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Abstract

In this paper we propose to revisit the notion of simple Riemann solver both in Lagrangian and Eulerian
coordinates following the seminal work of Gallice ”Positive and entropy stable Godunov-type schemes for
gas dynamics and MHD equations in Lagrangian or Eulerian coordinates” in Numer. Math., 94, 2003. We
provide in this work the relation between the Eulerian and Lagrangian forms of systems of conservation
laws in 1D. Then an approximate (simple) Lagrangian Riemann solver for gas dynamics is derived based
on the notions of positivity preservation and entropy control. Its Eulerian counterpart is further deduced.
Next we build the associated 1D first-order accurate cell-centered Lagrangian Godunov-type Finite Volume
scheme and show numerically its behaviors on classical test cases. Then using the Lagrangian-Eulerian
relationships, we derive and test the Eulerian Godunov-type Finite Volume scheme, which inherits by con-
struction the properties of the Lagrangian solver in terms of positivity preservation and well-defined CFL
condition. At last we extend this Eulerian scheme to arbitrary orders of accuracy using a Runge-Kutta time
discretization, polynomial reconstruction and an a posteriori MOOD limiting strategy. Numerical tests are
carried out to assess the robustness, accuracy, and essentially non-oscillatory properties of the numerical
methods.

Key words: simple approximate Riemann solver, Positivity preserving and entropy consistent Riemann
solver, Lagrangian gas dynamics, Eulerian gas dynamics, High-order Finite Volume discretization.

1. Introduction

A Riemann Solver (RS), should it be exact or approximated, is one of the classical tool in Computational
Fluid Dynamics (CFD). In all generality it is a method for computing the numerical flux at the interface
separating two constant physical states by a discontinuity. S.K. Godunov in an enlightening and inspir-
ing article [31] has developed a fruitful line of reasoning adopting the solution of the Riemann’s initial
value problem as a key tool to develop his finite volume (FV) numerical method to simulate compress-
ible gas-dynamics equations. This method has become the famous and world-wide celebrated Godunov
method/scheme in CFD [33, 32]. Later on, some approximate Riemann solvers have been designed or de-
veloped by famous researchers following on Godunov’s approach, to cite but a few: Roe [52], Harten, Lax
and van Leer (HLL [36]), Einfeld (HLLE [20]), Munz (HLLEM [21]), Toro (HLLC [60]), Engquist [22],
Osher ([48]) and others. We refer the interested readers to the book of Toro [57] and the references therein.
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Of all the aforementioned solvers, the most well-known is probably the one due to Roe. It is based
on a linearisation of the compressible gas dynamics equations. By construction, it unfortunately has the
drawback to create nonphysical results, i.e entropy violating discontinuous waves, or to generate the infa-
mous carbuncle phenomenon. Note that the effect of this drawback can be lessened by implementing an
appropriate entropy fix. Over the years, the HLL [36] and HLLE [20] Riemann solvers also gained consid-
erable popularity thanks to their simplicity. However, they are considered an incomplete Riemann solvers
due to the structure of the solution which neglects some intermediate characteristic fields. This also has the
downfall of causing excessive numerical dissipation. The modified version of HLL, namely the HLLC [60]
Riemann solver, takes into account the presence of those intermediate waves, i.e contact discontinuities and
shear waves, thus making it a complete Riemann solver. However, in its current form it does not include an
exact computation of the waves speeds that are simply estimated using uppermost and lowermost bounds,
refer for instance to [6].

Nonetheless, in recent years, there have not been many major breakthroughs in one-dimensional Rie-
mann solver design. Many researchers rather worked on developing multi-dimensional ones. Among others,
Balsara [4] introduced the Multi-dimensional, Self-similar, strongly-Interacting, Consistent Riemann solver
(MuSIC). The base idea is that it uses the one-dimensional Riemann Solver in all directions to constitute a
multi-dimensional solver for conservative hyperbolic systems. Other researchers also use the same strategy,
relying on some sort of flux splitting algorithm, using a one-dimensional Riemann Solver in all directions
independently to achieve multi-dimensional behaviour.

This shows that conducting research on how to improve and add properties to one-dimensional Rie-
mann solvers, like the present work has some value and can be ground work for further multi-dimensional
extensions as well. One common feature of all the aforementioned solvers is that they were all developed
adopting the Eulerian framework point of view. It is nonetheless possible to adopt a different approach like
in the works of Gallice [27, 28, 29], who tackles the resolution of the Riemann problem from the Lagrangian
standpoint. Starting therefrom, a direct estimation of the waves speeds can be derived naturally. Once built
in the Lagrangian framework, the Riemann Solver in the Eulerian framework is obtained easily and inherits
the properties of the Lagrangian one. A particular property that will be studied is referred to as positivity
preservation of state variables, especially the density and internal energy, which is fundamental in estab-
lishing a robust numerical scheme. Recurrently, numerical approximations may generate negative states
which then leads to instability or code crash. This event is more critical in the Lagrangian framework due
to the moving and deforming grid during computation. Besides Gallice, only few authors have been work-
ing adopting the Lagrangian standpoint, for instance, [46], the positivity preserving property of the HLL
[36] and HLLE [20] solvers is assessed in the Lagrangian framework. Cheng and Shu [13] also developed
positivity-preserving Lagrangian scheme in a direct ALE (Arbitrary-Lagrangian-Eulerian) point of view. In
[64], the counterpart of the HLLC solver in term of the Lagrangian mass coordinate is demonstrated to be
positivity-preserving under particular definitions of the left and right wave speeds.

To improve the precision of a numerical scheme, a well-known series of papers has established a solid
background to get a high-order space and time discretization. The MUSCL scheme elaborated by Van Leer
[62] is a monotone scheme with second-order accuracy in space which achieved popularity quickly thanks
to its elegant simplicity. Another study was done by Woodward and Colella [66] on the piecewise parabolic
method (PPM) that gives a third-order accuracy in space. The idea of both methods is to replace the
piecewise constant approximation of the Godunov scheme by high-order reconstructed cell states used as
building blocks for any Riemann solver. Since then, numerous authors worked on high-order reconstruction
strategies. To cite but a few, the ENO [37, 54, 1, 10] and WENO [16, 55, 19] interpolators are widely used
thanks to their good properties in the presence of strong discontinuities, as well as the ADER approach
[56, 38, 5] discontinuous Galerkin [51, 17, 39] and the residual distributive scheme [53, 3, 2].

In the present paper, following the seminal work of Gallice [29], we shall derive a simple approximate
Lagrangian Riemann solver which preserves contact discontinuities. Monitoring the wave speeds of the
approximate Riemann solver, we shall provide refined positivity and entropy stablity conditions compared
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to those initially described in [29]. Then, following the general methodology proposed in [28, 29], we
deduce the simple approximate Eulerian Riemann solver from the Lagrangian one. It naturally inherits the
positivity and entropy stability properties from its Lagrangian counterpart. The resulting entropic Godunov-
type Finite Volume Eulerian scheme is nothing but the one described in [28, 29], however it has been
obtained employing a more intuitive approach. The Finite Volume schemes in both Lagrangian and Eulerian
frameworks are first order accurate in both space and time to begin with. Then, we pursue introducing their
high-order accurate extensions. Polynomial reconstruction using a least-squares minimization algorithm
is employed to gain high accuracy in space, further completed with Runge-Kutta time integrators [35].
Robustness of the high-order computations and its ability to inherit the expected properties from the first
order scheme are achieved thanks to the MOOD paradigm [14] based on a posteriori limiting and local order
decrementing. In this MOOD paradigm, of paramount importance, is the so-called ’parachute’ scheme.
This is a robust and dissipative scheme which is provably preserving the physical admissible states. The
first-order Eulerian scheme based upon the Lagrangian Riemann solver developed in this paper will play this
crucial role. Numerical tests will be carried on to illustrate and validate this family of high-order Eulerian
numerical schemes.
Therefore the aims of this paper are

• recalling the Euler-Lagrangian mapping which allows us to develop a Lagrangian Riemann solver
and its Eulerian counterpart, both sharing interesting properties such as positivity preservation;

• developping upon it a first order Godunov type FV scheme which is provably 1st-order accurate,
positivity preserving and entropy stable with an explicit and reasonnable CFL like condition;

• use this scheme as the parachute scheme of a high order MOOD extension;

• validate the Lagrangian, Eulerian and high-order Eulerian schemes on demanding test cases.

