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Abstract – An analogical proportion is a statement of the
form "A is to B as C is to D". In a logical setting, items A, B, C
and D are Boolean vectors. This notion is at the core of
analogical reasoning. This paper proposes a sound definition
of analogical proportion, based on a logical expression that
holds true for each vector component if and only if the
analogical proportion holds true. The analogical equation,
where D is unknown, is also discussed. The logical expression of
the analogical proportion has several equivalent forms, which
may lead to distinct extensions when the vector components
takes its values in the unit interval, depending on the choice of
the multiple-valued connectives. Applications to case-based and
approximate reasoning, and to learning are outlined.

I. INTRODUCTION

 Reasoning by analogy, according to the analogical
proportion pattern “A is to B as C is to D”, consists firstly in
observing two particular situations A and B and to evaluate in
which way A can be transformed into B, taking into account
their similarity. Then, observing a third situation C, it
amounts to transform C into D in the same way. Hence, this
way of reasoning uses three situations to build a fourth one.
Analogical reasoning, which has been identified by
philosophers in the Antiquity as early as deductive reasoning,
is usually regarded as a form of reasoning that is beyond
logic, since it leads to conclusions whose truth is not
guaranteed, which contrasts with the case of deductive
reasoning. It seems that for this reason the formalization of
analogical reasoning is remained much less developed than for
deduction, and does not use in general any logical setting.

Although artificial intelligence has started early to handle
analogical reasoning and to apply it (e.g. [11], [16], [26]), it is
only in the last twenty years that an operational form of
analogical reasoning, called Case-Based Reasoning [1], has
been considerably developed and applied. It uses a repertory of
known cases stored as pairs (problem, solution). When a new
problem C is encountered for which no solution is known,
problems A similar to C are retrieved, where A appears in a
stored pair (A, B) = (problem, solution), and then using some
adaptation technique the solution B of problem A is trans-
posed into a (potential) solution D for problem C, taking into
account in what respects A and C are similar and how they
differ. In analogical terms, D should be to C as B is to A.

Fuzzy logic tools have also been proposed for describing
such situations by means of fuzzy rules of the form "the more
similar A and B, the more (plausibly) similar C and D" using

fuzzy similarity relations, and for aggregating potential
solutions when several relevant cases are retrieved with respect
to a current problem [8], [10], [13]. Thus, analogical reasoning
appears to be close to approximate reasoning up to the
important difference that analogy handles particular situations,
while fuzzy if-then rules have a generic flavor and approximate
reasoning remains deductive in essence [12], [22], [17].  

The present paper starts from a logical definition
suggested by Klein [14] in 1982, which is discussed with
respect to formal properties that are desirable for the analogical
proportion, and which have been advocated in recent works
[18], [19], [26]. This logical definition is shown to be too
general since it also encompasses some cases that do not
correspond to a genuine analogy. Then, a new logical
definition that exactly covers the analogical proportion is
proposed. This definition can be put under different,
noticeable, equivalent forms. This provides a starting point for
discussing graded extensions of these different forms using
various families of multiple-valued connectives. The modeling
of the analogical dissimilarity [19], [20], which corresponds to
"D is not to C what B is to A", is also discussed in the
binary and in the multiple-valued case. Applications to case-
based reasoning, approximate reasoning, and learning are
outlined.

II. BINARY CASE

An analogical proportion is a statement of the form "A is
to B as C is to D". This will be denoted by (A : B :: C : D).
We shall assume that the items A, B, C, and D can be
represented by vectors having n components, i.e., A = (a1, …,
an), …, D = (d1, …, dn). In the binary case, each component is
equal to 0 or 1. In section III, we shall study the case where
each vector component takes its value in the unit interval [0,
1]. As further discussed in section IV, the components of
vectors such as (a1, …, an), may receive two interpretations in
practice. They may be represent
- either as the membership degrees of the elements of a finite
domain X = (x1, …, xn) with respect to A, B, C and D
respectively, viewed as subsets of X;
- or as a n-tuple of truth degrees with respect to n properties
(possibly graded in III) used for describing items A, B, C, D.
The first and the second interpretations will be respectively
termed "set element-interpretation", and "object properties-
interpretation". If (A : B :: C : D) holds, it means that (ai : bi

:: ci : di) holds for all the components i of the descriptions of
A, B, C and D, with i = 1, n. If there is no need to specify
one particular component, we shall simply write (a : b :: c : d).



