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Fractional Brownian motion is a non-Markovian Gaussian process indexed by the Hurst exponentH ∈ [0, 1],
generalizing standard Brownian motion to account for anomalous diffusion. Functionals of this process are
important for practical applications as a standard reference point for non-equilibrium dynamics. We describe
a perturbation expansion allowing us to evaluate many non-trivial observables analytically: We generalize the
celebrated three arcsine-laws of standard Brownian motion. The functionals are: (i) the fraction of time the
process remains positive, (ii) the time when the process last visits the origin, and (iii) the time when it achieves
its maximum (or minimum). We derive expressions for the probability of these three functionals as an expansion
in ε = H − 1

2
, up to second order. We find that the three probabilities are different, except for H = 1

2
where

they coincide. Our results are confirmed to high precision by numerical simulations.
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I. INTRODUCTION

A. Fractional Brownian motion

In the theory of stochastic processes fractional Brownian
motion (fBm) plays as important a role as standard Brownian
motion [1–4]. It was introduced [5, 6] to incorporate anoma-
lous diffusive transport [7], which is abundant in nature, but
not describable by standard Brownian motion. FBm has sev-
eral key mathematical structures to qualify it as the most fun-
damental stochastic process for anomalous diffusion: trans-
lation invariance in both time and space (stationarity), invari-
ance under rescaling, and Gaussianity [8]. The current math-
ematical formulation of fBm was given by Mandelbrot and
Van Ness [6] to describe correlated time-series in natural pro-
cesses. It is defined as a Gaussian stochastic process Xt with
X0 = 0, mean 〈Xt〉 = 0 and covariance

〈XtXs〉 = t2H + s2H − |t− s|2H . (1)

The parameter H ∈ (0, 1) is the Hurst exponent. An ex-
ample is given in Fig. 1. Standard Brownian motion corre-
sponds to H = 1

2 where the covariance reduces to 〈XtXs〉 =
2 min(s, t).

FBm is important as it successfully models a variety of nat-
ural processes [1, 2]: A tagged particle in single-file diffusion
(H = 0.25) [9–13], the integrated current in diffusive trans-
port (H = 0.25) [14], polymer translocation through a nar-
row pore (H ' 0.4) [15–17], anomalous diffusion [18], val-
ues of the log return of a stock (H ' 0.6 to 0.8) [19–22],
hydrology (H ' 0.72 to 0.87) [23, 24], a tagged monomer
in a polymer chain (H = 0.25) [25], solar flare activity
(H ' 0.57 to 0.86) [26], the price of electricity in a lib-
erated market (H ' 0.41) [27], telecommunication networks
(H ' 0.78 to 0.86) [28], telomeres inside the nucleus of hu-
man cells (H ' 0.18 to 0.35) [29], sub-diffusion of lipid gran-
ules in yeast cells [30], and diffusion inside crowded fluids

(H ' 0.4) [31], are few such examples. Due to the simplicity
of its definition, fBm has a fundamental importance, as well
as a multitude of potential applications. The pressing ques-
tions are how the celebrated properties of standard Brownian
motion generalize for fBm, and how can one analyze them?
In this paper we aim to address some of these questions.

The anomalous diffusion in fBm comes from the long-
range correlations in time, which makes the process non-
Markovian, i.e. its increments are not independent, unless
H = 1

2 ; this can be seen from the correlation of increments,

〈∂tXt ∂sXs〉 = 2H(2H − 1)|s− t|2(H−1) . (2)

The positivity of correlations for H > 1
2 means that the pro-

cess is correlated and the paths appear to be more regular
than for standard Brownian motion. The converse holds for
H < 1

2 , where increments are anti-correlated, making the pro-
cess rough on short scales. This can be seen in Fig. 1 for the
sample trajectory of a fBm generated in our computer simula-
tion, using the same random numbers for the Fourier modes,
which renders the resulting curves comparable.

The non-Markovian dynamics makes a theoretical analysis
of fBm difficult. Until now, few exact results are available in
the literature [32–34]. In this paper, we describe a systematic
theoretical approach to fBm, by constructing a perturbation
theory in

ε = H − 1

2
(3)

around the Markovian dynamics. We describe this approach
with a focus on observables that are functionals of the fBm
trajectory Xt, and thereby depend on the entire history of the
process. The fraction of time Xt remains positive, the area
underXt, the position of the last maximum, or the time where
Xt reaches its maximum are examples of such functionals.

Functionals of stochastic processes are a topic of general
interest [35, 36]. Beside their relevance in addressing prac-
tical problems, they appear in path-ensemble generalizations

FIG. 1. (color online) Sample trajectories of an fBm corresponding
to different Hurst exponent (H). Anti-correlation of increments for
H < 1

2
can be seen from larger fluctuations of the trajectories. In

comparison, smoother trajectories for H > 1
2

reflect positive corre-
lations, which become a straight line for H → 1.



3

of traditional statistical mechanics [37, 38]. Beyond equilib-
rium statistical mechanics, the dynamics plays a crucial role in
the statistical theory of non-equilibrium systems. Observables
that are functionals of a stochastic trajectory, e.g. entropy pro-
duction, empirical work, integrated current, or activity, are rel-
evant dynamical observables for a thermodynamic description
of non-equilibrium systems [39].

The statistics of functionals is non-trivial already for
Markovian processes, and is much harder for non-Markovian
ones like fBm. In our work, we overcome the inherent diffi-
culty of the non-Markovian dynamics of fBm by using a per-
turbation expansion around standard Brownian motion (H =
1
2 ), which is a Markovian process. This allows us to use many
tricks available for Brownian motion, such as the method of
images.

B. The three arcsine laws

We illustrate this approach by considering a generalization
of a famous result for standard Brownian motion: the three
arcsine-laws [40–43]. This result is about the following three
functionals of a Brownian motion Bt starting from the origin
B0 = 0, and evolving during time T (see Fig. 2):

(i) the total duration tpos when the process is positive,

(ii) the last time tlast the process visits the origin, and

(iii) the time tmax it achieves its maximum (or minimum).

Remarkably, all three functionals have the same probability
distribution as a function of ϑ := t/T , given by [40–43]

p(ϑ) =
1

π
√
ϑ(1− ϑ)

. (4)

As the cumulative distribution contains an arcsine function,
these laws are commonly referred to as the first, second, and
third arcsine-law. These laws apply quite generally to Markov
processes, i.e. processes where the increments are uncorre-
lated [41]. Their counter-intuitive form with a divergence at
ϑ = 0 and ϑ = 1 has sparked a lot of interest, and they are
considered among the most important results for stochastic
processes. Recent studies led to many extensions, in con-
strained Brownian motion [44–46], for general stochastic pro-
cesses [47–52], and even in higher dimensions [53–55]. The
laws are realized in a plethora of real-world examples, from
finance [56, 57] to competitive team sports [58].

Using our perturbative approach, we show how the three
arcsine-laws generalize for fBm. Our results show that un-
like for standard Brownian motion, all three functionals have
different probability distributions, which coincide only when
ε = 0, i.e. for Brownian motion. As for two of the laws the
difference is first seen at second order in ε, we have to develop
the technology beyond what was done at leading order [59–
66]. Using our perturbation results up to second order, and a
scaling ansatz, we propose expressions for all three probabil-
ity densities. These expressions agree well with our numerical
results, even for large values of ε, i.e. including the full range

0.0 0.2 0.4 0.6 0.8 1.0
t

−1.0

−0.5

0.0

0.5

1.0

Xt

tmax tlast

tpos

FIG. 2. (color online) The three observables tpos, tlast, and tmax for
a stochastic process starting at the origin. For the standard Brownian
motion, all three have the same cumulative probability distribution
expressed in terms of arcsine function [40–43].

of Hurst exponents reported in the literature cited above [9–
30]. A short account of our main results was reported in [67].

This article is organized in the following order: In Sec. II
we discuss basics of an fBm and introduce the perturbation
expansion of the action. As a consistency check we derive
the free propagator for an fBm in Sec. III, which is checked
against the exact result. In the rest of the sections we discuss
the three functionals for the arcsine-law. In Sec. IV, we sum-
marize our main analytical results for the generalization of the
arcsine laws for an fBm, and compare them with our numeri-
cal simulations. How these results are derived is first sketched
in Sec. V, and thoroughly discussed in later sections. Many
algebraic details and a description of our numerical algorithm
are given in the appendices.

II. PERTURBATION THEORY

A. The action to second order in ε

Our analysis is based on a perturbation expansion of the ac-
tion for an fBm trajectory around standard Brownian motion
(H = 1

2 ). This expansion was discussed and used earlier in
[59–67] at linear order. Here, we give additional details at sec-
ond order, which is essential to show the difference between
the generalizations of the three arcsine-laws.

An ensemble of trajectories for fBm in a time window [0, T ]
is characterized by the Gaussian action

S[Xt] =
1

2

∫ T

0

dt1

∫ T

0

dt2Xt1G(t1, t2)Xt2 (5)

with covariance G−1(t1, t2) = 〈Xt1Xt2〉 as given in Eq. (1).
The probability of a trajectory, up to a normalization, is given
by

P [Xt] ∼ e−S[Xt]. (6)

For H = 1
2 one recovers the Feynman-Kac formula [68] for

standard Brownian motion.
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Writing H = 1
2 + ε and expanding Eq. (5) in powers of ε

we obtain (a derivation is in App. A)

S =
1

D

[
S0 −

ε

2
S1 + ε2S2 + · · ·

]
, (7)

where

S0 =
1

4

∫ T

0

dt ẋ(t)2, (8a)

S1 =

∫ T

0

dr1

∫ T

r1+ω

dr2
ẋ(r1)ẋ(r2)

r2 − r1
, (8b)

S2 =
1

2

∫ T

0

dr1

∫ T

r1+ω

dr2 ẋ(r1)ẋ(r2)× (8c)[ ∫ r1−ω

0

ds

(r1 − s)(r2 − s)
+

∫ T

r2+ω

ds

(s− r1)(s− r2)

]
.

The pre-factor, the diffusion constant, reads

D ≡ D(ε, ω) = eε 2(1+lnω)−ε2 2(1−π2

6 )+O(ε3). (9)

The small-time (ultraviolet) cutoff ω > 0 is introduced to reg-
ularize the integrals in the action. Our final results are in the
limit of ω → 0, and independent of ω. The second-order term
in the exponential in Eq. (9) is independent of ω, since from
dimensional arguments D ∼ ωε,

Remark: To keep our formulas simple, we explicitly write
the ultraviolet cutoff in Eqs. (8b)-(8c) only for integrals which
would otherwise diverge.

B. Integral representation of the action, and normal-ordered
form of the weight

For our explicit calculations we use an alternative represen-
tation of Eqs. (8b) and (8c):

S1 =

∫ Λ

0

dy

∫ T

0

dr1

∫ T

r1

dr2 ẋ(r1)ẋ(r2)ey(r1−r2), (10a)

and

S2 =
1

2

∫ Λ

0

dy1

∫ Λ

0

dy2

∫ T

0

dr1

∫ T

r1

dr2 ẋ(r1)ẋ(r2)×[∫ r1

0

ds e−y1(r1−s)−y2(r2−s) +∫ T

r2

ds e−y1(s−r1)−y2(s−r2)

]
, (10b)

where the ultraviolet cutoff ω in time is replaced by an upper
limit Λ for the y variables. A vanishing ω is equivalent to
Λ→∞, which is always taken in the final results.

Their relation can be inferred as follows: for small ω∫ ∞
ω

dt

t
e−st ' − ln(s ω)− γE +O(ω), (11)

where γE = 0.57721 . . . is the Euler constant. On the other
hand, the integral representation for large Λ reads∫ Λ

0

dy

∫ ∞
0

dt e−ts−ty ' ln

(
Λ

s

)
+O(Λ−1). (12)

Demanding that they agree, we get

Λ =
1

ω
e−γE . (13)

In Sec. III we further check Eq. (13) by constructing the free
diffusion propagator for fBm. In terms of Λ, Eq. (9) reads

D = eε 2(1−ln Λ−γE)−ε2 2(1−π2

6 )+O(ε3). (14)

Remark: Keeping in mind the ultraviolet cutoff ω present in
Eqs. (8b)–(8c), integrals arising from Eq. (10) are interpreted
such that∫ T

r1

dr2 δ(r2− r1) := lim
ω→0

∫ T

r1+ω

dr2 δ(r2− r1) = 0. (15)

This convention for the expression of the action is used
throughout our analysis.

Remark: A subtle point is that at second order for the prob-
ability in Eq. (6) one encounters terms of order S2

1 in which
one contracts two of the ẋ (contracting all four gives a con-
stant entering into the normalization of the probability, thus
ignored),

S2
1

8
=

1

8

∫ T

0

dr1

∫ T

r1+ω

dr2
ẋ(r1)ẋ(r2)

r2 − r1
×∫ T

0

dr3

∫ T

r3+ω

dr4
ẋ(r3)ẋ(r4)

r4 − r3

−→



1
4

∫
r1<r2,r4

ẋ(r2)
r2−r1

ẋ(r4)
r4−r1

1
4

∫
r3<r1<r2

ẋ(r2)
r2−r1

ẋ(r3)
r1−r3

1
4

∫
r1<r2<r4

ẋ(r1)
r2−r1

ẋ(r4)
r4−r2

1
4

∫
r1,r3<r2

ẋ(r1)
r2−r1

ẋ(r3)
r2−r3 .

The cutoffs in the integrations are implicit and the right ar-
row indicates contraction of a pair of ẋ. The four terms
come, in the given order, from the contraction of ẋ(r1)ẋ(r3),
ẋ(r1)ẋ(r4), ẋ(r2)ẋ(r3), and ẋ(r2)ẋ(r4). They have the same
structure as those of S2 in Eq. (8c), and we can group them
together: the first contracted term in Eq. (16) cancels the first
term of Eq. (8c), the fourth contracted term in Eq. (16) can-
cels the last term in Eq. (8c) (note that S2 comes with a minus
sign in the expansion, and the points r1 and r2 are ordered);
the remaining two contracted terms are identical and can be
incorporated into a redefinition of S2 as discusses below.

These cancellations make it advantageous to exclude self-
contractions, i.e. the terms on the r.h.s. of Eq. (16), from e−S ,
which in field theory is noted as a normal-ordered [69] weight,

e−S −→ :e−S
(n)

: (16)
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In this normal-ordered form, the second-order term S2 is re-
placed by

S(n)
2 =

1

2

∫ Λ

0

dy1

∫ Λ

0

dy2

∫ T

0

dr1

∫ T

r1

dr2ẋ(r1)ẋ(r2)

×
∫ r2

r1

ds e−y1(r1−s)−y2(r2−s), (17)

(cutoffs are implicit). Using the normal-ordered weight makes
our calculations simple and elegant. However, to keep our cal-
culation accessible for a non-specialist, we present our analy-
sis using the weight in Eq. (10). We shall mention at relevant
stages of the calculation which can be simplified using normal
ordered weight.

III. THE FREE FBM PROPAGATOR

In this section, we verify the perturbation expansion in
Eqs. (7)-(10) by deriving a known result about the propaga-
tor of an fBm. The probability for an fBm, starting atX0 = 0,
to be at XT = m at time T is given by

GH(m,T ) =
e−

m2

4T2H

√
4πT 2H

, (18)

which is straightforward to see for the Gaussian process with
covariance Eq. (1).

In terms of the action in Eq. (5), the same propagator can
be expressed as

GH(m,T ) =
WH(m,T )

NT
, (19)

where

WH(m,T ) =

∫ x(T )=m

x(0)=0

D[x]e−S[x] (20a)

and normalization

NT =

∫ ∞
−∞

dmWH(m,T ). (20b)

Eq. (18) can be derived from Eq. (19) using the perturbation
expansion (7). For this, we Taylor expand Eq. (18) in ε as

GH(m,T ) =G(m,T ) + ε 2T (lnT )∂2
mG(m,T )+

ε2
[
2(T lnT )2∂4

mG(m,T )

+2T (lnT )2∂2
mG(m,T )

]
+ · · · , (21)

where G(m,T ) (without the subscript H) is the propagator
for standard Brownian motion (H = 1

2 ) with unit diffusivity.
In this section, we restrict our analysis to second order in ε,
which is enough to verify formulas (8)-(10). An all-orders
analysis is deferred to App. C.

Using Eqs. (7) and (14) in Eq. (20) we get

WH(m,T ) = W0(m,T )+εW1(m,T )+ε2W2(m,T )+· · · ,

where

W0(m,T ) =

x(T )=m∫
x(0)=0

D[x]e−
S0
D , (22a)

W1(m,T ) =
1

2

x(T )=m∫
x(0)=0

D[x]e−
S0
D S1, (22b)

W2(m,T ) =

x(T )=m∫
x(0)=0

D[x]e−
S0
D

[
S2

1

8
− (1−γE− ln Λ)S1 − S2

]
.

(22c)

The second term comes from the order-ε contribution to the
diffusion constant (14) inserted into Eq. (7).

Each term in the expansion of WH can now be evaluated
as an average with a Brownian measure of diffusivity D. The
path integral measure D[x] is defined such that the leading
term

W0(m,T ) = ZT (0,m) :=
e−

m2

4DT√
4πDT

(23)

is the normalized propagator ZT (0,m) for standard Brownian
motion with diffusivity D, starting from x = 0 at t = 0, and
ending in x = m at t = T . (ForD = 1, ZT (0,m) ≡ G(m,T )
in Eq. (21).)

For the linear-order term in Eq. (22b) we use Eq. (10a) and
the identity (M11) derived in App. M to obtain∫ x(T )=m

x(0)=0

D[x]ẋ(r1)ẋ(r2)e−
S0
D = ∆(r1 − r2)ZT (0,m),

(24)

∆(r1 − r2) := 22D2∂2
m + 2D δ(r1 − r2). (25)

Using the convention in Eq. (15) we get

W1(m,T ) = f1(T )D2 2 ∂2
mZT (0,m), (26)

f1(T ) =

∫ Λ

0

dy

∫ T

0

dr1

∫ T

r1

dr2e
−y(r2−r1)

' T [ln (TΛeγE)− 1] +O(Λ−1). (27)

For the quadratic term in Eq. (22c) we use Wick’s theorem to
obtain

x(T )=m∫
x(0)=0

D[x]ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)e−
S0
D =

(∑
σ

∆(rσ(1) − rσ(2))∆(rσ(3) − rσ(4))

)
ZT (0,m), (28)

where σ denotes the set of all pairs. Then, using Eqs. (10b)
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and (15) leads to

W2(m,T ) = 2f2
1 (T )D4∂4

mZT (0,m)+[
f5(T )D − 4(1− γE − ln Λ)f1(T )− 2f3(T )

]
×D2∂2

mZT (0,m) +
1

2
f6(T )D2ZT (0,m). (29)

Here

f5(T ) =

Λ∫
0

dy1

Λ∫
0

dy2

T∫
0

dr1

T∫
r1

dr2

T∫
0

dr3

T∫
r3

dr4e
y1(r1−r2)+y2(r3−r4)

×
[
δ(r1−r3) + δ(r2−r4) + δ(r1−r4) + δ(r3−r2)

]
,

which simplifies to

f5(T ) = 2

Λ∫
0

dy1

Λ∫
0

dy2

T∫
0

dr1

T∫
r1

dr2

T∫
0

ds e−y1|s−r1|−y2|s−r2|.

(30a)

The remaining terms are

f3(T ) =

Λ∫
0

dy1

Λ∫
0

dy2

T∫
0

dr1

∫ T

r1

dr2


r1∫

0

ds+

T∫
r2

ds

 e−y1|s−r1|−y2|s−r2|, (30b)

f6(T ) =

Λ∫
0

dy1

Λ∫
0

dy2

T∫
0

dr1

T∫
r1

dr2 e
−(y1+y2)(r2−r1). (30c)

In a similar calculation, the normalization in Eq. (20) is ob-
tained from Eqs. (23), (26), and (29) as

NT = 1 + ε2 1

2
f6(T )D2 +O(ε3).

Note that the linear-order term vanishes.
Altogether, from Eq. (19) we get

GH(m,T ) = ZT (0,m) + ε 2f1(T )D2∂2
mZT (0,m)

+ε2

{
2f2

1 (T )D4∂4
mZT (0,m) +

[
f5(T )D − 2f3(T )

−4(1− γE − lnΛ)f1(T )

]
D2∂2

mZT (0,m)

}
+O(ε3). (31)

To see that Eq. (31) agrees with Eq. (21) we use Eq. (14) in
Eq. (23) and write

ZT (0,m) = G(m,T ) + ε 2(1− γE − ln Λ)T∂2
mG(m,T )

+ ε2

[
2

(
(1− γE − ln Λ)2 − 1 +

π2

6

)
T∂2

mG(m,T )

+ 2(1− γE − ln Λ)2T 2∂4
mG(m,T )

]
+ · · · .

0 20 40 60 80 100 120 140
0

5

10

15

20

Infrared cutoff (Λ)

FIG. 3. (color online) A comparison of the integral in Eq. (35) (indi-
cated by red points) with its asymptotic (indicated by solid line) for
large Λ and T = 1.

Substituting the above expression of ZT (0,m) in Eq. (31) and
then using Eq. (14) yields

GH(m,T ) = G(m,T ) + ε 2TK2
1∂

2
mG(m,T )+

ε2
[
2T 2K2

1∂
4
mG(m,T ) + 2TK2∂

2
mG(m,T )

]
+ · · · , (32)

where

K1 =
f1(T )

T
+ 1− γE − ln Λ, (33)

and

K2 =
f5(T )− 2f3(T )

2T
+ 2(1− γE − ln Λ)

f1(T )

T

+ (1− γE − ln Λ)2 − 1 +
π2

6
. (34)

It is then easy to see from the expression of f1(T ) in Eq. (27)
and

1

2
f5(T )−f3(T ) =

∫ Λ

0

dy1

∫ Λ

0

dy2

∫ T

0

dr1

∫ T

r1

dr2

×
∫ r2

r1

dse−y1(s−r1)−y2(r2−s)

' T
{[

lnT − (1− γE − ln Λ)
]2

+ 1− π2

6

}
(35)

for large Λ, that Eq. (32) agrees with Eq. (21).

Remark: The asymptotics of the integral in Eq. (35) is nu-
merically verified in Mathematica, with results shown in
Fig. 3.

Remark: The analogue of the integral in Eq. (35) with ultra-
violet cutoff ω in time is∫ T−2ω

0

dr1

∫ T

r1+2ω

dr2

∫ r2−ω

r1+ω

ds
1

(s− r1)(r2 − s)
.
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As a consistency check we verified that for small ω, and using
the identification Eq. (13), the integral yields the asymptotics
in Eq. (35).

Remark: In our derivation of Eq. (21) using Eq. (7) we in-
terchanged the small-ε and large-Λ limits. Agreement of the
final result in Eq. (21) shows that this step is justified. We
assume the same property in our perturbation analysis in the
observables of the three arcsine-laws.

Remark: The analysis would be simpler with the normal-
ordered Action in Eq. (16), because then terms f5 and f6 in
Eq. (29) vanish.

IV. A GENERALIZATION OF THE THREE
ARCSINE-LAWS

Unlike for standard Brownian motion, the probabilities for
the three observables tlast, tmax, and tpos all differ. Self-
affinity of an fBm (invariance under rescaling of space with
TH ) means that the three probabilities are a function of the
rescaled variable ϑ = t/T (t being tlast, tmax, tpos). They
can be written as

plast(ϑ) =
Nlast

π ϑH(1− ϑ)1−H eF
last(ϑ,H), (36)

pmax(ϑ) =
Nmax

π [ϑ(1− ϑ)]H
eF

max(ϑ,H), (37)

ppos(ϑ) =
Npos

π [ϑ(1− ϑ)]H
eF

pos(ϑ,H). (38)

The divergences in the prefactor of the exponential terms are
predicted using a scaling argument (discussed in Sec. IV B)
for ϑ→ 0 and ϑ→ 1. They are linked to earlier results about
the persistence exponent Θ = 1 −H [32, 33, 59]. The terms
F in the exponential are non-trivial and remain finite over the
full range of ϑ. We use the convention that the integral of each
F function over ϑ vanishes, which together with the normal-
ization

∫ 1

0
dϑ p(ϑ) = 1 fixes the constants N .