The rest of this paper is organized as follows. After this introduction, in the second section we present
the relation between the Eulerian and Lagrangian systems of conservation laws and their mapping. The
third section deals with the Godonuv-type FV scheme in Lagrangian frame. More precisely the notion
of simple approximate Riemann solver for Lagrangian gas dynamics is derived, along with some proper-
ties and numerical validations. The Eulerian frame version is then proposed by employing the previously
designed Lagrangian Riemann solver as a constitutive building brick in the fourth section. Accordingly
numerical validation is also provided. The extension of this Eulerian scheme to high-order of accuracy both
in space and time is detailed in section 6 relying on classical Runge-Kutta time discretization, polynomial
reconstruction and a posteriori MOOD limiting strategy. Again, a test campaign to assess the performances
of this new family of high accurate Eulerian schemes is provided. Conclusions and perspectives are drawn
in section 7.

2. Relation between the Eulerian and Lagrangian forms of systems of conservation laws in 1D

This section consists in recalling formally the links between the smooth and discontinuous solutions
of the Lagrangian and Eulerian representations of one-dimensional gas dynamics equations. In the sequel,
these notions shall be useful to derive approximate Riemann solvers in both representations. The reader
interested in the rigorous mathematical treatment of the links between Eulerian and Lagrangian weak so-
lutions of gas dynamics might refer to [65, 49]. We also quote [25, 26] wherein a general framework
relating Eulerian and Lagrangian representations of general systems of one-dimensional conservations law
is introduced to derive Roe matrices in a systematic manner.
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2.1. One-dimensional gas dynamics written under Eulerian representation

In this paragraph, we briefly recall the one-dimensional gas dynamics equation written under Eulerian
representation. Namely, the conservation equations of mass, momentum and total energy are viewed in
terms of the current (spatial) position, x, of the material particle and x is referred to as the Eulerian coordi-
nate. Denoting the time, t > 0, in this framework the gas dynamics equations are written under the form of
the system of conservation laws

∂u
∂t

+
∂

∂x
f (u) = 0. (1)

Here, u = u(x, t) and f = f (u(x, t)) are respectively the vector of conservative variables and the flux vector.
More precisely

u = (ρ, ρu, ρe)t, f = (ρu, ρu2 + p, ρue + pu)t,

where ρ denotes the mass density, u is the velocity, e is the specific total energy and p the pressure. The
thermodynamic closure of this system of conservation laws shall be precised in the sequel. For the moment,
we shall focus on the form of this system under Lagrangian representation assuming that we are considering
smooth solutions of (1).

2.2. Lagrange-Euler mapping

Let X denotes the initial position of the material particle located at x at time t > 0. We represent the
motion of this material particle with respect to time introducing the Lagrange-Euler mapping (LEM)

Φ : X 7→ x = Φ(X, t). (2)

By definition, this mapping satisfies Φ(X, 0) = X and its Jacobian, J, reads

J(X, t) =
∂Φ

∂X
.

Noticing that J(X, 0) = 1, a continuity argument leads us to assume that J(X, t) > 0 for t > 0. This ensures
that the LEM is a one-to-one mapping. The partial derivative of Φ with respect to t holding X fixed is
nothing but the kinematic velocity

u(X, t) =
∂Φ

∂t
|X .

Time differentiating the Jacobian of the LEM and utilizing the definition of the kinematic velocity yields
the Geometric Conservation Law (GCL)

∂J
∂t
−
∂u
∂X

= 0. (3)

Let us point out that the kinematic velocity and the GCL have been derived by means of the LEM and
independently of the system of conservation laws (1). Obviously, the kinematic velocity coincides with the
fluid velocity initially introduced in (1). Physical variables can be represented regardless in the Lagrangian
form or in the Eulerian one. By an abuse of notation, we shall set

u(X, t) = u(Φ(X, t), t) = u(x, t),

in the sequel of the paper, knowing that x = Φ(X, t). Time differentiating the foregoing identity, holding X
fixed, we arrive at

∂u(X, t)
∂t

|X =
∂u(x, t)
∂t

|x + u
∂u(x, t)
∂x

. (4)
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This equation expresses nothing but the fact that the lagrangian time derivative (holding X fixed) coincides
with the so-called material derivative. Finally, combining identity (4) and the GCL, we arrive at

J−1 ∂(Ju)
∂t
|X =

∂u
∂t
|x +

∂(uu)
∂x

. (5)

This last identity will be of great help to transform the Eulerian system of conservation laws (1) into its
Lagrangian counterpart.

2.3. One-dimensional gas dynamics written under Lagrangian form
Substituting identity (5) into (1) leads formally to

J−1 ∂(Ju)
∂t
|X +

∂

∂x
( f (u) − uu) = 0.

Recalling that J dX = dx, the above equation turns into

∂(Ju)
∂t
|X +

∂

∂X
( f (u) − uu) = 0. (6)

From now on, we omit to specify that the time derivative is taken holding X fixed. Let us point out that
the first component of this system, i.e., the mass conservation equation, boils down to the trivial equation
∂(ρJ)
∂t

= 0, which after time integration yields

(ρJ)(X, t) = ρ0(X), (7)

where ρ0(X) > 0 denotes the initial mass density distribution. Thanks to mass conservation, the Jacobian

rewrites J = ρ0τ, where τ =
1
ρ

is the specific volume assuming that ρ > 0. Substituting this expression of

the Jacobian into the GCL leads to

ρ0 ∂τ

∂t
−
∂u
∂X

= 0. (8)

Finally, gathering the foregoing results we are now in position to write the Lagrangian form of the one-
dimensional gas dynamics

ρ0 ∂U
∂t

+
∂F
∂X

= 0, (9)

where U = (τ, u, e)t and F = (−u, p, pu)t are respectively the vector of conservative variables and the flux
vector in the Lagrangian frame. We observe that the second and third components of the flux and the
conservative variables written in Lagrangian and Eulerian forms are related by

U = τu, F = f − uu.

Before proceeding any further, let us provide the thermodynamic closure of the gas dynamics equations.
First, we recall that the specific total energy is the sum of the specific internal energy, ε, plus the specific

kinetic energy,
1
2

u2, that is e = ε +
1
2

u2. We assume that the specific internal energy is a strictly convex
function with respect to the specific volume, τ, and to the specific entropy, η. This means that the Hessian
of ε(τ, η) is positive definite

∂2ε

∂τ2 > 0,
∂2ε

∂η2 > 0,
(
∂2ε

∂τ2

) (
∂2ε

∂η2

)
−

(
∂2ε

∂τ∂η

)2

> 0.
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This amounts to say that (τ, ε) 7→ η(τ, ε) is strictly concave, refer to [30]. The thermodynamic closure is
completed by expressing the pressure, p, and the temperature, θ, in terms of the partial derivatives of the
specific internal energy

p(τ, η) = −
∂ε

∂τ
, θ(τ, η) =

∂ε

∂η
. (10)

This corresponds to the complete equation of state, refer to [45]. We also assume that the temperature is
strictly positive, i.e., θ > 0. The convexity assumption allows us to define the isentropic sound speed

a
τ

=

(
−
∂p
∂τ

) 1
2

=

(
∂2ε

∂τ2

) 1
2

.

With this thermodynamic closure, one can easily demonstrate that the one-dimensional Lagrangian gas
dynamics equations consist of an hyperbolic system characterized by the real eigenvalues (−

a
ρ0τ

, 0,
a
ρ0τ

).