One might think of introducing approximate or partial
analogies by only requiring that (ai : bi :: ci : di) holds for most
vector components i, but this will not be not studied here.

In the following, we work at the semantic level, and we
use standard notations for denoting connective functions:
¬ (negation),  !  ( c o n j u n c t i o n ) ,  "   (disjunction), #
(implication), $ (equivalence), %  (exclusive or). For any two-
place connective *, a * b & {0, 1} in the binary case, and a *
b & [0, 1] in the graded case. ¬a & {0, 1} or ¬a & [0, 1] as
well. In the following, we look for logical expressions of the
analogical proportion (a : b :: c : d).

A. Background

About twenty-five years ago, Klein [14], a specialist in
anthropology, presented in an artificial intelligence conference,
in terms of binary truth-like tables, what he considered as
being the basic pattern of the analogical reasoning, using
many illustrative examples. The paper [14] has a rather
unusual title for a computer science conference, and was not
suggesting any particular relation with analogy, as it can be
seen. It may be the reason why the approach had no real
posterity in artificial intelligence until now, although it has in
anthropology [23], [15]. Still Klein proposed a mathematical
operator that he called ATO (for 'Appositional Transformation
Operator'), whose repeated use enables him to compute
analogical proportions. This operator is in fact the logical
equivalence connective a $ b = 1 if a = b, and a $  b = 0
otherwise. What is proposed in [14] amounts to write

(a : b :: c : d) = (a $ b) $ (c $ d) (1)

even it is never explicitly stated as such. Let us illustrate the
idea on an example from [14]. Each of the four statements A,
B, C and D are represented by a 4-tuple encoding 4 binary
properties: Sex, Adult, Attitude, Light. Thus, A = "Boys love
light" is encoded by (1 0 1 1) (Klein used a slightly more
complicated, but equivalent encoding). From the following
three statements:

Sex Adult Attitude Light
A: Boys love light  1  0  1  1
B: Women hate light   0  1  0  1
C: Girls hate dark  0  0  0  0

it is inferred that D = (1 1 1 0), i. e., "Men love dark".
Indeed, it can be checked that

A $ B = (a1 $ b1, a2 $ b2, a3 $ b3, a4 $ b4) = (0 0 0 1)
and that

C $ D = (c1 $ d1, c2 $ d2, c3 $ d3, c4 $ d4) = (0 0 0 1)
and thus        (A $ B) $ (C $ D) = (1 1 1 1).
As it can be checked, there is always a unique solution X such
as (C $ X) $ (A $ B). Moreover, Klein [14] suggested that for
each vector component, the solution x of (a : b :: c : x) =
(a $ b) $ (c $ x) = 1 is given by

x = c $ (a $ b). (2)

Although definition (1) looks appealing, it nevertheless
has a flaw. Some of its properties are undesirable w.r.t. the

basic properties of analogical proportion. Actually, as we shall
see, it covers cases that we are reluctant to view as genuine
analogical proportions.

The characteristic properties of the analogical proportion
have been identified by different authors (see in particular [18],
[19], [26]). They are:

(S) (a : b :: c : d) = (c : d :: a : b)
(CP) (a : b :: c : d) = (a : c :: b : d)
(ID1) (a : a :: b : x) ' x = b

where (S) expresses a symmetry in the comparison, namely if
"A is to B as C is to D" then we should also have "C is to D
what A is to B", while (CP) allows for a central permutation,
i.e., it should be also allowed to say that "A is to C as B is to
D". (ID) expresses an "identity" determinism. The above
properties are obviously satisfied by numerical models where
an analogical proportion is viewed as an equality of ratios (a/b
= c/d), or of differences (a ( b = c ( d), with a, b, c, d being
real numbers. These properties become natural requirements
for a logical representation as well.