For H = 1
2 , all three F functions vanish, H = 1−H , and

the expressions (36) to (38) reduce to the same well-known
result of standard Brownian motion (“arcsine law”). For H 6=
1
2 , they can be written as a perturbation expansion in ε = H−
1
2 ,

F last(ϑ,H) =εF last
1 (ϑ) + ε2F last

2 (ϑ) + · · · , (39a)

Fmax(ϑ,H) =εFmax
1 (ϑ) + ε2Fmax

2 (ϑ) + · · · , (39b)

Fpos(ϑ,H) =εFpos
1 (ϑ) + ε2Fpos

2 (ϑ) + · · · . (39c)

For the leading-order terms we find

F last
1 (ϑ) = 0, (40a)

and

Fmax
1 (ϑ) = Fpos

1 (ϑ) = 2− π2

2
+ ψ

(√
ϑ

1− ϑ

)
, (40b)

FIG. 4. (color online) Numerical simulation results for the proba-
bility of the three observables tlast, tmax, and tpos for an fBm with
H = 0.33. The inset shows the probabilities for H = 0.66. Note
that the distributions of tpos and tmax are almost indistinguishable.

with

ψ(x) =
2

x
arctan(x) + 2x arctan

(
1

x

)
. (40c)

This is the simplest form we found. Alternative expres-
sions were given in [60–62, 64], using that arctan(x) +
arctan

(
1
x

)
= π

2 . Yet another equivalent form is given in
Eq. (6) of [67]. We note that the expression (40b) is symmetric
under ϑ→ 1− ϑ. This can be understood from the symmetry
of the problem. We do not have an intuitive understanding of
the equality of Fpos

1 and Fmax
1 , while the vanishing of F last

1

in Eq. (40) can easily be understood from perturbation theory
[64].

Expressions for the sub-leading terms F2 can be written as
integrals, which are hard to evaluate analytically. For tlast, it
is given up to an additive constant by

F last
2 (ϑ) =

∫ ∞
0

dy1dy2

y2
1y

2
2

Ψlast

(
y1, y2,

1− ϑ
ϑ

)
, (41a)

where Ψlast(y1, y2, z) is symmetric in (y1, y2) and given by

Ψlast (y1, y2, z) = 2
√

(1 + y1 + y2)z

×
(

1−
√

1 + y1 −
√

1 + y2 +
√

1 + y1 + y2

)
×
(√

z−Θ(z − y1)
√
z − y1 −Θ(z − y2)

√
z − y2

+ Θ(z − y1 − y2)
√
z − y1 − y2

)
, (41b)

with Θ(x) being the Heaviside step function. Expressions for
Fmax

2 and Fpos
2 are cumbersome and given later.

In order that the reader can use our results, we give simple
but rather precise approximations for the results obtained after
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FIG. 5. A comparison of the data shown in Fig. 4 with their theoret-
ical formula (36)-(38). The dashed lines are for theoretical results.
The distribution pmax(ϑ) is shown in the inset as it is almost indis-
tinguishable from the distribution ppos(ϑ).

numerical integration.

F last
2 (ϑ) '− 17.92401 + 13.30207

√
ϑ

− 2.16604
√

1− ϑ+ 8.30059ϑ+ 11.59529ϑ
3
2

+ 13.23121(1− ϑ)
3
2 − 10.74274ϑ2, (42)

Fmax
2 (ϑ) '− 0.431001 + 1.69259 [ϑ(1− ϑ)]

1
2

− 1.93367 [ϑ(1− ϑ)] + 1.3572 [ϑ(1− ϑ)]
3
2

− 0.33995 [ϑ(1− ϑ)]
2
, (43)

Fpos
2 (ϑ) '− 0.842235 + 1.76479 [ϑ(1− ϑ)]

1
2

+ 3.70810 [ϑ(1− ϑ)]− 9.71973 [ϑ(1− ϑ)]
3
2

+ 7.40511 [ϑ(1− ϑ)]
2
. (44)

These approximate functions are estimated respecting sym-
metries in the problem, i.e. that Fpos

2 (ϑ) and Fmax
2 (ϑ) are

symmetric under the exchange of ϑ → 1 − ϑ while F last
2 (ϑ)

is not.

Remark: We stated above that ppos(ϑ) and pmax(ϑ) are sym-
metric around ϑ = 1

2 , while plast(ϑ) is not (except for H =
1
2 ). Symmetry of the first two probabilities is due to the ob-
servation that xt and XT − xT−t have the same law. For plast

the asymmetry is easy to see from the almost-straight-line tra-
jectories for H ' 1 in Fig. 1, which makes ϑ = 0 the most
probable value. This is reflected in the small-ϑ divergence of
the distribution (36) in the limit of H → 1.

A. Comparison with numerical results

An efficient implementation of fBm on a computer is non-
trivial due to its long-range correlations in time. For this pa-
per, we use the Davis-Harte algorithm [70, 71], which gen-
erates sample trajectories drawn from a Gaussian probabil-
ity with covariance (1) in a time of order N ln(N), given N

equally spaced discretization points. Details of this algorithm
are given in App. D. Interestingly, for the first-passage time,
recently an algorithm was introduced which grows as ln(N)3,
albeit accepting a small error probability [66, 72, 73], allow-
ing for even more precise estimates.

Results for the three probabilities from our computer simu-
lations are shown in figure 4 for H = 0.33. They are obtained
by averaging over 5× 109 sample trajectories, each generated
with 213 discrete-time steps. The two distributions pmax(ϑ)
and ppos(ϑ) are almost indistinguishable, as predicted in their
theoretical expressions in Eqs. (37) and (38).

Figure 4 also shows that plast(ϑ) behaves markedly differ-
ently from the other two distributions; especially, it is asym-
metric under the exchange ϑ → 1 − ϑ. This asymmetry in
exponents is reversed around H = 1

2 , as shown in the inset of
figure 4. This can be seen in the scaling form in Eq. (36).

A comparison of numerical data for H = 0.33 with their
corresponding theoretical result in Eqs. (36)-(38) are shown
in Fig. 5. They are in excellent agreement. Deviations are
visible for higher values of H as shown in Fig. 6 for a set
of increasing values of H ≥ 1

2 . We see a perfect agreement
between theoretical and numerical results for H = 1

2 , (i.e.
ε = 0). The agreement is very good for small ε = H − 1

2 , but
deviations can be seen as ε is increased beyond |ε| ≈ 0.25,
i.e. H ≤ 0.25 or H ≥ 0.75.

The difference between plast and pmax first appears in the
second-order term F2 in Eq. (39). In Fig. 7 we plot our the-
oretical results of F2(ϑ) alongside the results from computer
simulations. This give a finer verification of our theory. To
illustrate this procedure, we use Eq. (38) to define

Fpos
2,ε (ϑ) :=

1

ε

[
1

ε
ln

(
ppos(ϑ)

[ϑ(1− ϑ)]H

N

)
−Fpos

1 (ϑ)

]
.

(45)
Then, Fpos

2,ε (ϑ) = Fpos
2 (ϑ) + O(ε) and it contains all terms

in the exponential in Eq. (38) except Fpos
1 (ϑ). We can further

improve this estimate by observing that the sub-leading term
in Fpos

2,ε (ϑ) is odd in ε. Define

Fpos

2,ε (ϑ) :=
1

2

[
Fpos

2,ε (ϑ) + Fpos
2,−ε(ϑ)

]
, (46)

then Fpos

2,ε (ϑ) differs from the theoretical Fpos
2 (ϑ) by order ε2

or higher, for small ε, equivalent to an order ε4 correction to
plast(ϑ).

A comparison of Fpos

2,ε (ϑ) extracted from numerical simu-
lations of ppos(ϑ) to the theoretical result ofFpos

2 (ϑ) is shown
in Fig. 7 for ε = ± 1

6 (i.e. for H = 2
3 and 1

3 ). The figure also
contains a similar comparison forF last

2 (ϑ) andFmax
2 (ϑ), with

their corresponding numerical results. One sees the excel-
lent agreement between results from our theory and numerical
simulations. We remind that these are sub-sub-leading cor-
rections, almost indiscernible in the probability density p(ϑ)
shown on Fig. 5.

An important observation from Fig. 7 is that for all three
observables F2(ϑ) is finite in the entire range of ϑ. We note
that the amplitude of F last

2 (ϑ) is about ten times larger than
Fpos

2 (ϑ) and Fmax
2 (ϑ). The former also shows the largest
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H = 0.5 H = 0.6

H = 0.75 H = 0.9

FIG. 6. A comparison of the theoretical formulas in Eqs. (36)-(38) with their corresponding numerical simulation result of an fBm at diffrent
values of H ≥ 1

2
: H = 0.5, 0.6, 0.75 and 0.9. The dashed lines are the theoretical results, the continuous lines the numerical results.

deviations from our theoretical result, especially for ϑ → 0.
These indicate the presence of sub-leading terms of order ε4,
or higher in p.

The difference between ppos(ϑ) and pmax(ϑ) first appears
at second order in perturbation theory. To underline that
Fpos

2 (ϑ) and Fmax
2 (ϑ) in Eqs. (43) and (44) are distinct func-

tions, we show in Fig. 8 their difference

δF2(ϑ) = Fmax
2 (ϑ)−Fpos

2 (ϑ)

= lim
ε→0

1

ε2
ln

(
pmax(ϑ)

ppos(ϑ)

)
. (47)

The theoretical result of the difference shows excellent agree-
ment with the numerical data for Fmax

2,ε (ϑ)−Fpos

2,ε (ϑ) defined
following the same conventions as in Eq. (46). This proves
that the laws for tmax and tpos are indeed different.

B. Scaling analysis

The prefactor of the exponential in formula Eqs. (36)-(38)
can be predicted using scaling arguments. The simplest one is
plast(ϑ), which is the probability that the fBm is at the origin
at time ϑ and does not return for the remaining time 1 − ϑ.

(We put the total time T = 1, s.t. ϑ = t.) The probability
for the first part of the event scales as ϑ−H , see Eq. (18). The
second part scales as ϑ−θ, where θ = 1 −H is the persistent
exponent [32, 33, 59]. Combining the two gives the prefactor
in Eq. (36).

The scaling argument for pmax(ϑ) is more involved, and
was first discussed in Refs. [59, 62, 64]. One starts with the
relation

PT (m) =
dST (m)

dm
, (48)

where PT (m) is the probability for the position of the maxi-
mum m for an fBm in a time interval T started at the origin;
ST (m) is the survival probability up to time T for an fBm
started at m > 0, in presence of an absorbing wall at the ori-
gin. Self-affinity of an fBm suggests the scaling form

PT (m) =
1

TH
g1

( m

TH

)
; ST (m) = g2

( m

TH

)
, (49)

which leads to

g1(x) = g′2(x). (50)

To be consistent with the result for the persistence exponent
[32, 33], one must have g2(x) ∼ x

θ
H for small x. This leads
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(a) (b) (c)

FIG. 7. A comparison of the three F2(ϑ) obtained analytically (black dashed lines) and their measurement using formula (46) with ε = ± 1
6

.
From left to right: (a) positive time, (b) time for the last visit to the origin, and (c) time for the maximum. The scattered dots are the raw data
from trajectories of N = 213 time steps, averaged over 5× 109 samples, which are coarse grained by a factor of 100 to give the green curve.

0.2 0.4 0.6 0.8 1.0
ϑ

0.2

0.2

0.4

δℱ2(ϑ)

FIG. 8. The difference δF2(ϑ) = Fmax
2 (ϑ) − Fpos

2 (ϑ) using the
same conventions as in Fig. 7. This plot quantifies the difference
between the distribution of tmax and tpos.

to g1(x) ∼ x θ
H−1, equivalent to

PT (m) ∼ m
θ
H−1

T θ
for small m. (51)

To relate to the distribution PT (tmax) of tmax we use that at
small tmax the maximum m is also small and m ∼ tHmax. This
leads to

PT (tmax) = PT (m)
dm

dtmax
∼ 1

tmax

(
tmax

T

)θ
. (52)

Substituting θ = 1−H one gets

PT (tmax) ∼ 1

T

(
tmax

T

)−H
, (53)

and equivalently

pmax(ϑ) = T PT (ϑT ) ∼ ϑ−H for small ϑ. (54)

Using the symmetry of the probability pmax(ϑ) under ϑ →
1−ϑ one gets (1−ϑ)−H for ϑ→ 1. This gives the prefactor
in Eq. (37).

A similar argument relating to the persistent exponent [74]
can be constructed for the distribution of tpos. For tpos �
T , probability PT (tpos) for an fBm to remain positive of net
tpos time, relates to persistence probability for the fBm to stay
negative for most of its total duration T . This means, for 1�
tpos � T ,

PT (tpos) ∼ T−θ, (55)

with the persistent exponent θ. For this T -dependence to
be consistent with the re-scaled probability PT (ϑT ) =
1
T ppos(ϑ), one must have

ppos(ϑ) ∼ ϑθ−1 for ϑ→ 0, (56)

giving the small ϑ divergence in Eq. (38). The symmetry un-
der ϑ→ 1− ϑ gives the divergence near ϑ→ 1.

C. Comparison to an exact result

In Ref. [12] the first few moments of tpos were calculated
analytically for an fBm of H = 1

4 . It is straightforward to
generalize this analysis for arbitrary H . For the fraction of
positive time ϑ = tpos/T , we obtain the first three moments:
〈ϑ〉 = 1

2 (obvious from the symmetry of the distribution),

〈ϑ2〉 =
1

4
+

1

2π

∫ 1

0

dr arcsinR(r), (57a)

〈ϑ3〉 =
1

8
+

3

4π

∫ 1

0

dr arcsinR(r), (57b)

where

R(r) =
1

2rH
[
1 + r2H − (1− r)2H

]
. (57c)
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〈ϑ2〉

〈ϑ3〉

0.0 0.2 0.4 0.6 0.8

0.25

0.30

0.35

0.40

0.45

0.50

Hurst exponent (Η)

M
om
en
ts

FIG. 9. Second and third moment for the fraction of positive time
ϑ = tpos/T as a function of the Hurst exponent H . The solid lines
are the exact result in Eq. (57), whereas the dashed lines denote their
result obtained using Eq. (38) with Fpos in Eq. (39) up to second
order. The difference is noticeable for H far from 1

2
, indicating cor-

rections from higher-order terms in Eq. (39).

It is hard to determine higher moments. The problem maps to
the orthant probability problem for a multivariate Gaussian,
which is still unsolved [75].

A perturbation expansion of Eq. (57) in ε = H − 1
2 gives

〈ϑ2〉 =
3

8
+
ε

4
(ln 4− 1) +

ε2

24

(
6 ln2 4− π2

)
+ · · · , (58a)

〈ϑ3〉 =
5

16
+

3ε

8
(ln 4− 1) +

ε2

16

(
6 ln2 4− π2

)
+ · · · .

(58b)

Terms up to linear order are reproduced using our perturba-
tion result Eq. (38). The ε2 order terms (0.0693 for 〈ϑ2〉 and
0.1040 for 〈ϑ3〉) obtained using the numerical approximation
Eq. (44) agree with the exact result in Eq. (58) up to the third
decimal place. (This is a 0.2% disagreement, as apposed to a
40% disagreement if Fpos

2 is ignored in Eq. (39c).)
A comparison of the exact result for the moments with their

results obtained using Eq. (38) is shown in Fig. 9.

V. OVERVIEW OF THEORETICAL ANALYSIS

Before we present details of the derivation for Eqs. (36)-
(38), we give an overview of our approach. Our calculation is
done using a double Laplace transformation D for the proba-
bility PT (τ), defined by

P̃ (λ, s) = Dτ→λ
T→s

� PT (τ), with (59)

Dτ→λ
T→s

� PT (τ) :=

∫ ∞
0

dT

∫ T

0

dτ e−sT−λτ PT (τ). (60)

For the re-scaled probability p(ϑ) := T PT (ϑT ) and it’s
Laplace transform

p̃(κ) =

∫ ∞
0

dϑ e−κϑp(ϑ), (61)

the D-transformation gives

P̃ (λ, s) =
1

s
p̃

(
λ

s

)
, with p̃ (κ) =

∫ 1

0

dϑ
p(ϑ)

1 + κϑ
. (62)

Complex analysis using the residue theorem gives the corre-
sponding inverse transformation (see App. E for a derivation),

p(ϑ) =
1

2πi
lim
δ→0+

p̃(− 1
ϑ − iδ)− p̃(− 1

ϑ + iδ)

ϑ
. (63)

Equivalently, one can write

p(ϑ) =
1

2πi
lim
φ→π−

[
κ p̃(κ)− κ?p̃(κ?)

]
κ= eiφ

ϑ

, (64)

where the limit is taken from φ below π, and the star (?) de-
notes complex conjugation.

The analysis can be simplified by considering the form of
results in Eqs. (36)-(38) expected from scaling arguments. We
write

p(ϑ) =
eF(ϑ,H)−(H− 1

2 )R(ϑ)

π
√
ϑ(1− ϑ)

(65)

with R(ϑ) = ln ϑ
(1−ϑ) for tlast and R(ϑ) = lnϑ(1 − ϑ) for

tmax and tpos. (In writing Eq. (65) the normalization con-
stant N from Eqs. (36)-(38) is absorbed in F .) Then, from
Eqs. (64) and (65) we write

p̃(κ) =
eF̃(κ,H)

√
1 + κ

, (66)

such that

eF(ϑ,H)−(H− 1
2 )R(ϑ) = K−1

κ→ϑ � eF̃(κ,H). (67)

Here we define the transformation

K−1
κ→ϑ � f(κ) ≡ lim

φ→π−
R

[
f

(
eiφ

ϑ

)]
, (68)

with R denoting the real part.
In our derivation of the probabilities in Eqs. (36)-(38),

we first calculate F̃(κ,H), and then use Eq. (67) to obtain
F(ϑ,H). To do this order by order in a perturbation expan-
sion in ε = H − 1

2 , write

F̃(κ,H) = ε F̃1(κ) + ε2F̃2(κ) +O(ε3). (69a)

Using this expansion in Eq. (67) we get Eq. (39) with

F1(ϑ) =R(ϑ) +K−1
κ→ϑ � F̃1(κ), (69b)

F2(ϑ) =− 1

2
[F1(ϑ)−R(ϑ)]

2

+K−1
κ→ϑ �

[
F̃2(κ) +

1

2
F̃1(κ)2

]
. (69c)
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m

x0

tlast t = T

Xt

time (t)

FIG. 10. A schematic of an fBm trajectory contributing to the time
tlast of last visit to the origin. The striped line indicates an absorbing
boundary.

Remark: For completeness and for verification purposes, let
us write the inverse transformation of Eq. (68),

Kϑ→k � f(ϑ) :=
1

π

∫ 1

0

dϑ

√
1 + κ

1 + κϑ

f(ϑ)√
ϑ(1− ϑ)

. (70)

A list of the used inverse K-transforms is given in App. F.

Remark: From the normalization condition
∫ 1

0
dϑ p(ϑ) = 1

one can see in Eq. (62) that p̃(0) = 1 and therefore in Eq.
(66),

F̃(κ,H) = 0 for κ = 0. (71)

Remark: There are two reasons for performing our analy-
sis using Laplace transform. The first is that convolutions in
time are factorized, the second that integrations over space can
be done over the Laplace-transformed propagator, but not the
propagator in time. This will become clear in the analysis in
the following sections.

VI. DISTRIBUTION OF TIME tlast FOR THE LAST VISIT
TO THE ORIGIN

The analysis for the distribution of tlast is the simplest
among the three observables, and we present it first. The prob-
ability of tlast = τ for an fBm in a time window [0, T ] can be
determined by

PT (tlast = τ) =
W (τ, T )

N(T )
for x0 → 0, (72)

where W (τ, T ) is twice the weight of fBm trajectories that
start at X0 = 0, pass through Xτ = x0 > 0, and remain
positive for the rest of the time (see Fig. 10 for an illustration).
Note that the factor of 2 accounts for the possibility that the
final position is either m > 0, or m < 0. Here N(T ) is the
normalization

N(T ) =

∫ T

0

dτW (τ, T ). (73)

(To keep notations simple, we avoid explicit reference to x0,
unless necessary.)

Formally, we write

W (τ, T ) = 2

∞∫
0

dm

∫ x(T )=m

x(0)=0

D[x] δ
(
x(τ)− x0

)
×

T∏
t=τ

Θ
(
x(t)

)
e−S . (74)

The perturbative expansion in Eq. (7) of the action leads to a
similar expansion for W , given by

W (τ, T ) = W0(τ, T )+εW1(τ, T )+ε2W2(τ, T )+ . . . (75)

with

W0(τ, T ) = 2

∫ ∞
0

dm 〈〈1〉〉m, (76)

W1(τ, T ) =

∫ ∞
0

dm
〈〈S1

D

〉〉
m
, (77)

W2(τ, T ) =

∫ ∞
0

dm

〈〈
S2

1

4D2
− 2

S2

D

〉〉
m

. (78)

The double-angular brackets denote (for m > 0) the average
over trajectories as sketched in Fig. 10 with a standard Brow-
nian measure,

〈〈O[x]〉〉m :=

x(T )=m∫
x(0)=0

D[x]δ
(
x(τ)−x0

) T∏
t=τ

Θ
(
x(t)

)
e−

S0
D O(x(t)).

(79)
This definition of double-angular brackets is specific to the
trajectories used here, its definition in other sections will in-
clude the corresponding boundary conditions needed there.

A. Zeroth order term

In terms of the free Brownian propagator Eq. (23) and the
propagator in presence of an absorbing wall,

Z+
t (x1, x2) =

∫ x(t)=x2

x(0)=x1

D[x]

t∏
r=0

Θ(x(r))e−
S0
D (80)

we write Eq. (76) as

W0(τ, T ) = 2

∫ ∞
0

dmZτ (0, x0)Z+
T−τ (x0,m). (81)

Its double Laplace transformation Eq. (60) denoted by

W̃0(λ, s) = Dτ→λ
T→s

�W0(τ, T ) (82)

is

W̃0(λ, s) = 2

∫ ∞
0

dm Z̃s+λ(0, x0) Z̃+
s (x0,m). (83)
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r1 r2τ

A2

r1 r2τ

A3

r1 r2 τ

A1

FIG. 11. One-loop diagrams: a graphical representation of the terms
in Eq. (88a) for the linear order in our perturbation expansion. For
all diagrams r1 < r2, staying on the same side of τ as indicated. The
dashed lines indicate coupling between points r1 and r2 with r1 < r2
(indicated by an arrowhead) and a coupling strength ey(r1−r2). The
solid disks indicate the ‘charge’ ẋ(r1) and ẋ(r2) for the associated
points. A similar convention will be used for diagrams in later parts
of our analysis.

Here Z̃s and Z̃+
s are the Laplace transforms of Zt and Z+

t ,
given by

Z̃s(x1, x2) =

∫ ∞
0

dt e−st Zt(x1, x2)

=
e−
√

s
D |x1−x2|

2
√
sD

, (84a)

and

Z̃+
s (x1, x2) =

∫ ∞
0

dt e−st Z+
t (x1, x2)

=
e−
√

s
D |x1−x2| − e−

√
s
D |x1+x2|

2
√
sD

. (84b)

Using these results in Eq. (83) and evaluating the integral for
small x0 we get, (see Eq. (L5))

W̃0(s κ, s) ' x0

Ds
× 1√

1 + κ
. (85)

Remark: The factorization in Eq. (83) results from the iden-
tity

Dτ→λ
T→s

�
[
g(τ)f(T − τ)

]
= g̃(s+ λ) f̃(s), (86)

where g̃(s) and f̃(s) are the Laplace transforms of g(t) and
f(t), respectively.

Remark: From Eq. (85) it is straightforward to verify the
arcsine-law (4) for Brownian motion. One can use D =
1 for ε = 0 in Eq. (85), and verify that W0(ϑT, T ) '
x0[πT

√
ϑ(1− ϑ)]−1. Then, Eqs. (72) and (73) lead to the

distribution (4).

B. Linear order: 1-loop diagrams

Using S1 from Eq. (10a) we explicitly write Eq. (77) as

W1(τ, T ) =
1

D

∫ ∞
0

dm

∫ Λ

0

dy

∫ T

0

dr1

∫ T

r1

dr2

× ey(r1−r2)
〈〈
ẋ(r1)ẋ(r2)

〉〉
m
. (87)

For convenience we use a graphical representation of the ex-
pression in Eq. (87). We write the amplitude in three parts,
according to the relative order of times r1, r2, and τ , as illus-
trated in the 1-loop diagrams in Fig. 11.

Remark: Diagrams in Fig. 11 consists of couplings between
a single pair of points, resulting in the y-integral in Eq. (87).
In analogy with field theory, we refer to them as 1-loop
diagrams, with y representing the loop-variable to be inte-
grated over. In Sec. VI C, i.e. at second order, amplitudes
involve couplings between two pairs, resulting into two y-
integrations, and therefore referred to as 2-loop diagrams.

Following our convention for the diagrams in Fig. 11 we
write Eq. (87) as

W1 = A1 +A2 +A3 (88a)

with

A1(τ, T ) =
1

D

∞∫
0

dm

Λ∫
0

dy Jτ (0, x0;−y, y)Z+
T−τ (x0,m),

(88b)

A2(τ, T ) =
1

D

∞∫
0

dm

Λ∫
0

dy Zτ (0, x0) J+
T−τ (x0,m;−y, y),

(88c)

A3(τ, T )

=
1

D

∞∫
0

dm

Λ∫
0

dy Jτ (0, x0;−y) e−yτJ+
T−τ (x0,m; y).

(88d)

We defined

Jt(u, v; y1, . . . , yn)

:=

t∫
0<r1<···<rn

n∏
i=1

e−yiri

x(t)=v∫
x(0)=u

D[x]ẋ(r1) · · · ẋ(rn)e−
S0
D

(89)

and its analogue J (+) in presence of an absorbing wall at x =
0. The integral over time in Eq. (89) is interpreted as in Eq.
(15), i.e. with an ultraviolet cutoff Λ on y.

