regression function that produces
the interval is leamed by solving a linear programming
problem. Then, an interval-valued linear regression function
is obtained. When dealing with crisp data, this function
associates an interval (rather than a crisp value) to the input.
However, this method can be very costly when dealing
with a large number of input variables. This method has
been extended to non-linear possibilistic regression in [12]
by using neural networks. In this case, lower bound and
higher bound functions are represented by two different
neural networks. The advantage of possibilistic regression
with respect to the first type of fuzzy regression is that
it can handle both crisp data and fuzzy data. The main
disadvantage of this method is that it is very sensitive to
outliers. In fact, the optimal upper bound function, for
instance, is the function that is immediately above the whole
set of data. Thus, outliers may affect to a large extent the
function that is learnt. This drawback has been taken into
consideration in [13] by combining SVM’s with neural
networks in order to decrease the sensitivity to outliers.

At first glance, imprecise regression may seem to be very
close to possiblistic regression. First, the two approaches
deal with crisp data. Second, they use separate functions,
described by a linear function or a neural network, in
order to represent fuzzy sets or intervals. However, the two
approaches differ both at the theoretical level and at the
algorithmic level. Possibilistic regression aims at finding the
most precise function that is totally accurate with respect
to all the examples. On the contrary, the goal of imprecise
regression is to find the function that has the better tradeoff
between faithfulness and precision in order to take into
account biases associated with the learning problem. This
is why imprecise regression is less sensitive to outliers than
possibilistic regression. Moreover, lower bound and higher
bound of the function in possibilistic regression are learned
separately. Thus, when dealing with crisp data, possibilistic
regression can only produce intervals rather that genuine
fuzzy sets, and there is no guarantee of the coherence
between the higher and the lower bound of the interval.
Imprecise regression quality measure is global, and all the
functions that describe the fuzzy sets are learnt together. It
allows us to learn models that can represent the imprecision
by any kind of fuzzy sets ¢here triangular and trapezoidal)
in a coherent way.

V. EXPERIMENTATIONS

The problem considered here, for illustrative purpose, is
to learn the concentration of a polluting agent in a water
spring. Imprecise regression is used since it handles crisp
inputs and outputs. The main benefit of imprecise regres-
sion with respect to classical regression is that imprecise
regression both describes the general tendency of the function
(as classical regression does) and the amount of variation
around the general tendency. In this application, allowing for
imprecise models enables the user to know to what extent the



prediction can be made in a precise way. Thus a fuzzy set
that expresses the uncertainty of the prediction provides a
more valuable piece of information for a comparison with
a reference threshold (for firing alerts for instance). The
data describe concentration of atrazine pollutant with respect
to the time. Data contain more than 300 pairs of input-
output pieces of data. We use the algorithm described in
section 3 with linear and non-linear functions for triangular
and trapezoidal fuzzy sets. The constant €' is fixed such as
€= ﬁ where o is the variance of the cutput data. Roughly
speaking, it means that oufputs are considered as really
relevant when they do not differ from the global tendency
more than . The higher €', the narrower the fuzzy function.
Neural networks have one input node and five hidden nodes.
Initial temperature of the simulated annealing is fixed at
0.005 and ratio of the geometric scheduler is equal to 0.9995.
The different functions learnt are represented on Figures 2
to 5, Figure 1 corresponding to classical linear least square
regression. Fuzzy sets are represented in the third dimension.
The following table provides the numerical results.

|
B

||
“ I

Fig, 1.

Fig. 2.

Type avg. member. deg. | avg prec. | R(F)
lin. triang. 0.706 0.586 0.417
non lin. triang. 0.712 0.593 0.427
lin, trap. 0.871 0.492 0.434
non lin. trap. 0.866 0.501 0.439

Several comments are in order. First, Figure 1, that
represents classical regression, shows that concentration
globally decreases with time. However, this is not fully
satisfactory. In fact, by using linear function, we cannot
expect to represent the data exactly. Moreover, the classical
linear function does not give any clue of how imprecise
is the result. Imprecise regression allows us to have this
information. Regardless the consideration of non-linear or
linear fuzzy regression with triangular or trapezoidal fuzzy
sets, the general tendency remains the same as for the
classical case. It also shows that variation around the global
tendency decreases with time. In all the cases, we can
observe that fuzzy sets are not symmetrical and this indicate
that variations more often correspond to a decrease of the
output. In the case of pollutant prediction, this is crucial
because it shows that variations are smaller and smaller
with time and then the plausibility to overcome a risk
threshold will be easier to predict. When considering results
more precisely, we observe that non-linear settings (Fig. 3
and 3) are more accurate than linear ones (Fig. 2 and 4).
Triangular shaped fuzzy sets allow us to distinguish directly
the general tendency by considering the top of the triangle.
Trapezoid fuzzy sets give a more precise description of the
variation around the general tendency.

Observations derived from the Figures are confirmed when
looking at the above result table. As expected, it shows two
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things. First, non-linear models give better results. It is due to
the fact that non-linear functions have a better representation
power than linear ones while having a smaller learning
bias. Second, although trapezoidal fuzzy set functions have
a smaller precision result than triangular ones, they vield
better results for the evaluation function R since they are
more accurate. This is not a surprise since triangular fuzzy
sets can be viewed as a particular kind of trapezoidal fuzzy
sets. Finally, the results of the experimentations agree with
the goal of the general framework of imprecise regression.
It learns the most precise function that describes the data.
As expected, what is obtained is a description of the general
tendency of the data together with the variation around it.
Moreover, results show that imprecise regression is not too
much sensitive to outliers. Finally, the precision of the learnt
function is related to the expressive power of the hypothesis
gpace, and then to the learning biases associated to the
models.

V1. CONCLUSION

In this paper, we have proposed a new kind of fuzzy
regression. Imprecise regression aims at learning fuzzy
functions from crisp input and output data. The goal of the
imprecise regression is to overcome the learning biases, that
make precise regression illusionary, by learning together
the general tendency of the data and the variation around
it. In this context, we have presented a general frameworks
that defines imprecise regression as a search for the best
tradeoff between accuracy and precision. Given a fixed
precision evaluation function, the global solution is not
tractable with deterministic algorithms. Thus, we describe a
simulated annealing-based algorithm for leaming triangular
and trapezoidal-shaped linear and non-linear fuzzy functions
in the imprecise regression framework. We pointed out
that althougth imprecise regression has some similarities
with possibilistic regression, it seems to be more powerful
and more adapted to regression problems with erisp inputs
and output data. Especially, it is less sensitive to outliers
and allows us in principle to leam any kind of fuzzy
functions. Moreover, preliminary experimentations also
indicate promising results.

In the future, the general framework of imprecise regres-
sion should be more thoroughly studied. Especially, it should
be interesting to explore the links between leaming biases
and optimal imprecise functions. More experimentations
will also be useful for comparing possibilistic regression
and imprecise regression and for testing different kinds
of precision evaluation functions. Currently, we work on
the application of imprecise regression to the learning of
performance measures for a pointing task known as Fitts’
task [9] in Human-Machine interaction.
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