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ABSTRACT
The distribution of eccentricities of warm giant exoplanets is commonly explained through planet–planet interactions, although
no physically sound argument favours the ubiquity of such interactions. No simple, generic explanation has been put forward
to explain the high mean eccentricity of these planets. In this paper, we revisit a simple, plausible explanation to account
for the eccentricities of warm Jupiters: migration inside a cavity in the protoplanetary disc. Such a scenario allows to excite
the outer eccentric resonances, a working mechanism for higher mass planets, leading to a growth in the eccentricity while
preventing other, closer resonances to damp eccentricity. We test this idea with diverse numerical simulations, which show that
the eccentricity of a Jupiter-mass planet around a Sun-like star can increase up to ∼0.4, a value never reached before with solely
planet–disc interactions. This high eccentricity is comparable to, if not larger than, the median eccentricity of warm Saturn- to
Jupiter-mass exoplanets. We also discuss the effects such a mechanism would have on exoplanet observations. This scenario
could have strong consequences on the disc lifetime and the physics of inner disc dispersal, which could be constrained by the
eccentricity distribution of gas giants.

Key words: accretion, accretion discs – hydrodynamics – planets and satellites: formation – planet–disc interactions –
protoplanetary discs.

1 IN T RO D U C T I O N

Exoplanets exhibit a much wider distribution of eccentricities and
orbital obliquities than the planets of our Solar system, and under-
standing why there is such a diversity is paramount to better constrain
planetary formation and evolution. In the left-hand panel of Fig. 1,
we show the eccentricity of the (exo)planets with known or estimated
mass to date as a function of their orbital period and the planet-to-
star mass ratio q (median values). Three main groups are classically
identified in this plot: (i) planets with q � 2 × 10−4, the majority
of them being super-Earths; (ii) the hot Jupiters with q � 5 × 10−4

and an orbital period inferior to ∼10 d; and (iii) the warm Jupiters
with q � 5 × 10−4 and an orbital period greater than ∼30 d. The
plot clearly shows that eccentricity varies substantially from one
group to another, which points to different physical mechanisms
that regulate the growth and damping of eccentricity across these
groups:

(i) The first group of planets where super-Earths belong to typ-
ically has low eccentricities. About half of them are in multiple
systems, and planet–planet interactions in (near-)resonant state
are the leading explanation for the low to moderate eccentricities (e
� 0.2) in this planet population. The paradigm that the eccentricity of
low-mass planets should be efficiently damped by interactions with
their protoplanetary disc has been recently questioned by Fromenteau
& Masset (2019), who have emphasized the need to better understand

� E-mail: florian.debras@irap.omp.eu

the thermal feedback from the planet on the disc (i.e. the heating of
the disc due to the accretion luminosity of the planet). They have
shown that there exists a critical accretion luminosity above which
planets can experience an exponential increase in their eccentricity
and migrate outwards, with a final value for the eccentricity of the
order of the disc’s aspect ratio, hence a few per cent.

(ii) Regarding hot Jupiters, it is thought that star–planet tidal
interactions efficiently damp eccentricities and inclinations (see
review in Baraffe, Chabrier & Barman 2010). In that regard, hot
Jupiters with non-zero eccentricities are thought to be observed in the
process of orbital circularization. The question of how they acquired
their initial eccentricity remains open (see e.g. Matsumura, Takeda
& Rasio 2008; Rice, Armitage & Hogg 2008; Section 4.4).

(iii) Finally, the third group of planets, which we refer to as the
warm Jupiters (Jupiter and Saturn lie at the outer, cooler, edge of this
subsample of planets; Fig. 1), exhibits much higher eccentricities.
The eccentricity distribution seems to be spread over the whole
sample, without clear dependence on the orbital period. The right-
hand panel of Fig. 1 shows the eccentricity distribution of warm
Jupiters as a function of q (the planet-to-star mass ratio). For 5 × 10−4

< q < 5 × 10−3, that is roughly between the mass of Saturn and
five times the mass of Jupiter, the distribution of eccentricities is
almost uniform up to e ∼ 0.3, then drops and decreases slowly with
increasing eccentricity. The mean eccentricity is 0.25, the median is
0.2, and 50 per cent of the planets have 0.1 � e � 0.4. For higher q
values, the eccentricity distribution is almost uniform up to e ∼ 0.8
with few planets with higher eccentricities. The mean eccentricity of
this subgroup is 0.36, while the median is 0.34
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Figure 1. Left: Eccentricity of the exoplanets and the planets in the Solar system, as a function of orbital period and planet-to-star mass ratio. Right: Eccentricity
distribution as a function of the planet-to-star mass ratio. All planets in this plot have an orbital period superior to 30 d to filter out planets circularized by
star–planet tidal interactions. Data taken from exoplanet.eu.

Papaloizou, Nelson & Masset (2001) showed that, for planets with
q � 10−2, eccentricities up to ∼0.25 could be attained by planet–
disc interactions. Other mechanisms, like planet–planet scattering or
Kozai cycles, are, however, needed to explain larger eccentricities.
Papaloizou et al. (2001) showed that planets on fixed circular orbits
with masses larger than 10MJ (where MJ denotes the mass of Jupiter)
carve wide enough gaps in the disc around their radial position
to incorporate the principal Lindblad resonances and first-order
corotation resonances inside the gap (their radial location is in the
range [0.63–1.58]rp, with rp the radial position of the planet). These
resonances therefore have a small effect on the torque exerted by the
disc on the planet, and the evolution of the planet’s orbital parameters
is mostly dictated by the next, most important resonances: the first-
order Lindblad resonances. The latter may lead to an exponential
growth of the planet’s eccentricity, controlled by the excitation of new
eccentric resonances that eventually stops this eccentric instability.

On the other hand, the eccentricity distribution of warm Jupiters
with 5 × 10−4 � q � 5 × 10−3 remains to be explained. Planet–
planet scattering is often invoked (see e.g. Anderson, Lai & Pu 2019).
However, as stated by Armitage (2011), ‘there is no straightforward
independent argument that the [...] initial conditions needed for
[planet–planet scattering] to work are generically realized in nature’,
and it would probably tend to increase similarly the eccentricity of
lower mass planets (which is not seen in Fig. 1). Therefore, planet–
planet scattering appears to be a circumstantial explanation rather
than a fundamental, general situation.