Using Eq. (86) we write the double Laplace transform Eq.
(60) of the diagrams Ai in terms of Laplace transforms of Z
and Z+ in Eq. (84), as well as Laplace transforms for J and
J+. Expressions are obtained in App. N, and summarized
here,

Ã1(λ, s) =
1

D

∞∫
0

dm

Λ∫
0

dy J̃s+λ(0, x0;−y, y) Z̃+
s (x0,m),

Ã2(λ, s) =
1

D

∞∫
0

dm

Λ∫
0

dy Z̃s+λ(0, x0) J̃+
s (x0,m;−y, y).
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Using Eqs. (84), (N8), and (N13) gives, for small x0,

Ã1(s κ, s) ' − x0

Ds
× Ã(1 + κ)√

1 + κ
,

Ã2(s κ, s) ' x0

Ds
× Ã(1)√

1 + κ
,

with

Ã(z) =

∫ Λ/s

0

dy

y2

(√
z + y −√z

)2
. (90)

A similar analysis for A3 in Eq. (88d), using Eqs. (N1) and
(N5), shows that the corresponding double Laplace transform
Ã3 ∼ x2

0, for small x0. As a result, the double Laplace trans-
form of W1(τ, T ) defined in analogy to Eq. (82) reads, for
small x0,

W̃1(s κ, s) ' x0

Ds
× Ã(1)− Ã(1 + κ)√

1 + κ
. (91)

Remark: The reason for Ã3 to vanish as x2
0 or faster, for

small x0, can be understood from a simple observation. In
the limit of x0 → 0, Jt(0, x0; y1, . . . , yn) in Eq. (89) vanishes
for odd n. One way to see this is by noting that, in the limit
of x0 → 0, for each trajectory with a certain ẋ(r), there is a
mirror trajectory −ẋ(r), with equal probability. In compari-
son, J+(x0,m; y1, . . . , yn) vanishes for x0 → 0 because of
the absorbing boundary. This means that in Eq. (88d), both J
and J+ are at least of order x0, and therefore Ã3 ∼ x2

0, to the
least. We shall see later that for a similar reason the ampli-
tudes of the 2-loop diagrams B and C in Fig. 14 are of order
x2

0, for small x0.

Remark: We shall see that these diagrams A1, A2, and A3

contribute to the propagator W1 in Eq. (88a), thus to the scal-
ing prefactor in Eq. (36), but they do not feed into the expo-
nential term F last.

C. Quadratic order: 2-loop diagrams

Using Eq. (10) we explicitly write the terms in Eq. (78) as

∫ ∞
0

dm

〈〈
S2

1

4D2

〉〉
m

(92)

=
1

4D2

∞∫
0

dm

Λ∫
0

dy1dy2

T∫
0

dr1

T∫
r1

dr2

T∫
0

dr3

T∫
r3

dr4

× ey1(r1−r2) ey2(r3−r4)
〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
m

r1 r2r3 r4 r1 = r3 r2 r4

r1 r2 = r3 r4 r1 r3 r2 = r4

(a) (b)

(c) (d)

r1 = r3 r2 = r4

(e)

FIG. 12. A diagramatic representation for the amplitude in Eq. (92)
where all orders of time are allowed keeping r2 > r1 and r4 > r3
(as indicated by an arrowhead). We write the amplitude Eq. (92) in
five parts according to the contraction of times (indicated by cross).
In (a) none of the times are equal (contracted). In (b,c,d) two times
are contracted and in (e) all four times are contracted.

s r1 r2 r1 r2 s

(b′) (d′)

FIG. 13. A diagramatic representation of the formula in Eq. (93)
where for (b′) s < r1 < r2 and for (d′) r1 < r2 < s.

and

∫ ∞
0

dm

〈〈
2S2

D

〉〉
m

=
1

D

∞∫
0

dm

Λ∫
0

dy1dy2

×
T∫

0

dr1

T∫
r1

dr2

[ r1∫
0

ds e−y1(r1−s)−y2(r2−s)

+

T∫
r2

ds e−y1(s−r1)−y2(s−r2)

]〈〈
ẋ(r1)ẋ(r2)

〉〉
m
. (93)

A graphical illustration of the amplitudes in Eq. (92) and Eq.
(93) is shown in Figs. 12 and 13. Similar to the conventions in
Fig. 11, a dashed line indicates an interaction between points
ri and rj with an amplitude ey(ri−rj). The solid disks indicate
the field derivative ẋ(ri) at point ri. For a contracted point,
indicated by a cross, the associated amplitude is 2D. A reason
for this will be clear shortly. Empty points in Fig. 13 have an
amplitude 1.

We shall see that among these diagrams, only diagrams (a)
and (c) contribute at the second order. This can be directly
seen using the normal-ordered weight in Eq. (16). Here, we
explicitly show why this happens.

We find that the amplitudes of diagrams (b) and (b′) are
equal, as are those of (d) and (d′). To see this we use that
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under Wick contraction between ẋ(r1) and ẋ(r3)〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
m
→ 2D

〈〈
ẋ(r2)ẋ(r4)

〉〉
m
. (94)

(A similar result holds for contraction of any pair of times.)
One can see this as a consequence of δ(ri − rj) term in Eq.
(M8), and its analogue in presence of an absorbing boundary.
Using the result (94) in Eq. (92) for diagram (b) we write its
amplitude as

1

2D

∫ ∞
0

dm

∫ Λ

0

dy1dy2

∫ T

0

dr1

∫ T

r1

dr2

∫ T

r1

dr4

× ey1(r1−r2)ey2(r1−r4)
〈〈
ẋ(r2)ẋ(r4)

〉〉
m

=
1

D

∫ ∞
0

dm

∫ Λ

0

dy1dy2

∫ T

0

dr2

∫ T

r2

dr4

∫ r2

0

dr1

× ey1(r1−r2)ey2(r1−r4)
〈〈
ẋ(r2)ẋ(r4)

〉〉
m
.

Following a relabeling of the dummy variables r we see that
the integral is equal to the amplitude of diagram (b′) from Eq.
(93) and Fig. 13. A similar analysis shows equal amplitude
for diagrams (d) and (d′).

The amplitude of diagram (e), where all four times are con-
tracted, is proportional to W0 in Eq. (76), which can be seen
by using 〈〈

ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)
〉〉
m
→ 4D2〈〈1〉〉m, (95)

when all four points are contracted. This means that the con-
tribution of (e) can be included in the normalization Eq. (36),
and therefore ignored.

Considering the contribution of the diagrams in Figs. 12
and 13, resulting into Eq. (78), we see that the relevant con-
tribution for W2 comes from the 2-loop diagrams (a) and (c)
in Fig. 12. Considering the relative position of the loops with
respect to τ , we write the amplitude W2 as a sum of the fol-
lowing ten diagrams,

W2 = a+ c

= (E1 + E2) +A+D + (C1 + C2)

+ (B1 +B2) + (G1 +G2) . (96)

This is shown in Fig. 14. Explicit formulas of their amplitudes
are given in App. G. We shall see that among these diagrams,
only diagram D contributes to the non-trivial term F last in
Eq. (36), whereas the remaining diagrams contribute to the
power-law prefactor only.

Here, we present the double Laplace transformation Eq.
(60) of the amplitude of these diagrams, for small x0 limit.
Their derivation is similar to those of the amplitude of zeroth
and linear order terms in Eqs. (85, 91). We defer their explicit
calculation to the App. G.

For small x0, we get

D̃(s κ, s) ' x0

Ds
× D̃(1 + κ)√

1 + κ
(97)

r1 r3 r4 r2τ

r1 r2 r3 r4 τ
E1

D

r1 r2r3 r4τ r1 r2r3 r4τ

C1 C2

r1 r2 r3 r4τ
E2

r1 r2 r3 r4τ
A

r1 s r2τ
B1

r1 s r2τ
B2

r1 s r2 τ
G1

r1 s r2τ
G2

FIG. 14. Two-loop diagrams for the quadratic order term W2 in Eq.
(78). The diagrams are categorized according to relative position of
the loops with respect to τ . For diagram E1, the times r1 < r2 < τ
and r3 < r4 < τ , excluding cases where any two times are equal
(contracted). Similar convention is adopted for the diagrams E2, A,
D, and C, where r1 < r2, r3 < r4, and their relative position with
τ indicated in the diagrams. For diagrams B and G we consider,
r2 > s > r1 being on the same side of τ as indicated. A solid
disk denotes a ‘charge’ ẋ(r) for the associated point r, and a cross
denotes a ‘charge’ 2D. A dashed line indicates coupling between
points ri and rj with a coupling strength ey(ri−rj).

with

D̃(z) = −2

∫ Λ/s

0

dy1dy2

y2
1y

2
2

√
z
√

1 + y1 + y2 (98)

×
(√

1 + y1 + y2 −
√

1 + y1 −
√

1 + y2 + 1
)

×
(√

z + y1 + y2 −
√
z + y1 −

√
z + y2 +

√
z

)
.

The amplitude of the diagrams B and C is of order x2
0 for

small x0,

B̃(s κ, s) ' C̃(s κ, s) ∼ x2
0. (99)

This can be seen from the argument given in the remark below
Eq. (91). Their explicit derivation is in Appendix G 2 d.

The amplitude for the remaining diagrams is of order x0,
and given as follows. For small x0,

Ẽ1(s κ, s) + Ẽ2(s κ, s) ' x0

s
× Ẽ(1 + κ) + Ẽ(1)

D
√

1 + κ
, (100)
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where

Ẽ(z) = −1

2

∫ Λ/s

0

dy1dy2

y2
1y

2
2

{
(z + y1)(z + y2)

+
√
z
(√
z −√z + y1 −

√
z + y2

)[√
z + y1

×
(√
z −√z + y1

)
+
√
z + y2

(√
z −√z + y2

)
+
(√
z −√z + y1 −

√
z + y2

)2−
2

(√
z + y1 + y2 −

√
z + y1 −

√
z + y2 +

√
z

)2]}
. (101)

Similarly, for small x0,

Ã(s κ, s) ' −x0

s
× Ã(1 + κ)Ã(1)

D
√

1 + κ
(102)

with Eq. (90), and

G̃1(s κ, s) + G̃2(s κ, s) ' x0

s
× G̃(1 + κ) + G̃(1)

D
√

1 + κ
, (103)

where

G̃(z) =

∫ Λ/s

0

dy1dy2

y2
1y

2
2

(104)

×
[

(
√
z + y2 −

√
z)2y2

1 − (
√
z + y1 −

√
z)2y2

2

(y1 − y2)

]
.

Considering the amplitude of these 2-loop diagrams in
Eq. (96) we get the double Laplace transform Eq. (60) of
W2(τ, T ) in Eq. (78). For small x0 it reads

W̃2(s κ, s) ' x0

sD
√

1 + κ

[
Ẽ(1 + κ) + Ẽ(1)−

Ã(1 + κ)Ã(1) + D̃(1 + κ) + G̃(1 + κ) + G̃(1)

]
.(105)

D. Result for F last(κ,H)

From the results in Eqs. (85), (91), and (105) we obtain the
double Laplace transform Eq. (60) of W (τ, T ) in Eq. (75) in
an exponential form,

W̃ (s κ, s) = Dτ→s κ
T→s

�W (τ, T ) ' x0

s
× eW̃(κ)

√
1 + κ

, (106)

Here x0 is small, and we usedD in Eq. (14) to explicitly write
the exponential term W̃ = εW̃1 + ε2W̃2 + · · · , with

W̃1(κ) = Ã(1)− Ã(1 + κ) + 2(ln Λ + γE − 1), (107a)

W̃2(κ) = Ẽ(1 + κ) + Ẽ(1) + D̃(1 + κ)

− Ã(1 + κ)Ã(1) + G̃(1 + κ) + G̃(1)

− 1

2

[
Ã(1)− Ã(1 + κ)

]2
+ 2

[
1− π2

6

]
. (107b)

To relate to the exponential form in Eq. (66) we note that the
Laplace transform of NT in Eq. (73) is

Ñ(s) = W̃ (0, s). (108)

The simple s-dependence in Eq. (106) (for Λ→∞) makes it
easy to invert the Laplace transform, giving

N(T ) ' x0 e
W̃(0) for small x0. (109)

This means, for small x0, N(T ) ≡ N is independent of T ,
and the double Laplace transform of PT (τ) in Eq. (72) is

P̃ (λ, s) ' W̃ (λ, s)

N
for small x0. (110)

Then, using Eq. (106) and comparing with Eqs. (62) and (66)
gives

F̃ last(κ,H) = W̃(κ)− W̃(0), (111)

which we shall need to determine F(ϑ,H) in Eq. (67). The
leading terms in its perturbation expansion Eq. (69a) is given
by

F̃ last
1 (κ) = Ã(1)− Ã(1+κ), (112a)

F̃ last
2 (κ) =

[
D̃(1+κ)− D̃(1)

]
+

[
Ẽ(1+κ) + G̃(1+κ)

− 1

2
Ã2(1+κ)−

(
Ẽ(1) + G̃(1)− 1

2
Ã2(1)

)]
.

(112b)

We have numerically verified that, for Λ→∞,

Ẽ(z) + G̃(z)− 1

2
Ã2(z) = (1 + ln(2))

2 − 5π2

12
. (113)

Therefore, the only non-vanishing contribution for Λ → ∞
comes from the diagram D, leading to

F̃ last
2 (κ) = D̃(1+κ)− D̃(1). (114)

Remark: We see that Eq. (111) is consistent with the condi-
tion Eq. (71). Moreover, we shall see that the integrals in Eq.
(112a) and Eq. (114) converge in the Λ → ∞ limit, as one
would expect for our theory to be correct.

Remark: Note that in Eq. (107) the contribution from diffu-
sion constant D in Eq. (14) is constant, which cancels in Eq.
(111). This is expected as the distribution of tlast is inde-
pendent of the diffusion constant, whereas as a distribution
involving space would depend onD. The same applies for the
distribution of tmax and tpos.

For the leading-order term Eq. (112a), explicitly carrying
out the integral in Eq. (90) in the limit of Λ→∞, we get

F̃ last
1 (κ) = ln(1 + κ), (115)



17

0.2 0.4 0.6 0.8 1.0
ϑ

6

4

2

2

4
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last(ϑ)

FIG. 15. The dotted points (colored red) show results of numerical
integration for F last

2 (ϑ) in Eq. (41). The solid line is the polynomial
fit in Eq. (42), which gives a good estimation for F last

2 (ϑ).

whose K−1-transformation is (see Eq. (F4))

K−1
κ→ϑ � F̃ last

1 (κ) = − ln ϑ
(1−ϑ) = −Rlast(ϑ). (116)

Using the result Eq. (69b) for tlast gives the leading-order re-
sult in Eq. (40a).

For the second-order term in Eq. (69c) we use Eq. (114),
Eq. (40a), and

K−1
κ→ϑ � F̃ last

1 (κ)2 = Rlast(ϑ)2 − π2 (117)

(using the identity Eq. (F5)) to write

F last
2 (ϑ) = K−1

κ→ϑ �
[
D̃(1 + κ)− D̃(1)

]
− π2

2
, (118)

where we use linearity of the operator K−1.
The integral for D̃(z) in Eq. (98) is convergent in the limit

of Λ → ∞, but it is hard to evaluate analytically. The ex-
pression for F last

2 (ϑ) in Eq. (41) is obtained [76] by exchang-
ing the order of K−1

κ→ϑ transformation and the y-integrals
in Eqs. (118) and (98). (For several other examples like in
Eqs. (112a) and (116) where integration can be explicitly car-
ried out, we have verified that this exchange of order gives the
correct result.) The resulting function F last

2 (ϑ) in Eq. (41) is
plotted in Fig. 15 along with a polynomial estimation given in
Eq. (42). The expression Eq. (41) is in good agreement with
our computer simulation result in Fig. 7.

VII. DISTRIBUTION OF THE TIME tmax WHEN THE
FBM ATTAINS MAXIMUM

The probability for an fBm, starting atX0 = 0 and evolving
till time T , to attain its maximum at time tmax = τ can be
expressed as

PT (tmax = τ) =
W (τ, T )

N(T )
. (119)

m2

x0

tmax

m1

Xt

time (t)

FIG. 16. The dark solid curve is a schematic of paths Xt for Eq.
(120), where the stripped line indicates an absorbing boundary at the
origin. For x0 → 0, there is an one-to-one correspondence with an
fBm path (indicated by gray dashed curve) that contributes for the
process to attain its maximum m1 at time tmax.

Here W (τ, T ) is the weight of all contributing trajectories,
and N(T ) is the corresponding normalization. We use the
same notations as in Sec. VI. Note, however, that the definition
of these quantities (W , N , etc.) is specific to the problem in
this section.

Noting the symmetry of the problem (illustrated in Fig. 16),
we write

W (τ, T ) =

∫ ∞
0

dm1

∫ ∞
0

dm2

∫ x(T )=m2

x(0)=m1

D[x]

× δ(x(τ)− x0)

T∏
t=0

Θ[x(t)]e−S[x]. (120)

The probability density PT (τ) in Eq. (119) is obtained by tak-
ing the limit of x0 → 0. (Like in the previous section, we do
not write any explicit reference to x0, unless necessary.)

The perturbation expansion Eq. (7) of the fBm action S
leads to an expansion of W similar to Eq. (75) with

W0(τ, T ) =

∫ ∞
0

dm1

∫ ∞
0

dm2 〈〈1〉〉(m1,m2), (121)

W1(τ, T ) =

∫ ∞
0

dm1

∫ ∞
0

dm2

〈〈 S1

2D

〉〉
(m1,m2)

, (122)

W2(τ, T ) =

∫ ∞
0

dm1

∫ ∞
0

dm2

〈〈
S2

1

8D2
− S2

D

〉〉
(m1,m2)

. (123)

By the double-angular brackets we denote

〈〈O[x]〉〉(m1,m2) (124)

:=

x(T )=m2∫
x(0)=m1

D[x]δ
(
x(τ)− x0

) T∏
t=0

Θ[x(t)] e−
S0
D O[x(t)].

Here, both m1 ≥ 0 and m2 ≥ 0, and the average is over
trajectories sketched in Fig. 16 with the standard Brownian
measure. Note that this definition is different from the one in
Eq. (79), due to the different boundary conditions employed
there. We will now in turn study averages at different or-
ders, expressed in terms of the Brownian propagator Eq. (80)
in presence of an absorbing wall. This is similar to the analy-
sis of tlast in the previous Sec. VI.
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A. Zeroth order

Similar to Eq. (83), we write the double Laplace transfor-
mation of Eq. (121) as

W̃0(λ, s) =

∫ ∞
0

dm1

∫ ∞
0

dm2 Z̃
+
s+λ(m1, x0) Z̃+

s (x0,m2).

Using Eq. (84) and integrating, it is easy to see that for small
x0,

W̃0(s κ, s) ' x2
0

Ds
× 1√

1 + κ
. (125)

The leading non-vanishing term is of order x2
0, and its ampli-

tude is same as in Eq. (85). This gives the well-known arcsine-
law (4) for tmax.

B. Linear order: 1-loop diagrams

Similar to Eq. (88a) we write W1 in Eq. (122) in three parts
according to the order of (r1, r2, τ). Their diagrammatic rep-
resentation is similar to the 1-loop diagrams in Fig. 11, but
their amplitude is different. They are given by

A1(τ, T ) =
1

2D

∫ ∞
0

dm1dm2

∫ Λ

0

dy

×J+
τ (m1, x0;−y, y)Z+

T−τ (x0,m2), (126a)

A2(τ, T ) =
1

2D

∫ ∞
0

dm1dm2

∫ Λ

0

dy

×Z+
τ (m1, x0)J+

T−τ (x0,m2;−y, y), (126b)

A3(τ, T ) =
1

2D

∫ ∞
0

dm1dm2

∫ Λ

0

dy

×J+
τ (m1, x0;−y)J+

T−τ (x0,m2; y) e−yτ . (126c)

The function J+
t is the counterpart of Eq. (89) in presence of

an absorbing wall at the origin. Their double Laplace trans-
form Eq. (60) gives

Ã1(λ, s) =
1

2D

∫ ∞
0

dm1dm2

∫ Λ

0

dy

×J̃+
s+λ(m1, x0;−y, y)Z̃+

s (x0,m2), (127a)

Ã2(λ, s) =
1

2D

∫ ∞
0

dm1dm2

∫ Λ

0

dy

×Z̃+
s+λ(m1, x0)J̃+

s (x0,m2;−y, y), (127b)

Ã3(λ, s) =
1

2D

∫ ∞
0

dm1dm2

∫ Λ

0

dy

×J̃+
s+λ+y(m1, x0;−y)J̃+

s (x0,m2; y).(127c)

These integrals can be evaluated explicitly using the results in
Apps. L and N, specifically Eqs. (G3), (L5), and their sym-
metry properties for evaluating Eqs. (127a), (127b), as well as

Eqs. (N6) and (N7) for evaluating Eq. (127c). For small x0,
we get

Ã1(s κ, s) ' x2
0

Ds
× Ã(1 + κ)√

1 + κ
, (128)

Ã2(s κ, s) ' x2
0

Ds
× Ã(1)√

1 + κ
, (129)

Ã3(s κ, s) ' x2
0

Ds
× Ã3(1 + κ)√

1 + κ
, (130)

with Ã(z) defined in Eq. (90) and

Ã3(z) = −2

∫ Λ/s

0

dy

y2

(√
z + y −√z

)(√
1 + y − 1

)
.

(131)
Summing all three contributions we get the double Laplace
transform Eq. (60) of the linear-order term W1(τ, T ) in Eq.
(122). It reads, for small x0,

W̃1(s κ, s) ' x2
0

sD
× Ã(1 + κ) + Ã(1) + Ã3(1 + κ)√

1 + κ
. (132)

We note the simplification

Ã(z) + Ã(1) + Ã3(z)

=

∫ Λ/s

0

dy

y2

[(√
z + y −√z

)
−
(√

1 + y − 1
)]2

. (133)

C. Quadratic order

Similar to Eq. (96), we find that the second-order term W2

in Eq. (123) is composed of the 2-loop diagrams in Fig. 14.
The amplitudes of these diagrams are different for this prob-
lem. Here we summarize their result for small x0. Their
derivation is given in App. H.

The list below contains the double Laplace transform of all
2-loop diagrams. All amplitudes are of order x2

0 for small x0.
Note that many diagrams are the same as in the problem of
tlast in Sec. VI; this may not be surprising as the same power-
law corrections for ϑ → 0 and ϑ → 1 are also present in the
distribution of tlast.

The list of already calculated diagrams reads (x0 � 1):

Ẽ1(s κ, s) + Ẽ2(s κ, s) ' x2
0

sD
× Ẽ(1 + κ) + Ẽ(1)√

1 + κ
, (134)

with Ẽ given in Eq. (101).

Ã(s κ, s) ' x2
0

sD
× Ã(1 + κ)Ã(1)√

1 + κ
, (135)

with Ã(z) given in Eq. (90).

G̃1(s κ, s) + G̃2(s κ, s) ' x2
0

sD
× G̃(1 + κ) + G̃(1)√

1 + κ
, (136)
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with G̃(z) given in Eq. (104).
The amplitudes of the remaining diagrams are different. We

get, for small x0,

D̃(s κ, s) =
x2

0

sD
× D̃(1 + κ)√

1 + κ
, (137)

with

D̃(z) = 2

∫ Λ/s

0

dy1dy2

y2
1y

2
2

√
z + y1 + y2

√
1 + y1 + y2

×
(√

1 + y1 + y2 −
√

1 + y1 −
√

1 + y2 + 1
)

×
(√

z + y1 + y2 −
√
z + y1 −

√
z + y2 +

√
z

)
.

(138)

The difference to Eq. (98) is in the first term inside the inte-
grals and the overall sign.

The leading non-vanishing amplitudes of diagrams B and
C are of order x2

0, and unlike in Sec. VI, these diagrams are
relevant here. Their Laplace transform, for small x0 are

B̃1(s κ, s) + B̃2(s κ, s) ' x2
0

s
× B̃(1 + κ)

D
√

1 + κ
, (139)

where

B̃(z) = 2

Λ/s∫
0

dy1dy2

y2
1y

2
2(y1 − y2)

[
y2

2(
√
z+y1−

√
z)(
√

1+y1−1)

−y2
1(
√
z + y2 −

√
z)(
√

1 + y2 − 1)

]
(140)

and

C̃1(s κ, s)+C̃2(s κ, s) ' x2
0

s
×

(
C̃(1, 1 + κ) + C̃(1 + κ, 1)

)
D
√

1 + κ
,

(141)
where

C̃(z1, z2) = 2

∫ Λ/s

0

dy1dy2

y2
1 y

2
2

(√
z1 −

√
z1 + y1

)√
z2 + y1

×
(√
z2 + y1 + y2 −

√
z2 + y1 −

√
z2 + y2 +

√
z2

)2
.