These properties have several immediate consequences:
(I) (a : b :: c : d) = (b : a :: d : c)
(EP) (a : b :: c : d) = (d : b :: c : a)
(SR1) (a : b :: c : d) = (d : c :: b : a)
(SR2) (a : b :: c : d) = (b : d :: a : c)
(SR3) (a : b :: c : d) = (c : a :: d : b)
(ID2) (a : b :: a : x) ' x = b

where (I) allows for the inversion of the relations (obtained by
applying (CP), (S) and (CP)), (EP) allows for external
permutation (obtained by applying (I), (S) and (CP)), (SR1),
(SR2) and (SR3) expressing symmetries for the reading (and
can be respectively obtained by (I) and (S), (CP) and (S), and
(S) and (CP)). (ID2) is obtained from (ID1) and (CP).

It is obvious that definition (1) satisfies (S), i. e.
(a $ b) $ (c $ d) =  (c $ d) $ (a $ b)

and it can be checked on truth tables that (CP) holds, namely
(a $ b) $ (c $ d) = (a $ c) $ (b $ d).

However, it has some undesirable properties such as
(a $ b) $ (c $ d) = (b $ a) $ (c $ d)

Indeed if "A is to B what C is to D", it does not generally
entail that "B is to A as C is to D". Let us examine the cases
where (a $ b) $ (c $ d) = 1. They are listed in Table 1.

a b c d (a $ b) $ (c $ d)

1 1 1 1 1 1

2 1 1 0 0 1

3 1 0 1 0 1

4 1 0 0 1 1

5 0 1 1 0 1

6 0 1 0 1 1

7 0 0 1 1 1

8 0 0 0 0 1

Table 1



For the eight other possible combinations of values of a,
b, c, and d that do not appear in Table 1, (a $ b) $ (c $ d) =
0. Cases 1, 2, 7, and 8 corresponds to situations where a and
b on the one hand and c and d on the other hand are identical.
Cases 3 and 6 correspond to changes from a to b, and from c
to d, that go in the same sense. All these cases clearly fit the
semantics of the analogical proportion. The two other cases,
namely 4 and 5, do not fit the idea that a is to b as c is to d,
since the changes from a to b and from c to d are not in the
same sense.

Remark 1. The expression (1) can be rewritten in other
logically equivalent, remarkable forms that emphasize other
views of analogy. Let us mention two of them. Thus we have

 (a : b :: c : d) = (a $ b) $ (c $ d) = (a % b) $ (c % d)     (3)
     = ((a # b) $ (c #d)) ! ((a # c) $ (b # d))   (4)

The expression (3) emphasizes the similarity of the ways the
items differ, since the symmetrical difference %  is used, while
(4) points out the "parallels" that should exist in the structure.

B. Equivalent forms of the right definition

As suggested by the results of the previous subsection,
we are looking for a logical expression that only cover cases 1,
2, 3, 6, 7, 8 in Table 1, in order to be faithful to the idea of
analogical proportion.

One way to obtain such a formula is to start from (1) and
then to add further constraints in order to exclude cases (4) and
(5). The formula F = (a % b) ! (a % c) ! (b % d) takes value 1
only for (a, b, c, d) = (0, 1, 1, 0) or for (a, b, c, d) = (1, 0, 0,
1), i.e. the two cases we want to exclude. This leads to the
expression

(a : b :: c : d) = ((a $ b) $ (c $ d)) % F (5)
 = ((a$b) $ (c$d)) % ((a % b) ! (a % c) ! ( b % d))

There also exist formulas that are equivalent to (5), but
which better reflect the analogical process, such as

(a : b :: c : d) = ((a $ b) $ (c $ d)) ! ((a % b) # (a $ c)) (6)

Indeed (6) expresses in its second component that a and c
should be identical where a and b differs, which is a natural
constraint for making sure that the change from c to d will be
in the same sense as the one from a to b). (6) can be
equivalently rewritten

 (a : b :: c : d) = ((a $ b) $ (c $ d)) ! ((a $ b) " (a $ c))  (7)

since a $ b = ¬(a % b) and a # b = ¬a " b. There also exist
expressions equivalent to (5) or to (6) that are symmetrical.
Two noticeable ones are:

    (a : b :: c : d) = ((a $ b) ! (c $ d)) " ((a $ c) ! (b $ d)) (8)

 (a : b :: c : d) = ((a # b) $ (c # d)) ! ((b #  a) $ (d # c)) (9)

These two expressions well reflect the structure of analogical
proportion. Note that the second expression parallels at the
logical level the difference-based view

(a ( b) = (c ( d) (10)

of the analogical proportion (a : b :: c : d). Indeed, when a and
b are equal to 0 or 1, a ( b & {( 1, 0, 1}, and thus (a ( b) is
not a logical connective, but keeps track of the sense of the
change if any. It is why since (9) works in {0, 1} , the
equivalences in (9) are stated in the both senses (remember
that a # b = 1 if a ! b and a # b = 0 if a > b, and observe
that the condition a ! b covers two situations: a = b (no
change) or a < b (change)).

We can now state the following results:

Proposition 1: The definitions (5), (6), (7), (8) and (9) of the
analogical proportion (a : b :: c : d) are equivalent, and take the
value 1 for and only for the 6 situations of Table 1 that differs
from (a b c d) = (1 0 0 1) and from (a b c d) = (0 1 1 0).

Proposition 2: If a # b = 1 and (a : b :: c : d) = 1 then c # d
= 1, where (a : b :: c : d) is defined by (5), (6), (7), (8) or (9).

Proposition 3: (a : b :: c : d) = 1 and (c : d :: e : f) = 1 entails
(a : b :: e : f) = 1, where (a : b :: c : d) is defined by (5), (6),
(7), (8) or (9).

Proposition 4: A triple (a b c) can be completed by d in such
a way that (a : b :: c : d) = 1 if and only if

(a $ b) " (a $ c) = 1.

Proposition 5: When it exists, the unique solution of the
equation (a : b :: c : x) = 1 is logically expressed by

x = (a $ (b $ c))

Let us comment these results. Proposition 1 ensures that we
have found the appropriate logical expression(s) for the
analogical proportion. Proposition 2 ensures that if "A is to B
as C is to D", and B is more general than A, D should be
more general than C. Proposition 3 expresses that transitivity
holds for analogical proportion, as expected. Proposition 4
points out that a should be equivalent to b or to c, in order to
get rid of the two triples (a b c) = (1 0 0) and (a b c) = (0 1 1)
that cannot be completed analogically (see Table 1). Note that
the required condition is explicitly part of definition (7). It is
also interesting to write the counterpart of this condition in
the "set element-interpretation" (introduced at the beginning of
section II). Then a, b, c, and d stand for the current
membership degree of an element of a referential X to A, B,
C, and D respectively. Then the impossibility of (a b c) = (1 0
0) and (a b c) = (0 1 1) translates respectively into A ) (B

C
 )

C
C
) = * and A

C ) (B ) C) = *, i.e., the logical condition
for analogical completion  (a $ b) " (a $ c) = 1 can be written
in set terms as

B ) C + A + B , C  (11)



This condition has been pointed out in recent works [18], [19],
[20] in a set-oriented approach to the study of analogical

proportion.

Proposition 5 provides a compact writing of the solution
of an analogical proportion. This is the solution already
suggested in [14] by Klein. There exist other expressions of
the solution under the requirement of Proposition 4. Namely,

Proposition 6: When it exists, the unique solution of the
equation (a : b :: c : x) = 1 is also logically expressed by

x = ((b " c) ! ¬a) " (b ! c)
 = (b ! ¬a) " (c ! ¬a) " (a ! b ! c)

Proposition 6, which can be easily checked on a truth table, is
nothing but the logical counterpart of expressions recently
proposed in [1 8 ] , [1 9 ] , [2 0 ] , in the "set element-
interpretation". Both Proposition 5 and Proposition 6 could
be applied when (a b c) cannot be analogically completed, i.e.
when (a $ b) " (a $ c) = 0. Mind that while Proposition 5
applied to the two "undesirable cases" (a b c) = (1 0 0) and (a
b c) = (0 1 1) yield x = 1 and x = 0 respectively, Proposition
6 gives the converse, namely x = 0 and x = 1 respectively in
the two cases. This means that the expression x = (a $ (b $ c))
of Proposition 5 is logically equivalent to the two expressions
in Proposition 6, only under condition (a $ b) " (a $ c) = 1.