The interesting reader might find the detailed demonstration, for instance, in [30]. Moreover, the complete
equation of state implies the fundamental Gibbs relation

θ dη = p dτ + dε. (11)

Observing that dε = de − u du, the substitution of the Lagrangian gas dynamics equations into the Gibbs
relation leads to the supplementary conservation law

ρ0 ∂η

∂t
= 0. (12)

This latter demonstrates that the entropy is conserved for smooth flows. More precisely, time integrating
the above equation yields η(X, t) = η(X, 0). Namely, the entropy of a material particle at time t > 0 is equal
to its initial value. On the other hand, for non smooth flows, the physically admissible piecewise continuous
solutions have to satisfy the entropy inequality

ρ0 ∂η

∂t
≥ 0. (13)

The Eulerian counterpart of the Lagrangian entropy conservation equation (12) is readily obtained recalling
that ρJ = ρ0 and thanks to identity (5)

∂(ρη)
∂t
|x +

∂(ρηu)
∂x

= 0. (14)

This equation expresses the conservation of entropy for smooth flows in the Eulerian frame, or equivalently,
that the entropy is conserved along the trajectory of material particles. For non smooth flows, the Eulerian
counterpart of the Lagrangian entropy inequality (13) reads

∂(ρη)
∂t
|x +

∂(ρηu)
∂x

≥ 0. (15)

2.4. Discontinuous solutions in Lagrangian and Eulerian frames
The aim of this paragraph is to recall briefly the Rankine-Hugoniot (RH) condition related to the sys-

tem of conservation laws under consideration for both Lagrangian and Eulerian representations. The RH
condition expresses the admissibility of piecewise discontinuous solutions with respect to the system of
conservation laws written in weak (integral) form, refer for instance to [30]. In addition, we are going to
exhibit the relationship between the Lagrangian and the Eulerian discontinuity speeds. This relationship
will be of great interest, in what follows, for deriving the wavespeeds of the Eulerian approximate Riemann
solver in terms of its Lagrangian counterpart.
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2.4.1. Lagrangian Rankine-Hugoniot condition
Let us consider the discontinuity curve defined in the (X, t) plane by the equation X = Ξ(t) and the

related piecewise discontinuous function

U(X, t) =

Ul if X < Ξ(t),
Ur if X > Ξ(t).

This is a weak solution of the Lagrangian system of conservation laws (9) if and only if the Lagrangian RH
condition holds true

−
dΞ

dt
~ρ0U� + ~F� = 0.

Here, ~U� = Ur−Ul is the jump of U across the discontinuity. Thanks to (7), Lagrangian mass conservation

RH condition reads −
dΞ

dt
~ρ0� = 0. Furthermore, recalling the identity ~ab� = 〈a〉~b� + 〈b〉~a�, where

〈a〉 = 1
2 (al + ar), leads to rewrite the Lagrangian RH condition under the form

−ρ0 dΞ

dt
~U� + ~F� = 0. (16)

Let Σ = ρ0 dΞ

dt
be the mass flux swept by the Lagrangian discontinuity. For Σ = 0 it is a contact discontinuity,

whereas for Σ > 0 (resp. Σ < 0), it is a rightgoing (resp. leftgoing) shock wave. With this notation, the
Lagrangian RH condition reads

− Σ~U� + ~F� = 0, where U = (τ, u, e)t and F = (−u, p, pu)t. (17)

It is well known that the weak solutions satisfying the RH condition are not unique. Nevertheless the phys-
ically admissible solutions are selected supplementing the RH condition (17) by the RH entropy inequality

−Σ~η� ≥ 0. (18)

This RH entropy inequality simply expresses that the entropy of material particles is increasing through
the shock wave consistently with the second law of thermodynamics since a shock wave is an irreversible
thermodynamic process.

2.4.2. Eulerian Rankine-Hugoniot condition
We consider the Eulerian representation of the discontinuity curve defined in the (x, t) plane by the

equation x = ξ(t) and the piecewise discontinuous function

u(x, t) =

ul if x < ξ(t),
ur if x > ξ(t).

This piecewise discontinuous function is a weak solution of the Eulerian system of conservation laws (1) if
and only if the Eulerian RH condition holds true

−
dξ
dt
~u� + ~ f� = 0.

Let σ =
dξ
dt denotes the Eulerian discontinuity speed, then the Eulerian RH condition turns into

− σ~u� + ~ f� = 0, where u = (ρ, ρu, ρe)t and f = (ρu, ρu2 + p, ρue + pu)t. (19)

The selection of the physically admissible weak solutions is enforced through the use of the Eulerian RH
entropy inequality

−σ~ρη� + ~ρηu� ≥ 0. (20)
7



2.4.3. Fundamental relation between Lagrangian and Eulerian discontinuity speeds
A weak solution of the gas dynamics equations is characterized by the RH condition, which can be

written under Lagrangian representation (17) as well as under Eulerian representation (19). We relate the
discontinuity speeds Σ and σ by comparing the first component of (17) and (19)

− Σ~τ� − ~u� = 0, (21a)
− σ~ρ� + ~ρu� = 0. (21b)

Before proceeding any further, we introduce some useful notations. Let α and φ be real numbers. We denote
respectively (αl, φl) and (αr, φr) the values taken by (α, φ) on the left and the right side of the discontinuity.
Assuming that the α-weights sum to one, i.e., αl + αr = 1, the weighted averages of φ write

φ = αlφl + αrφr, φ = αrφl + αlφr.

This allows us to express the jump of a product thanks to the identity

~φψ� = φ~ψ� + ψ~φ�. (22)

Applying this identity to (τ, ρ) and observing that τρ = 1 yields ρ~τ� = −τ~ρ�. Substituting this result into
(21a) we get

ρ~u� = Στ~ρ�. (23)

On the other hand, applying identity (22) to (21b) leads to

−σ~ρ� + ρ~u� + u~ρ� = 0.

Substituting the expression of the velocity jump (23) into the foregoing equation we finally arrive at

(−σ + u + τΣ)~ρ� = 0.

This equation holds true regardless the mass density jump. Therefore, the term between parentheses is equal
to zero, which provides us the fundamental relation between the Eulerian and Lagrangian discontinuity
speeds

σ = τΣ + u. (24)

Utilizing the definition of the underline average and thanks to (21a) one can easily show that σ satisfies also

σ = τlΣ + ul = τrΣ + ur. (25)

Multiplying respectively the first equality by ρl and the second one by ρr leads to express the mass flux
swept by the Lagrangian discontinuity, Σ, in terms of its Eulerian velocity

Σ = −ρl(ul − σ) = −ρr(ur − σ). (26)

Let us point out that the mass flux swept by the Lagrangian discontinuity has exactly the opposite sign to
the mass flux crossing the Eulerian discontinuity.

3. Approximate Riemann solvers for gas dynamics

Here, inspired by the seminal works of Gallice [29], we start by designing a family of approximate
Riemann solvers for gas dynamics equations written under Lagrangian representation, which depends on
two parameters. Then, we describe how to monitor these parameters to ensure good theoretical properties
such as positivity of specific volume and internal energy and also an entropy inequality. Finally, we arrive at
the description of a family of Eulerian approximate Riemann solvers simply deduced from their Lagrangian
counterparts by mimicking the Lagrange Euler mapping at the discrete level. In this framework, the good
properties of the Lagrangian approximate Riemann solver are directly transferred to the Eulerian one.
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X

dX
dt = − zl

ρ0
l

dX
dt = zr

ρ0
r

dX
dt = 0

t

U⋆
rU⋆

l

0−∆Xl ∆Xr

U l U r

∆t

Figure 1: Simple Riemann solver for Lagrangian gas dynamics.

3.1. Simple approximate Riemann solver for Lagrangian gas dynamics
The Riemann problem related to Lagrangian gas dynamics reads

ρ0 ∂U
∂t

+
∂F(U)
∂X

= 0, U(X, 0) =

Ul if X < 0,
Ur if X ≥ 0.

(27)

Let W
(
Ul,Ur,

X
t

)
be an approximate solution to the Riemann problem (27) defined by

W
(
Ul,Ur,

X
t

)
=



Ul if
X
t
< −

zl

ρ0
l

,

U?
l if −

zl

ρ0
l

<
X
t
< 0,

U?
r if 0 <

X
t
<

zr

ρ0
r
,

Ur if
zr

ρ0
r
<

X
t
.

(28)

Following Gallice [29], W is named simple Riemann solver since it consists of four constant states (Ul,U?
l ,U

?
r ,Ur)

separated by the three discontinuities characterized by the speeds (− zl

ρ0
l
, 0, zr

ρ0
r
). Here, zl and zr are given

strictly positive parameters. It is worth noticing that the three discontinuity speeds of W are prescribed to
mimic the three eigenvalues of the continuous problem (9). The structure of the simple Riemann solver
for Lagrangian gas dynamics is displayed in figure 1. The intermediate states write U?

s = (τ?s , u
?
s , e

?
s )t and

e?s = ε?s +
1
2

(u?s )2 for s = l, r. For now on, for any variable or equation with subscript s we assume that it
holds for s = l, r.