(142)

From the amplitude of all 2-loop diagrams in Eq. (96) we get
the double Laplace transform of W2(τ, T ) in Eq. (123), for
small x0,

W̃2(s κ, s) ' x2
0

sD
√

1 + κ

[
Ẽ(1 + κ) + Ẽ(1)+

Ã(1 + κ)Ã(1) + D̃(1 + κ) + C̃(1, 1 + κ) + C̃(1 + κ, 1)

+ B̃(1 + κ) + G̃(1 + κ) + G̃(1)

]
. (143)

0.2 0.4 0.6 0.8 1.0
ϑ
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0.1

ℱ2
max(ϑ)

FIG. 17. The dotted points (colored red) show Fmax
2 (ϑ) evaluated

by numerical integration from Eq. (152). The solid line is the poly-
nomial in Eq. (43), which gives a good estimation for Fmax

2 (ϑ).

D. Result for Fmax(κ,H)

Taking the results in Eqs. (125), (132), (143), and the ex-
pansion (14) we write in an exponential form analogous to
Eq. (106), where, for this problem,

W̃1(κ) =Ã(1 + κ) + Ã(1) + Ã3(1 + κ) + 2(ln Λ + γE − 1),

W̃2(κ) =
[
Ẽ(1 + κ) + Ẽ(1) + Ã(1 + κ)Ã(1) + D̃(1 + κ)

+ C̃(1, 1 + κ) + C̃(1 + κ, 1) + B̃(1 + κ)

+ G̃(1 + κ) + G̃(1)
]
− 1

2

[
Ã(1 + κ) + Ã(1)

+ Ã3(1 + κ)
]2

+ 2

(
1− π2

6

)
.

The rest of the analysis is very similar to that in Sec. VI D. To
leading order we get

F̃max
1 (κ) = W̃1(κ)− W̃1(0) (144)

=

∫ Λ/s

0

dy

y2

(√
1 + κ+ y −

√
1 + κ−

√
1 + y + 1

)2
.

Explicitly carrying out the integral in the Λ→∞ limit yields

F̃max
1 (κ) = −8 ln 2−

(
1 +
√

1 + κ
)

ln(1 + κ)

+
2√

1 + κ

(
1 +
√

1 + κ
)2

ln
(
1 +
√

1 + κ
)
. (145)

Its inverse transform Eq. (68) is (see Eq. (F8))

K−1
κ→ϑ � F̃max

1 (κ) = −8 ln 2 + ψ

(√
ϑ

1− ϑ

)
− ln(ϑ(1− ϑ)), (146)

with ψ(x) defined in Eq. (40c). Then Eq. (69b) with
Rmax(ϑ) = ln(ϑ(1− ϑ)) gives the leading-order term

Fmax
1 (ϑ) = −8 ln 2 + ψ

(√
ϑ

1− ϑ

)
. (147)
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The expression in Eq. (147) differs from Eq. (40b) by a con-
stant, which comes from our convention that for the latter the
integral over ϑ vanishes.

At second order, we get

F̃max
2 (κ) = W̃2(κ)− W̃2(0)

=

[
D̃(1 + κ)− 1

2
Ã3(1 + κ)2 −

(
D̃(1)− 1

2
Ã3(1)2

)]
+

[
B̃(1 + κ) + C̃(1, 1 + κ) + C̃(1 + κ, 1)

− Ã3(1 + κ)
(
Ã(1 + κ) + Ã(1)

)
−
(
B̃(1) + 2C̃(1, 1)− 2Ã3(1)Ã(1)

)]
+

[
Ẽ(1 + κ) + G̃(1 + κ)− 1

2
Ã2(1 + κ)

−
(
Ẽ(1) + G̃(1)− 1

2
Ã2(1)

)]
. (148)

The terms are written such that each square bracket remains
finite for Λ → ∞ limit. In fact, we see that the expression in
the last square bracket is same as in Eq. (112b) and it vanishes
for Λ → ∞. Rest two square brackets give F̃max

2 (κ) for the
Λ→∞.

Remark: We see that for κ = 0, both F̃max
1 (κ) and F̃max

2 (κ)
vanish, which is consistent with the condition (71).

From Eq. (69c) and using linearity of the transformation
K−1
κ→ϑ we write

Fmax
2 (ϑ) = K−1

κ→ϑ � F̃max
2 (κ)+ (149)

1

2

{
K−1
κ→ϑ � F̃max

1 (κ)2 − [Fmax
1 (ϑ)−Rmax(ϑ)]

2
}
.

Using an identity Eq. (F9) we see that

K−1
κ→ϑ � F̃max

1 (κ)2 =[
Fmax

1 (ϑ)−Rmax(ϑ)
]2
− ψ2

(√
ϑ

1− ϑ

)2

, (150)

where we define

ψ2(x) =2 arctanx+ x ln

(
1 +

1

x2

)
−
[
2 arctan

1

x
+

1

x
ln
(
1 + x2

)]
. (151)

This leads to our result

Fmax
2 (ϑ) = K−1

κ→ϑ � F̃max
2 (κ)− 1

2
ψ2

(√
ϑ

1− ϑ

)2

.

(152)

(We note that the last term is symmetric in ϑ→ 1− ϑ.)

m

time (t)
Xt

FIG. 18. Schematic of an fBm trajectory leading to positive time
tpos. Times spent on the positive side is indicated by double-sided
arrow.

It is hard to analytically evaluate the integrals in Eq. (148).
Similar to Eq. (118), we determine Fmax

2 (ϑ) by exchanging
the order of K-transformation and integration. This gives, up
to an additive constant,

Fmax
2 (ϑ) = −1

2
ψ2

(√
ϑ

1− ϑ

)2

+2

∫ ∞
0

dy1dy2

y2
1y

2
2

Ψmax

(
y1, y2,

1− ϑ
ϑ

)
, (153)

where Ψmax(y1, y2, z) has a lengthy expression given in the
Appendix I. The expression is also given in the supplemental
Mathematica notebook [76] for numerical evaluation.

Our result for Fmax
2 (ϑ) in Eq. (152) is plotted in Fig. 17,

which agrees well with our computer simulation result in
Fig. 7. For this, we evaluated both the K−1-transformation
and the y-integration numerically.

VIII. DISTRIBUTION OF TIME tpos WHERE THE
PROCESS IS POSITIVE

This analysis is more involved compared to the analysis for
tlast and tmax. The main reason is that the expressions at sec-
ond order are very cumbersome, and a lot of ingeniosity is
needed to reduce them to a manageable size.

Analogous to Eq. (119), the probability that an fBm, start-
ing atX0 = 0 and evolving until time T , spends time tpos = τ
being positive (Xt > 0), can be expressed as

PT (tpos = τ) =
W (τ, T )

N(T )
, (154)

where W (τ, T ) is the weight of all fBm trajectories contribut-
ing to the event and N(T ) its normalization. Formally,

W (τ, T ) =

∞∫
−∞

dm

x(T )=m∫
x(0)=0

D[x] δ

(
τ−

T∫
0

dtΘ
(
x(t)

))
e−S[x],

(155)
where Θ(x) is the Heaviside step function. A sketch of such
a trajectory is given in Fig. 18. We follow the same notations
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m2

m1

m1

m2

m20
0

time time

m1

0

time︸ ︷︷ ︸
B

t1 t2︸ ︷︷ ︸
A

FIG. 19. Different Brownian paths for the conditional propagator in
Eq. (159). (A) Includes paths which have never crossed the origin,
(B) includes paths which have crossed the origin at least once.

as in sections VI and VII. The definition of the quantities W ,
N , etc., is modified to measure the positive time.

Using the perturbation expansion of the fBm action in Eq.
(7) we write (75), with

W0(τ, T ) =

∫ ∞
−∞

dm 〈〈1〉〉(0,m), (156a)

W1(τ, T ) =

∫ ∞
−∞

dm
〈〈 S1

2D

〉〉
(0,m)

, (156b)

W2(τ, T ) =

∫ ∞
−∞

dm

〈〈
S2

1

8D2
− S2

D

〉〉
(0,m)

, (156c)

where the double-angular brackets denote

〈〈O[x]〉〉(m1,m2) (157)

:=

x(T )=m2∫
x(0)=m1

D[x] δ

(
τ−

T∫
0

dtΘ
(
x(t)

))
e−

S0
D O[x(t)].

This is an average over trajectories with Brownian measure.

A. Conditional propagator

In Sec. VI and Sec. VII, the amplitudes in the expansion
(75) are expressed in terms of the free Brownian propagator Z
in Eq. (23) and its analogue Z+ in presence of an absorbing
wall. For amplitudes (156), it is natural to express in terms of
a conditional Brownian propagator, defined by

ZT (m1,m2|τ) =

x(T )=m2∫
x(0)=m1

D[x] δ

(
τ−

T∫
0

dtΘ
(
x(t)

))
e−

S0
D .

(158)
This gives the weight of all Brownian paths starting atm1 and
ending at m2 at time T conditioned to spending time τ on the
positive half.

To find an explicit expression for the conditional propaga-
tor, we write the associated paths into two groups,

ZT (m1,m2|τ) = AT (m1,m2|τ) + BT (m1,m2|τ), (159)

shown in the Fig. 19. The term A is non-zero only for τ = 0

or T . Using Eq. (80), we write

AT (m1,m2|τ) =Θ(m1)Θ(m2)δ(τ − T )Z+
T (m1,m2)

+Θ(−m1)Θ(−m2)δ(τ)Z+
T (−m1,−m2).

Its double Laplace transform can be written with the help of
identity (86) as

Ãs(m1,m2|λ) = Θ(m1)Θ(m2)Z̃+
s+λ(m1,m2) (160)

+ Θ(−m1)Θ(−m2)Z̃+
s (−m1,−m2),

where expression (84) leads to

Ãs(m1,m2|λ) =
Θ(m1m2)

2
√
D(s+ λΘ(m1))

(161)

×
[
e−|m1−m2|

√
s+λΘ(m1)

D − e−|m1+m2|
√
s+λΘ(m1)

D

]
.

The second part of Eq. (159) is defined by (see Fig. 19)

BT (m1,m2|τ) =

T∫
0

dt1

T∫
t1

dt2〈〈δ (x(t1)) δ (x(t2))〉〉(m1,m2)

(162)

with τ specified in the average (157). One can estimate, for
example, for m1 > 0 and m2 > 0,

〈〈δ (x(t1)) δ (x(t2))〉〉(m1,m2) =N D2

[
lim
x0→0

Z+
t1(m1, x0)

x0

]

×G (τ − t1 − t2, T − t1 − t2)×
[

lim
x0→0

Z+
t2(x0,m2)

x0

]
,

(163)

(hereD2 is from dimensional argument) up to a normalization
N , where G (τ, T ) is the weight of Brownian paths starting at
the origin and returning there at time T , spending time τ in
the positive half.

In general, using identity (86), we write the double Laplace
transform of B as

B̃s(m1,m2|λ) = N D2 G̃ (λ, s)

×
[

lim
x0→0

Θ(m1)Z̃+
s+λ(m1, x0) + Θ(−m1)Z̃+

s (−m1, x0)

x0

]

×
[

lim
x0→0

Θ(m2)Z̃+
s+λ(x0,m2) + Θ(−m2)Z̃+

s (x0,−m2)

x0

]
,

The normalization N to be determined self-consistently, and
G̃ (λ, s) is the double Laplace transform of G (τ, T ).

We see that

G (τ, T ) = ZT (0, 0)Pbridge(τ, T ),

where Pbridge(τ, T ) is the probability of positive time tpos =
τ for a Brownian bridge of duration T . One can show
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(a derivation is given in App. Q) that for a Brownian
bridge, all values of τ are equally probable, and therefore
Pbridge(τ, T ) = 1/T . This, along with Eq. (23), gives

G̃ (λ, s) =

√
s+ λ−√s
λ
√
D

.

Using these results and Eq. (84), we find

B̃s(m1,m2|λ) = e−|m1|
√
s+Θ(m1)λ

D (164)

×
[√

s+ λ−√s
λ
√
D

]
e−|m2|

√
s+Θ(m2)λ

D ,

where we used N = 1, determined using the self-consistency
condition that∫ T

0

dτ ZT (m1,m2|τ) = ZT (m1,m2), (165)

for Eq. (159), and equivalently,

Z̃s(m1,m2|0) = Z̃s(m1,m2) =
e−
√

s
D |m1−m2|

2
√
sD

,

where Z̃s(m1,m2|λ) is the Double Laplace transformation
Eq. (60) of ZT (m1,m2|τ). Results (161) and (164) together
give

Z̃s(m1,m2|λ) = Ãs(m1,m2|λ) + B̃s(m1,m2|λ). (166)

This will be used extensively in the following sections.

B. Zeroth order term

The leading term (156a) is

W0(τ, T ) =

∫ ∞
−∞

dmZT (0,m|τ).

Its double Laplace transform is

W̃0(λ, s) =

∫ ∞
−∞

dm Z̃s(0,m|λ),

with Z̃ in Eq. (166).
The integration can be evaluated using Eq. (166) with Ã

and B̃ given in Eqs. (161) and (164). The result is given in Eq.
(P3) using which we write

W̃0(s κ, s) =
1

s
× 1√

1 + κ
. (167)

This is same as for distribution of tlast and tmax, and confirms
the arcsine-law (4).

r1 r2

FIG. 20. A 1-loop diagram representation of the linear order term
(168) for distribution of positive time. We follow a similar con-
vention as earlier. A dashed line indicates coupling between points
(r1, r2) (their order indicated by an arrowhead) with a coupling
strength ey(r1−r2) and a solid disk indicates a ‘charge’ of amplitude
ẋ(r) for the associated point r.

C. Linear order: 1-loop diagram

Using Eq. (10a) we write the linear order term (156b) as

W1(τ, T ) =
1

2D

∫ ∞
−∞

dm

∫ Λ

0

dy

∫ T

0

dr1

∫ T

r1

dr2

× ey(r1−r2) 〈〈ẋ(r1)ẋ(r2)〉〉(0,m), (168)

where the integral over time r is interpreted as in Eq. (15). A
graphical representation of the amplitude as a 1-loop diagram
is sketched in Fig. 20.

To evaluate the conditional average in Eq. (168) we use a
result for the correlation similar to Eq. (M4). Generalizing
the analysis in App. M for the conditioned case, we see that
for r2 > r1,

〈〈ẋ(r1)ẋ(r2)〉〉(m1,m2) = 22D2

r1∫
0

dτ1

r2−r1∫
0

dτ2

×
T−r2∫
0

dτ3δ(τ − τ1 − τ2 − τ3)

∞∫
−∞

dx1 dx2 Zr1(m1, x1|τ1)

∂x1Zr2−r1(x1, x2|τ2)∂x2ZT−r2(x2,m2|τ3). (169)

This helps us to write W1(τ, T ) in terms of the conditional
propagator Z. By a change of variables and an integration by
parts we obtain

W1(τ, T ) = −2D

∞∫
0

dt1dt2dt3

t1∫
0

dτ1

t2∫
0

dτ2

t3∫
0

dτ3

× δ(T−t1−t2−t3) δ(τ−τ1−τ2−τ3)

Λ∫
0

dy e−y t2
∞∫
−∞

dm

×
∞∫
−∞

dx1dx2 ∂x1
Zt1(0, x1|τ1)Zt2(x1, x2|τ2)

× ∂x2
Zt3(x2,m|τ3). (170)
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r1 r2 r3 r4
C D

r1 s r2

FIG. 21. Two-loop diagrams for the quadratic order term W2 for
the distribution of positive time tpos. In this illustration we choose
r2 > r1 and r4 > r3 for diagram C, whereas r1 < s < r2 for
diagram D. A solid disc denotes a ‘charge’ ẋ(r) for the associated
point r, whereas a cross denotes a contracted point with a ‘charge’
2D.

A double Laplace transform Eq. (60) of the amplitude gives

W̃1(λ, s) = −2D

Λ∫
0

dy

∞∫
−∞

dx1dx2∂x1Z̃s(0, x1|λ)

× Z̃s+y(x1, x2|λ)

∞∫
−∞

dm∂x2Z̃s(x2,m|λ), (171)

with Z̃ defined in Eq. (166).
Using the result (166) and integrating using integrals (P7),

(P8), we get

W̃1(κ s, s) =
Ã(1 + κ)

s
√

1 + κ
, (172)

with

Ã(z) =

Λ/s∫
0

dy

y2

[√
z + y −√z −

√
1 + y + 1

]2
, (173)

which by mere coincidence happens to be the same integral as
in Eq. (133), although their corresponding diagrams are dif-
ferent.

D. Quadratic order: 2-loop diagrams

Following an analysis similar to that in Sec. VI C, it is
straightforward to see that for W2 in Eq. (156c) contributions
come only from the two diagrams shown in Fig. 21,

W2(τ, T ) = C(τ, T ) +D(τ, T ), (174)

where the amplitudes are given by

C(τ, T ) =
1

8D2

∫ ∞
−∞

dm

∫ Λ

0

dy1dy2

∫ T

0

dr1

×
∫ T

r1

dr2

∫ T

0

dr3

∫ T

r3

dr4e
y1(r1−r2)ey2(r3−r4)

×
〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
(0,m)

(175)

and

D(τ, T ) =
1

2D

∫ ∞
−∞

dm

∫ Λ

0

dy1dy2

∫ T

0

dr1

∫ T

r1

ds

×
∫ T

s

dr2e
y1(r1−s)ey2(s−r2)

〈〈
ẋ(r1)ẋ(r2)

〉〉
(0,m)

. (176)

These amplitudes can be expressed in terms of the conditional
propagator ZT in Eq. (159), and then an explicit result can be
derived following an analysis similar to that of the linear-order
term in Sec. VIII C. Here we give their final expression, and
defer their derivation to the App. J.

The double Laplace transform of the amplitude of the dia-
gram D in Fig. 21 can be written as

D̃(κ s, s) =
D̃(1 + κ)

s
√

1 + κ
, (177)

where

D̃(z) =
2

(1 +
√
z)

∫ Λ/s

0

dy1dy2

y1y2
(178)

×
{
y2 h(1, z, y1)

(y2 − y1)
+
y1 h(1, z, y2)

(y1 − y2)

}

with

h(s1, s2, y) = (179)

(
√
s2 + y −√s1 + y)

[√
s2(s1 + y)−

√
s1(s2 + y)

]
(
√
s1 + y +

√
s1)(
√
s2 + y +

√
s2)

.

The double Laplace transform for the diagram C in Fig. 21
is

C̃(κ s, s) =
C̃(1 + κ)

s
√

1 + κ
(180)

with

C̃(z) =
4

(1 +
√
z)

∫ Λ/s

0

dy1dy2

y1y2

{
f(1, z, y1, y2)+

f(z, 1, y1, y2) +
g(1, z, y1, y2) + g(z, 1, y1, y2)

y1

}
, (181)

where we define
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g(s1, s2, y1, y2) =
√
s1 + y1 + y2

(√
s2 + y1 + y2 −

√
s1 + y1 + y2

)
×
(√

s1 + y1 +
√
s1 + y2 −

√
s1 +

√
s2 + y1 + y2 −

√
s2 + y1 −

√
s2 + y2 +

√
s2

)
×
( (√

s1 +
√
s2

) (
−√s1 −

√
s2 + y1 +

√
s2

)
(
√
s1 + y1 +

√
s2 + y1) (

√
s1 + y1 + y2 +

√
s1 + y1)

+

√
s1√

s1 + y1 + y2 +
√
s1

)

+ (s1 + y2)
(√

s1 + y2 −
√
s2 + y2

)( (√
s1 +

√
s2

) (
−√s1 −

√
s2 + y1 +

√
s2

)
(
√
s1 + y1 +

√
s2 + y1) (

√
s1 + y1 +

√
s1 + y2)

+

√
s1√

s1 + y2 +
√
s1

)

+
1

4
(s2 − s1)

(√
s1 + y1 +

√
s1 −

√
s2 + y1 −

√
s2

)
+

√
s1

(√
s1 + y1 −

√
s2 + y1

)(√
s1

(√
s2 + y1 −

√
s2

)
+ 2s1 + y1

)
√
s1 + y1 +

√
s1

, (182)

and

f(s1, s2, y1, y2) =
(s1 + y2)

y2

(√
s2 + y2 −

√
s1 + y2

)( (√
s1 +

√
s2

) (√
s2 −

√
s1 −

√
s2 + y1

)
(
√
s1 + y1 +

√
s2 + y1) (

√
s1 + y1 +

√
s1 + y2)

+

√
s1√

s1 + y2 +
√
s1

)

+

(√
s2 −

√
s1

)
4y2

(
1 +

2
(√
s1 +

√
s2

) (√
s2 −

√
s1 −

√
s2 + y1

)(√
s1 + y1 +

√
s1

)
(
√
s1 + y1 +

√
s2 + y1)

)(
2
√
s1

√
s2 + y2 − 2

√
s1
√
s2 − 2

√
s1

√
s1 + y2 − y2

)

+

√
s1

(√
s2 + y1 −

√
s1 + y1

)(√
s2 −

√
s1 −

√
s2 + y1

)
2
(√

s1 + y1 +
√
s1

)2 .

(183)

Adding contribution of these two diagrams we get the dou-
ble Laplace transform of the second order term

W̃2(λ, s) = C̃(λ, s) + D̃(λ, s).

The expressions in Eqs. (182) and (183) are given in the
supplemental Mathematica notebook [76] for their numerical
evaluation.

E. Result for Fpos(κ,H)

Rest of the analysis is very similar to that for tlast and tmax.
We write the amplitude W̃ (λ, s) in Eq. (155) in an exponential
form such that

W̃ (s κ, s) =
eW̃(κ)

s
√

1 + κ
, (184)

where W̃ = ε W̃1 + ε2 W̃2 + · · · , with

W̃1(κ) = Ã(1 + κ), (185a)

W̃2(κ) = C̃(1 + κ) + D̃(1 + κ)− 1

2
Ã(1 + κ)2. (185b)

Considering the normalization in Eq. (154) we get the
Laplace transform of the distribution of tpos in Eq. (66) with

F̃pos(κ,H) = W̃(κ)− W̃(0). (186)

One can verify that W̃(0) = 0 up to the second order in the
perturbation expansion, and this means in the expansion Eq.
(69a),

F̃pos
1 (κ) = W̃1(κ) and F̃pos

2 (κ) = W̃2(κ). (187)

Comparing with Eq. (144) we see that F̃pos
1 (κ) is exactly

same as F̃max
1 (κ), and therefore we get

Fpos
1 (ϑ) = Fmax

1 (ϑ) (188)

given in Eq. (147).
The difference with the distribution for tmax comes in the

second order term. This is given by

Fpos
2 (ϑ) =− 1

2
[Fpos

1 (ϑ)−Rpos(ϑ)]
2

+K−1
κ→ϑ �

[
F̃pos

2 (κ) +
1

2
F̃pos

1 (κ)2

]
.(189)

Following a similar analysis as used for Eq. (152) we get our
result

Fpos
2 (ϑ) = −1

2
ψ2

(√
ϑ

1− ϑ

)2

+

K−1
κ→ϑ �

[
C̃(1 + κ) + D̃(1 + κ)− 1

2
Ã(1 + κ)2

]
(190)
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with Eq. (151).
It is difficult to analytically do the integration for the am-

plitudes in the second term in Eq. (190). We have numerically
verified that the term remains finite for Λ → ∞. For an ex-
plicit formula in terms of ϑ we exchange the order of K−1

κ→ϑ-
transformation and the integration. This allows us to write

Fpos
2 (ϑ) =− 1

2
ψ2

(√
ϑ

1− ϑ

)2

(191)

+ 2

∫ ∞
0

dy1dy2

y2
1y

2
2

Ψpos

(
y1, y2,

1− ϑ
ϑ

)
.

Expression for Ψpos is lengthy and it is given in the Appendix
K. Our result for Fpos

2 (ϑ) is plotted in Fig. 7, which agrees
well with our computer simulation result. For this we eval-
uated both the K−1-transformation and the y-integration nu-
merically.

IX. SUMMARY

We found a generalization of the three arc-sine laws of
Brownian motion for an fBm. Unlike in the Brownian mo-
tion, the probabilities are different and given in Eqs. (38)-
(37). These results are obtained using a perturbation expan-
sion around the Brownian motion, and by a scaling argument
for divergences near ϑ → 0 and 1. Our numerical simula-
tions confirm these highly non-trivial predictions accurately.
We find a very good convergence to the numerical results
for the entire range of ϑ even for large ε. Most realizations
of fBm found in practical applications fall within the range
H ' 1

2 ± 0.25 where our formulas yield high-precision pre-
dictions.

Our perturbation approach offers a systematic framework
to obtain analytical results for other observables of an fBm, of
which very few are available so far. For example, distribution
of Area under a Brownian excursion is known to have an Airy
distribution [77]. Corresponding generalization for an fBm
is yet unavailable. On simpler examples, a closed form ex-
pression for an fBm propagator with absorbing and reflecting
boundary is desirable.
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Appendix A: Perturbation expansion of the fBm action

Writing H = 1
2 + ε in the expression for G−1(t1, t2) =

〈Xt1Xt2〉 given in Eq. (1) and expanding in powers of small

ε we get

G−1(t1, t2) = K0(t1, t2)+εK1(t1, t2)+ε2K2(t1, t2)+ · · · ,

where

K0(t1, t2) ≡ G−1
0 (t1, t2) = 2 min(t1, t2),

and, for n ≥ 1,

Kn(t1, t2) =
2n

n!