Besides, the completion obtained by Proposition 5 for
(a b c) = (1 0 0) and (a b c) = (0 1 1), namely (a b c d) =
(1 0 0 1) and (a b c d) = (0 1 1 0) corresponds to two extreme
situations identified in [20], [21] as expressing an "analogical
dissimilarity", namely, to "D is not to C as B is to A". In
fact, it is not just a simple negation here stating that the
analogical proportion fails to hold, but rather the respective
situations of A w. r. t. B, and of C w.r.t. D are here
antonymic.

Remark 2. There exists, in the "set element-interpretation",
another characterization of the analogical proportion due to
[24], [25]. Letting A, B, C, D be subsets of X, (A : B :: C :
D) holds if and only if there exist subsets U, V, W, Z, such as
A = U ,  V, B = U ,  W, C = Z ,  V, D = Z ,  W. This
decomposition is not unique, and the sets U, V, W, Z do not
need to be disjoint. When they are, this provides a
constructive description of the analogical process: X (resp. Z)
is the elements that are untouched when going from A and B
(resp. from C and D), while the elements in V go out, and
while those in W go in. It could be checked that this view
exactly parallels the logical expression (6) of the analogical
proportion.

C. Analogical dissimilarity
To go further, it is interesting to have a measure of how

much the Boolean items a, b, c and d are close to be in
analogical proportion. We call this measure analogical
dissimilarity, denoted AD(a, b, c, d) [20]. Whenever (a : b :: c
: d) = 1, AD(a, b, c, d) = 0. In the two special cases (1, 0, 0,
1) and  (0, 1, 1, 0), AD takes the value 2. In all the other
cases, we have AD = 1. AD(a, b, c ,d) has a simple

interpretation : it is the number of the binary values among a,
b, c, and d that have to be flipped to turn AD into 0. For
example, AD(1, 0, 1, 0) = 0, AD(1, 0, 1, 1) = 1, AD(1, 0, 0,
1) = 2. From a numerical point of view, AD(a, b, c, d) =
|(a (  b) ( (c ( d)|. This expression readily extends to the
additive analogical dissimilarity in the graded case, where a,
b, c and d are no longer restricted to binary values.

As explained in [2], AD has interesting properties that are
quite useful in machine learning applications. The following
inequality is particularly interesting in lazy learning
methodologies:

AD(a, b, c, d) ! AD(a, b, e, f) + AD(e, f, c, d).

This inequality holds true not only in the binary case, but also
in other extensions of the basic definition of the analogical
proportion. A numerical analogical similarity AS can also be
defined between 0 and 1:

AS(a, b, c, d) = 1 ( 1/2 |(a ( b) ( (c ( d)|.

III. GRADED CASE

When going from the binary case to the grades (or fuzzy)
case where truth values now belong to [0, 1], many choices are
possible for defining the connectives, and it should be clear
that some of the equivalences previously found may now fail
to hold since whatever the choices, we shall be no longer in a
Boolean algebra. Because of the lack of space, we shall only
consider in the following some of the choices that seem to be
especially worth considering. The systematic study of what
equivalences remain true in general setting such as MV
algebras, or the practical use of parameterized families of
triangular norms or related operations is left for further
research.

Let us recall that there are three main choices for the
conjunction, namely a ! b = min(a, b), a ! b = ab, or a ! b =
max(0, a + b – 1), associated with the three disjunctions a " b
= max(a, b), a " b = a + b –  ab, or a " b = min (1, a + b)
respectively.

Then there are two main ways for defining implications,
either as a # b = ¬a " b, or by residuation a # b = sup{x -
a ! x ! b}. It leads to distinct implications for the first two
pair of conjunction / disjunction, namely a #  b =
max(1 – a, b) (Dienes implication), and a # b = 1 if a ! b,
and a #  b = b if a > b (Gödel implication) for min/max,
a # b = 1 – a + ab (Reinchenbach implication) and a # b =
min(1, b/a) if a > 0, and a #  b = 1 if a = 0 (Goguen
implication). For the last pair of conjunction / disjunction,
one implication is obtained a #  b = min(1, 1 – a + b)
(Lukasiewicz implication).