The consistency of the approximate Riemann solver W with the integral form of the Riemann problem
(27) is ensured provided that the intermediate states satisfy the equation

Fr − Fl = −zl(U?
l − Ul) + zr(Ur − U?

r ), (29)

where Fs = F(Us).This consistency condition results from the integration of (27) over the space-time inter-
val [−∆Xl,∆Xr]× [0,∆t] displayed in figure 1 and the substitution of the exact solution for the approximate
Riemann solver, refer for instance to [36].
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The consistency of the approximate Riemann solver W with the integral form of the entropy inequality
(13) is ensured provided that the intermediate states satisfy the inequality

zl(η?l − ηl) + zr(η?r − ηr) ≥ 0, (30)

where η?s = η(U?
s ) and ηs = η(Us) for s = l, r. This inequality results from the integration of (13) over

[−∆Xl,∆Xr] × [0,∆t] and the substitution of the exact solution for the approximate Riemann solver. Let us
emphasize that the consistency conditions (29) and (30) are crucial to ensure that the approximate Riemann
solver induces an entropic Godunov-type Finite Volume scheme, refer to [61].

Now, we are in position to determine the intermediate states U?
s for s = l, r satisfying the foregoing

consistency conditions. There are many solutions since we have 6 unknowns for 3 equations and 1 inequal-
ity. We choose to construct the intermediate states by introducing the supplementary unknowns F?

s named
the intermediate fluxes. The intermediate states, U?

s , and the intermediate fluxes, F?
s , are linked by the 3

following jump relations written across each discontinuity of W from left to right, refer to figure 1

zl(U?
l − Ul) + F?

l − Fl = 0, (31a)
0(U?

r − U?
l ) + F?

r − F?
l = 0, (31b)

−zr(Ur − U?
r ) + Fr − F?

r = 0. (31c)

Summing the above equations leads straightforwardly to the consistency condition (29). This is one of the
advantages of the introduction of the intermediate fluxes. Combining the 3 equations of system (31) yields

the explicit expression of the intermediate flux at the interface
X
t

= 0

F? =
1
2

(F?
l + F?

r ) =
1
2

(Fl + Fr) −
zl

2
(U?

l − Ul) −
zr

2
(Ur − U?

r ). (32)

This shows that the numerical flux is expressed in terms of the states of Riemann solver. Moreover, the
numerical viscosity is directly governed by the parameters (zl, zr). However, the problem is still underde-
termined since we have only 9 equations for 12 unknowns, assuming that zl and zr are given parameters. At
this point, mimicking the continuous flux, we make the structural assumption that the intermediate fluxes
components writes F?

s = (−u?s , p?s , (pu)?s )t recalling the intermediate state components U?
s = (τ?s , u

?
s , e

?
s )t

for s = l, r. We arrive at 10 unknowns pointing out that we have used the same velocity unknown for
the second component of the intermediate state as well as for the first component of the intermediate flux.
Then, (31b) implies that u?l = u?r , p?l = p?r and (pu)?l = (pu)?r , which leads us to write the intermediate flux
F? = F?

l = F?
r = (−u?, p?, (pu)?)t. The state vector turns into U?

s = (τ?s , u
?, e?s )t for s = l, r. Thus, we

end up with 7 unknowns for 6 equations given by (31a) and (31c). Finally, assuming that (pu)? = p?u?, we
arrive at the following closed systems respectively for the left intermediate states

zl(τ?l − τl) − (u? − ul) = 0, (33a)
zl(u? − ul) + p? − pl = 0, (33b)
zl(e?l − el) + p?u? − plul = 0, (33c)

and the right ones

zr(τ?r − τr) + u? − ur = 0, (34a)
zr(u? − ur) − (p? − pr) = 0, (34b)
zr(e?r − er) − (p?u? − prur) = 0. (34c)

We end up with 6 equations for the 6 unknowns (τ?l , τ
?
r , u

?, e?l , e
?
r , p?). Next,let us derive expressions of

these unknows in terms of the parameters zl and zr. These explicit expressions shall be usefull to exibit
10



explicit conditions on the parameters to enforce positivity of specific volumes, specific internal energies
and entropy control on the intermediate states of our approximate Riemann solver. We start by summing
(33b) and (34b) and we readily get the explicit expression of u? in terms of the parameters zl and zr

u? =
zlul + zrur

zl + zr
−
~p�

zl + zr
. (35)

Then, substituting this expression into (33a) and (34a) yields the explicit expression of τ?l and τ?r in terms
of parameters zl and zr as

τ?l =
zl

zl + zr

τl −
~p�
z2

l

 +
zr

zl + zr

(
τl +
~u�
zl

)
, (36a)

τ?r =
zl

zl + zr

(
τr +

~u�
zr

)
+

zr

zl + zr

(
τr +

~p�
z2

r

)
. (36b)

It is also interesting to derive the balance of internal energy for the left and right intermediate states. To
this end, we compute the balance of kinetic energy dot-multiplying the balance of momentum (33b) (resp.

(34b)) by the centered velocity
1
2

(u? + ul) (resp.
1
2

(u? + ur)). Then, subtracting the kinetic energy balance
on the left (resp. right) side to the total energy balance (33c) (resp. (34c)) we arrive at

ε?s − εs +
p? + ps

2
(τ?s − τs) = 0. (37)

Here, we have used the fact that zl and zr are strictly positive parameters and e?s = ε?s +
1
2

u?.This equation is
similar to the well known Hugoniot equation that characterizes the locus of the states resulting from a shock
wave. However, this is not exactly the Hugoniot equation since p? does not correspond to a thermodynamic
pressure, i.e., p? , p(τ?s , η

?
s ). In fact, p? is directly expressed by solving the foregoing systems of equation.

For instance, substituting (33a) (resp. (34a)) into (33b) (resp. (34b)) leads to the expression of p? − ps in
terms of τ?s − τs and zs

p? − ps = −z2
s(τ?s − τs). (38)

This equation shows that p? is a decreasing function with respect to τ?s ,which is a physical admissible be-
havior. We are now in position to derive explicit conditions on the parameters zl and zr to enforce positivity
properties.

3.2. Positivity properties and inequality entropy of the Lagrangian simple Riemann solver
3.2.1. Positivity of the specific internal energy

Let us derive an explicit condition on zs to ensure the positivity of ε?s .We express ε?s in terms of εs and
τ?s − τs substituting p? expression (38) into the energy balance (37)

ε?s = εs − ps(τ?s − τs) +
zs

2
(τ?s − τs)2. (39)

Hence, the specific internal energy is a quadratic convex function with respect to the specific volume jump.
It is thus always greater than or equal to its minimum value

ε?s ≥ εs −
p2

s

2z2
s
.

Therefore, the positivity of specific internal energy ε?s is ensured provided that parameter zs satisfies the
condition

zs ≥
ps
√

2εs
. (40)

11



This condition is not overly restrictive. Indeed, for a perfect gas equation of state, p = (γ − 1)ρε, where

γ > 1 is the polytropic index, the foregoing condition boils down to zs ≥

√
γ − 1

2γ
ρsas. This shows that the

parameter zs only needs to be greater than or equal to a fraction of the acoustic impendance to ensure the
positivity of specific internal energy. Condition (40) is relatively well known and has already been given
in [64]. Moreover, if the equation of state is such that the isentrope curves are convex, i.e., the function
τ 7→ p(τ, η) is strictly convex with respect to τ, then the following inequality holds true [45]

a2

τ2 ≥
p2

2ε
.

Combining this result with condition (40) leads to claim that for a convex equation of state, the approximate
Riemann solver preserves the positivity of internal energy provided parameter zs fulfills

zs ≥ ρsas. (41)

This last condition simply expresses that the parameters should be greater than or equal to the acoustic
impedance. We note in passing that the classical Godunov acoustic solver relying on the particular choice
zs = ρsas should preserve the positivity of the specific internal energy for any convex equation of state.

3.2.2. Positivity of the specific volume
In this paragraph, we derive explicit conditions on zl, zr to ensure the strict positivity of τ?l and τ?r .

First, by virtue of (36a) and (36b), it is obvious that τ?l and τ?r result in a convex combination of the
terms between parantheses. Thus, the positivity of the specific volume holds true provided that these terms
between parentheses are positive. This leads us to claim that the positivity of τ?l and τ?r is taken for granted
if zl and zr are defined by

zl = max
ρlal,

√
~p�+
τl

,−
~u�
τl

 , and zr = max
ρrar,

√
~−p�+
τr

,−
~u�
τr

 , (42)

where for x ∈ R, (x)+ denotes the positive part of x, i.e., (x)+ =
1
2

(x + |x|). Let us point out that the
above condition provides us an explicit definition of the parameters zl and zr in terms of the initial left and
right states. In addition, these parameters are always greater than or equal to the left and right acoustic
impendances. We observe that this condition has been already proposed in [9] where approximate Riemann
solvers are constructed by means of relaxation schemes. In the sequel of the paper, this approach to monitor
the parameters (zl, zr) will be referred to as method 1.