Several works have examined whether disc–planet interactions
could resolve this issue for Jupiter-mass planets. Analytically,
Goldreich & Sari (2003) have shown that the eccentricity damping
due to corotation resonances slightly exceeds the excitation from
Lindblad resonances, which prevents eccentricity growth unless the
corotation torque is saturated enough, and concluded that numerical
simulations could help in constraining the exact limit of their
mechanism. Unfortunately, when incorporating a Jupiter-mass planet
in a disc with various set-ups (see e.g. Bitsch et al. 2013), the
overall conclusion is that planet–disc interactions tend to damp the
eccentricity e to small values (e � 0.03). There are, however, two
exceptions: first, when the disc is light enough, there is a tendency

for eccentricity to grow up to ∼0.1 over 105 orbits (Ragusa et al.
2018) from secular interactions between the planet and the disc.
Secondly, when/if the planet leads to a strong decrease in the density
inside its orbit, thereby carving a kind of cavity (e.g. Dunhill,
Alexander & Armitage 2013), the expression of eccentric resonances
becomes dominant just like in Papaloizou et al. (2001). D’Angelo,
Lubow & Bate (2006) have obtained the highest eccentricities for
Jupiter-mass planets in such configuration, with e reaching up to
∼0.15. Rice et al. (2008) carried out a comparable, although simpler
numerical exploration for hot Jupiters, where the density of the
gas in the magnetospheric cavity was set to zero, and obtained an
eccentricity increase up to 0.15. D’Angelo et al. (2006) realized that
the dominant eccentric resonances are the 2:4 or the 3:5, rather than
the 1:3 resonance originally proposed by Papaloizou et al. (2001), as
confirmed analytically by Teyssandier & Ogilvie (2016, 2017), but
the question of how to obtain larger eccentricities for the lower mass
range of warm Jupiters still remains open.

Duffell & Chiang (2015) have evaluated numerically the torque
and power felt by a planet on a fixed eccentric orbit. Their conclusion
is that Jupiter-mass planets can experience an increase in their
eccentricity from disc–planet interactions, but this increase is limited
to e ∼ 0.07 because of interaction with non-eccentric gas. They
show that, if eccentric motions in the disc are not favoured unlike
in Papaloizou et al. (2001), the planet experiences a decrease of its
eccentricity from the gravitational interaction with the circular gas.
A mechanism that would significantly increase the eccentricity of
a warm Jupiter through planet–disc interactions therefore needs to
overcome this effect.

Motivated by this realization, in this paper we propose a plausible
explanation for the eccentricity distribution of warm Jupiters: mi-
gration inside a cavity. If a cavity already exists in the inner parts
of the disc, and if the planet eventually migrates inside this cavity,
the exponential increase of the planet’s eccentricity proposed by
Papaloizou et al. (2001) could set in and the gas in the cavity would
not oppose this effect because its density is too low.

Our proposition is also motivated by disc observations, as discs
with cavities – so-called transition discs – have been extensively
observed (see e.g. reviews in Gorti et al. 2016; Ercolano & Pascucci
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2017). Notably, Carmona et al. (2017) have shown evidence that the
inner 6 au of the disc HD 139614 is depleted in gas, and Muley, Fung
& van der Marel (2019) proposed that the shape of the PDS70 disc
could be due to an eccentric super-Jupiter inside the cavity (see also
Bae et al. 2019). Very recently, Calcino et al. (2020) also proposed
that the near-infrared scattered light observations of the MWC 758
disc could be explained by an eccentric, 10MJ planet in a cavity.
However, in both cases whether the eccentric planet carved the cavity
or whether the presence of the cavity excited the eccentricity of the
planet is not known.

The paper is organized as follows: in Section 2, we detail the
physical model and numerical set-up we have used to test the effects
of migration inside a cavity. We then discuss the results and the effects
of different parameters on the growth of eccentricity in Section 3.
Finally, in Section 4 we discuss the implications of our results on
exoplanet observations and for the evolution of protoplanetary discs.
Globally, we do not aim at proposing the most realistic simulations of
planet migration in a cavity, but rather at advocating that eccentricity
growth is a strong, generic feature for such planets, simple and
robust in the numerical sense. Eventually, we obtain that migration
into cavities is a powerful mechanism to pump the eccentricities of
giant planets up to the observed mean eccentricity of warm Jupiters,
without the need for planet–planet scattering.

2 PH Y S I C A L M O D E L A N D N U M E R I C A L
M E T H O D S

2.1 Disc model

Throughout this paper, we simulate the evolution of a planet
embedded in its protoplanetary disc with the use of the FARGO3D

code (Benı́tez-Llambay & Masset 2016). We have also run several
simulations with the original 2D FARGO code (Masset 2000) for
comparison, and the results were consistent in all cases. We consider
a 2D disc model described by polar cylindrical coordinates {r, ϕ}
in a reference frame centred on the star. The star remains fixed in
the simulations, and the indirect terms due to the star motion arising
from the gravity of the disc and the planet are accounted for in the
evolution of the disc and of the planet. Turbulent transport of angular
momentum is modelled by the use of a kinematic viscosity, ν, that
depends on radius (see Section 2.2).

Our disc model features an inner cavity in the gas that forms
independently of the planet (see Sections 2.2 and 2.3). For simplicity,
we use a locally isothermal equation of state in our different sets of
simulations, meaning that the gas temperature does not evolve with
time but depends on r. The aspect ratio of the disc, h = cs/vK, with cs

the sound speed (proportional to the square root of the temperature
T) and vK the Keplerian velocity, is fixed to a constant value. The
radial dependence of the temperature directly translates into a radial
dependence in the aspect ratio. A uniform temperature implies h ∝√

r , while a uniform aspect ratio implies T ∝ 1/r. In our ‘Reference’
run (see Section 3 and Table 1), h is chosen uniform at a value of
0.05.

In our ‘Reference’ simulation, the Toomre parameter Q =
cs�/(πG�) – with � the Keplerian frequency, G the gravitational
constant, and � the surface density of the gas – is ∼4 × 105 in
the innermost part of the cavity where the density is very low, 15 at
the outer edge of the cavity, and 4 at the outer boundary condition.
Although this latest value is quite low, it relies on our assumption of a
uniform, high density outside the cavity. This allows to decrease the
computational time by increasing the speed of the inward migration
of the planet, but is at the limit of gravitational stability for the

Table 1. Parameters used in the ‘Reference’ simulation (see the beginning
of Section 3 for the meaning of each parameter). A ‘0’ subscript is used
to denote a quantity for the gas outside the cavity, and a ‘c’ subscript for
quantities inside the cavity.

Reference

Nr 400
Nφ 400
rin 0.3
rout 1.9
h 0.05
f 0
rc 0.8
	r 0.2
�0 10−3

�c 10−6

ν0 2.5 × 10−6

νc 2.5 × 10−4

Damping ini
visc Linear in log

disc. We therefore neglect the gas self-gravity in order to capture
only the physical effects of the migration while keeping a reasonable
computational time.

All quantities reported hereafter are expressed in the following
code units: M�, the mass of the star, as unit of mass, and R1,
a characteristic radial size of the cavity, as unit of length. The
gravitational constant G is set to 1. In the results presented in the
next sections, time is expressed in orbits, an orbit being defined as
the orbital period at a radial distance R1.