The equivalence connective associated to Dienes
implication is a $ b = min(max(1 – a, b), max(1 – b, a)) =
max(min(a, b), min(1 – a, 1 – b)), to Gödel implication is
a $ b = 1 if a = b, and a $ b = min(a, b) otherwise (in a crisp
version, one may take a $  b = 0 if a " b). Using min



conjunction and Lukasiewicz implication, one gets a $  b =
min(min(1, 1 – a + b), min(1, 1 – b + a)) = 1 – -a – b-.
Using min or product conjunction and Goguen implication,
one gets a $  b = min(1, b/a, a/b) = min(b/a, a/b) =  
min(1, b/a)·min(1, a/b) for a " 0, b " 0 (if a = 0 or b = 0 the
result is obtained by taking the limit). Then the symmetric
difference is usually obtained as a % b = 1 – (a $ b).

Remarks 3 An equation such as (a $ b) $ (c $ x) = 1 may now
have in some cases several solutions. Besides, note that in the
above equation, we may not use the same equivalence
connective for the central equivalence and the two others! One
may also be interested in relaxed equations such as (a $ b) $
(c $ x) # . . Lastly, note that a %  b = -a – b- is also a
distance!

In the following, we only briefly discuss the fuzzification
of the two symmetric definitions we have found, i.e.

(a : b :: c : d) = ((a $ b) ! (c $ d)) " ((a $ c) ! (b $ d))      (A)
(a : b :: c : d) = ((a # b) $ (c # d)) ! ((b # a) $ (d # c)) (B)

using one of the three choices:

- i) a !  b = min(a, b); a "  b = max(a, b); a #  b =    
max(1 – a, b); a $ b = min(a # b, b # a);
- ii) a !  b = min(a, b); a "  b = max(a, b); a #  b =  
max(1, b/a); a $ b = min(b/a, a/b);
- iii) a !  b = min(a, b); a "  b = max(a, b); a #  b =     
min (1, 1 – a + b); a $ b = 1 – -a – b-.

These choices have been partly dictated by the fact that
choices iii) and ii) seem respectively consonant with the view
of analogical proportion as the equality of the differences (a –
b  = c – d), or of the ratios (b/a = d/c). Besides, (A) and (B)
should coincide under interpretation i).

For example, using (B) and (iii), taking s and t as small
positive numbers, we get: (a : a :: c : c + s) = 1 – s, as well as
(a : a + s :: c : c – t) = 1 –  min(s, t). In the numerical additive
context, using the expression: |(a –  b) – (c –  d)| (see section
II C), we would have obtained (1 – s) and 1 – (s + t). The
choice of this fuzzification and of this definition of the logical
analogical proportion lead to a definition of the graded logical
analogical proportion very similar to the classical numerical
additive definition of the analogical proportion. In other
words, we have defined through a logical setting an analogical
dissimilarity very similar to that of the numerical case.

Mind, however, that the fuzzy counterpart of Proposition
5 (or 6) cannot be straightforwardly applied for finding the
solution of an analogical proportion in the graded case. Proper
equivalent expressions have to be found. For instance, if we
use ((b #  a) #  c) if a #  b = 1, and ¬(c #  ¬(a #  b)) if
b # a = 1, which is indeed equivalent to (a $ (b $ c)) in the
binary case, we shall obtain with Lukasiewicz implication,
min(1, c + (b ( a)) if a ! b, and max(0, c ( (a ( b)) if a # b,
which are normalized versions of the solution of the numerical
equation a ( b = c ( d. The systematic investigation of proper
graded extensions is left for further research.

IV. APPLICATIONS

As announced in the introduction, there are several
potential applications of the approach proposed here to
approximate and case-based reasoning, and to machine
learning. We only outline them here.