An alternative approach to enforce the positivity of the specific volumes, (τ?l , τ
?
r ), has been proposed in

[28]. It consists in assuming that the parameters, (zl, zr), are linked by the ratio r =
zr

zl
. Substituting zr = rzl

(resp. zl = 1
r zr) into (36a) (resp. (36b)) leads to the following expressions for τ?l (resp. τ?r )

τ?l =
(1 + r)τlz2

l + r~u�zl − ~p�

(1 + r)z2
l

, τ?r =
(1 + r)τrz2

r + ~u�zr + r~p�
(1 + r)z2

r
.

We observe that the positivity of τ?l (resp. τ?r ) is strictly equivalent to the positivity of the quadratic function
with respect to zl (resp. zr) present at the numerator of the above rational expressions. Introducing the
discriminants

∆l = r2~u�2 + 4(1 + r)τl~p�, ∆r = ~u�2 − 4r(1 + r)τr~p�,

we arrive at the following conditions to ensure the positivity of the specific volumes.

12



• The positivity of τ?l holds true if

∆l ≤ 0 or if ∆l > 0 and zl > z+
l =

1
2(1 + r)τl

(−r~u� +
√

∆l), zr > rz+
l . (43)

• The positivity of τ?r holds true if

∆r ≤ 0 or if ∆r > 0 and zr > z+
r =

1
2(1 + r)τr

(−~u� +
√

∆r), zl >
1
r

z+
r . (44)

For practical applications, the parameter r is defined as the ratio of the acoustic impendances, that is,
r =

ρrar

ρlal
. This method of monitoring the parameters (zl, zr) to enforce the positivity of the specific volumes

will be referred to as method 2 in the sequel of the text. Let us note that this approach might be also
employed to enforce the positivity of the specific energies ε?l and ε?r , the interested reader should refer to
[29] for more details.

The last approach to enforce the positivity of the specific volumes, (τ?l , τ
?
r ), consists in analyzing the

signs of the right-hand side of (36a) and (36b) as functions of unknowns zl and zr with parameters ~u�, ~p�,
τl and τr. The subsequent developments are detailed in Appendix 8. This last method to monitor (zl, zr) will
be referred to as method 3.

3.2.3. Entropy control
We aim at deriving a condition on zs parameters to ensure the entropy inequality, η?s ≥ ηs, across

the discontinuities of the approximate Riemann solver. First, to obtain an expression of the entropy jump
η?s − ηs, we decompose the thermodynamic process (τs, ηs) 7→ (τ?s , η

?
s ) into

• the isentropic process: (τs, ηs) 7→ (τ?s , ηs), followed by

• the isochoric process: (τ?s , ηs) 7→ (τ?s , η
?
s ).

By virtue of this decomposition, the specific internal energy jump writes

ε(τ?s , η
?
s ) − ε(τs, ηs) =

isochoric process︷                    ︸︸                    ︷
ε(τ?s , η

?
s ) − ε(τ?s , ηs) +

isentropic process︷                  ︸︸                  ︷
ε(τ?s , ηs) − ε(τs, ηs)

=

∫ η?s

ηs

∂ε

∂η
(τ?s , η) dη +

∫ τ?s

τs

∂ε

∂τ
(τ, ηs) dτ,

=

∫ η?s

ηs

θ(τ?s , η) dη −
∫ τ?s

τs

p(τ, ηs) dτ.

The second line at the right-hand side of the above equation results from the definition of the complete equa-
tion of state (10) recalling that the absolute temperature, θ, is strictly positive. Substituting the expression
of the internal energy jump (39) into the foregoing equation yields∫ η?s

ηs

θ(τ?s , η) dη =

∫ τ?s

τs

p(τ, ηs) dτ − ps(τ?s − τs) +
zs

2
(τ?s − τs)2,

which is rearranged into∫ η?s

ηs

θ(τ?s , η) dη =

∫ τ?s

τs

(p(τ, ηs) − p(τs, ηs)) dτ +
zs

2
(τ?s − τs)2. (45)
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Figure 2: Plots of entropy production for a perfect gas equation of state (γ =
7
5

) for zs = ρsas, zs = 2ρsas and zs = 4ρsas.

Knowing that θ > 0, the entropy inequality, η?s − ηs ≥ 0 holds true if and only if zs satisfies the condition

z2
s ≥ −

2
(τ?s − τs)2

∫ τ?s

τs

(p(τ, ηs) − p(τs, ηs)) dτ, for s = l, r. (46)

The right-hand side of the above inequality is always non negative since
∂p
∂τ

< 0 by virtue of the convexity
assumption made on the equation of state and thus the above condition is always well defined. Thanks to
the mean value theorem, it is also possible to reformulate condition (46) into

z2
s ≥

a2(τ̄s, ηs)
τ̄2

s
, where τ̄s ∈ (τs, τ

?
s ) for s = l, r. (47)

Although being simpler, the above condition is not very useful for practical application since it remains
implicit by construction. We acknowledge that a similar condition has been derived in [12] in the frame-
work of relaxation schemes. We conclude this paragraph performing an asymptotic analysis of the entropy
production (45) when the specific volume jump is small, i.e., τ?s −τs � 1. In this case, the Taylor expansion
of the right-hand side of (45) up to third-order leads to∫ η?s

ηs

θ(τ?s , η) dη =
1
2

(
z2

s −
a2

s

τ2
s

)
(τ?s − τs)2 +

1
6
∂2 p
∂τ2 (τ̂s, ηs)(τ?s − τs)3, where τ̂s ∈ (τs, τ

?
s ).

This asymptotic analysis shows that the acoustic Godunov solver characterized by zs =
as

τs
has an entropy

production of third-order with respect to the specific volume jump. In addition, for a convex equation of
state, the second partial derivative of pressure with respect to specific volume is strictly positive and the
entropy production term is negative across compressive discontinuities which is not consistent with the
second law of thermodynamics. For a perfect gas equation of state characterized by the polytropic index γ,
the isentrope curve writes p(τ?s , ηs) = ps

(
τ?s
τs

)γ
for s = l, r. Substituting this function into (45) yields the
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expression of the entropy production term∫ η?s

ηs

θ(τ?s , η) dη = a2
s f

(
τ?s
τs

)
, where f (x) =

1
γ(γ − 1)

(1 − x1−γ) +
1
γ

(1 − x) +
1
2

(
zs

ρsas

)2

(1 − x)2.

We have displayed in figure 2 the entropy production with respect to the ratio
τ?s
τs

for the three following

values of the parameter: zs = ρsas, zs = 2ρsas and zs = 4ρsas. It is clear that the Godunov acoustic solver
characterized by zs = ρsas exhibits a negative entropy production in the compressive zone, i.e., for τ?s ≤ τs,
whereas for zs sufficiently greater than the acoustic impedance, ρsas, the entropy production remains posi-
tive almost everywhere in the compressive zone.

This concludes the design of the Riemann solver in the Lagrangian framework. Next we present its
Eulerian counter-part.

3.3. Simple approximate Riemann solver for Eulerian gas dynamics
The Riemann problem for gas dynamics written under Eulerian form reads

∂u
∂t

+
∂ f (u)
∂x

= 0, u(x, 0) =

ul if x < 0,
ur if x ≥ 0.

(48)

For the sake of completeness, let us recall that u = (ρ, ρu, ρe)t is the vector of conservative variables and
f (u) = (ρu, ρu2 + p, ρue + pu)t is the flux vector. The aim of this section is to derive a simple Riemann

solver, w
(
ul,ur,

x
t

)
, approximating the solution of the Riemann problem (48). We acknowledge that there

exists many approximate Riemann solvers for Eulerian gas dynamics, refer for instance to [57]. Here,
we present an Eulerian approximate Riemann solver which is deduced from its Lagrangian counterpart,
W, constructed in paragraph 3.1. This Eulerian approximate Riemann solver is constructed following the
general methodology introduced in [28, 29], which allows not only to derive Eulerian approximate Riemann
solvers from their Lagrangian counterparts but also to transfer the positivity and entropy stability properties.
Therefore, the present Eulerian approximate solver coincides with the one introduced in [28, 29] in a more
general and theoretical framework. Let us point out that its has been derived employing a different and more
intuitive approach. This Eulerian simple solver, w, consists of 4 constant states (ul,u?l ,u

?
r ,ur) separated by

the 3 discontinuities characterized by the speeds (S l, S ?, S r)

w
(
ul,ur,

x
t

)
=



ul if
x
t
< S l,

u?l if S l <
x
t
< S ?,

u?r if S ? <
x
t
< S r,

ur if S r <
x
t
.