[
t1 lnn t1 + t2 lnn t2

−|t1 − t2| lnn |t1 − t2|
]
. (A1)

For G related by G−1G(t1, t2) = GG−1(t1, t2) = δ(t1 −
t2), this is equivalent1 to a perturbation expansion

G(t1, t2) = G0(t1, t2) + εG1(t1, t2) + ε2G2(t1, t2) + · · ·

with

G0(t1, t2) = −1

2
δ′′(t1 − t2), (A2a)

and for n ≥ 1,

Gn(t1, t2) = −
n∑
q=1

G0KqGn−q(t1, t2). (A2b)

(Here we denote

AB(t1, t2) =

∫ T

0

ds A(t1, s)B(s, t2), (A3)

for any two bivariate functions A and B.)
It will be convenient for our analysis to write Gn in Eq.

(A2) as

Gn = G0ΣnG0 (A4)

for all positive integers n, such that

Σ0 = K0, Σ1 = −K1, Σ2 = −K2 +K1G0K1,

Σ3 =−K3 +K2G0K1 +K1G0K2 −K1G0K1G0K1,
(A5)

and so on. In terms of this perturbation expansion, action (5)
is written as

S = S0 + εL1 + ε2L2 + · · · , (A6)

where S0 is in Eq. (8a) and for n ≥ 1,

Ln =

∫ T

0

dt1

∫ T

0

dt2 ẋ(t1)

{
1

8
∂t1∂t2Σn(t1, t2)

}
ẋ(t2)

(A7)

1 To see this one can verify that K0 ·G0(r, s) = G0K0(r, s) = δ(r − s)
and then use

∑n
q=0Kq Gn−q = 0 for all n ≥ 1, which can be seen from

Eq. (A2b).
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obtained by integration by parts.
For their explicit expression we use the following results

obtained from Eq. (A1): for t2 ≥ t1
1

4
∂t1∂t2K1 = (1 + lnω)δ(t1 − t2) +

1

2

1

(t2 − t1)
, (A8a)

1

4
∂t1∂t2K2 =

(
π2

6
+ 2 lnω + ln2 ω

)
δ(t1 − t2)

+
1 + lnω

(t2 − t1)
+

1

2

∫ t2−ω

t1+ω

ds

(t2 − s)(s− t1)
, (A8b)

where singularities are regularized by introducing an infinites-
imally small ultraviolet cutoff ω > 0 in time, such that terms
like δ(t1 − t2) ln(t2 − t1) ' δ(t1 − t2) lnω and

ln(t2 − t1)

(t2 − t1)
' lnω

(t2 − t1)
+
π2

6
δ(t1 − t2)

+
1

2

∫ t2−ω

t1+ω

ds

(t2 − s)(s− t1)
, (A8c)

which are used for writing Eq. (A8b). Similarly, for t2 ≥ t1,
1

4
∂t1∂t2K1G0K1 = 2 (1 + lnω)

2
δ(t1 − t2)

+
2(1 + lnω)

(t2 − t1)
+

1

2

∫ T

0

ds

|t1 − s||t2 − s|
. (A8d)

Using Eq. (A8) in Eq. (A5) and Eq. (A7) it is easy to see
that

L1 =− 2(1 + lnω)S0 −
1

2
S1, (A9a)

L2 =

[
2

(
1− π2

6

)
+ 2 (1 + lnω)

2

]
S0

+ (1 + lnω)S1 + S2, (A9b)

where S0, S1, and S2 are defined in Eq. (8). The expansion
(A6) with Eq. (A9) gives Eq. (7).

Appendix B: Alternate derivation of the action

Here we give an elegant and short derivation of the action
in Eqs. (7)-(8) in a normal-ordered form. Using integration by
parts, Eq. (5) gives

S[Xt] =
1

2

∫ T

0

dt1

∫ T

0

dt2 Ẋt1C
−1(t1, t2)Ẋt2 (B1)

with the correlation

C(t1, t2) =〈Ẋt1Ẋt2〉 = 4H|t1 − t2|2H−1δ(t1 − t2)

+ 2H(2H − 1)|t1 − t2|2(H−1). (B2)

An expansion in ε = H − 1
2 gives

C(t1, t2) = 2D̂

[
δ(t1 − t2) + ε

1

|t1 − t2|

+ε2 2 ln |t1−t2ω

|t1 − t2|
+ · · ·

]
, (B3)

with D̂ = 2Hω2H−1 = (1 + 2ε)ω2ε, and ω being an ultravi-
olet cutoff in time. This implies

C−1(t1, t2) =
1

2D̂

[
δ(t1 − t2)− ε

|t1 − t2|

−ε2 2 ln |t1−t2|ω

|t1 − t2|
+ ε2

∫
ds

1

|s− t1||s− t2|
+ · · ·

]
.

Substituting in Eq. (B1) and defining a normal-ordered form
(non-contact terms only) in Eq. (16) we get

S(n)[Xt] =
1

2D̂

∫
t1<t2

dt1dt2Ẋt1Ẋt2

[
δ(t1 − t2)

− ε

|t1 − t2|
− 2ε2 ln |t1−t2|ω

|t1 − t2|
+ · · ·

]
. (B4)

Using the integral representation Eq. (A8c) this gives

S(n)[Xt] =
1

2D

∫
t1<t2

dt1dt2Ẋt1Ẋt2

[
δ(t1 − t2)

− ε

|t1 − t2|
− ε2

∫ t2

t1

ds
1

|s− t1||s− t2|
+ · · ·

]
, (B5)

with D given in Eq. (9). Comparing with Eqs. (7)-(8) one
can see that the both leading and sub-leading terms are same
whereas the ε2 order term includes only contact-less terms.
An integral representation of the normal-ordered second-order
term is in Eq. (17).

Appendix C: The fBm propagator

Here, we verify Eq. (18) using the perturbation expansion
of the action (A6) to all orders. In terms of this expansion, Eq.
(20a) can be written as

WH(m,T ) =
〈
e−

∑
n≥1 ε

nLn
〉
, (C1)

where by the angular brackets we denote (definition restricted
only for this Appendix)

〈O[x]〉 ≡
∫ x(T )=m

x(0)=0

D[x] e−S0O[x]. (C2)

Then, using a result for the multi-time correlation given later
in Eq. (M13) for D = 1 and the propagator Eq. (20a) leads to

GH(m,T ) = eF (T )∂2
mG(m,T ) (C3)

with

F (T ) =
1

2

∫ T

0

dt1

∫ T

0

dt1
∑
n≥1

εn∂t1∂t2Kn(t1, t2), (C4)

where we used Eq. (A5) and Eq. (A7).
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Remark: In Eq. (C3), the contribution from terms like
K1G0K1 etc in Eq. (A5) are canceled from the terms in nor-
malization NT in Eq. (18). One may explicitly verify this at
lower orders in perturbation expansion.

Using Eq. (A1) in Eq. (C4), it is easy to see that

F (T ) = T
∑
n≥1

(2ε lnT )n

n!
= T (T 2ε − 1), (C5)

which in Eq. (C3) leads to

GH(m,T ) = e(T 2H−T )∂2
mG(m,T ), (C6)

where we used 1+2ε = 2H . Using the expression of G(m,T )
in Eq. (23), it is now easy to obtain Eq. (18).

Appendix D: Numerical simulation of an fBm

Efficient computer simulation of an fBm trajectory is a del-
icate task. A vast literature has been published on this subject.
For a comparative study of many of the sampling methods for
an fBm see the review [78] and references therein. In general
these algorithms generate the full trajectory. If one is only in-
terested in a specific observable, as the first-passage time, not
all points need to be generated, allowing for tremendous gains
both in memory usage and execution speed [66, 72, 73].

In our work, we use a discrete-time sampling method fol-
lowing the Davis and Harte procedure [70] (also known as the
Wood and Chan procedure [79]) as described in Ref. [71]. The
basic idea is to construct fBm paths from a discrete-time sam-
pling of stationary, Gaussian-distributed, increments ∆Xn for
integers n = 0, 1, · · · , N − 1, with mean 〈∆Xn〉 = 0 and co-
variance

〈∆Xm∆Xn〉 = γ(m− n) (D1)

= (m− n+ 1)2H + (m− n− 1)2H − 2(m− n)2H ,

for positive integers n ≤ m < N . For large N with t = n/N ,
one can see that N2−2Hγ(Nt − Ns) converge to the covari-
ance (2). This means, the cumulated sum N−H

∑n
i=0 ∆Xi

for large N gives an fBm path Xt with X0 = 0 in a time
window [0, 1].

The Davis and Harte procedure is an efficient algorithm for
generating samples of ∆Xn with a computational efficiency
O(N lnN) (compared toO(N3) for Choleski decomposition
method [78]). The algorithm involves the following simple
steps. We construct two linear arrays {Wn} and {λn} of
length 2N with index n = 0, 1, · · · , 2N − 1. Elements of the
first array are generated from a set of 2N independent Gaus-
sian random numbers V0, V1, · · · , V2N−1, with 〈Vn〉 = 0 and
〈VmVn〉 = δm,n. We define

W0 = V0, Wn =
1√
2

(Vn + i V2N−n) , (D2)

for n = 1, · · · , N − 1, whereas

WN = VN , Wn =
(−i)√

2
(Vn + i V2N−n) , (D3)

for n = N + 1, · · · , 2N − 1. This construction ensures that
〈Wn〉 = 0 and

〈WkWk′〉 = δk,0δk′,0 + δk+k′,2N , (D4)

for indices 0 ≤ k ≤ 2N − 1.
Elements of the second array are defined by

λn =

2N−1∑
k=0

Γk e
i π nkN (D5)

for integers 0 ≤ n ≤ 2N − 1, where Γk = γ(k) for 0 ≤ k ≤
N and Γk = γ(2N − k) for N + 1 ≤ k ≤ 2N − 1 with
covariance in Eq. (D1). This means,

λ2N−n = λn (D6)

and the inversion formula

Γk =
1

2N

2N−1∑
n=0

λn e
−i π nkN . (D7)

The set of increments for a discrete fBm are obtained from

∆Xn =
1√
2N

2N−1∑
k=0

Wk

√
λk e

iπ nkN (D8)

for 0 ≤ n ≤ N−1. In comparison, we shall see that the set of
increments for N ≤ n ≤ 2N − 1 do not have the covariance
(D1) and they are discarded.

It is simple to verify that this construction (D8) indeed gen-
erates Gaussian random numbers with covariance (D1). The
simplest is to see that 〈∆Xn〉 = 0 from 〈Wn〉 = 0. Moreover,
Xn is a linear combination of Gaussian random variablesWn,
and therefore it’s distribution remains Gaussian. For the co-
variance, using Eq. (D8) we write

〈∆Xm∆Xn〉 =
1

2N

2N−1∑
k,k′=0

〈WkWk′〉
√
λkλk′ e

iπ
N (nk+mk′),

which using Eq. (D4) gives

〈∆Xm∆Xn〉 =
1

2N

{
λ0 +

2N−1∑
k=1

√
λkλ2N−k e

−i πN (m−n)k

}
,

(D9)
for n ≤ m. Using the symmetry in Eq. (D6) the above ex-
pression simplifies to

〈∆Xm∆Xn〉 =
1

2N

2N−1∑
k=1

λk e
−i πN (m−n)k,

=Γm−n (D10)

for m ≥ n, where in the last step we used the inverse Fourier
transformation (D7). It is clear from Eq. (D10) that,

〈∆Xm∆Xn〉 = γ(m− n) for m− n ≤ N, (D11)
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0 1

C

ϑ

FIG. 22. Contour C for the complex integral (E).

which includes all 0 ≤ n ≤ m ≤ N − 1. For indices ≥ N ,
such that m− n > N , the covariance is γ(2N −m+ n), and
therefore ∆Xn for n ≥ N are discarded.

The mathematics behind this algorithm is clearly explained
in [71, 78]. It involves calculating square root of a positive
matrix by embedding it in a circulant matrix. We shall not
repeat the discussion this here. Reader may find details in
[71, 78].

Appendix E: A derivation of the inverse transform

The inverse transformation in Eq. (63) can be derived using
complex analysis by writing Eq. (62) as

p̃(z) =

∮
C
d`

p(`)

1 + z`
,

where C is a simple closed contour drawn in Fig. 22. In an
alternative representation

1

2πi

∮
C
d`
p(`)

`− z = f(z) :=
1

2πi

(
−1

z

)
p̃

(
−1

z

)
. (E1)

The Sokhotski-Plemlj formula of complex analysis gives the
inverse transformation

p(`) = f+(`)− f−(`) (E2)

for any point ` on the contour C, where f±(`) = limz→` f(z)
with the limit taken from the domain inside (+) and outside (-)
the contour C, respectively. For ` = ϑ on the real axis,

f±(ϑ) = − 1

2πi ϑ
lim
δ→0

p̃

(
− 1

ϑ
± iδ

)
(E3)

and this gives Eq. (63).

Appendix F: A list of useful K−1 transforms

Here, we give functions, which are related by the transfor-
mation Eq. (68) and its inverse transformation Eq. (70). These
relations, indicated below by ↔, are useful for our analysis.
They can be numerically verified in Mathematica. A trivial,
but useful result is 1↔ 1.

Among others,

− 2 ln
[
1 +
√

1 + κ
]
↔ lnϑ, (F1)

− 2 ln

[
1 +

1√
1 + κ

]
↔ ln(1− ϑ), (F2)

which using linearity of the transformation leads to

ln(1 + κ)− 4 ln
[
1 +
√

1 + κ
]
↔ lnϑ(1− ϑ), (F3)

and

− ln(1 + κ)↔ ln
ϑ

1− ϑ. (F4)

Additionally,

(ln(1 + κ))
2 ↔

(
ln

ϑ

1− ϑ

)2

− π2. (F5)

We get,

ln(1 +
√

1 + κ)√
1 + κ

↔ x arctan
1

x
, (F6)

and

√
1 + κ ln(1 +

1√
1 + κ

)↔ 1

x
arctanx, (F7)

where x =
√

ϑ
1−ϑ . A linear combination of Eqs. (F2, F6, F7)

gives

−
(
1 +
√

1 + κ
)

ln(1 + κ) +
2
(
1 +
√

1 + κ
)2

√
1 + κ

× ln
(
1 +
√

1 + κ
)
↔ ψ(x)− lnϑ(1− ϑ) (F8)

with Eq. (40c) and the same definition for x. A related result
about square of the above function is

[
−
(
1 +
√

1 + κ
)

ln(1 + κ) +
2
(
1 +
√

1 + κ
)2

√
1 + κ

×

ln
(
1 +
√

1 + κ
) ]2
↔ [ψ(x)− lnϑ(1− ϑ)]

2 − ψ2(x)2.(F9)

with Eqs. (40c) and (151).
Other results, useful for verifying Eqs. (42, 43, 44), are

Γ
(
n
2

)
√
π

2F1

(
1

2
,
n− 1

2
,
n+ 1

2
,−κ

)
↔ (ϑ)

n−1
2 , (F10)

√
1 + κ Γ

(
n
2

)
√
π

2F1

(
1

2
, 1,

n+ 1

2
,−κ

)
↔ (1− ϑ)

n−1
2 ,

(F11)
and their product

√
1 + κ Γ

(
n
2

)2
√
π

2F1

(
1,
n

2
, n,−κ

)
↔ [ϑ(1− ϑ)]

n−1
2 ,

(F12)
for n ≥ 1, where 2F1(a, b, c, z)/Γ(c) is regularized hyperge-
ometric function and it can be evaluated to arbitrary numerical
precision in Mathematica.
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r1 r3 r4 r2τ
D1

r1 r2r3 r4τ
D2

FIG. 23. Two distinct cases of the 2-loop diagram D in Fig. 14 for
distribution of tlast, categorized according to whether loops intersect
(for D1) or not (for D2). The time variables r’s remain on the same
side of τ as indicated.

Appendix G: Amplitude of the Two-loop diagrams for tlast

Here, we give a detailed derivation of the amplitudes of 2-
loop diagrams shown in Fig. 14.

1. Non-trivial diagram D contributing to F last.

Amplitude of the diagram D in Fig. 14 is given by

D(τ, T ) =
1

4D2

∫ ∞
0

dm

∫ Λ

0

dy1dy2

∫ τ

0

dr1

∫ T

τ

dr2

∫ τ

0

dr3

×
∫ T

τ

dr4 e
y1(r1−r2)ey2(r3−r4)

〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
m

with the angular brackets defined in Eq. (79). Considering
order of the time variables, the possible cases are illustrated in
Fig. 23. Their amplitude can be expressed in terms of J and
J+ defined in Eq. (89). Adding them, we write

D(τ, T ) =
2

4D2

∫ ∞
0

dm

∫ Λ

0

dy1dy2e
−τ(y1+y2)Jτ (0, x0;−y1,−y2)

×
[
J+
T−τ (x0,m; y2, y1) + J+

T−τ (x0,m; y1, y2)
]
,

where the pre-factor 2 is due to interchange of pairs (r1, r2)
with (r3, r4).

Its double Laplace transformation in Eq. (60) gives

D̃(λ, s) =
1

2D2

∫ ∞
0

dm

∫ Λ

0

dy1dy2J̃s+λ+y1+y2
(0, x0;−y1,−y2)

×
[
J̃+
s (x0,m; y2, y1) + J̃+

s (x0,m; y1, y2)
]
.

It is convenient to write the expression in a form such that the
integrand is symmetric in y1 and y2. We write

D̃(λ, s) =
1

4D2

∫ Λ

0

dy1dy2

[
J̃s+λ+y1+y2

(0, x0;

− y1,−y2) + J̃s+λ+y1+y2
(0, x0;−y2,−y1)

]
×∫ ∞

0

dm

[
J̃+
s (x0,m; y2, y1) + J̃+

s (x0,m; y1, y2)

]
. (G1)

We show that (a derivation given in App. N)

J̃s(m1,m2; y1, y2) =
2
√
D

y1y2(y1 + y2)

[
y1

√
s e−z

√
s

+ y2

√
s+ y1 + y2 e

−z
√
s+y1+y2

− (y1 + y2)
√
s+ y2 e

−z
√
s+y2

]
, (G2)

where z = |m1−m2|√
D

and

∫ ∞
0

dm2J̃
+
s (m1,m2; y1, y2)

=
4D

y1y2

√
s+ y2

s

[
e−m1

√
s+y2
D − e−m1

√
s+y1+y2

D

]
+

4D

(y1 + y2)y2

[
e−m1

√
s+y1+y2

D − e−m1

√
s
D

]
. (G3)

Using the asymptotic of (G2) for small x0, we obtain

J̃s(0, x0;−y1,−y2) + J̃s(0, x0;−y2,−y1) '

2
√
D

y1y2

(√
s−√s− y2 −

√
s− y1 +

√
s− y1 − y2

)

and similarly from Eq. (G3) we get for small x0,

∫ ∞
0

dm

{
J̃+
s (x0,m; y2, y1) + J̃+

s (x0,m; y1, y2)

}
' −4x0

√
D

y1y2
×
√
s+ y1 + y2√

s
×(√

s+ y1 + y2 −
√
s+ y1 −

√
s+ y2 +

√
s

)
. (G4)

Using these asymptotics in Eq. (G1) we get, for small x0,

D̃(λ, s) ' −2x0

D

∫ Λ

0

dy1dy2

y2
1y

2
2

×
√
s+ y1 + y2√

s
×(√

s+ y1 + y2 −
√
s+ y1 −

√
s+ y2 +

√
s

)
×
(√

s+ λ+ y1 + y2 −
√
s+ λ+ y1

−
√
s+ λ+ y2 +

√
s+ λ

)
.

This leads to the result in terms of re-scaled arguments in Eq.
(97) and Eq. (98).
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r1 r3 r4 r2τ

E′
2

r1 r3 r2 r4τ
E′′

2

r1 r2 r3 r4τ
E′′′

2

FIG. 24. Diagram E2 of Fig. 14 is made of three cases according to
relative order of time variables with r1 < r2 and r3 < r4, remaining
on the side of τ as indicated.

2. Two-loop diagrams contributing to simple scaling

a. Diagrams E1 and E2

We begin with the diagram E2 in Fig. 14, whose amplitude
is given by

E2(τ, T ) =
1

4D2

∫ ∞
0

dm

∫ Λ

0

dy1dy2

∫ T

τ

dr1

∫ T

r1

dr2

∫ T

τ

dr3

×
∫ T

r3

dr4 e
y1(r1−r2)ey2(r3−r4)

〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
m

with the angular brackets defined in Eq. (79).

The expression can be written in three parts according to
relative order of times r.

E2(τ, T ) = E′2(τ, T ) + E′′2 (τ, T ) + E′′′2 (τ, T )

as shown in Fig. 24. Their amplitude can be written in terms
of propagator Z in Eq. (23) and J+ in Eq. (89). Adding their
amplitudes, we write

E2(τ, T ) =
2

4D2
Zτ (0, x0)

∫ Λ

0

dydy′
∫ ∞

0

dm×[
J+
T−τ (x0,m;−y,− y′, y′, y) + J+

T−τ (x0,m;−y,−y′, y, y′)

+ J+
T−τ (x0,m;−y, y,−y′, y′)

]
.

(The pre-factor 2 comes from interchange of pairs (r1, r2) and
(r3, r4).)

Corresponding double Laplace transformation gives

Ẽ2(λ, s) =
1

2D2
Z̃s+λ(0, x0)

∫ Λ

0

dydy′
∫ ∞

0

dm×[
J̃+
s (x0,m;−y,y,−y′, y′) + J̃+

s (x0,m;−y,−y′, y′, y)

+ J̃+
s (x0,m;−y,−y′, y, y′)

]
.

To evaluate the expressions we use Z̃s(0, x0) from (84a),
and

∫ ∞
0

dm J̃+
s (x0,m; y1, y2, y3, y4) =

16D2

s

[
s3 (e−s4z − e−sz)

(s2 − s2
1) (s2 − s2

2) (s2 − s3
2) (s2 − s4

2)

+
s1

3 (e−s4z − e−s1z)
(s1

2 − s2) (s1
2 − s2

2) (s1
2 − s3

2) (s1
2 − s4

2)
+

s2
2
(
ss1 + s2

2
)

(e−s4z − e−s2z)
(s+ s1) (s2

2 − s2) (s2
2 − s1

2) (s2
2 − s3

2) (s2
2 − s4

2)

+
s3

((
s1s2 + s3

2
) (
s2s1 + s2s3

2
)

+ ss3
2(s1 + s2)2

)
(e−s4z − e−s3z)

(s+ s1)(s+ s2)(s1 + s2) (s3
2 − s2) (s3

2 − s1
2) (s3

2 − s2
2) (s3

2 − s4
2)

]
(G5)

derived later in Eq. (N19), where we denote z = x0√
D

, s1 =√
s+ y4, s2 =

√
s+ y3 + y4, s3 =

√
s+ y2 + y3 + y4,

s4 =
√
s+ y1 + y2 + y3 + y4.

Using these two results for small x0, we get the asymptotics

Ẽ2(λ, s) ' 1

2D
× x0√

s(s+ λ)

∫ Λ

0

dy1dy2

y2
1y

2
2

e(s, y1, y2)

where we define

e(s, y1, y2) =− (s+ y1)(s+ y2) +
√
s
(√
s−√s+ y1 −

√
s+ y2

) [
2
(√
s+ y1 + y2 −

√
s+ y1 −

√
s+ y2 +

√
s
)2

−
(√
s−√s+ y1 −

√
s+ y2

)2 −√s+ y1

(√
s−√s+ y1

)
−√s+ y2

(√
s−√s+ y2

) ]
. (G6)
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Comparing the two diagrams E1 and E2 in Fig. 14, one can
see that, for small x0,

Ẽ1(λ, s) ' 1

2D
× x0√

s(s+ λ)

∫ Λ

0

dy1dy2

y2
1y

2
2

e(s+ λ, y1, y2)

with Eq. (G6). (This we have also explicitly verified.) Adding
the two amplitudes we get Eq. (100).

Remark: Interestingly the integral in Ẽ1(2)(λ, s) can be eval-
uated.∫ Λ

0

dy1dy2

y2
1y

2
2

e(s, y1, y2) = − ln2

(
Λ

s

)
+ 2 [1 + 2 ln 2] ln

(
Λ

s

)
+ (1 + 2 ln 2)2 − 2− 3

2
π2.