2.2 Opening and preserving a cavity

At the beginning of the simulations, a cavity is carved through a
smooth jump in the initial gas surface density profile. The initial
density profile increases from �c = 10−6 in the cavity to �0 = 10−3

in our ‘Reference’ simulation with a transition region at r = rc of
radial width equal to 2–4 times the local pressure scale height. Apart
from this transition region, the initial gas surface density is therefore
uniform inside and outside the cavity.

In order to preserve a cavity during the simulation, a smooth jump
in the gas kinematic viscosity is adopted. In practice, ν decreases by
two orders of magnitude across r = rc. The transition is either linear
in the logarithm of radius or exponential:

ν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

νc r < rc

νc + (ν0 − νc) log(r/rc)
log((rc+	r)/rc) rc < r < rc + 	r

or

ν0 exp
(

(rc+	r−r)
	r

log νc
ν0

)
rc < r < rc + 	r

ν0 r > rc + 	r

. (1)

The use of a viscosity jump to maintain the cavity is mostly for
numerical convenience, as we do not specify a mechanism for
building up the cavity. Still, we note that as the density inside the
cavity is much lower, we might expect its ionization degree to be
much higher and magnetic turbulence will prevail in this region,
thereby contributing to a higher effective turbulent viscosity (Balbus
& Hawley 1991, 1998). On the opposite, the outer disc is more likely
to be in a poorly ionized state, whereby the level of turbulence should
be much lower (e.g. Simon et al. 2018).

MNRAS 500, 1621–1632 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/2/1621/5944129 by C
N

R
S user on 12 M

ay 2023



1624 F. Debras, C. Baruteau and J.-F. Donati

Figure 2. Azimuthally averaged surface density (decimal log) as a function
of radius before a planet is introduced (‘No planet’, blue curves), and just
before we allow the planet to feel the disc, once a gap is carved (‘Planet’,
green curves). ‘Ini’ or ‘Axi’ refer to different boundary conditions in the inner
and outer wave-killing zone, see Section 2.4.

For our ‘Reference’ run, we have chosen the same value as
Papaloizou et al. (2001) for the outer viscosity (equivalent to α

∼ 10−3, where α is the classical Shakura–Sunyaev parameter;
Shakura & Sunyaev 1973), which leads to α ∼ 0.1 within the
cavity. Papaloizou et al. (2001) concluded that, if the viscosity in
their simulations was decreased, their mechanism for eccentricity
growth could be applied to lower mass planets. Therefore, with the
chosen viscosity distribution, we are not mimicking Papaloizou et al.
(2001)’s work but really assessing the impact of the cavity on the
orbital evolution of giant planets of Jupiter mass.

2.3 Planet

We simulate the migration of a giant planet in the disc cavity in
three steps: first, we impose an initial axisymmetric gas density
exhibiting a cavity, and allow for the disc to evolve in 1D without the
presence of a planet for a thousand orbits.1 The blue curves in Fig. 2
show the gas density profile after this first step for two choices of
boundary conditions, described below. We then use this 1D profile
for density and gas velocity as an initial axisymmetric profile of our
2D simulations and add a planet on a fixed circular orbit outside
the cavity. The mass of the planet is gradually increased over 15
planet orbits to avoid spurious effects of incorporating brutally the
planet inside the disc. This second step lasts for 600 orbits, giving
enough time for the planet to carve its gap. When the planet and
the cavity do not evolve significantly anymore (green lines, Fig. 2),
we allow for the planet to feel the gas torque and migrate. In our
‘Reference’ run, the planet is initialized at rp,ini = 1.1. We have
assessed with other simulations that the initial position does not
impact the final results as long as the planet is initially outside the
cavity.

1This is less than the viscous time-scale in the disc (∼105 orbits) but we have
verified with a dedicated 1D simulation that was run for 3 × 105 orbits that
the planetary evolution shows only marginal differences whether this first
step lasts 1000 or 300 000 orbits.

The gravitational potential of the planet, �p is smoothed over a
softening length ε = 0.5H(rp), hence:

�p = − GMp

(|r − rp|2 + ε2)1/2
, (2)

where Mp is the mass of the planet, and rp its position vector. Our
simulations assuming a Sun-mass star, the planet-to-star mass ratio
in the ‘Reference’ run amounts to q = 10−3, which corresponds
to a Jupiter-mass planet (different values of q will be considered
in Section 3.4). Because the planet needs to migrate over about
half its initial radial separation before its principal outer Lindblad
resonances fall in the cavity, and because the migration rate decreases
upon reaching the cavity, the simulations demand to be run for 104

orbits at minimum. Therefore, as we want to explore the parameter
space to assess the robustness of our mechanism, our ‘Reference’
simulation has a medium grid resolution (400 × 400 points in the
radial and azimuthal directions) but most of our simulations have
a low grid resolution (200 × 200). Both these resolutions are not
enough to properly consider the effects of the gas located within a
Hill’s sphere on the planet. The torque exerted on the planet by the
gas located within its Hill’s sphere is therefore neglected, which is
also recommended when self-gravity of the gas is discarded (Crida
et al. 2009).

2.4 Boundary conditions and wave-killing zones

In order to prevent spurious reflections of the planet wakes at the
grid’s radial edges, we impose an inner and an outer wave-killing
zones. In these wave-killing zones, the density and the radial and
azimuthal velocities are relaxed either to their initial values, or to
their instantaneous axisymmetric values. None of these choices are
perfectly representative of a physical reality, but changing from one
to the other allows to assess the impact of the boundary conditions.
We will refer to as ‘ini’ and ‘axi’ the damping towards initial values
or axisymmetric values of the fields, respectively, as in Fig. 2.

The radial size of the wave-killing zones is chosen such that the
ratio of the orbital period at the boundary and at the edge of the wave-
killing zones is 1.3, as in Benı́tez-Llambay et al. (2016). Namely, for
a grid expanding from r = 0.3 to r = 1.9, the outer edge of the
inner wave-killing zone is r = 0.36, while the inner edge of the outer
wave-killing zone is 1.6. The damping procedure makes use of a
parabolic ramp following de Val-Borro et al. (2006), their equation
(10), and the characteristic damping time-scale is chosen to be three
local orbital periods.

In addition to the use of wave-killing zones, the boundary condi-
tions are dealt with three cells of ghost zones at both radial edges of
the grid. At the inner edge of the simulation, the boundary conditions
for the density and the azimuthal velocity require that ghost cells
follow power-law extrapolations of the inner values. The radial
velocity is an outflow boundary condition, which allows mass to flow
symmetrically inside the ghost cells but the velocity is set to zero if
it is directed from the ghost cells to the simulation domain. At the
outer edge, power-law extrapolations are also used for the density and
the azimuthal velocity, while we impose an antisymmetric boundary
condition on the radial velocity.