(49)

The structure of the simple Riemann solver, w, is displayed in figure 3. Our starting point is the Lagrangian
approximate Riemann solver, W, composed of the four states (Ul,U?

l ,U
?
r ,Ur), separated by the three dis-

continuities of speeds
− zl

ρ0
l

, 0,
zr

ρ0
r

. Here, we assume that the parameters zl, zr are such that the positivity

of specific volumes, internal energies and entropy inequalities are taken for granted.
The construction of w is deduced directly from W. We have seen in section 2.4 that the Lagrangian (Σ)

and the Eulerian (σ) speeds of an admissible discontinuity are related by

σ = τlΣ + ul = τrΣ + ur,
15
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Figure 3: Simple Riemann solver for Eulerian gas dynamics.

where the superscripts l and r refer to the left and right sides of the discontinuity under consideration.
Mimicking the foregoing formula, we shall express the speeds of the Eulerian discontinuities, (S l, S ?, S r),
in terms of the speeds of the Lagrangian discontinuities (−

zl

ρ0
l

, 0,
zr

ρ0
r

). Replacing the mass flux swept by the

Lagrangian discontinuity, Σ, respectively by −zl, 0 and zr we obtain the expression of the Eulerian speeds

S l = −zlτl + ul = −zlτ
?
l + u?, (50a)

S ? = u?, (50b)
S r = zrτ

?
r + u? = zrτr + ur. (50c)

We observe that the wave speeds S l, S ? and S r are fully determined by means of the knowledge of the
intermediate states of the Lagrangian simple solver since by construction zl(τ?l − τl) − (u? − ul) = 0 and
zr(τ?r − τr) + u? − ur = 0 holds true, refer to (33a) and (34a). Finally, comparing (50a), (50b) and (50c), it
is clear that the the wave speeds ordering

S l ≤ S ? ≤ S r, (51)

holds true provided that the parameters zl, zr and the specific volumes τ?l , τ?r are strictly positive. This
is achieved when zl and zr are determined for instance by means of condition (42). Assuming that this

condition holds true, we define the intermediate mass density ρ?s =
1
τ?s

. Substituting it into (50a), (50b)

and (50c) allows us to express the Lagrangian mass fluxes (zl, 0, zr) in terms of the Eulerian wave speeds as
follows

zl = ρl(ul − S l) = ρ?l (u? − S l), (52a)
0 = ρ?l (u? − S ?) = ρ?r (u? − S ?), (52b)
zr = − ρ?r (u? − S r) = −ρr(ur − S r). (52c)

We conclude that the mass flux swept by the Lagrangian discontinuities has exactly the opposite sign to the
mass flux crossing the Eulerian discontinuities. This result has been already observed in section 2.4 wherein
we have derived the Eulerian Rankine-Hugoniot conditions from the Lagrangian ones, refer to (26).

We are now in position to derive the intermediate states and fluxes of the Eulerian simple solver from
the knowledge of the Lagrangian simple solver utilizing the expressions of the Lagrangian mass fluxes in
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terms of the Eulerian wave speeds. First, let us recall that the Lagrangian solver intermediate states and
fluxes are determined by means of the jump relations (31)

zl(U?
l − Ul) + F?

l − Fl = 0,
0(U?

r − U?
l ) + F?

r − F?
l = 0,

−zr(Ur − U?
r ) + Fr − F?

r = 0.

Here, Us = (τs, us, es)t, U?
s = (τ?s , u

?, e?s )t, Fs = (−us, ps, psus)t and F?
s = (−u?, p?, p?u?)t. The star

quantities are fully determined by the systems of equations (33) and (34) once the parameters (zl, zr) are
prescribed. Now, substituting the expressions of zl, 0 and zr given respectively by (52a), (52b) and (52c)
into the foregoing equations leads to

−S l(ρ?l U?
l − ρlUl) + ρ?l u?U?

l + F?
l − (ρlulUl + Fl) = 0, (53a)

−S ?(ρ?r U?
r − ρ

?
l U?

l ) + ρ?r u?U?
r + F?

r − (ρ?l u?U?
l + F?

l ) = 0, (53b)
−S r(ρrUr − ρ

?
r U?

r ) + ρrurUr + Fr − (ρ?r u?U?
r + F?

r ) = 0. (53c)

These vectorial equations might be interpreted as jump equations across the Eulerian discontinuities of
speeds (S l, S ?, S r). However, one readily observes that the first component of the 3 foregoing equations is
trivial. Thus, this first component cannot contribute to the definition of the intermediate states and fluxes of
the approximate Riemann solver. On the other hand, rearranging (52a), (52b) and (52c) we arrive at

− S l(ρ?l − ρl) + ρ?l u? − ρlul = 0,
− S ?(ρ?r − ρ

?
l ) + ρ?r u? − ρ?l u? = 0,

− S r(ρr − ρ
?
r ) + ρrur − ρ

?
r u? = 0.

This is nothing but the jump relations across the discontinuities of speeds (S l, S ?, S r) related to the Eulerian
mass conservation equation. Finally, gathering the second and the third components of system (53) with the
foregoing system yields

− S l(u?l − ul) + f?l − fl = 0, (54a)
− S ?(u?r − u?l ) + f?r − f?l = 0, (54b)
− S r(ur − u?r ) + fr − f?r = 0, (54c)

where on the one hand

us = (ρs, ρsus, ρses)t, fs = (ρsus, ρsu2
s + ps, ρsuses + psus)t,

and on the other hand

u?s = (ρ?s , ρ
?
s u?, ρ?s e?s )t, f?s = (ρ?s u?, ρ?s (u?)2 + p?, ρ?s u?e?s + p?u?)t, for s = l, r. (55)

The Eulerian intermediate states and fluxes are fully determined from the Lagrangian Riemann solver.
Moreover, the second and third components of the Eulerian intermediate states and fluxes might be formally
related to their Lagrangian counterparts by u?s = ρ?s U?

s and f?s = ρ?s u?U?
s + F?

s for s = l, r. Summing
equations (54a), (54b) (54c) leads to

fr − fl = S l(u?l − ul) + S ?(u?r − u?l ) + S r(ur − u?r ), (56)

which shows the consistency of the approximate Riemann solver w with the integral form of the Riemann
problem (48). Indeed, equation (56) is nothing but the integration of (48) over the space-time interval
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[−∆xl,∆xr]× [0,∆t] displayed in figure 3. The interface flux, f?, at
x
t

= 0 is expressed in terms of the wave
speeds as follows

f? =


fl if 0 < S l < S ? < S r,
f?l if S l < 0 < S ? < S r,
f?r if S l < S ? < 0 < S r,
fr if S l < S ? < S r < 0.

(57)

This expression can be rewritten under the compact form

f? =
1
2

( fl + fr) −
| S l |

2
(u?l − ul) −

| S ? |

2
(u?r − u?l ) −

| S r |

2
(ur − u?r ). (58)

The numerical dissipation is governed by the wave velocities S l, S ? and S r.

Remark 1 (Similarity with HLLC approximate Riemann solver). The present Eulerian approximate Rie-
mann solver is very similar to the famous HLLC approximate Riemann solver introduced by Toro and his
co-authors in the seminal work [60] and also presented in details in [57]. First, the structure of the ap-
proximate Riemann solver composed of 4 states separated by 3 waves is exactly the same. Second, the jump
relations (54) satisfied by the intermediate states and fluxes across each wave are also identical to those
satisfied by the states and fluxes of the HLLC approximate Riemann solver. Therefore, the structure of the
resulting interface flux (58) is the same than the one of the HLLC solver. On the other hand, our Eulerian
approximate Riemann solver has been entirely deduced from its Lagrangian counterpart utilizing the rela-
tionship (50) between Lagrangian and Eulerian wave speeds. This approach provides us a self-consistent
computation of the Eulerian wave speeds, which are ordered by construction. This also allows the trans-
fer of the properties (positivity preserving and entropy stability) of the Lagrangian approximate Riemann
solver to its Eulerian counterpart. Let us point out that the wave speeds estimate in the context of the HLLC
approximate Riemann solver has been and still remains an active topic of research, refer for instance to
[6, 59].