(we have verified this numerically.) This result along with
results Eq. (G7) and Eq. (G20) given later, helps recognize
the linear combination of diagrams in Eq. (113) where diver-
gences for Λ→∞ cancels.

b. Diagram A

Amplitude of the diagram A in Fig. 14 is given by

A(τ, T ) =
1

4D2

∫ ∞
0

dm

∫ Λ

0

dy1dy2

∫ τ

0

dr1

∫ τ

r1

dr2

∫ T

τ

dr3

×
∫ T

r3

dr4 e
y1(r1−r2)ey2(r3−r4)

〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
m

with the angular brackets defined in Eq. (79). In terms of J in
Eq. (89) and its analogue J+ in presence of absorbing bound-
ary, we write

A(τ, T ) =
2

4D2

∫ Λ

0

dy1dy2Jτ (0, x0;−y1, y1)

×
∫ ∞

0

dmJ+
T−τ (x0,m;−y2, y2),

where the prefactor 2 is the degeneracy from the interchange
of pair of indices (1, 2) and (3, 4). The double Laplace trans-
formation Eq. (60) gives

Ã(λ, s) =
1

2D2

∫ Λ

0

dy1dy2J̃s+λ(0, x0;−y1, y1)

×
∫ ∞

0

dmJ̃+
s (x0,m;−y2, y2).

Using Eqs. (G2) and (G3) for small x0, we get

Ã(λ, s) '− x0

D
√
s(s+ λ)

∫ Λ

0

dy1dy2

y2
1y

2
2

(√
s+ y2 −

√
s
)2

×
(√

s+ λ−
√
s+ λ+ y1

)2

.

In terms of re-scaled variables this gives Eq. (102).

Remark: The y integration in Ã can be evaluated explicitly
using∫ Λ

0

dy

y2

(√
s+ y −√s

)2
= ln

(
Λ

s

)
− 1− 2 ln 2. (G7)

c. Diagrams G1 and G2

Diagrams G1 and G2 in Fig. 14 has a contracted point s.
Their amplitude is given by

G1(τ, T ) =
1

D

∫ ∞
0

dm

∫ Λ

0

dy1dy2

∫ τ

0

dr1

∫ τ

r1

ds

∫ τ

s

dr2

× ey1(r1−s)ey2(s−r2)
〈〈
ẋ(r1)ẋ(r2)

〉〉
m

and

G2(τ, T ) =
1

D

∫ ∞
0

dm

∫ Λ

0

dy1dy2

∫ T

τ

dr1

∫ T

r1

ds

∫ T

s

dr2

× ey1(r1−s)ey2(s−r2)
〈〈
ẋ(r1)ẋ(r2)

〉〉
m

with the angular brackets defined in Eq. (79). (Their differ-
ence is in the range of integration for time variables.)

We write these amplitudes in terms of the fBm propagators
defined in Eqs. (23, 80).

G1(τ, T ) =
1

D

∫ Λ

0

dy1dy2 Lτ (0, x0;−y1, y1 − y2, y2)

×
∫ ∞

0

dmZ+
T−τ (x0,m)

and

G2(τ, T ) =
1

D

∫ Λ

0

dy1dy2Z(0, x0, τ)

×
∫ ∞

0

dm L +
T−τ (x0,m;−y1, y1 − y2, y2),

where we define

Lt(m1,m2;y1, z, y2) =

∫ t

0

dr1

∫ t

r1

ds

∫ t

s

dr2

×e−y1r1−z s−y2r2〈ẋ(r1)ẋ(r2)〉(m1,m2) (G8)

and its analogue L +
t in presence of an absorbing line. The

angular brackets denote average with standard Brownian mea-
sure e−

S0
D starting at position m1 and ending at position m2.

Their double Laplace transformation Eq. (60) is given by

G̃1(λ, s) =
1

D

∫ Λ

0

dy1dy2

∫ ∞
0

dm

×L̃s+λ(0, x0;−y1, y1 − y2, y2) Z̃+
s (x0,m) (G9)
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and

G̃2(λ, s) =
1

D

∫ Λ

0

dy1dy2

∫ ∞
0

dm

×Z̃s+λ(0, x0) L̃ +
s (x0,m;−y1, y1 − y2, y2). (G10)

Expressions of Z̃ and Z̃+ are in Eq. (84) and the integral of
the latter is in Eq. (L5).

For Laplace transform L̃ of Eq. (G8) we note that

L̃s(m1,m2; y1, z, y2) =
1

z

{
J̃s(m1,m2; y1 + z, y2)

− J̃s(m1,m2; y1, y2 + z)

}
(G11)

with Eq. (89), and a similar relation for L̃ + in terms of J̃+
s .

This is easy to see from Eqs. (G8, 89) and taking their Laplace
transformation.

Then, using Eqs. (G2) and (G3) we get

L̃s(0, x0;−y1, y1 − y2, y2) =

√
D

s
×
hs

(
x0√
D
, y1, y2

)
y2

1y
2
2

(G12)
and ∫ ∞

0

dm L̃ +
s (x0,m;−y1, y1 − y2, y2)

=
2D√
s
×
h+
s

(
x0√
D
, y1, y2

)
y2

1y
2
2

, (G13)

where we define

hs (z, y1, y2) = e−z
√
s y1y2

− 2
√
s

(y1 − y2)

{
y2

1

(√
s+ y2 e

−z
√
s+y2 −√s e−z

√
s
)

− y2
2

(√
s+ y1 e

−z
√
s+y1 −√s e−z

√
s

)}
, (G14)

and

h+
s (z, y1, y2) =− z y1y2e

−z
√
s

+
2

y1 − y2

{
y2

2

√
s+ y1

(
e−z
√
s+y1 − e−z

√
s
)

−y2
1

√
s+ y2

(
e−z
√
s+y2 − e−z

√
s
)}

. (G15)

In terms of these functions in Eq. (G9) and Eq. (G10), we
write

G̃1(λ, s) =
1− e−x0

√
s
D

s
√
D(s+ λ)

∫ Λ

0

dy1dy2

y2
1y

2
2

hs+λ

(
x0√
D
, y1, y2

)
and

G̃2(λ, s) =
e−x0

√
s+λ
D√

Ds(s+ λ)

∫ Λ

0

dy1dy2

y2
1y

2
2

h+
s

(
x0√
D
, y1, y2

)
.

For small z, the expressions in Eq. (G14) and Eq. (G15)
have the asymptotics

hs (z, y1, y2) ' (
√
s+ y2 −

√
s)2y2

1 − (
√
s+ y1 −

√
s)2y2

2

(y1 − y2)

and

h+
s (z, y1, y2) ' z hs (z, y1, y2) . (G16)

Substituting this in the expression for G̃1 and G̃2 in the
small x0 limit, we get

G̃1(λ, s) ' x0

D
√
s(s+ λ)

g(s+ λ) (G17)

and

G̃2(λ, s) ' x0

D
√
s(s+ λ)

g(s), (G18)

where

g(s) =

∫ Λ

0

dy1dy2

y2
1y

2
2

× (G19)[
(
√
s+ y2 −

√
s)2y2

1 − (
√
s+ y1 −

√
s)2y2

2

(y1 − y2)

]
.

In terms of rescaled variables, we get Eq. (103).

Remark: The integral in Eq. (G19) can be evaluated analyti-
cally,

g(s) =

[
ln

(
Λ

s

)
− 1− 2 ln 2

]2

+ 1 +
π2

3
. (G20)

d. Diagrams B and C

Amplitude of B1 and B2 in Fig. 14 is given by

B1(τ, T ) =
1

D

∫ ∞
0

dm

∫ Λ

0

dy1dy2

∫ τ

0

dr1

∫ τ

r1

ds

∫ T

τ

dr2

× ey1(r1−s)ey2(s−r2)
〈〈
ẋ(r1)ẋ(r2)

〉〉
m

and

B2(τ, T ) =
1

D

∫ ∞
0

dm

∫ Λ

0

dy1dy2

∫ τ

0

dr1

∫ T

τ

ds

∫ T

s

dr2

× ey1(r1−s)ey2(s−r2)
〈〈
ẋ(r1)ẋ(r2)

〉〉
m
.

Their difference is in the limit of the time integrals.
Amplitude of these diagrams are of order x2

0 or higher, for
small x0, and therefore they do not contribute in the leading
order amplitude in Eq. (105). To see this let us consider B2,
which we write as

B2(τ, T ) =
1

D

∫ Λ

0

dy1dy2Jτ (0, x0;−y1)e−y1τ

×
∫ ∞

0

dmL +
T−τ (x0,m; y1 − y2, y2),
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where, similar to Eq. (G8), we define

L +
t (m1,m2; y1, y2) =

∫ t

0

dr1

∫ t

r1

dr2e
−y1r1−y2r2〈ẋ(r2)〉+.

The double Laplace transformation of B2 is then given by

B̃2(λ, s) =
1

D

∫ Λ

0

dy1dy2J̃s+λ+y1
(0, x0;−y1)

×
∫ ∞

0

dmL̃ +
s (x0,m; y1 − y2, y2). (G21)

From the definition in Eq. (89) it is easy to see that

L +
t (m1,m2; y1, y2)

=
1

y1

[
J+
t (m1,m2; y2)− J+

t (m1,m2; y1 + y2)
]

and similar for their Laplace transformation. Then using Eq.
(N7) we see that, for small x0,∫ ∞

0

dm L̃ +
s (x0,m; y1 − y2, y2) ∼ x0

and similarly, J̃s(0, x0; y) ∼ x0 from Eq. (N1). This means
B̃2 ∼ x2

0 for small x0.
Following a very similar calculation one can verify that B̃1

is also of order x2
0 for small x0. These are easy to see using

the argument given in the remark below Eq. (91).
The argument can be used to show that the diagram C is

also of order x2
0. We have as well verified this explicitly using

their amplitude

C1(τ, T ) =
1

4D2

∫ ∞
0

dm

∫ Λ

0

dy1dy2

∫ τ

0

dr1

∫ τ

r1

dr2

∫ τ

0

dr3

×
∫ T

τ

dr4 e
y1(r1−r2)ey2(r3−r4)

〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
m

and

C2(τ, T ) =
1

4D2

∫ ∞
0

dm

∫ Λ

0

dy1dy2

∫ τ

0

dr1

∫ T

τ

dr2

∫ T

τ

dr3

×
∫ T

r3

dr4 e
y1(r1−r2)ey2(r3−r4)

〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
m

as indicated in the diagram Fig. 14.

Appendix H: Amplitude of 2-loop diagrams for tmax

All diagrams in Fig. 14 for distribution of tmax are of order
x2

0 for small x0. Among these, the diagrams E and A con-
tribute to the scaling term in Eq. (37), and the rest D, B, C,
and G contribute to the non-trivial function Fmax.

1. Diagrams for scaling term

a. Diagrams E1 and E2

We begin with the diagram E2 in Fig. 14, whose amplitude
for the problem of tmax is given by

E2(τ, T ) =
1

8D2

∫ ∞
0

dm1dm2

∫ Λ

0

dy1dy2

×
∫ T

τ

dr1

∫ T

r1

dr2

∫ T

τ

dr3

∫ T

r3

dr4e
y1(r1−r2)

× ey2(r3−r4)
〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
(m1,m2)

(H1)

with the angular brackets defined in Eq. (124). Considering
relative order of times r we write the amplitude in three parts
as indicated in Fig. 24. Their net amplitude can be written
together as

E2(τ, T ) =
2

8D2

∫ Λ

0

dy1dy2

∫ ∞
0

dm1Z
+
τ (m1, x0)×∫ ∞

0

dm2

[
J+
T−τ (x0,m2;−y1,−y2, y2, y1) + J+

T−τ (x0,

m2;−y1,−y2, y1, y2) + J+
T−τ (x0,m2;−y1, y1,−y2, y2)

]
,

where the propagator Z+ is in Eq. (80) and J+ is an analogue
of (89) with absorbing boundary. The prefactor 2 is the de-
generacy from interchange of pair of indices (1, 2) and (3, 4)
in Fig. 24.

A double Laplace transformation Eq. (60) of the amplitude
is

Ẽ2(λ, s) =
1

4D2

∫ Λ

0

dy1dy2

∫ ∞
0

dm1Z̃
+
s+λ(m1, x0)×∫ ∞

0

dm2

[
J̃+
s (x0,m2;−y1,−y2, y2, y1) + J̃+

s (x0,

m2;−y1,−y2, y1, y2) + J̃+
s (x0,m2;−y1, y1,−y2, y2)

]
.

Expression of Z̃+ is in Eq. (84b) and integral of J̃+ is in
Eq. (G5). Using these results we get, for small x0,

Ẽ2(λ, s) ' 1

2D

x2
0√

s(s+ λ)

∫ Λ

0

dy1dy2

y2
1y

2
2

e(s, y1, y2)

with e(s, y1, y2) in Eq. (G6).
Amplitude of the diagram E1 for tmax is

E1(τ, T ) =
1

8D2

∫ ∞
0

dm1dm2

∫ Λ

0

dy1dy2

×
∫ τ

0

dr1

∫ τ

r1

dr2

∫ τ

0

dr3

∫ τ

r3

dr4 e
y1(r1−r2)

×ey2(r3−r4)
〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
(m1,m2)

. (H2)
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Comparing with Eq. (H1), we see that for small x0, the double
Laplace transformation of the amplitude E1 is

Ẽ1(λ, s) ' 1

2D
× x2

0√
s(s+ λ)

∫ Λ

0

dy1dy2

y2
1y

2
2

e(s+ λ, y1, y2).

We note that amplitude of Ẽ1 and Ẽ2 for small x0 are al-
most identical for both problems (tlast and tmax). In terms of
rescaled variables we get Eq. (134).

b. Diagram A

Amplitude of the diagram A in Fig. 14 for tmax is given by

A(τ, T ) =
1

8D2

∫ ∞
0

dm1dm2

∫ Λ

0

dy1dy2

×
∫ τ

0

dr1

∫ τ

r1

dr2

∫ T

τ

dr3

∫ T

r3

dr4 e
y1(r1−r2)

×ey2(r3−r4)
〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
(m1,m2)

(H3)

with the angular brackets defined in Eq. (124). In terms of J+

in Eq. (89), we write

A(τ, T ) =
2

8D2

∫ Λ

0

dy1dy2

∫ ∞
0

dm1J
+
τ (m1, x0;−y1, y1)

×
∫ ∞

0

dm2J
+
T−τ (x0,m2;−y2, y2),

where the prefactor 2 is the degeneracy from the interchange
of pair of indices (1, 2) and (3, 4).

The double Laplace transformation Eq. (60) of the ampli-
tude can be written as

Ã(λ, s) =
1

4D2

∫ Λ

0

dy1dy2

∫ ∞
0

dm1J̃
+
s+λ(m1, x0;−y1, y1)

×
∫ ∞

0

dm2 J̃
+
s (x0,m2;−y2, y2).

We use the results of integrals in Eq. (G3) and∫ ∞
0

dm1J̃
+
s (m1,m2; y1, y2) =

4D

y1y2
×√

s+ y2

s+ y1 + y2

[
e−m2

√
s+y2
D − e−m2

√
s
D

]
+

4D

(y1 + y2)y1

[
e−m2

√
s
D − e−m2

√
s+y1+y2

D

]
. (H4)

Their derivation is in App. N. Substituting the results, we get,
for small x0,

Ã(λ, s) ' x2
0

D
× 1√

s(s+ λ)

∫ Λ

0

dy1dy2

y2
1y

2
2

×

(√
s+ λ+ y1 −

√
s+ λ

)2 (√
s+ y2 −

√
s
)2
.

In terms of re-scaled variables this give Eq. (135).

2. Non-trivial diagrams contributing to Fmax

a. Diagram D

Amplitude of the diagram D in Fig. 14 for tmax is given by

D(τ,T ) =
1

8D2

∫ ∞
0

dm1dm2

∫ Λ

0

dy1dy2

×
∫ τ

0

dr1

∫ T

τ

dr2

∫ τ

0

dr3

∫ T

τ

dr4 e
y1(r1−r2)

×ey2(r3−r4)
〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
(m1,m2)

(H5)

with the angular brackets defined in Eq. (124).
Analysis for this amplitude is similar to the analysis in

App. G 1. It is straightforward to get

D(τ, T ) =
1

4D2

∫ Λ

0

dy1dy2 e
−y1τ−y2τ

×
∫ ∞

0

dm1J
+
τ (m1, x0;−y1,−y2)×∫ ∞

0

dm2

[
J+
T−τ (x0,m2; y2, y1) + J+

T−τ (x0,m2; y1, y2)

]
with J+ in Eq. (89). Taking the double Laplace transforma-
tion Eq. (60) we get

D̃(λ, s) =
1

4D2

∫ Λ

0

dy1dy2

×
∫ ∞

0

dm1J̃
+
s+λ+y1+y2

(m1, x0;−y1,−y2)

×
[∫ ∞

0

dm2J̃
+
s (x0,m2; y2, y1) + J̃+

s (x0,m2; y1, y2)

]
.

It is more convenient to write the expression in a symmetric
form

D̃(λ, s) =
1

8D2

∫ Λ

0

dy1dy2

∫ ∞
0

dm1

[
J̃+
s+λ+y1+y2

(m1, x0;−y1,−y2) + J̃+
s+λ+y1+y2

(m1, x0;−y2,−y1)

]
×∫ ∞

0

dm2

[
J̃+
s (x0,m2; y1, y2) + J̃+

s (x0,m2; y2, y1)
]
. (H6)

For evaluating the expression we use the results for inte-
grals in Eqs. (G3) and (H4). This leads to, for small x0,∫ ∞

0

dm1

[
J̃+
s (m1, x0; y1, y2) + J̃+

s (m1, x0; y2, y1)
]

'− x0 4
√
D

y1y2
×

√
s√

s+ y1 + y2
×

(√
s+ y1 + y2 −

√
s+ y1 −

√
s+ y2 +

√
s
)

and an analogous formula Eq. (G4).
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More explicitly, for the integrals in Eq. (H6) we get for
small x0,∫ ∞

0

dm1

{
J̃+
s+λ+y1+y2

(m1, x0;−y1,−y2)+

J̃+
s+λ+y1+y2

(m1, x0;−y2,−y1)

}

' −22
√
D x0

y1y2
×
√
s+ λ+ y1 + y2√

s+ λ
×
(√

s+ λ−
√
s+ λ+ y2 −

√
s+ λ+ y1 +

√
s+ λ+ y1 + y2

)
.

Using this with Eq. (G4) we get an explicit expression for D̃
in Eq. (H6). For small x0 limit,

D̃(λ, s) ' 1

D
× x2

0√
s(s+ λ)

∫ Λ

0

dy1dy2

y2
1y

2
2

d(s, s+ λ, y1, y2),

where we define

d(s1, s2, y1, y2) = 2
√
s1 + y1 + y2

√
s2 + y1 + y2

×
(√

s1 + y1 + y2 −
√
s1 + y1 −

√
s1 + y2 +

√
s1

)
×
(√

s2 + y1 + y2 −
√
s2 + y1 −

√
s2 + y2 +

√
s2

)
. (H7)

In terms of re-scaled variables, this gives the amplitude in
Eq. (137).

b. Diagram C

One can see that for tmax, amplitude of the diagrams C1 in
Fig. 14 is

C1(τ,T ) =
2

8D2

∫ Λ

0

dy1dy2

∫ ∞
0

dm1dm2

×
∫ τ

0

dr1

∫ τ

r1

dr2

∫ τ

0

dr3

∫ T

τ

dr4 e
y1(r1−r2)

× ey2(r3−r4)
〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
(m1,m2)

(H8)

with the angular brackets defined in Eq. (124). (The prefactor
2 is the degeneracy from interchange of pair of indices (1,2)
and (3,4).) The amplitude can be expressed in terms of J+ in
Eq. (89), giving,

C1(τ, T ) =
1

4D2

∫ Λ

0

dy1dy2

∫ ∞
0

dm1dm2 e
−y2τ

I +
τ (m1, x0;−y1, y1,−y2) J+

T−τ (x0,m2; y2),

(H9)

where we define

I +
τ (m1,m2; y1, y2, y3) =

∫ τ

0

dr1

∫ τ

r1

dr2

∫ τ

0

dr3

e−y1r1−y2r2−y3r3〈ẋ(r1)ẋ(r2)ẋ(r3)〉+(m1,m2), (H10)

for m1 > 0 and m2 > 0. For an explicit evaluation one
can use that I +

τ is related to J+ (an absorbing-boundary-
analogue of Eq. (89)) by

I +
τ (m1,m2;y1, y2, y3) = J+

τ (m1,m2; y1, y2, y3)

+J+
τ (m1,m2; y1, y3, y2) + J+

τ (m1,m2; y3, y1, y2).
(H11)

A double Laplace transform Eq. (60) of the amplitude in
Eq. (H9) gives

C̃1(λ, s) =
1

4D2

∫ Λ

0

dy1dy2

∫ ∞
0

dm1dm2

×Ĩ +
s+λ+y2

(m1, x0;−y1, y1,−y2)J̃+
s (x0,m2; y2).(H12)

To evaluate the integrals, we use a result from Eq. (N7)
which, for small x0, gives∫ ∞

0

dm2 J̃
+
s (x0,m2; y2) ' 2x0√

s

(√
s+ y2 −

√
s

y2

)
.

(H13)
Similarly, using Eq. (H11) and the integration result Eq.
(N16), for small x0, we get∫ ∞

0

dm1Ĩ
+
s+λ+y2

(m1, x0;−y1, y1,−y2)

' − 4Dx0√
s+ λ y2

1y2

× c(s+ λ, y2, y1), (H14)

where we define

c(s, y1, y2) =
√
s+ y1

(√
s+ y1 + y2 −

√
s+ y1

−√s+ y2 +
√
s

)2

. (H15)

Using Eqs. (H13) and (H14) for the integrals in the expres-
sion Eq. (H12) we get the amplitude

C̃1(λ, s) =
2x2

0

D
× 1√

s(s+ λ)

∫ Λ

0

dy1dy2

y2
1 y

2
2(√

s−√s+ y1

)
c(s+ λ, y1, y2),

for small x0, where we exchanged the dummy variables y1

and y2.
Analysis for the diagram C2 in Fig. 14 is similar. It’s am-

plitude

C2(τ,T ) =
2

8D2

∫ Λ

0

dy1dy2

∫ ∞
0

dm1dm2

×
∫ τ

0

dr1

∫ T

τ

dr2

∫ T

τ

dr3

∫ T

r3

dr4 e
y1(r1−r2)

×ey2(r3−r4)
〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
(m1,m2)

(H16)
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and the asymptotics for the corresponding double Laplace
transformation for small x0 is

C̃2(λ, s) '2x2
0

D
× 1√

s(s+ λ)

∫ Λ

0

dy1dy2

y2
1 y

2
2

×
(√

s+ λ−
√
s+ λ+ y1

)
c(s, y1, y2). (H17)

Adding the results for C̃1 and C̃2 gives Eq. (141) in terms
of re-scaled variables.

c. Diagram B

For tmax, amplitude of B1 and B2 in Fig. 14 is

B1(τ, T ) =
1

2D

∫ ∞
0

dm1dm2

∫ Λ

0

dy1dy2

∫ τ

0

dr1

∫ τ

r1

ds

×
∫ T

τ

dr2 e
y1(r1−s)ey2(s−r2)

〈〈
ẋ(r1)ẋ(r2)

〉〉
(m1,m2)

(H18)

and

B2(τ, T ) =
1

2D

∫ ∞
0

dm1dm2

∫ Λ

0

dy1dy2

∫ τ

0

dr1

∫ T

τ

ds

×
∫ T

s

dr2e
y1(r1−s) ey2(s−r2)

〈〈
ẋ(r1)ẋ(r2)

〉〉
(m1,m2)

(H19)

with the angular brackets defined in Eq. (124). Their differ-
ence is in the limit of the time integrals.

These expressions can be written in terms of J+ in Eq. (89).
We write

B1(τ, T ) =
1

2D

∫ Λ

0

dy1dy2

∫ ∞
0

dm1dm2× (H20)

L+
τ (m1, x0;−y1, y1 − y2) e−y2τJ+

T−τ (x0,m2; y2),

where we define

L+
τ (m1,m2; y1, y2) =

∫ τ

0

dr1

∫ τ

r1

dr2e
−y1r1−y2r2〈ẋ(r1)〉+.

This function can be evaluated in terms of J+ in Eq. (89),

L+
t (m1,m2; y1, y2) =

1

y2

{
J+
t (m1,m2; y1 + y2)

−e−y2τJ+
t (m1,m2; y1)

}
. (H21)

In a similar way, we write Eq. (H19) by

B2(τ, T ) =
1

2D

∫ Λ

0

dy1dy2

∫ ∞
0

dm1dm2× (H22)

J+
τ (m1, x0;−y1) e−y1τ L +

T−τ (x0,m2; y1 − y2, y2)

with J+ defined in Eq. (89) and L + defined in Eq. (G8). The
last quantity can also be expressed in terms of J+ by their
analogue of Eq. (G11) with absorbing boundary.