3 N U M E R I C A L R E S U LTS

We present in this section the results of our different sets of
simulations. Table 1 gathers the values of the physical parameters in
the ‘Reference’ simulation:
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Figure 3. Left: Semimajor axis and eccentricity of the planet as a function of time for the ‘Reference’ run. Right: Eccentricity as a function of semimajor axis.
For visual aid, the planet’s pericentre, a(1 − e), and apocentre, a(1 + e), are plotted in transparency. The outer edge of the inner wave-killing zone is shown by
a dark dashed line in both panels.

(i) Nr and Nφ are the number of grid cells in the radial and
azimuthal directions,

(ii) rin and rout are the inner and outer radial boundaries of the
simulated domain,

(iii) h is the disc’s aspect ratio, with a flaring index f (namely,
h(r)∝rf),

(iv) rc denotes the characteristic width of the cavity, which extends
from rin to rc + 	r, with 	r the size of the transition region between
the cavity and the outer disc (see Section 2.2),

(v) �0 and �c denote the initial surface densities in the outer disc
and inside the cavity, respectively,

(vi) ν0 and νc denote the constant kinematic viscosities in the
outer disc and inside the cavity,

(vii) the ‘Damping’ parameter refers to the damping procedure in
the wave-killing zones, see Section 2.4,

(viii) the ‘visc’ parameter refers to the transition of viscosity, see
equation (1).

3.1 Reference run

In the left-hand panel of Fig. 3, we show the time evolution of the
planet’s semimajor axis and eccentricity in the ‘Reference’ run, while
the right-hand panel displays eccentricity versus semimajor axis. The
evolution of the eccentricity and semimajor axis with time can be
split in four steps:

(i) During the first few thousand orbits, the inward migration is
fast because of the contrast between the high density in the outer disc
and the low density in the inner disc. The eccentricity essentially
remains null, as expected for migrating Jupiter-mass planets.

(ii) The inward migration then gets slower with time, which is
expected as the planet enters the cavity where the disc density is
lower.

(iii) After 5000 orbits, the planet experiences a slight increase in
eccentricity. We attribute this to the crossing of the 2:1 resonance
with a vortex formed by the Rossby wave instability (Lovelace et al.
1999) at the outer edge of the cavity.

(iv) After ∼8000 orbits, the planet eccentricity increases mono-
tonically with time. This occurs as the planet’s semimajor axis
becomes less than ∼0.68 (in code units), which is close to 2−2/3:
almost all the principal outer Lindblad resonances are now inside

the cavity. When comparing both panels in Fig. 3, we see that the
slow increase with time of the planet eccentricity corresponds to an
exponential increase of eccentricity with decreasing semimajor axis.
The density of the disc after 18 000 orbits is shown in Fig. 4.

(v) When the eccentricity reaches ∼0.35, after 20 000 orbits, the
planet enters the wave-killing zone at the pericentre of its orbit,
preventing to discuss the evolution on longer time-scale. We discuss
this effect in Section 3.2.

In summary, the planet eccentricity in our reference run reaches
values never obtained so far for Jupiter-mass planets solely through
planet–disc interactions. The eccentricity reaches values that are even
higher than the observed median eccentricity of warm Jupiters, which
makes our mechanism a promising explanation for the origin of the
eccentricity of warm giant planets, provided that central cavities
with sizes of a few 0.1 au to a few au can be commonly generated
in protoplanetary discs (see Section 4). We now turn to assessing the
effects of the numerical and physical parameters on the evolution of
the eccentricity.

3.2 Changing the boundary conditions

In the ‘Reference’ simulation, we cannot discuss on the final state
of the simulation because of the interaction between the planet
and the inner wave-killing zone. In order to overcome this issue,
we have run a very large set of simulations changing the size
of the computational domain, the size of the wave-killing zone,
and/or the ‘ini’ or ‘axi’ prescription in this zone (see Section 2.4).
Unfortunately, a similar issue remains: either the planet enters the
wave-killing zone or the gas in the cavity gets highly eccentric and
elliptic motions of the gas interact with the wave-killing zone. Fig. 5
shows the 2D and azimuthally averaged eccentricity of the gas in the
‘Reference’ simulation after 18 000 orbits. It is clearly seen that the
inner boundary condition imposes an almost null eccentricity in the
wave-killing zone. That being said, all the simulations we have run
while varying boundary conditions present an eccentricity growth
up to �0.2 at least, and notably the ‘Reference’ simulation with
‘axi’ boundary condition in the wave-killing zone reaches as well an
eccentricity superior to 0.3.

In conclusion, the eccentricity growth we obtain is robust against
a change in the prescription of the boundary condition. When the
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Figure 4. Gas surface density in decimal log scale, shown in (left) polar and (right) Cartesian coordinates after 18 000 orbits in the ‘Reference’ simulation.

Figure 5. Gas eccentricity in the ‘Reference’ simulation after 18 000 orbits. Top: As a function of radius and azimuth at the pericentre (left) or apocentre (right)
of the orbit. Bottom: Azimuthally and temporally (two orbits) averaged.

eccentricity of the planet gets too high, the boundary conditions
prevent the eccentricity from getting larger. Therefore, we cannot
discuss on the maximal eccentricity that can be reached through this
mechanism but note that it could very well be much higher than 0.4.
Dedicated simulations taking into account the interaction between
the gas and the star would be needed, which is out of the scope of
this paper.

3.3 Convergence with resolution

In order to assess the validity of the proposed mechanism, it is
necessary to test its robustness against different resolutions. First, we
have run a low-resolution simulation, with 200 × 200 grid cells and
all the other parameters similar to the ‘Reference’ run whose results

are shown in Fig. 6. The most striking differences are: (i) the eccentric
instability is triggered at a different, smaller semimajor axis in the
low-resolution simulation and (ii) the characteristic time for eccen-
tricity growth is about 3 times longer in the low-resolution simulation.

In order to understand these differences, we have run the ‘Ref-
erence’ and the low-resolution simulations with both FARGO and
FARGO3D. At low resolution, the two codes do find an eccentricity
growth, but the initial position and time for the instability to occur
are sensibly different (about 10 per cent). However, at a resolution
of 400 × 400, the two codes are in almost perfect agreement on the
evolution of the eccentricity as a function of time and position. We
therefore conclude that, although the 200 × 200 simulation captures
the mechanism that leads to an eccentricity growth, it does not
precisely evaluate the orbital evolution of the planet. Only qualitative
conclusions can be drawn for such a resolution.
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Figure 6. Same as Fig. 3 with a grid resolution of 200 × 200.

Figure 7. Eccentricity as a function of semimajor axis for simulations with
the parameters of the ‘Reference’ run except for the resolution: 200 × 200
(low), 400 × 400 (reference), and 600 × 600 (high).