It remains to assess the consistency of the Eulerian approximate Riemann solver, w, with the integral
form of the Eulerian entropy inequality (15). First, we assume that the Lagrangian approximate Riemann
solver, W, is consistent with the integral form of the Lagrangian entropy inequality, namely (30) holds
true. This might be obtained prescribing parameters zl, zr to satisfy (47). Let us compute the entropy
production across each wave by transforming its Lagrangian expression into its Eulerian counterpart simply
by substituting the expressions of zl and zr in terms of S l and S r given by (52a) and (52c). For the leftgoing
wave we arrive at

zl(η?l − ηl) = ρ?l (u? − S l)η?l − ρl(ul − S l)ηl = −S l(ρ?l η
?
l − ρlηl) + ρ?l η

?
l u? − ρlηlul, (59)

whereas for the right-going wave we obtain

zr(η?r − ηr) = −ρ?r (u? − S r)η?r + ρr(ur − S r)ηr = −S r(ρrηr − ρ
?
r η

?
r ) + ρrηrur − ρ

?
r η

?
r u?. (60)

Summing these two equations leads to

zl(η?l − ηl) + zr(η?r − ηr) = −S l(ρ?l η
?
l − ρlηl) − S ?(ρ?r η

?
r − ρ

?
l η

?
l ) − S r(ρrηr − ρ

?
r η

?
r ) + ρrηrur − ρlηlul, (61)

since u? = S ? thanks to (52b). Finally, we claim that the Eulerian approximate Riemann solver is consistent
with the integral form of the Eulerian entropy inequality if and only if the Lagrangian approximate Riemann
solver is consistent with the integral form of the Lagrangian entropy inequality, and, there holds

− S l(ρ?l η
?
l − ρlηl) − S ?(ρ?r η

?
r − ρ

?
l η

?
l ) − S r(ρrηr − ρ

?
r η

?
r ) + ρrηrur − ρlηlul ≥ 0. (62)

This concludes the design of a Riemann solver in Eulerian framework derived from its Lagrangian
counter-part. Let us now design their associated Godunov numerical schemes.
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Figure 4: Lagrangian approximate Riemann solvers at cell interfaces.

4. Godunov-type Finite Volume scheme for one-dimensional Lagrangian gas dynamics

The aim of this section is to provide a first-order space and time Finite Volume discretization of the
one-dimensional gas dynamics equations written under Lagrangian formalism. The resulting numerical
method is a Godunov-type scheme since the updated cell-averaged value are computed by combining the
cell-interface approximate Riemann solvers that have been constructed in section 3.1.

4.1. Governing equations and notation

The one-dimensional Lagrangian gas dynamics equations read

ρ0 ∂U
∂t

+
∂F
∂X

= 0,

where U = (τ, u, e)t, F(U) = (−u, p, pu)t, e = ε + 1
2 u2 and ρ0(X) > 0 is the initial mass density. The set of

physically admissible states for this system of conservation laws writes

A =
{
U = (τ, u, e)t, τ > 0, ε > 0

}
. (63)

The computational domain Ω = [Xmin, Xmax] is partitioned into Nc non overlapping cells [Xi− 1
2
, Xi+ 1

2
], where

Xi+ 1
2

denotes the position of a generic node. The cell mass is constant and defined by mi =
∫ Xi+ 1

2
Xi− 1

2

ρ0(X) dX.

At time tn, we assume that the solution of the foregoing system of conservation laws is piecewise
constant over each cell and defined by the mass-averaged value

Un
i =

1
mi

∫ Xi+ 1
2

Xi− 1
2

ρ0(X)U(X, tn) dX. (64)

4.2. Godunov-type scheme

Let us compute the discrete solution of the system of conservation laws at time tn+1 = tn + ∆t in terms
of the piece-wise solution at time tn, where ∆t > 0 denotes the time step. This will be done in combining
the approximate Riemann solvers located at Xi− 1

2
and Xi+ 1

2
, refer to figure 4. The time step, ∆t, has been
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chosen sufficiently small to ensure that the rightgoing wave emanating from Xi− 1
2

does not interact with the
leftgoing wave emanating from Xi+ 1

2
. The updated mass-averaged value writes

miUn+1
i =

∫ Xi

Xi− 1
2

ρ0W
(Un

i−1,U
n
i ,

X − Xi− 1
2

∆t

 dX +

∫ Xi+ 1
2

Xi

ρ0W
Un

i ,U
n
i+1,

X − Xi+ 1
2

∆t

 dX, (65)

where W is the approximate Riemann solver defined by (28) and Xi = 1
2 (Xi− 1

2
+ Xi+ 1

2
). Performing the

computation of the integrals, we arrive at the Godunov-type Finite Volume scheme for Lagrangrian gas
dynamics

miUn+1
i = zr,i− 1

2
∆tU?

r,i− 1
2

+ [mi − (zr,i− 1
2

+ zl,i+ 1
2
)∆t]Un

i + zl,i+ 1
2
∆tU?

l,i+ 1
2
. (66)

It is worth noting that from the above equation one can recover the classical Finite Volume written in flux
form. To this end, let us rearrange (66) as follows

miUn+1
i = miUn

i − zr,i− 1
2
∆t

(
Un

i − U?
r,i− 1

2

)
+ zl,i+ 1

2
∆t

(
U?

l,i+ 1
2
− Un

i

)
. (67)

Now, applying the jump relations (31c) and (31a) respectively at Xi− 1
2

and Xi+ 1
2

leads to

−zr,i− 1
2

(
Un

i − U?
r,i− 1

2

)
= F?

i− 1
2
− Fn

i , zl,i+ 1
2

(
U?

l,i+ 1
2
− Un

i

)
= −F?

i+ 1
2

+ Fn
i ,

which allows us to introduce the numerical fluxes at cell interfaces F?
i− 1

2
and F?

i+ 1
2
.

Finally gathering the foregoing results we arrive at the flux form Finite Volume scheme

Un+1
i = Un

i −
∆t
mi

(
F?

i+ 1
2
− F?

i− 1
2

)
. (68)

The cell interface flux is uniquely defined by

F?
i+ 1

2
=


−u?

i+ 1
2

p?
i+ 1

2

p?
i+ 1

2
u?

i+ 1
2

 . (69)

Here, u?
i+ 1

2
and p?

i+ 1
2

are obtained by solving (33) and (34) in terms of the parameters (zl, zr) at Xi+ 1
2
.

4.3. Time step monitoring

Dividing (66) by mi yields

Un+1
i =

zr,i− 1
2
∆t

mi
U?

r,i− 1
2

+

1 − (zr,i− 1
2

+ zl,i+ 1
2
)∆t

mi

 Un
i +

zl,i+ 1
2
∆t

mi
U?

l,i+ 1
2
. (70)

It is clear that Un+1
i is a convex combination of (U?

r,i− 1
2
,Un

i ,U
?
l,i+ 1

2
) provided that the coefficients of the com-

bination are non negative. This implies the following time step monitoring to ensure the convex combination
property

∆t ≤
mi

zr,i− 1
2

+ zl,i+ 1
2

≡ ∆ti. (71)

In the case of the Godunov acoustic solver the parameters (zl, zr) are equal to the cell acoustic impedance,
i.e., zr,i− 1

2
= zl,i+ 1

2
= ρn

i an
i . Using mass conservation the cell mass writes mi = ρn

i ∆xn
i , where ∆xn

i = xn
i+ 1

2
−xn

i− 1
2
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denotes the Eulerian cell width, and the above time step condition boils down to the well known CFL-like
condition

∆t ≤
∆xn

i

2an
i
. (72)

Here, the Eulerian position of the cell interfaces are determined through the use of the discrete trajectory
equation, i.e., xn+1

i+ 1
2

= xn
i+ 1

2
+ ∆tu?

i+ 1
2
.

In practice we compute the time-step as the minimum over all cells of the values ∆ti supplemented with
a security factor 0 < CFL ≤ 1:

∆t = CFL min
i

 mi

zr,i− 1
2

+ zl,i+ 1
2

 . (73)

4.4. Positivity of specific volume and internal energy

If the time step condition (71) is taken for granted then through the Finite Volume scheme (70) τn+1
i , un+1

i
and en+1

i are respectively convex combinations of (τ?
r,i− 1

2
, τn

i , τ
?
l,i+ 1

2
), (u?

r,i− 1
2
, un

i , u
?
l,i+ 1

2
) and (e?

r,i− 1
2
, en

i , e
?
l,i+ 1

2
).