A double Laplace transformation (60) of the amplitudes
Eqs. (H20) and (H22) are

B̃1(λ,s) =
1

2D

∫ Λ

0

dy1dy2

∫ ∞
0

dm1dm2

× L̃+
s+λ+y2

(m1, x0;−y1, y1 − y2) J̃+
s (x0,m2; y2)

and

B̃2(λ, s) =
1

2D

∫ Λ

0

dy1dy2

∫ ∞
0

dm1dm2

×J̃+
s+λ+y1

(m1, x0;−y1) L̃ +
s (x0,m2; y1 − y2, y2),

where

L̃+
s (m1,m2;y1, y2)

=
1

y2

{
J̃+
s (m1,m2; y1 + y2)− J̃+

s+y2
(m1,m2; y1)

}
and

L̃ +
s (m1,m2; y1, y2)

=
1

y1

{
J̃+

1 (m1,m2, y2, s)− J̃+
1 (m1,m2, y1 + y2, s)

}
.

For an explicit evaluation of the amplitudes we use the for-
mula (N6) that for small x0, leads to∫ ∞

0

dm1L̃+
s+y2

(m1, x0;−y1, y1 − y2)

' 2x0√
s
× (
√
s+ y1 −

√
s)y2 − (

√
s+ y2 −

√
s)y1

y1y2(y1 − y2)
.

Similarly, using Eq. (G3) we get, for small x0,∫ ∞
0

dm2 L̃ +
s (x0,m2; y1 − y2, y2)

' 2x0√
s
× (
√
s+ y2 −

√
s)y1 − (

√
s+ y1 −

√
s)y2

y1y2(y1 − y2)
.

Using these asymptotics, along with Eqs. (N6) and (N7) we
get the amplitudes, for small x0,

B̃1(λ, s) ' 2x2
0

D
√
s(s+ λ)

∫ Λ

0

dy1dy2
(
√
s+ y2 −

√
s)

y1y2
2(y1 − y2)

×[
(
√
s+ λ+ y1 −

√
s+ λ)y2 − (

√
s+ λ+ y2 −

√
s+ λ)y1

]
and

B̃2(λ, s) ' 2x2
0

D
√
s(s+ λ)

∫ Λ

0

dy1dy2
(
√
s+ λ+ y2 −

√
s+ λ)

y1y2
2(y1 − y2)

×
[
(
√
s+ y1 −

√
s)y2 − (

√
s+ y2 −

√
s)y1

]
,
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where in the expression for B̃2 we exchanged the dummy vari-
ables y1 and y2.

Sum of the two amplitudes has a simpler expression, given
by

B̃(λ, s) = B̃1(λ, s) + B̃2(λ, s)

=
1

D
× x2

0√
s(s+ λ)

× b(s, s+ λ),

where we define

b(s1, s2) = 2

∫ Λ

0

dy1dy2

y2
1y

2
2(y1 − y2)

×[
(
√
s1 + y1 −

√
s1)(
√
s2 + y1 −

√
s2)y2

2

− (
√
s1 + y2 −

√
s1)(
√
s2 + y2 −

√
s2)y2

1

]
.

In terms of re-scaled variables this result gives Eq. (139).

Remark: We have numerically verified the asymptotic diver-
gence for large Λ,

b(s1, s2) =− 2 ln2 (Λ) +
2 ln Λ√
s1s2

[
2 (
√
s1 +

√
s2)

2×

ln (
√
s1 +

√
s2)− s1 ln(s1)− s2 ln(s2)

+ 2
√
s1s2 (1− 2 ln 2)

]
+ · · · . (H23)

d. Diagrams G1 and G2

For tmax, amplitude of G1 and G2 in Fig. 14 are

G1(τ, T ) =
1

2D

∫ Λ

0

dy1dy2

∫ ∞
0

dm1dm2

∫ τ

0

dr1

∫ τ

r1

ds

×
∫ τ

s

dr2 e
y1(r1−s)ey2(s−r2)

〈〈
ẋ(r1)ẋ(r2)

〉〉
(m1,m2)

and

G2(τ, T ) =
1

2D

∫ Λ

0

dy1dy2

∫ ∞
0

dm1dm2

∫ T

τ

dr1

∫ T

r1

ds

×
∫ T

s

dr2 e
y1(r1−s)ey2(s−r2)

〈〈
ẋ(r1)ẋ(r2)

〉〉
(m1,m2)

with the angular brackets defined in Eq. (124).
These expressions can be written as

G1(τ, T ) =
1

2D

∫ Λ

0

dy1dy2

∫ ∞
0

dm1dm2

×L +
τ (m1, x0;−y1, y1 − y2, y2)Z+

T−τ (x0,m2)

and

G2(τ, T ) =
1

2D

∫ Λ

0

dy1dy2

∫ ∞
0

dm1dm2

×Z+
τ (m1, x0)L +

T−τ (x0,m2;−y1, y1 − y2, y2),

where Z+
t is in Eq. (80) and L + is an analogue of (G8) in

presence of absorbing boundary.
A double Laplace transformation (60) of the amplitudes are

G̃1(λ,s) =
1

2D

∫ Λ

0

dy1dy2

∫ ∞
0

dm1dm2

×L̃ +
s+λ(m1, x0;−y1, y1 − y2, y2)Z̃+

s (x0,m2) (H24)

and

G̃2(λ,s) =
1

2D

∫ Λ

0

dy1dy2

∫ ∞
0

dm1dm2

×Z̃+
s+λ(m1, x0)L̃ +

s (x0,m2;−y1, y1 − y2, y2), (H25)

where the Laplace transformation of L + is expressed in terms
of J̃+ in an analogous relation of Eq. (G11). From this rela-
tion and using the results in Eqs. (G3) and (H4)) we see that∫ ∞

0

dm2 L̃ +
s (x0,m2;−y1, y1 − y2, y2)

=

∫ ∞
0

dm1L̃
+
s (m1, x0;−y1, y1 − y2, y2)

with an expression for the latter in Eq. (G13). This gives∫ ∞
0

dm L̃ +
s (x0,m;−y1, y1 − y2, y2)

=
2D√
s y2

1y
2
2

× h+
s

(
x0√
D
, y1, y2

)
(H26)

with h+
s in Eq. (G15).

Result for the integral of Z̃+ is in Eq. (L5). Using these
results in Eq. (H24) we get

G̃1(λ, s) = h(s, s+ λ), (H27)

G̃2(λ, s) = h(s+ λ, s), (H28)

where

h(s1, s2) =

(
1− e−x0

√
s1
D

)
s1
√
s2

×
∫ Λ

0

dy1dy2

y2
1y

2
2

h+
s2

(
x0√
D
, y1, y2

)
. (H29)

For small x0, using the asymptotic Eq. (G16) we get

G̃1(λ, s) ' x2
0

D
√
s(s+ λ)

× g(s+ λ) (H30)

and

G̃2(λ, s) ' x2
0

D
√
s(s+ λ)

× g(s) (H31)

with g(x) defined in Eq. (G19). Beside the x2
0 pre-factor, am-

plitudes are similar to asymptotics in Eqs. (H30) and (H31)
for tlast.

In terms of re-scaled variables, we get Eq. (136).
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Appendix I: Expression for Ψmax

The expression for Ψmax in Eq. (153) can be written as

Ψmax (y1, y2, z) = d + b + c− a, (I1)

where the terms on the right hand side are associated to the
amplitudes in Eq. (148) and given by

d =
√
y1 + y2 + 1

(√
y1 + y2 + 1−

√
y1 + 1−

√
y2 + 1 + 1

)
×
{
−
√
y1 + y2 + 1

(√
y1 + y2 + 1−

√
y1 + 1−

√
y2 + 1 + 1

)
+
√
|y1 + y2 − z|

×
[√
|z − y1|

(
Θ(z − y1)−Θ(y1 + y2 − z)

)
+
√
|z − y2|

(
Θ(z − y2)−Θ(y1 + y2 − z)

)
+
√
|y1 + y2 − z|

(
Θ(y1 + y2 − z)−Θ(z − y1 − y2)

)
+
√
|z|
(

Θ(y1 + y2 − z)−Θ(z)
)]}

, (I2)

b =
1

y1 − y2

{
y2

2

(√
y1 + 1− 1

)(√
y1 − z Θ(y1 − z)−

√
y1 + 1 + 1

)
− y2

1

(√
y2 + 1− 1

)(√
y2 − z Θ(y2 − z)−

√
y2 + 1 + 1

)}
, (I3)

c =
√
y1 + 1

(√
y1 + y2 + 1−

√
y1 + 1−

√
y2 + 1 + 1

)2 (
−√y1 − z Θ(y1 − z) +

√
y1 + 1− 1

)
−
(

1−
√
y1 + 1

){√
y1 + 1

(√
y1 + y2 + 1−

√
y1 + 1−

√
y2 + 1 + 1

)2

+
√
|y1 − z| Θ(z − y1)

×Θ(y2 − z) Θ(y1 + y2 − z)
[ (√

y1 + y2 − z −
√
z − y1 −

√
y2 − z +

√
z
)2 − 2

(√
z −√z − y1

)2 ]
+
√
|y1 − z| Θ(y1 + y2 − z)

[
Θ(y1 − z)Θ(y2 − z)

(
z −

(√
y1 + y2 − z −

√
y1 − z −

√
y2 − z

)2)
+ Θ(z − y1) Θ(y2 − z)

((√
z −√z − y1

)2 − (√y2 − z −
√
y1 + y2 − z

)2)
− 2Θ(z − y1) Θ(z − y2)

√
y1 + y2 − z

(√
z − y1 +

√
z − y2 −

√
z
)

+ Θ(y1 − z) Θ(z − y2)
((√

z −√z − y2

)2 − (√y1 − z −
√
y1 + y2 − z

)2)]}
, (I4)

and

a =
(

1−
√
y1 + 1

)(
1−

√
y2 + 1

)2
[
1−

√
y1 + 1 +

√
y1 − z Θ(y1 − z)

]
+
(

1−
√
y1 + 1

)(
1−

√
y2 + 1

)
×
[√

y1 − z
√
y2 − z Θ(y1 − z) Θ(y2 − z)−

(√
z −√z − y1 Θ(z − y1)

)(√
z −√z − y2 Θ(z − y2)

)]
+
(

1−
√
y1 + 1

)[
y2

√
y1 − z Θ(y1 − z)− 2

√
z
√
y1 − z Θ(y1 − z)

(√
z −√z − y2 Θ(z − y2)

)
− 2
√
z
√
y2 − z Θ(y2 − z)

(√
z −√z − y1 Θ(z − y1)

)]
. (I5)

Here Θ(x) is the Heaviside step function. These expressions are also given in the supplemental Mathematica notebook [76] for
their numerical evaluation.

Appendix J: Two-loop diagrams for distribution of tpos

Among the two diagrams in Fig. 21 which contribute to
second order, the diagram D is simpler to evaluate. Corre-

sponding amplitude is in Eq. (176), which can be expressed
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t1 t2 t3 t4

τ1 τ2 τ3 τ4

FIG. 25. An illustration for a change of variables in the amplitude
Eq. (J1) of the diagram D in Fig. 21 to write the expression in Eq.
(J2). Inside each time window ti the process is conditioned to stay a
net τi amount of time on positive side.

in terms of conditional propagator Eq. (158) using the corre-
lation in Eq. (169).

D(τ,T ) =
22D2

2D

∫ Λ

0

dy1dy2

∫ T

0

dr1

∫ T

r1

ds

∫ T

s

dr2

×
r1∫

0

dτ1

r2−r1∫
0

dτ2

T−r2∫
0

dτ3

∞∫
−∞

dx1 dx2 dm

×δ(τ − τ1 − τ2 − τ3) ey1(r1−s)ey2(s−r2) Zr1(0, x1|τ1)

×∂x1
Zr2−r1(x1, x2|τ2) ∂x2

ZT−r2(x2,m|τ3). (J1)

For reasons that will be clear shortly, we make a change of
variables (see illustration in Fig. 25), and write

D(τ, T ) = 2D

∫ Λ

0

dy1dy2

∫ ∞
0

dt1dt2dt3dt4

×
∫ t1

0

dτ1

∫ t2

0

dτ2

∫ t3

0

dτ3

∫ t4

0

dτ4

∫ ∞
−∞

dx1dx2dx3dm

×δ(T − t1 − t2 − t3 − t4) δ(τ − τ1 − τ2 − τ3 − τ4)

×e−y1t2−y2t3 Zt1(0, x1|τ1) ∂x1Zt2(x1, x2|τ2)

×Zt3(x2, x3|τ3) ∂x3
Zt4(x3,m|τ4), (J2)

where in the last two lines of the expression we used
Zt2+t3(x1, x3|τ2 +τ3) =

∫
dx2Zt2(x1, x2|τ2)Zt3(x2, x3|τ3).

A double Laplace transformation Eq. (60) of the amplitude
gives a simpler expression

D̃(λ, s) =2D

∫ Λ

0

dy1dy2

∫ ∞
−∞

dx1dx2dx3dm Z̃s(0, x1|λ)

×∂x1
Z̃s+y1

(x1, x2|λ) Z̃s+y2
(x2, x3|λ) ∂x3

Z̃s(x3,m|λ)

with Z̃ defined in Eq. (166).
Results for spatial integration of Z̃s are derived in App. P

and successively using them we get (a lengthy but straightfor-
ward algebra) an explicit expression for the amplitude.

D̃(λ, s) =
2√

s(s+ λ)
(√
s+
√
s+ λ

) ∫ Λ

0

dy1dy2

y1y2

×
{
y2 h(1, z, y1)

(y2 − y1)
+
y1 h(1, z, y2)

(y1 − y2)

}
, (J3)

r1 r2 r3 r4 r1 r3 r4 r2

r1 r3 r2 r4

C1 C2

C3

FIG. 26. The diagram C in Fig. 21 is split into three parts according
to relative position of the loops. For these diagrams we choose r2 >
r1 and r4 > r3, as indicated by the arrowheads.

where h(s1, s2, y) is defined in Eq. (179). In terms of re-
scaled variables, Eq. (J3) gives Eq. (177).

For the diagram C in Fig. 21, we write the amplitude (175)
in three parts according to the order of time variables (associ-
ated diagrams are indicated in Fig. 26). For example, ampli-
tude of diagram C1 is

C1(τ, T ) =
2

8D2

∫ ∞
−∞

dm

∫ Λ

0

dy1dy2

∫ T

0

dr1

×
∫ T

r1

dr2

∫ T

r2

dr3

∫ T

r3

dr4 e
y1(r1−r2)ey2(r3−r4)

×
〈〈
ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)

〉〉
(0,m)

, (J4)

where the pre-factor 2 is the degeneracy for exchange of pairs
(r1, r2) and (r3, r4) for the diagram C1 in Fig. 26.

Similar to the diagram D, these amplitudes can be ex-
pressed in terms of conditional propagator (158). The four
point correlation in the conditional case is given by, for r1 <
r2 < r3 < r4 < T ,

〈〈ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)〉〉(m1,m2) = 24D4

∫ ∞
−∞
dx1dx2×

dx3dx4

∫ r1

0

dτ1

∫ r2−r1

0

dτ2

∫ r3−r2

0

dτ3

∫ r4−r3

0

dτ4

∫ T−r4

0

dτ5

× δ(τ − τ1 − τ2 − τ3 − τ4 − τ5)Zr1(m1, x1|τ1)

× ∂x1
Zr2−r1(x1, x2|τ2)∂x2

Zr3−r2(x2, x3|τ3)

× ∂x3
Zr4−r3(x3, x4|τ4)∂x4

ZT−r4(x4,m2|τ5), (J5)

where the conditional average is defined in Eq. (157). This
is analogous to Eq. (M8) without a condition on positive
time and can be derived following a similar analysis given in
Sec. M.

Following this result (J5) and the amplitude in Eq. (J4) we
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write the

C1(τ, T ) = 2× 24D4

8D2

∫ Λ

0

dy1dy2

∫ ∞
0

dt1dt2dt3dt4dt5

×
∫ t1

0

dτ1

∫ t2

0

dτ2

∫ t3

0

dτ3

∫ t4

0

dτ4

∫ t5

0

dτ5

×
∫ ∞
−∞

dx1dx2dx3dx4dm δ(T − t1 − t2 − t3 − t4 − t5)

× δ(τ − τ1 − τ2 − τ3 − τ4 − τ5) e−y1t2−y2t4

×Zt1(0, x1|τ1)∂x1
Zt2(x1, x2|τ2)∂x2

Zt3(x2, x3|τ3)

× ∂x3
Zt4(x3, x4|τ4)∂x4

Zt4(x4,m|τ4), (J6)

where we have made a change of integration variables similar
to that used for the diagram D in Eq. (J2).

Following a very similar analysis we find that ampli-
tude of other two diagrams in Fig. 26 are almost same
as in Eq. (J6), with only the term e−y1r2−y2r4 replaced by
e−y1(t2+t3+t4)−y2t3 for C2 and by e−y1(t2+t3)−y2(t3+t4) for
C3.

A double Laplace transformation (60) of the amplitudes in-
tegrates the delta functions and lead to a simpler formula,

C̃1(λ, s) =4D2

∫ Λ

0

dy1dy2

∫ ∞
−∞

dx1dx2dx3dx4dm

×Z̃s(0, x1|λ)∂x1
Z̃s+y1

(x1, x2|λ)∂x2
Z̃s(x2, x3|λ)

× ∂x3
Z̃s+y2

(x3, x4|λ)∂x4
Z̃s(x4,m|λ), (J7)

with Z̃ defined in Eq. (166). The other two amplitudes

C̃2(λ, s) =4D2

∫ Λ

0

dy1dy2

∫ ∞
−∞

dx1dx2dx3dx4dm

Z̃s(0, x1λ)∂x1
Z̃s+y1

(x1, x2|λ)∂x2
Z̃s+y1+y2

(x2, x3|λ)

∂x3
Z̃s+y1

(x3, x4|λ)∂x4
Z̃s(x4,m|λ), (J8)

and

C̃3(λ, s) = 4D2

∫ Λ

0

dy1dy2

∫ ∞
−∞

dx1dx2dx3dx4dm

Z̃s(0, x1|λ)∂x1
Z̃s+y1

(x1, x2|λ)∂x2
Z̃s+y1+y2

(x2, x3|λ)

∂x3
Z̃s+y2

(x3, x4|λ)∂x4
Z̃s(x4,m|λ). (J9)

Difference in Eqs. (J8) and (J9) are in the subscript of a single
Z̃ term.

Spatial integrals in these amplitudes can be evaluated by
successively applying results from Appendix P. It follows a

lengthy but straightforward algebra. We write their final ex-
pression as follows.

C̃1(λ, s) =
4√

s(s+ λ) (
√
s+
√
s+ λ)

(J10)

×
∫ Λ

0

dy1dy2

y1y2

[
f(s, s+ λ, y1, y2) + f(s+ λ, s, y1, y2)

]
with f in Eq. (183). Amplitudes of C2 and C3 are similar,

C̃2(λ, s) + C̃3(λ, s) =
4√

s(s+ λ) (
√
s+
√
s+ λ)

×
∫ Λ

0

dy1dy2

y2
1y2

[
g(s, s+ λ, y1, y2) + g(s+ λ, s, y1, y2)

]
,

(J11)

with g in Eq. (182). Writing them together in terms of re-
scaled variables we get Eq. (141).

Remark: We have verified the expression in Eqs. (J3), (J10),
and (J11) using the formula Eq. (166) in Eqs. (J7), (J8), and
(J9) and then numerically integrating in Mathematica.

Appendix K: Expression for Ψpos

Similar to the Eq. (I1) for tmax we write Ψpos in Eq. (191)
as a combination of three term.

Ψpos (y1, y2, z) = c + d− 1

4
a, (K1)

where the terms on the right hand side corresponds to ampli-
tudes in Eq. (190). Expression for c(y1, y2, z) is cumbersome
to write here and it is given in the supplemental Mathematica
notebook [76]. In comparison, d and a have simpler expres-
sion, given below. Their numerical verification is also given
in the Mathematica notebook.

d(y1, y2, z) =y1y2 +
y2

2 r(y1, z)− y2
1 r(y2, z)

y1 − y2
, (K2)

with

r(y, z) = −
√
z(z − y) Θ(z − y)+ (K3)(√

y + 1− 1
)√

y − z Θ(y − z) +
√
y + 1 + z − 1.

Here Θ(x) is the Heaviside step function.

a(y1, y2, z) = u(y1, y2, z) + u(y2, y1, z), (K4)

with
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u(y1, y2,z) = 2− 4z +
z2

2
+
y1y2

2
− y1z + 2y1 +

(
6z − 4− 2y2 + 2(1− z)

√
y2 + 1

)√
y1 + 1 +

|y1 − z|
(

Θ(y1 − z)−Θ(z − y1)

)(
2 + y2 − z − 2

√
y2 + 1− 2

√
y2 + 1

√
y2 − z Θ(y2 − z)

)
+

2
√
|y2 − z|

{
Θ(y2 − z)

[
z
(

2
√
y1 + 1 +

√
y2 + 1− 3

)
+ y1

(
1−

√
y2 + 1

)
+

2
(

1−
√
y1 + 1−

√
y2 + 1 +

√
(y1 + 1)(y2 + 1)

)]
+

√
z Θ(z − y2)

(
2
√

(y1 + 1)(y2 + 1)− 4
√
y1 + 1− 2

√
y2 + 1 + y1 − z + 4

)}
+

2|y1 − z|
√
|y2 − z|

(
Θ(y1 − z)−Θ(z − y1)

)(
Θ(y2 − z) +

√
z Θ(z − y2)

)
+

1

2
|y1 − z||y2 − z|

(
Θ(y1 − z)−Θ(z − y1)

)(
Θ(y2 − z)−Θ(z − y2)

)
−

2
√
|y1 − z|

√
|y2 − z|

{√
z
(√

y1 + 1 +
√
y2 + 1− 2

)(
Θ(y1 − z)Θ(z − y2) + Θ(z − y1)Θ(y2 − z)

)
+(

z − 1 +
√
y1 + 1 +

√
y2 + 1−

√
(y1 + 1)(y2 + 1)

)(
Θ(y1 − z)Θ(y2 − z)−Θ(z − y1)Θ(z − y2)

)}
. (K5)

Appendix L: A list of integrals for the Brownian propagator

The Brownian propagator Zt(m1,m2) in Eq. (23) is sym-
metric under exchange of m1 and m2, and therefore

∂m1Zt(m1,m2) = −∂m2Zt(m1,m2) (L1)

and its Laplace transformation (84)

∂m1Z̃s(m1,m2) = −∂m2Z̃s(m1,m2). (L2)

There is an analogous formula for the propagator Z̃+
s in pres-

ence of absorbing line.

∂m1Z̃
+
s (m1,m2) = −∂m2Z̃

+
s (m1,m2)+

1

D
e−
√

s
D (m1+m2).

(L3)
We list the following results for the integral of the propa-

gators, which are frequently used in this paper. They can be
numerically verified in Mathematica.∫ ∞

−∞
dm2Z̃s(m1,m2) =

1

s
(L4)

and its analogue with absorbing boundary∫ ∞
0

dm2Z̃
+
s (m1,m2) =

1

s

(
1− e−m1

√
s
D

)
. (L5)

Another useful result∫ ∞
0

dm2Z̃
+
s+y(m1,m2)e−m2

√
s
D

=
1

y

(
e−m1

√
s
D − e−m1

√
s+y
D

)
. (L6)

Due to a symmetry Z̃s(m1,m2) = Z̃s(m2,m1) an integral
over m1 yields the same results as above.