We have finally run a higher resolution run (600 × 600) in
order to assess the convergence with resolution. Fig. 7 shows the
eccentricity of the planet as a function of semimajor axis for the
three resolutions (200 × 200, 400 × 400, and 600 × 600) with all
the other parameters identical to the ‘Reference’ run. This figure
shows that the difference between the simulations decreases with
increasing resolution, confirming the numerical robustness of the
eccentricity growth we obtained.

3.4 Dependence on the physical parameters

In this section, we study the impact of the physical description of
the disc on the eccentricity growth of the planet. As the ‘Reference’
run required about 40 000 h of CPU time, it was not possible for
us to explore the effects of the different parameters with such a
numerical cost. We have therefore run our exploratory simulations at
low resolution: 200 × 200 cells in the radial and azimuthal directions,
as in Fig. 6.

First, we have varied the disc aspect ratio h and the planet-to-star
mass ratio q. The rationale behind this exploration is that the ability

of a planet to carve an annular gap through its shock waves and build
a massive circumplanetary disc depends on q, h, and on the disc’s
turbulent viscosity (e.g. Crida, Morbidelli & Masset 2006). A lower
h should lead to a stronger depletion of the planet’s coorbital region,
and should therefore favour growth of the planet’s eccentricity. On the
other hand, a higher h would prevent the planet to carve a deep gap,
which would tend to reduce the effect of the eccentricity pumping. We
have carried out three simulations with varying h (although keeping
h constant with radius). These three simulations have h = 0.03, h =
0.07, and h = 0.1.

For h = 0.1, the inward migration of the planet stalls outside
the cavity, and the planet therefore experiences no increase in
eccentricity.2 However, we note that such a high aspect ratio implies
either a very high temperature in the disc’s inner parts (at a few au)
or that the cavity would be located at a few tens of au in the disc,
but in that case eccentricity growth might be too slow to develop
(see Section 4). In the simulation with h = 0.07, the planet enters
the cavity, and its semimajor axis stalls at a ≈ 0.62, with a steady
eccentricity of 0.08. We have checked that the planet’s orbit remains
stable over 40 000 orbits, after which we stopped the simulation. We
have used this case to test the effects of accretion on to the planet,
with a simple prescription following Kley (1999), and the effect of
a more physically motivated temperature profile in the vicinity of
the planet (see e.g. Pepliński, Artymowicz & Mellema 2008; Lin &
Papaloizou 2012). Overall, the results were qualitatively unchanged
unless for an unrealistic accretion or temperature close to the planet.
Finally, the h = 0.03 simulation is broadly similar to the h = 0.05
simulation, although the eccentricity growth occurs at earlier times.

For completeness, we have also run three additional simulations
with h = 0.05 but where the planet mass was changed to have the same
q/h3 ratio as in the simulations presented in the previous paragraph
(where h was varied at fixed q). The reason for this exploration is that
q/h3 is a priori one of the important (dimensionless) parameters that
control the width and depth of planet gaps. We thus examine here the
effect of varying q at fixed q/h3 on our mechanism for eccentricity
growth. The three values of q are 1.2 × 10−4, 3.6 × 10−4, and

2The planet might still end up in a cavity without migrating: if ‘inside–out’
photoevaporation extends the cavity up to the planet’s position. We have not
tried such a set-up in this work.
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4.6 × 10−3. For the two lower values of q, no eccentricity growth
is observed. Similarly to the case with q = 10−3 and h = 0.1 in the
previous paragraph, the planet with q = 1.2 × 10−4 in the h = 0.05
disc stalls its migration before entering the cavity. Interestingly, the
run with q = 3.6 × 10−4 and h = 0.05 shows no eccentricity increase
while that with q = 10−3 and h = 0.07 does. Lastly, the run with
q = 4.6 × 10−3 and h = 0.05 does experience eccentricity growth
comparable to the q = 10−3 and h = 0.03 case. These results highlight
that the q/h3 ratio is not the only quantity to assess the possibility of
eccentricity growth in a cavity, as we further discuss in Section 4.3.

Interestingly, we obtained an eccentricity growth up to ∼0.25
for a planet of mass MJ/2 in low and mid resolution for a disc
aspect ratio of h = 0.03. This points towards the fact the proposed
mechanism can be extended to lower masses, although we have not
explored whether this is robust against a change in the other physical
parameters.

Considering the density contrast between the cavity and the
outer disc, we have run four additional simulations by changing
the value of �c and �0 (we recall that �c = 10−6 and �0 =
10−3 in the ‘Reference’ run). (i) When �c = 2 × 10−6, the planet
experiences a very similar evolution than in the low-resolution case.
The typical time and position for eccentricity evolution differ by
only a few per cent, and the final position is the same. (ii) When �c

= 5 × 10−6, the planet’s eccentricity increases and settles at 0.02
while the semimajor axis keeps decreasing with time. (iii) When �0

= 5 × 10−4, the time for the migration and eccentricity evolution
is 2 times longer, as expected, but the evolution of the eccentricity
is sensibly similar to the low-resolution case. (iv) Finally, when �0

= 2 × 10−4 the results are comparable to the �c = 5 × 10−6 case:
the planet’s eccentricity increases very slightly and settles (up to
0.015 in this case) but does not reach high values. It is therefore
quite clear than when the density contrast is not high enough, the
threshold for the eccentric instability is not reached and the planet
retains a low level of eccentricity. We discuss this further in the next
section.

We have, however, not attempted to increase the initial density
profile of the outer disc. Increasing the gas density outside the cavity
by an order of magnitude would cause the outer disc to become
gravitationally unstable, which would have required to include gas
self-gravity.

Regarding viscosity, we have run a simulation where the viscosity
was lowered by an order of magnitude throughout the disc. Its
outcome turns out to be quite similar to that of the ‘Reference’ run.
We have also run a simulation where �0ν0 = �1ν1 by decreasing ν0

by a factor of 10, in order to have an equal viscous mass flux through
the boundaries. Once again, we recovered an eccentricity increase
up to ∼0.3 values, as in the low-resolution simulation. This confirms
that eccentricity growth via migration in a disc cavity is not simply
due to a specific choice of viscosity. We have also varied the size of
the viscosity transition 	r as well as the viscosity prescription (see
equation 1). The main effects were to alter the position of the initial
eccentricity growth, as it changes the density profile of the inner disc
(inside of r ∼ 1.1) and its magnitude, but eccentricity growth was
almost ubiquitous.

Globally, the results of this section show that the mechanism
we obtain for eccentricity growth does not rely on one particular
physical description of the disc, but is robust against a change in the
parameters. Additionally, this mechanism can be extended to lower
mass planets provided the disc’s aspect ratio is low enough. The
proposed mechanism is therefore a very promising explanation for
the origin of the eccentricity of planets ranging from Saturn mass to
a few Jupiter mass.