For approximate reasoning, we have to use the "set
element-interpretation" reading. Given a subset A' +  X, and
some pair (A, B) associated with a fuzzy rule, one may
compute a subset B' such as (A : A' :: B : B') = 1 in the sense
of extensions of definitions (8) or (9), once the fuzzy
connectives have been chosen. One may also directly apply
extensions of Propositions 5 or 6 (taking also into account
some fuzzy counterpart of Proposition 4). Depending on the
different choices, these constructions may be equivalent or
not. It will generally departs from usual forms of Zadeh's
generalized modus ponens [28], [9], and may come closer to
patterns discussed in [4], [5], [6], [7], which starts from the
possible definitions of the similarity between two fuzzy sets.

But the above approach requires that A and B be defined
on the same referential, which is a severe limitation. If it is
not the case, one may define a one-to-one correspondence
between the referential X of A and the referential Y of B. In
order to be meaningful, this correspondence / should be such
as (smallX(x) : smallY(/(x)) :: largeX(x)  : largeY(/(x))) = 1 for
all x in X, where smallX and largeX (resp. smallY and largeY)
are fuzzy sets of X (resp. Y). This condition expresses a kind
of commensurateness of two numerical domains by making
sure that what is termed ‘small’, or ‘large’, in a domain
corresponds to a value qualified in a similar way in the other
domain. Then B’ will be a solution of

(A(x) : A'(x)  :: B(/(x))  : X(/(x))) = 1 for all x in X.

However, there is another way that one may think of for
using analogical reasoning in relation to approximate
reasoning. Assume we have three rules “If x is A1 then y is
B1”, “If x is A2 then y is B2”, and “If x is A3 then y is B3”,
and a fact “x is A' ”, and we look for the associated “y is B'”.
Let us further assume that the following analogical proportion
holds (A1 : A2 :: A3 : A') = 1 (or is very close to 1). Then, one
may think of computing B', as being the solution of a similar
analogical proportion, namely (B1 : B2 :: B3 : X) = 1 Thus,
we will also have ((A1, B1) : ((A2, B2) :: ((A3, B3) : ((A', X)).

Regarding case-based reasoning, the "object properties-
interpretation" seems more suitable. Let us, for instance,
consider the case of houses to let for vacations described in
terms of three attributes (size, distance to the sea, price). Let
us introduce three increasing membership functions on each
attribute domain. They correspond to the idea of 'large', 'far',
and 'expensive'. Given a repertory of houses, and a new house
whose price is unknown, one may be led to the following
analogical proportion equations such as

((large (hi), far(hi)) : expensive(hi) :: ((large (h), far(h)) : x) = 1



where hi is a house in the repertory, h is the house whose price
is unknown, and the first term of the analogy is computed as
e.g., a = min(large (hi), far(hi)) and the third term similarly.
Then one can find solution(s) x = expensive(h) for the
equation. Mind that if we use bell-shaped membership
functions, the membership grade x may correspond to two
prices … The comparison of this approach with methods
developed in [8], [10], [13], is an open question.

We may also think of using the analogical proportion in
another way, using three complete cases (described as having a
n-tuple of properties each of them to some extent) and another
case to be completed. For instance, knowing how varies the
price of a house according as it has or not some special
equipment (from the cases of two houses quite similar, one
having the equipment and the other not), and the knowledge
of a quite different, third house having the equipment, try to
guess the price of a fourth house quite similar to the third one,
except it does not possess the equipment …

As far as machine learning is concerned, the approach
could be applied to finite sets, to t-uples of attribute values,
but also to sequences and other structures sets. The concept of
analogical dissimilarity has already been proven useful in
classification problems [2] on binary and nominal data. It has
already been extended to dissimilarity between 4-uples of
strings, with applications to linguistic data as well as on-line
handwritten characters [25], [3]. Analogical dissimilarity
between tree structures, with application to written and spoken
language is currently studied for machine learning
applications.

V. CONCLUDING REMARKS

The paper has proposed a logical formalization of the idea
of analogical proportion first for two-valued truth-values. As
far as we know, this approach is original, since such a logical
modeling was not laid bare before. It enables us to extend the
approach to graded truth-values in a natural way. Clearly much
remain to do, in particular i) to fully investigate the
meaningful extensions with fuzzy connectives, ii) to compare
them with numerical approaches, and iii) to fully discuss the
applications outlined in the previous section.
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