For product of two propagators we get

∫ ∞
−∞

dxZ̃r(m1, x)Z̃s(x,m2) = (L7)


Z̃s(m1,m2)

r−s + Z̃r(m1,m2)
s−r if s 6= r,

1+
√

s
D |m1−m2|

2s Z̃s(m1,m2) if r = s.

and for its analogue with absorbing boundary

∫ ∞
0

dxZ̃+
r (m1, x)Z̃+

s (x,m2) = (L8)



Z̃+
s (m1,m2)

r − s +
Z̃+
r (m1,m2)

s− r if s 6= r,

1 +
√

s
D |m1 −m2|

2s
Z̃+
s (m1,m2) if r = s,

−min{m1,m2}
2s

e−(m1+m2)
√

s
D

For product of three propagators, corresponding formula is
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∫ ∞
−∞

dx

∫ ∞
−∞

dyZ̃r(m1, x)Z̃s(x, y)Z̃t(y,m2) =



Z̃r(m1,m2)

(s− r)(t− r) +
Z̃s(m1,m2)

(r − s)(t− s) +
Z̃t(m1,m2)

(r − t)(s− t) if r 6= s 6= t

[
1 +

√
r
D |m1 −m2|

2r
− 1

s− r

]
Z̃r(m1,m2)

s− r

+
Z̃s(m1,m2)

(r − s)2
if r = t 6= s

[
1 +

√
r
D |m1 −m2|

2r
− 1

t− r

]
Z̃r(m1,m2)

t− r

+
Z̃t(m1,m2)

(r − t)2
if r = s 6= t

(L9)

and its counterpart in presence of absorbing line,

∫ ∞
0

dx

∫ ∞
0

dyZ̃+
r (m1, x)Z̃+

s (x, y)Z̃+
t (y,m2) =



Z̃+
r (m1,m2)

(s− r)(t− r) +
Z̃+
s (m1,m2)

(r − s)(t− s) +
Z̃+
t (m1,m2)

(r − t)(s− t) if r 6= s 6= t

[
1 +

√
r
D |m1 −m2|

2r
− 1

s− r

]
Z̃+
r (m1,m2)

s− r

+
Z̃+
s (m1,m2)

(r − s)2
− min(m1,m2)

2r(s− r) e−(m1+m2)
√

r
D if r = t 6= s

[
1 +

√
r
D |m1 −m2|

2r
− 1

t− r

]
Z̃+
r (m1,m2)

t− r

+
Z̃+
t (m1,m2)

(r − t)2
− min(m1,m2)

2r(t− r) e−(m1+m2)
√

r
D if r = s 6= t

(L10)

Appendix M: Time-correlation of Brownian velocities

Here, we derive multi-time correlations of velocity ẋ(t) for
a standard Brownian motion with diffusivity D. The first mo-
ment is defined by

〈ẋ(t)〉 =

∫ x(T )=m2

x(0)=m1

D[x]e−
S0
D ẋ(t), (M1)

where the angular brackets denote average with a Brownian
measure of diffusivity D starting at position x(0) = m1 and
finishing at time T at position x(T ) = m2. For evaluating
the average we consider a small window between time t and
t+ ∆t such that

〈ẋ(t)〉 = lim
∆t→0

∫ ∞
−∞

dxdy Zt(m1, x)×[
e−

(y−x)2

4D∆t√
4πD∆t

(
y − x

∆t

)]
ZT−t−∆t(y,m2), (M2)

where the Brownian propagator Z is in Eq. (23) and we use
Eq. (8a) for small ∆t. Writing

e−
(y−x)2

4D∆t√
4πD∆t

(
y − x

∆t

)
= −2D ∂y

[
e−

(y−x)2

4D∆t√
4πD∆t

]
and using integration by parts for y variable, we get

〈ẋ(t)〉 = 2D

∫ ∞
−∞

dxdy Zt(m1, x)×

lim
∆t→0

[
e−

(y−x)2

4D∆t√
4πD∆t

]
∂yZT−t−∆t(y,m2).

In the ∆t→ 0 limit, it gives an expression

〈ẋ(t)〉 = 2D

∫ ∞
−∞

dx Zt(m1, x)∂x ZT−t(x,m2), (M3)

which can be explicitly evaluated using Eq. (23).
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For two-time correlation one can similarly show that

〈ẋ(r1)ẋ(r2)〉 =22D2C (r1, r2)

+ 2D δ(r1 − r2)ZT (m1,m2), (M4)

where C (r1, r2) is a symmetric function given by

C (r1, r2) =

∫ ∞
−∞
dx1dx2Zr1(m1, x1)×

∂x1Zr2−r1(x1, x2)∂x2ZT−r2(x2,m2), (M5)

for r2 > r1. The integral remains finite for r1 → r2 limit.
A generalization of Eq. (M4) in an analogy of Wick’s theo-

rem gives multi-time correlations. For example, we get

〈ẋ(r1)ẋ(r2)ẋ(r3)〉 = (M6)

23D3C (r1, r2, r3) + 2D
∑

pairs

δ(ri − rj)〈ẋ(rk)〉,

where C (r1, r2, r3) is a symmetric function under permuta-
tion of its arguments and given by

C (r1, r2, r3) =

∫ ∞
−∞

dx1dx2dx3Zr1(m1, x1) (M7)

×∂x1
Zr2−r1(x1, x2) ∂x2

Zr3−r2(x2, x3)

×∂x3
ZT−r3(x3,m2),

for r3 > r1 > r1.
For the four-time correlation, we get

〈ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)〉 = 24D4C (r1, r2, r3, r4)

+ 2D
∑
pairs

δ(ri − rj)〈ẋ(rk)ẋ(r`)〉 (M8)

with

C (r1, r2, r3, r4) =

∫ ∞
−∞

dx1dx2dx3dx4× (M9)

Zr1(m1, x1)∂x1
Zr2−r1(x1, x2)∂x2

Zr3−r2(x2, x3)

×∂x3
Zr4−r3(x3, x4)∂x4

ZT−r4(x4,m2),

for r1 < r2 < r3 < · · · < r4.
Expression for these correlations can be further simplified.

For the first moment Eq. (M3), using Eq. (L1) and then inte-
grating over x, we get

〈ẋ(t)〉 = (−2D∂m2)ZT (m1,m2). (M10)

Similarly, from Eq. (M4) we get

〈ẋ(r1)ẋ(r2)〉 =
[
22D2∂m2

+ 2Dδ(r1 − r2)
]
ZT (m1,m2),

(M11)

and for three-time correlation in Eq. (M6) we get

〈ẋ(r1)ẋ(r2)ẋ(r3)〉 = (−2D ∂m2)

[
22D2∂2

m2
+

2D
∑

pairs

δ(ri − rj)
]
ZT (m1,m2). (M12)

More generally, for r1 < r2 < · · · < r2n we see that

〈ẋ(r1) · · · ẋ(r2n)〉 = 22nD2n∂2n
m2
ZT (m1,m2), (M13)

which is used for a derivation of Eq. (C3).

Remark: Formulas in Eqs. (M11) and (M12) are mentioned
earlier in Eqs. (24) and (28).

Remark: In presence of an absorbing wall, correlations have
a very similar formula as in Eqs. (M3), (M4), (M6), and (M8),
where one need to substitute the propagator Z by Z+. How-
ever, they can not be simplified like in Eqs. (M10 - M12).

Appendix N: Identities for Jt in Eq. (89)

In this section, we give a list of results for Jt in Eq. (89)
and its analogue J+

t with absorbing boundary. These results
are used in our analysis.

1. Jt(m1,m2; y)

Using (M10) in Eq. (89) we write

Jt(m1,m2; y) = 2D ∂m2Zt(m1,m2)

{
e−yt − 1

y

}
.

It’s Laplace transform is

J̃s(m1,m2; y) =
2D

y
∂m2

(
Z̃s+y(m1,m2)− Z̃s(m1,m2)

)
and using Eq. (84a) it leads to

J̃s(m1,m2; y) =
sgn(m1 −m2)

y
×[

e−|m1−m2|
√

s+y
D − e−|m1−m2|

√
s
D

]
. (N1)

Here sgn(x) gives the sign of x.

2. J+
t (m1,m2; y)

An analogue of Jt in presence of absorbing line is

J+
t (m1,m2; y) =

∫ t

0

dr e−yr〈ẋ(r)〉+, (N2)

with the average 〈·〉+ defined as in Eq. (M1) with absorbing
boundary at origin. Using the analogous formula of Eq. (M3)
for absorbing boundary and taking Laplace transformation we
get

J̃+
s (m1,m2; y) = 2D

∫ ∞
0

dxZ̃+
s+y(m1, x)∂xZ̃

+
s (x,m2).

(N3)
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Further, using Eq. (L3) and Eq. (L8) leads

J̃+
s (m1,m2; y) = −2D∂m2

[∫ ∞
0

dxZ̃+
s+y(m1, x)×

Z̃+
s (x,m2)

]
+ 2

∫ ∞
0

dxZ̃+
s+y(m1, x)e−

√
s
D (x+m2). (N4)

Invoking the explicit expression of Z̃+ in Eq. (84b) leads to
a small x0 asymptotic,

J̃+
s (m1, x0; y) ' 2x0

√
s

y
√
D

{
e−m1

√
s+y
D − e−m1

√
s
D

}
,

(N5)
which has been used many times in our analysis.

Another useful result is for integrals of J̃+
s . It is straight-

forward to see that an integration over m1 gives∫ ∞
0

dm1J̃
+
s (m1,m2; y)

=
2
√
D

y
√

(s+ y)

{
e−m2

√
s+y
D − e−m2

√
s
D

}
, (N6)

and an integration over m2 gives∫ ∞
0

dm2J̃
+
s (m1,m2; y)

=
2
√
D

y
√
s

{
e−m1

√
s
D − e−m1

√
s+y
D

}
, (N7)

where we used Eq. (L6). The same result can also be derived
using a symmetry

J̃+
s (m1,m2; y) = −J̃+

s+y(m2,m1;−y),

which is evident from Eq. (N4) and the symmetry of Z̃+
t .

3. Jt(m1,m2; y1, y2)

For Jt(m1,m2; y1, y2) in Eq. (89) using the correlation Eq.
(M11) with the choice of integration Eq. (15) we get

Jt(m1,m2; y1, y2)

= 22D2 ∂
2
m2
Zt(m1,m2)

y1y2

[
y1 + y2e

−t(y1+y2)

y1 + y2
− e−y2t

]
.

A Laplace transformation gives

J̃s(m1,m2; y1, y2) =
22D2

y1y2(y1 + y2)

[
y1∂

2
m2
Z̃s(m1,m2)+

y2∂
2
m2
Z̃s+y1+y2

(m1,m2)− (y1 + y2)∂2
m2
Z̃s+y2

(m1,m2)

]
.

The explicit formula of Z̃ in Eq. (84a) leads to the result given
in Eq. (G2).

A special case of Eq. (G2), used earlier for deriving the re-
sult Eq. (90), is

J̃s(0, x0;−y, y) =

√
D

y2

[
2
√
s+ ye−x0

√
s+y
D

− e−x0

√
s
D

√
s

(
2s+ y − yx0

√
s

D

)]
. (N8)

4. J+
t (m1,m2; y1, y2)

Starting with the definition

J+
t (m1,m2; y1, y2)

=

∫ t

0

dr1

∫ t

r1

dr2 e
−y1r1−y2r2〈ẋ(r1)ẋ(r2)〉+ (N9)

with the convention in Eq. (15) for time-integrals and using an
analogue of Eq. (M4) for correlations with absorbing bound-
ary, we write

J+
t (m1,m2; y1, y2) =

∫ ∞
−∞
dx1dx2

∫ t

0

dr1

∫ t

r1

dr2 e
−y1r1−y2r2

× Zr1(m1, x1)∂x1Zr2−r1(x1, x2)∂x2ZT−r2(x2,m2).

It’s Laplace transformation (in t→ s variable) is

J̃+
s (m1,m2; y1, y2) = 22D2

∫ ∞
0

dx1dx2× (N10)

Z̃+
s+y1+y2

(m1, x1)∂x1
Z̃+
s+y2

(x1, x2)∂x2
Z̃+
s (x2,m2).

An explicit expression can be derived using the result in (84b).
Analysis gets simplified realizing that

J̃+
s (m1,m2; y1, y2) (N11)

= 2D

∫ ∞
0

dxZ̃+
s+y1+y2

(m1, x)∂xJ̃
+
s (x,m2, y2),

with J̃+
s (x,m2, y2) in Eq. (N3). Using this, for example, one

can derive a useful asymptotic for small x0 by using Eq. (N5)
and Eq. (84b), which gives

J̃+
s (m1, x0; y1, y2)

' 4x0

{
s

y2(y1 + y2)

(
e−m1

√
s
D − e−m1

√
s+y1+y2

D

)

−
√
s(s+ y2)

y1y2

(
e−m1

√
s+y2
D − e−m1

√
s+y1+y2

D

)}
. (N12)

For an analogous formula of Eq. (N7) we evaluate
the integration in Eq. (N11) using Eq. (L5), a symmetry
Z̃+
s (m1,m2) = Z̃+

s (m2,m1), the results in Eqs. (L2), (L6),
(L8), and using integration by parts. This way it is straightfor-
ward to get the result in Eq. (G3).
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In a similar way we derive the integral over m1, and the
result is given in Eq. (H4). Alternatively, one can use a sym-
metry

J̃+
s (m1,m2; y1, y2) = J̃+

s+y1+y2
(m2,m1;−y2,−y1),

which is evident from Eq. (N14) using the symmetry
Z̃+
s (x1, x2) = Z̃+

s (x2, x1).
A special case of Eq. (G3), which is used for deriving Eq.

(90), is∫ ∞
0

dm2J̃
+
s (m1,m2;−y, y) =

2
√
D

y2
√
s

{
2
√

(s+ y)×
√
D
(
e−m1

√
s
D − e−m1

√
s+y
D

)
−m1ye

−m1

√
s
D

}
.

(N13)

5. J+
t (m1,m2; y1, y2, y3)

Similar to Eq. (N9) we define J+
t (m1,m2; y1, y2, y3). Us-

ing the analogue of Eq. (M6) with an absorbing boundary and
then taking a Laplace transformation (in t → s variable) we
write

J̃+
s (m1,m2;y1, y2, y3) = 23D3

∫ ∞
0

dx1dx2dx3

× Z̃+
s+y1+y2+y3

(m1, x1)∂x1
Z̃+
s+y2+y3

(x1, x2)

× ∂x2
Z̃+
s+y3

(x2, x3)∂x3
Z̃+
s (x3,m2). (N14)

For an explicit result we note that

J̃+
s (m1,m2;y1, y2, y3) = 2D

∫ ∞
0

dx (N15)

× Z̃+
s+y1+y2+y3

(m1, x)∂xJ̃
+
s (x,m2; y2, y3)

with Eq. (N14). Then, Eqs. (84b) and (N12) can be used to
get an asymptotic for small x0.

Integral of J̃+
s (m1, x0; y1, y2, y3) analogous to Eq. (N6) is

also straightforward to derive using Eq. (N15). For small x0,∫ ∞
0

dm1J̃
+
s (m1, x0; y1, y2, y3) ' 8Dx0{

(s+ y3) (
√
s+ y3 −

√
s+ y1 + y2 + y3)√

s y2 (y1 + y2) y3
+

√
s+ y2 + y3 [(y2 + y3)

√
s+ y3 − y2

√
s]√

s y1y2y3 (y2 + y3)
×

(√
s+ y1 + y2 + y3 −

√
s+ y2 + y3

)
+

√
s (
√
s+ y1 + y2 + y3 −

√
s)

y3 (y2 + y3) (y1 + y2 + y3)

}
, (N16)

which is used for a derivation of Eq. (H14).

For an integral over m2 variable, one can use a symmetry

J̃+
s (m1,m2; y1, y2, y3)

= −J̃+
s+y1+y2+y3

(m2,m1;−y3,−y2,−y1), (N17)

which is evident from Eq. (N14) and Z̃+
s (m1,m2) =

Z̃+
s (m2,m1). The result is useful for a derivation of Eq.

(H17).

6. J+
t (m1,m2; y1, y2, y3, y4)

Similar to Eqs. (N11) and (N15),

J+
t (m1,m2; y1, y2, y3, y4) =

∫ t

0

dr1

∫ t

r1

dr2

∫ t

r2

dr3×∫ t

r3

dr4e
−y1r1−y2r2−y3r3−y4r4〈ẋ(r1)ẋ(r2)ẋ(r3)ẋ(r4)〉+

(N18)

follows a hierarchy where

J̃+
s (m1,m2; y1, y2, y3, y4) = 2D

∫ ∞
0

dx×

Z̃+
s+y1+y2+y3+y4

(m1, x) ∂xJ̃
+
s (x,m2; y2, y3, y4), (N19)

which leads to explicit results explicit result for Eq. (N18).
For example, an integral over m2 variable is given in Eq.

(G5). From this one can derive also the integral over m1 vari-
able using a symmetry relation

J̃+
s (m1,m2; y1, y2, y3, y4)

=J̃+
s+y1+y2+y3+y4

(m2,m1;−y4,−y3,−y2,−y1), (N20)

which is evident from Eq. (N19) and a symmetry
Z̃+
s (m1,m2) = Z̃+

s (m2,m1).

Appendix O: Identities for I +
τ in Eq. (H10)

Using Eq. (H11) we get a relation for their Laplace trans-
formation

Ĩ +
s (m1,m2; y1, y2, y3) = J̃+

s (m1,m2; y1, y2, y3)

+J̃+
s (m1,m2; y1, y3, y2) + J̃+

s (m1,m2; y3, y1, y2). (O1)

This leads to the results we need, namely,∫ ∞
0

dm1Ĩ
+
s+λ+y2

(m1, x0;−y1, y1,−y2)

=

∫ ∞
0

dm1

{
J̃+
s+λ+y2

(m1, x0;−y1, y1,−y2)

+ J̃+
s+λ+y2

(m1, x0;−y1,−y2, y1)

+ J̃+
s+λ+y2

(m1, x0;−y2,−y1, y1)

}
,
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which using Eq. (N16) for small x0 limit gives Eq. (H14). A
analogous integral∫ ∞

0

dm2Ĩ
+
s (x0,m2;−y2, y2, y1) ' 4Dx0

√
s+ y1

y1y2
2

√
s
×(√

s+y1+y2 −
√
s+y1 −

√
s+y2 +

√
s

)2

,

(O2)

for small x0, is derived using Eqs. (O1), (N16), and (N17). It
is used for a derivation of Eq. (H17).

Appendix P: Identities for conditional propagator Zt

In this section we give a list of identities for conditional
Brownian propagator Zt in Eq. (158). These identities are of-
ten used for our analysis in Sec. VIII.

In Eq. (161) we see that

Ãs(0, x|λ) = 0 = Ãs(x, 0|λ). (P1)

Substituting this and Eq. (164) in Eq. (166) we get

Z̃s(0, x|λ) = B̃s(0, x|λ)

=

√
s+ λ−√s
λ
√
D

e−|x|
√
s+λΘ(x)

D . (P2)

The result is used for the zeroth order amplitude in Eq. (167)
and also appears in the linear order amplitude Eq. (171).

For results about integrals of Z̃s we use that for Ã in Eq.
(161), ∫ ∞

−∞
dx2 Ãs(x1, x2|λ) =

1− e−|x1|
√
s+λΘ(x1)

D

s+ λΘ(x1)

and for B̃ in Eq. (164),∫ ∞
−∞

dx2 B̃s(x1, x2|λ) =
e−|x1|

√
s+λΘ(x1)

D√
s(s+ λ)

.

Then Eq. (166) leads to∫ ∞
−∞
dx2 Z̃s(x1, x2|λ)

=
1− e−|x1|

√
s+λΘ(x1)

D

s+ λΘ(x1)
+
e−|x1|

√
s+λΘ(x1)

D√
s(s+ λ)

. (P3)

For a related result, we use∫ ∞
−∞
dx2∂x1Ãs(x1, x2|λ) =

sgn(x1)e−|x1|
√
s+λΘ(x1)

D√
D(s+ λΘ(x1))

,

and∫ ∞
−∞

dx2∂x1 B̃s(x1, x2|λ)

=
sgn(−x1)

√
s+ λΘ(x1)√

Ds(s+ λ)
e−|x1|

√
s+λΘ(x1)

D ,

to get

∫ ∞
−∞
dx2∂x1

Z̃s(x1, x2|λ) =
e−|x1|

√
s+λΘ(x1)

D
[√
s−
√
s+ λ

]√
Ds(s+ λ)

,

(P4)
which appears in the amplitudes Eq. (171) and Eq. (174).

In the rest we list a few more identities which frequently
appear for calculating the amplitude Eq. (174). Their deriva-
tion is similar to those shown for Eqs. Eq. (P3) and Eq. (P4).
They can be verified numerically in Mathematica using the
expressions in Eqs. (161), (164), and (166).

These are as follows

∫ ∞
−∞
dx2Z̃s2(x1, x2|λ)e−|x2|

√
s1+λΘ(x2)

D (P5)

=
e−|x1|

√
s1+λΘ(x1)

D

s2 − s1
−
(√

s2 −
√
s2 + λ

√
s1 −

√
s1 + λ

)

× e−|x1|
√
s2+λΘ(x1)

D

s2 − s1

and

∫ ∞
−∞

dx2Z̃s(0, x2|λ)∂x2
e−|x2|

√
s1+λΘ(x2)

D (P6)

=
1√
D
×

√
s1(s+ λ)−

√
s(s1 + λ)

(
√
s+ λ+

√
s)(
√
s+
√
s1)(
√
s+ λ+

√
s1 + λ)

.

An analogous result (difference with Eq. (P6) is in a space
derivative)

∫ ∞
−∞
dx1

[
∂x1

Z̃s1(0, x1|λ)
]
e−|x1|

√
s2+λΘ(x1)

D (P7)

=
1√
D
×

√
s1(s2 + λ)−

√
(s1 + λ)s2

(
√
s1 + λ+

√
s1)(
√
s1 +

√
s2)(
√
s1 + λ+

√
s2 + λ)

.

More identities involving products of Z are as follows.

∫ ∞
−∞
dx2dmZ̃s2(x1, x2|λ)∂x2

Z̃s1(x2,m|λ) =
1

s2 − s1
×

1√
D s1(s1 + λ)

[
e−|x1|

√
s1+λΘ(x1)

D

(√
s1 −

√
s1 + λ

)
− e−|x1|

√
s2+λΘ(x1)

D

(√
s2 −

√
s2 + λ

)]
, (P8)
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2n

Xi

FIG. 27. The zigzag solid line shows a random walk bridge of
2n = 18 steps that spends 2m = 6 steps on the positive side. The
dashed line shows an excursion of 2n steps that is conditioned to stay
positive, for the entire duration.

and∫ ∞
−∞

dx1Z̃s(0, x1|λ)∂x1 Z̃s+y1(x1, x2|λ)

=
1

Dy1
× 1(√

λ+ s+
√
s
)×{

sgn(x2)
√
λΘ(x2) + s e−|x2|

√
λΘ(x2)+s

D +

[
(
√
s+ y1 −

√
s)
(√

(λ+ s)(s+ y1)−
√
s(λ+ s+ y1)

)
(√
λ+ s+

√
λ+ s+ y1

) (√
λ+ s+ y1 +

√
s+ y1

)
− sgn(x2)

√
λΘ(x2) + s

]
e−|x2|

√
λΘ(x2)+s+y1

d

}
. (P9)

A last one involving products of four Z,∫ ∞
−∞

dx1dx2dx3dm Z̃s(0, x1|λ)∂x1
Z̃s+y1

(x1, x2|λ)

×Z̃s+y2(x2, x3|λ)∂x3Z̃s(x3,m|λ)

=
1

D
√
s(s+ λ)

× 1

(
√
s+
√
s+ λ)

×
[
h(s, s+ λ, y1)

y1(y2 − y1)
+
h(s, s+ λ, y2

y2(y1 − y2)

]
, (P10)

where h(s1, s2, y) is defined in Eq. (179). This is used for the
amplitude of diagram D in Eq. (177).

Appendix Q: Uniform distribution of tpos for a Brownian Bridge

In Sec. VIII A we used a result that for a Brownian bridge,
time spent on positive half has a uniform distribution. Here,
we give a derivation of this result.

Our derivation is for a random walk of total 2n steps on an
infinite chain. The walker is conditioned to take equal num-
ber of positive and negative steps such that at the final step
the walker returns to the starting point, which we choose to

G(κ, ρ) = 1+

{
+

}

{ }
+ ++

{

}
+ +

+

+ · · ·

+

FIG. 28. A graphical representation of the infinite summation in Eq.
(Q5). Down-sided excursions represent g(κ) and up-sided excur-
sions represent g(κ ρ). Relative order of excursions give the degen-
eracy in Eq. (Q5).

be the origin. Continuous limit of the process is a Brownian
bridge, and the distribution of positive time for the Random
walk gives the distribution for Brownian bridge in the contin-
uous limit.

For our derivation, we define a generating function

G(κ, ρ) = 1 +

∞∑
n=1

n∑
m=0

κnρm
1

22n
N(2n, 2m), (Q1)

where (κ, ρ) are parameters and N(2n, 2m) gives the total
number of Random walk bridges of length 2n with 2m num-
ber of steps spent on the positive side of the chain (see illus-
tration in Fig. 27).

We define a second generating function

g(κ) =

∞∑
n=1

κn

22n
N+(2n), (Q2)

where N+(2n) gives the number of random bridges that stay
on the positive side of the chain for the entire duration 2n
(Random walk excursion. See illustration in Fig. 27).

Using method of images it is straightforward to show that

N+(2n) =

(
2n− 2

n− 1

)
−
(

2n− 2

n

)
=

(2n− 2)!

n!(n− 1)!
, (Q3)

leading to

g(κ) =
1

2

(
1−
√

1− κ
)
. (Q4)

To calculate G(κ, ρ) we use a relation

G(κ, ρ) =1 + [g(κ) + g(κρ)] +[
g(κ)2 + 2g(κ)g(κρ) + g(κρ)2

]
+[

g(κ)3 + 3g(κ)2g(κρ) + 3g(κ)g(κρ)2 + g(κρ)3
]

+ · · · , (Q5)
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which can be seen by the graphical illustration in Fig. 28.
Completing the summation we get

G(κ, ρ) =
1

1− g(κ)− g(κρ)
. (Q6)

Using the formula for g(κ) in Eq. (Q2) we write

G(κ, ρ) = 1 +

∞∑
n=1

n∑
m=0

κnρm
(2n)!

22n(n+ 1)(n!)2
. (Q7)

Comparing with Eq. (Q1) it is evident thatN(2n, 2m) is inde-
pendent of m. Equivalently, there are equal number of paths
for all values of m in a random walk bridge of length 2n. In
the continuous limit, this means that for a Brownian bridge,
all values of fractional positive time are equally probable.
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