4 D ISCUSSION

4.1 Comparison with analytical estimate

In this section, we compare the results we obtained with simple
analytical estimates. Because the assumptions used to derive the an-
alytical torque are not similar to our set-up (notably the consideration
of a non-zero viscosity), the following estimations are quite crude, but
show a good comparison with numerical results. We do not discuss
either on the potential saturation of the corotation resonances, which
would increase the speed of eccentricity growth.

Following Masset (2008), energy and angular momentum conser-
vations lead to a simple equation for the evolution of the eccentricity
of a planet, given a momentum flux (or torque) T (their equation
5.9):

Mp

2

�pa
2

√
1 − e2

de2

dt
=

(
1 − �d

�p

√
1 − e2

)
T , (3)

where �d is the pattern frequency of the perturbing potential (see
Masset 2008) and �p the planetary frequency. For low eccentricity,
this leads to a characteristic time τ for eccentricity growth (note that
the torque we are interested in scales as the square of the eccentricity;
Goldreich & Tremaine 1979):

τ ∼ Mp�pa
2(

1 − �d

�p

)
(T /e2)

. (4)

As detailed in Goldreich & Tremaine (1979, 1980; see also our
introduction or Goldreich & Sari 2003), the leading resonances that
excite or damp eccentricity are the first-order resonances, for which

�d = �p

(
1 ± 1

m

)
, (5)

where m is the index of the decomposition of the planet potential into
an azimuthal Fourier series. A torque can only be exchanged between
the planet and the disc at Lindblad or corotation resonances, where

�(r)
(

1 + ε

m

)
= �d (6)

with ε = 1 for inner Lindblad resonances (ILR), 0 for corotation
resonances (CR), and ε = −1 for outer Lindblad resonances (OLR).
Because of our density profile that sharply increases with radius
through the cavity, the dominant resonances during the eccentricity
growth in our simulations are the CR and OLR of the ‘slow term’
(see fig. 22 of Masset 2008), for which the positions rOLR and rCR

are

rOLR = rp

(
m + 1

m − 1

)2/3

, (7)

rCR = rp

(
m

m − 1

)2/3

. (8)

This is in sharp contrast with usual consideration for Jupiter-mass
planets, where the ILR of the slow term and the OLR of the fast term
have a dominant effect on the damping of eccentricity. On the other
hand, this is the same picture as Papaloizou et al. (2001), where such
resonances fall into the planetary gap.

The OLR of the slow term is known to lead to an increase of the
eccentricity, however, the effect of the CR depends on the gradient of
�/� (Goldreich & Tremaine 1980, equation 14). In the transition
region of our simulations (where this CR lies), this gradient is
positive: the CR leads to a damping of eccentricity, in contrast
with the OLR. In order to determine which of these resonances are
dominant, we therefore calculated numerically the torque exerted at
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Figure 8. Difference in percentage between the Linbald (TL) and corotation
(TC) torque, as a function of the characteristic time for eccentricity growth
considering only the Linbald torque (see equation 4, inversely proportional
to the torque). Data are taken from the high-resolution simulation, after 5370,
100 000, and 150 000 orbits, corresponding to a = 0.7, a = 0.64, and a =
0.61, respectively. The shape of the symbol indicates the order of the Fourier
series.

the CR and OLR of the slow term during the evolution of the planet
in the high-resolution simulation, for m = 2 and m = 3 (assuming
that the density profile is correctly represented by the azimuthally
averaged density). These are the dominant components, as when m
increases, rOLR and rCR decrease and move to regions with much
smaller densities. The results are shown in Fig. 8.

At early time (blue colour in Fig. 8), although the m = 3 component
would lead to an increase in the eccentricity, the corotation torque
of the m = 2 component is too strong and prevents an eccentricity
growth. At later times, the m = 3 component decreases in strength
because it lies in the region where the density decreases sharply with
decreasing radius (green colour). However, the density in the vicinity
of the Lindblad, m = 2 resonance becomes much higher than that of
the corotation resonance. This leads to a reversal of the situation at
a = 0.61 (red cross): the cumulative effect corresponds to a positive
torque, hence an increase in the eccentricity (see equation 3). The
characteristic time for this increase is of the order of a few thousands
orbits, which is very comparable to the outcome of our simulations
(Fig. 3). On the other hand, the m = 3 component decreases in
strength down to a tenth of the m = 2 component when a = 0.61.
Therefore, this points towards the fact that, as in Papaloizou et al.
(2001) but unlike D’Angelo et al. (2006), the 1:3 resonance has the
major effect in the eccentricity growth of our simulations and is able
to excite eccentricity on a characteristic time of a few thousand years.
We attribute this effect to our specific choice of density in the cavity,
which leads to a sharp density gradient hence enhances the effect of
resonances that are located far from the planet.

4.2 Carving a cavity and disc dispersion

Throughout this paper, we have assumed that a cavity already exists
in the disc and that its shape is unchanged by any effects other
than planetary migration. A possible origin for disc cavities is Far
Ultra Violet (FUV) or X-ray photoevaporation from the star (see
Alexander, Clarke & Pringle 2006; Gorti & Hollenbach 2009; Owen,
Ercolano & Clarke 2011; Ercolano, Weber & Owen 2018; Owen &

Kollmeier 2019; Picogna et al. 2019). In this case, a gap is created at
a distance of up to a few au from the star where X-ray heating is most
efficient, which leads to a decoupling between the outer disc and the
inner disc. The inner disc then empties out by viscously accreting
on to the star (and eventually through winds), while the outer disc is
rather depleted by further inside–out photoevaporation. Once a gap is
created, the dispersion of the inner disc is quick (of the order of a few
104 yr; Ercolano & Pascucci 2017), while the complete dispersion
of the outer disc is less constrained.

The cavity could also be carved by the presence of magnetically
driven winds (Bai 2016; Wang & Goodman 2017) that might enhance
angular momentum loss in the inner parts of the disc. Although
not as efficient as photoevaporation in creating a cavity, disc winds
do affect the density structure close to the star. A combination of
photoevaporation and magnetic winds is therefore a likely scenario
to carve a cavity fast enough for planets to migrate inside, but the
typical size of such cavities is not easily determined.

Alternatively, the cavity could be depleted by another giant planet,
as argued in Papaloizou et al. (2001). If a second giant planet
reaches the cavity and experiences eccentricity growth, gravitational
interactions with the inner planet that built the cavity in the first
place could occur, which could destabilize the system. This leads us
to suggest that eccentricity growth in a cavity is a more likely viable
scenario when the cavity is not built up by another companion.

Regarding the typical time-scale for eccentricity growth, our
simulations show that it takes about 104 orbital periods to reach
eccentricities superior to 0.05 for our ‘Reference’ run. Therefore, if
the cavity is 1 au wide, the time-scale for eccentricity growth is short
and the mechanism is likely to occur. If it is 5 au wide, eccentricity
growth will take about 105 yr and the outer disc might start to dissipate
during the process, which would alter the final state of eccentricity
growth. Further than 20 au, the process would require at least 106 yr
to yield a high eccentricity. The outer disc would probably have been
emptied during this time, impeding the mechanism. Therefore, we
do not expect highly eccentric giant planets through this mechanism
further than 10–20 au around a Sun-mass star. The secular interaction
mechanism of Ragusa et al. (2018), which requires about 105 orbits
in a low-density disc, would also be too slow to develop further than
20 au. This prediction might prove to be an observational test of our
mechanism in the future.

Interestingly, there seems to be an excess of planets in the Neptune
to Saturn mass range at large orbital distances, as evidenced by
microlensing observations (Suzuki et al. 2016, 2018). If cavity
carving is a common process in protoplanetary discs, migration in a
cavity could be a way to restrain the runaway gas accretion (Pollack
et al. 1996) of Neptune mass planets: the low gas density in the cavity
would not allow them to reach the mass of Saturn. In this scenario, the
detected desert of sub-Saturn mass planets at short orbital distances
(�10 au; see Fig. 1) is not a confirmation of runaway gas accretion,
but an evidence that planets in the Neptune to Saturn mass range
stall their migration at a few au from their star. Such a conclusion is
obviously very speculative at this point, but it provides an additional
strength to the possibility that migration in disc cavities is a common
process for planets across the Galaxy.

4.3 Maximum eccentricity and planetary migration

We have seen through the paper that the migration in a cavity can
increase the eccentricity of warm Jupiters up to 0.4. However, the
interaction with the inner wave-killing zone limited the eccentricity
growth. It is therefore possible that this mechanism leads to much
higher eccentricities, and only dedicated simulation with the interac-
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tion between the eccentric cavity and the star could help answering
this question.

It is interesting in that regard to write the eccentricity evolution
for the planet at the next order in eccentricity than equation (3) (see
Goldreich & Tremaine 1980, their equation 27, assuming a Keplerian
disc):

de

dt
∝ −T

[
(�d − �p) + e2�p

]
, (9)

where again T is the torque. The second term of the right-hand side
can overcome the first term for high eccentricity and is of opposite
sign: a positive torque would then lead to a damping of eccentricity.
For the slow term (see Section 4.1), this requires e = √

1/m, which
is e = 0.7 for m = 2. If the m = 2 component is dominant at all times,
this effect will not prevent eccentricity growth to much higher values
than 0.3 (although the linear approximation breaks before e = 0.7).

Additionally, the maximum eccentricity that a warm Jupiter can
reach in our simulations is influenced by the density ratio between
the cavity and the outer disc. This ratio depends on the efficiency
of the physical mechanism that carved the cavity to maintain a low
density in the cavity while preventing the outer gas to viscously refill
that cavity. Only when this ratio is higher than 500 did we obtain
eccentricities larger than 0.15. As the median eccentricity of warm
Jupiters with planet-to-star mass ratio q satisfying 5 × 10−4 < q <

5 × 10−3 is 0.2, this might provide hints about the level of emptiness
of cavities in protoplanetary discs, and therefore on the physics of
protoplanetary discs.

As seen in Section 3.4, our mechanism could be applied to explain
the eccentricity of Saturn-mass planets if they evolved in a low aspect
ratio region of the disc. Regarding lower mass planets, we cannot
predict the results as we ran low-resolution simulations where the
horseshoe region is not properly resolved, although the mechanism
can still occur conceptually. Overall, we think that our mechanism
can be a simple and robust phenomenon to understand the origin
of the eccentricity of planets with: (i) masses between the mass of
Saturn and a few Jupiter mass (3 × 10−4 � q � 5 × 10−3) and (ii)
intermediate value for the eccentricity of warm Jupiters (0.1 � e �
0.5). However, care must be taken if one tries to explain the partition
of eccentricities of lower mass planets through cavity migration, and
extreme values for the eccentricity probably need to be explained
through other mechanisms.

One of the interesting implications of the migration of a giant
planet inside a cavity is that the final position of the planet depends
both on the time the disc takes to carve and expand a cavity and
the speed of planetary migration. We might therefore expect two
different planet populations: when the formation and migration of
the planet is faster than the time to carve a cavity, migrating warm
Jupiters will end up very close to their star because of the standard
type II migration paradigm (e.g. Goldreich & Tremaine 1979; Lin
& Papaloizou 1986; Baruteau et al. 2014; Robert et al. 2018). This
would be in line with the population of observed warm Neptunes
and hot Jupiters with low projected orbital obliquities. On the other
hand, if the time for the planet to migrate is longer than the time for
the cavity to be carved, inward migration should stall at the location
where the planet enters the cavity. Although other phenomena might
stop the inward migration of planets, the persistence of a cavity is
an appealing solution to explain the different partitions of planets
with radius (see discussions in Alexander & Pascucci 2012; Wise &
Dodson-Robinson 2018). Therefore, if migration within a cavity is a
common process in protoplanetary discs across the Galaxy, the final
position of planets could provide hints about the typical time-scales

for planet formation, migration, and cavity opening in protoplanetary
discs.

Finally, it is worth noting that in many planet population synthesis
models (see the review by Benz et al. 2014), the time-scales for type
I and II migration are often too short, and need to be increased
somehow. For type I migration, the inclusion of thermal effects
(Masset & Casoli 2010; Paardekooper, Baruteau & Kley 2011) leads
to an increase in the migration time, but no equivalent has been
obtained for type II migration. It seems quite clear that in any case,
the presence of a cavity can only lead to slowing down or stopping
the inward migration when/if the planet enters the cavity. This could
provide a natural, physical explanation to increase further the time-
scale for type I and II migration.

4.4 Hot Jupiters and magnetospheric gap

The magnetic interaction of a star with its disc leads to the formation
of a magnetospheric cavity that can be of the order of a few stellar
radii, typically 0.05–0.1 au (as evidenced in the series of papers
by Ghosh and Lamb: Ghosh & Lamb (1978, 1979a, b); reviewed
in Bouvier et al. 2007; Romanova & Owocki 2015, and see also
observations by Ménard et al. 2003; Donati et al. 2008).

The migration of low-mass planets inside the magnetospheric
cavity is hard to predict because of the unknown or unconstrained
strengths of the disc’s magnetic field and magnetic resistivity (Guilet,
Baruteau & Papaloizou 2013). However, gap-opening Jupiter-like
planets, for which the corotation torque should be very small, are
expected to enter deep inside the cavity.

Although most hot Jupiters have a circular orbit, some of them
retain an eccentricity ∼0.1 (Kane et al. 2012; Shabram et al. 2016).
The most likely explanation is that these planets have a high tidal
quality factor, leading to a long time for circularization and we
observe them in the phase of circularization (Matsumura et al.
2008). The origin of their initial eccentricity, however, is unknown.
Interactions with an external perturber are, as usual, the favoured
consequential explanation, but Matsumura et al. (2008) note that
such perturbers should have been observed in the majority of the
systems, although they are not. Notably, Knutson et al. (2014)
performed a search for companions to hot Jupiters, and noted
that ‘[they] find no statistically significant difference between the
frequency of companions to transiting planets with misaligned or
eccentric orbits and those with well-aligned, circular orbits’, making
planet–planet scattering a less favoured explanation for hot Jupiters’
eccentricities. The same conclusions hold for an eventual interaction
with a companion star (Ngo et al. 2015).

Therefore, eccentricity growth via migration in a disc cavity could
provide a natural explanation so as to make these planets originally
eccentric whereas tidal interactions would circularize orbits on
a longer time-scale once the gas disc is dispersed, as proposed
by Rice et al. (2008), Teyssandier & Ogilvie (2016), or Ragusa
et al. (2018). Our work provides additional strength to this scenario
where hot Jupiters acquire their eccentricity after migrating in the
magnetospheric cavity through planet–disc interactions.

4.5 Inclination

Among the possible extensions to this work, going to 3D simulations
seems very relevant, not only to check the level of eccentricity
growth in such simulations, but also to investigate how the planet’s
inclination would evolve in the cavity. It is indeed possible that such
a mechanism to excite eccentricity might have an effect on the incli-
nation of planets. Therefore, although our values for the eccentricity
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compare well with the observed distribution of eccentricities of warm
Jupiters, having access to a statistical repartition of inclination could
be another way to confirm the viability of our proposed mechanism,
or else assess its limitations. The numerical cost of such a simulation
might, however, be prohibitive thus far.

5 C O N C L U S I O N S

In this paper, we have proposed a simple mechanism to pump up the
eccentricity of warm Jupiters up to their mean observed eccentricity:
migration inside a cavity. We relied on the study of Papaloizou et al.
(2001) that showed that planets of masses �10MJ carve such a wide
gap around their orbit that the first-order corotation resonances have
almost a null contribution on the orbital evolution of the planet,
whereas the eccentric resonances get dominant. We therefore adapted
this mechanism to warm Jupiters of lower masses (0.5–5MJ), in a disc
that already exhibits a cavity. This cavity acts at reducing the effects
of the principal Lindblad and first-order corotation resonances and
prevents the gas close to the planet to force the planet on a circular
orbit because of its low density.

We modelled the cavity as a jump in viscosity between the inner
and outer parts of the disc, and allowed the planet to migrate inward
in this cavity. We used a simplified treatment of the physics (2D
disc model, locally isothermal equation of state, no accretion on the
planet, no self-gravity of the gas) and a middle or low resolution
in order to run simulations for � few 104 orbits, the minimum
time for eccentricity growth to occur. Assessing the viability of the
mechanism in a general case would have been prohibitively long for
our exploration of the parameter space.

We obtained values for the eccentricities of warm Jupiters up
to e ∼ 0.4. Such a high eccentricity had never been obtained solely
through planet–disc interactions, and we provide a robust mechanism
to explain how warm Jupiters reach such level of eccentricity without
invoking (poorly constrained) planet–planet scattering. We have
assessed the effect of the numerical parameters of the simulations,
and confirmed their convergence with resolution.

Regarding the physical description of the simulations, we have
shown that our proposed mechanism can extend to Saturn-mass
planets provided that the aspect ratio of the disc is decreased
compared to our ‘Reference’ run (h = 0.05) and that, on the other
hand, we do not expect the mechanism to work when the aspect ratio
is larger than h ∼ 0.08 for a Jupiter-mass planet. This is due to the
fact that the planet stops migrating before entering far enough in the
cavity for the eccentric resonances to get dominant. We also find that
the viscosity does not affect much our results compared to the impact
of the density and aspect ratio of the gas.

Overall, we propose a simple, robust mechanism to pump up
the eccentricity of warm Jupiters, and have assessed the effect of
changing our physical description and numerical parameters. This
mechanism extends to a range of masses covering Saturn to super-
Jupiter planets, and implies that cavity carving could be a very
efficient mechanism in protoplanetary disc. It is unlikely that this
mechanism alone explains the distribution of radii and eccentricities
of all warm Jupiters, but we expect it to have a major effect on their
statistical repartition.

AC K N OW L E D G E M E N T S

We thank Clément Ranc for stimulating discussions and an anony-
mous referee for their valuable comments. This project received
funding from the European Research Council (ERC) under the
H2020 research & innovation programme (grant agreement #740651

NewWorlds). Most of the numerical simulations were performed on
the CALMIP Supercomputing Centre of the University of Toulouse.
This work was granted access to the HPC resources of IDRIS under
the allocation 2019-A0070410970 made by GENCI.

DATA AVAI LABI LI TY

All of the simulation data and PYTHON codes for plotting are available
upon request to the corresponding author.

REFERENCES

Alexander R. D., Pascucci I., 2012, MNRAS, 422, L82
Alexander R. D., Clarke C. J., Pringle J. E., 2006, MNRAS, 369, 229
Anderson K. R., Lai D., Pu B., 2019, MNRAS, 491, 1369
Armitage P. J., 2011, ARA&A, 49, 195
Bae J. et al., 2019, ApJ, 884, L41
Bai X.-N., 2016, ApJ, 821, 80
Balbus S. A., Hawley J. F., 1991, ApJ, 376, 214
Balbus S. A., Hawley J. F., 1998, Rev. Mod. Phys., 70, 1
Baraffe I., Chabrier G., Barman T., 2010, Rep. Prog. Phys., 73, 016901
Baruteau C. et al., 2014, in Beuther H., Klessen R. S., Dullemond C. P.,

Henning T., eds, Protostars and Planets VI. University of Arizona Press,
Tucson, p. 667

Benı́tez-Llambay P., Masset F. S., 2016, ApJS, 223, 11
Benı́tez-Llambay P., Ramos X. S., Beaugé C., Masset F. S., 2016, ApJ, 826,
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Pepliński A., Artymowicz P., Mellema G., 2008, MNRAS, 386, 164
Picogna G., Ercolano B., Owen J. E., Weber M. L., 2019, MNRAS, 487, 691
Pollack J. B., Hubickyj O., Bodenheimer P., Lissauer J. J., Podolak M.,

Greenzweig Y., 1996, Icarus, 124, 62
Ragusa E., Rosotti G., Teyssandier J., Booth R., Clarke C. J., Lodato G.,

2018, MNRAS, 474, 4460
Rice W. K. M., Armitage P. J., Hogg D. F., 2008, MNRAS, 384, 1242

Robert C. M. T., Crida A., Lega E., Méheut H., Morbidelli A., 2018, A&A,
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