First, let us consider the case of the specific volume, assuming that τn
i > 0. This means that the

positivity of τn+1
i holds true provided that τ?

r,i− 1
2
> 0 and τ?

l,i+ 1
2
> 0. These latter conditions are satisfied

when the parameters (zl, zr) are determined according to the explicit formulas derived in section 3.2.2.
Now, let us investigate the positivity of εn+1

i = en+1
i − 1

2 (un+1
i )2. Scheme (70) provides

un+1
i =αr,i− 1

2
u?

i− 1
2

+ αiun
i + αl,i+ 1

2
u?

i+ 1
2
,

en+1
i =αr,i− 1

2
e?

r,i− 1
2

+ αien
i + αl,i+ 1

2
e?

l,i+ 1
2
,

where αr,i− 1
2

=
zr,i− 1

2
∆t

mi
, αl,i+ 1

2
=

zl,i+ 1
2

∆t

mi
and αi = 1 − (αr,i− 1

2
+ αl,i+ 1

2
). Convexity of function x 7−→ x2 implies

1
2

(
un+1

i

)2
≤

1
2
αr,i− 1

2

(
u?

i− 1
2

)2
+

1
2
αi

(
un

i
)2

+
1
2
αl,i+ 1

2

(
u?

i+ 1
2

)2
.

This shows the loss of kinetic energy induced by the averaging process of the cell velocity. This is probably
the main source of numerical dissipation inherent to the Godunov scheme. Subtracting the kinetic energy
to the total energy at time tn+1 leads to the updated internal energy which therefore satisfies

εn+1
i ≥ αr,i− 1

2
ε?

r,i− 1
2

+ αiε
n
i + αl,i+ 1

2
ε?

l,i+ 1
2
.

This latter equation shows that the kinetic energy is converted into internal energy via the averaging pro-
cedure of the Godunov scheme. Finally, if the time step condition (71) holds true and if we assume that
εn

i > 0 then εn+1
i > 0 provided that ε?

r,i− 1
2
> 0 and ε?

l,i+ 1
2
> 0. These latter conditions are satisfied when the

parameters (zl, zr) are determined according to the explicit formulas derived in section 3.2.1.

4.5. Entropy inequality

The cell-averaged entropy [Xi− 1
2
, Xi+ 1

2
] at time t is given by

ηi(t) =
1
mi

∫ Xi+ 1
2

Xi− 1
2

ρ0(X)η (U(X, t)) dX. (74)

Knowing that U(X, t) is piecewise constant with respect to X, leads to write ηn
i = η(Un

i ) and ηn+1
i = η

(
Un+1

i

)
,

where Un+1
i is computed from the Godunov-type scheme (70). Then, under the time step condition (71), the
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updated cell-averaged entropy satisfies

ηn+1
i = η

(
αr,i− 1

2
U?

r,i− 1
2

+ αiUn
i + αl,i+ 1

2
U?

l,i+ 1
2

)
,

≥ αr,i− 1
2
η
(
U?

r,i− 1
2

)
+ αiη

(
Un

i
)

+ αl,i+ 1
2
η
(
U?

l,i+ 1
2

)
, ←− thanks to η concavity

≥ αr,i− 1
2
η?

r,i− 1
2

+ αiη
n
i + αl,i+ 1

2
η?

l,i+ 1
2
.

Now, observing that αr,i− 1
2

+ αi + αl,i+ 1
2

= 1 we arrive at the inequality

ηn+1
i − ηn

i ≥ αr,i− 1
2
(η?

r,i− 1
2
− ηn

i ) + αl,i+ 1
2
(η?

l,i+ 1
2
− ηn

i ). (75)

This shows that the cell entropy increase with respect to time is controlled by the entropy increase across
the right-sided and left-sided waves. Finally, the Godunov-type scheme satisfies the entropy inequality

ηn+1
i − ηn

i ≥ 0, (76)

provided that the Riemann approximate solver is entropic, that is η?
r,i− 1

2
≥ ηn

i and η?
l,i+ 1

2
≥ ηn

i . These latter
conditions are taken for granted provided that the parameters (zl, zr) satisfy the constraint (47).

4.6. 1D Lagrangian numerical validation
Here, we present several classical test cases to assess the properties of the 1D Lagrangian scheme based

on the approximate Riemann solver developed in section 3.1. The main purpose is to observe that the
numerical method is stable and preserves the positivity of the specific volume and energy. The CFLis set to
0.9 otherwise noticed and used to run the classical Sod shock tube problem, an extreme double rarefaction
problem and the Le Blanc shock tube. The initial conditions for these test cases are gathered in table 1.
First of all, we perform a comparison between the three available methods for the determination of (zl, zr).

Name Left state Right state Domain Discont. Final time EOS
(ρ, u, p)l (ρ, u, p)r Ω x0 tfinal γ

Sod (1, 0, 1) (0.125, 0, 0.1) [0, 1] 0.5 0.2 7/5
Extreme Rarefact. (1,−3.5, 0.4) (1, 3.5, 0.4) [0, 2] 1 0.15 7/5

Le Blanc (1, 0, 2/3 × 10−1) (10−3, 0, 2/3 × 10−10) [0, 9] 3 6.0 5/3
Name Left state Middle state Right state Domain Discont. Final time EOS

(ρ, u, p)l (ρ, u, p)m (ρ, u, p)r Ω x0, x1 tfinal γ

Woodward-Collela (1, 0, 1000) (1, 0, 0.01) (1, 0, 100) [0, 1] x0 = 0.5 0.038 7/5
x1 = 0.9

Table 1: Initial conditions for the 1D test cases, recall ρ =
1
τ

.

First, we run a test case with simple waves - the Sod shock tube and then, a test case with interacting waves
- the Woodward-Collela blast wave test.

Sod shock tube. We run the planar Sod shock tube problem to assess the ability of the methods to capture
one-dimensional simple waves. The exact solution for this one-dimensional Riemann problem can be de-
rived using for instance [57]. On the left of figure 5 we present the results for the density variable on a
mesh refinement situation (N = 100 to 400 cells) and on the right the comparison of numerical density with
different algorithms to determine the impedances are employed. The numerical solutions are compared to
the exact solution (black line). Extremely few differences are observed for all three methods. This very
same behavior is almost systematically observed for all test cases.
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Figure 5: Sod shock tube problem — Numerical density of the 1st order Lagrangian scheme — Left : Mesh convergence from N = 100
to 400 cells of the density variable over the full domain — Right : Comparison of different methods to determine the impedances zl, zr:
Method 1 (magenta diamond), Method 2 (green square) and Method 3 (blue circle).

Woodward-Collela. The Woodward-Collela blastwave test [66] is a double shock tube case that simulates
the interaction of simple waves. Two shock waves and two contact discontinuities develop and propagate
towards the wall boundary conditions and reflect from them. These initial simple waves further interact
creating a more complex flow pattern. The reference solution is obtained by a Lagrangian numerical scheme
for 5000 cells (black line). In figure 6 we present the results for the density variable on a mesh refinement
situation (N = 100 to 400 cells) using the first method to compute zl and zr. We then present the comparison
of the numerical density obtained by different algorithms to determine the impedances in figure 7 on N =

200 cells. Figure 8 (a) to (c) shows a grayscale map of the normalized right impedance zr/ρrar for method
1, 2 and 3 respectively, illustrating the evolution of the right impedance of each cell at each time step.
We observe that for all methods, the right impedance appears to match the trajectory of the right moving
shock and its subsequent interactions. Method 3 in particular show more patterns and this is due to the
construction of this method that is more sensitive. Because the differences in the numerical solution remain
small, we select Method 1 for the rest of this work.

Le Blanc shock tube. This test is an extreme version of a shock tube (density jump is 103, pressure jump
is 109) generating violent waves, which, however are still simple waves that can be exactly computed [57].
The initial conditions are recalled in table 1. The left and middle images in figure 9 present the results for
the density and internal energy variables respectively, on a mesh refinement situation (N = 900 to 3600
cells) versus the exact solution (black line). The mesh refined solution seems to converge towards the exact
solution with classical low convergence speed as is expected for this several Riemann problem. On the
right is a grayscale map of the normalized right impedance zr/ρrar, illustrating the evolution of the right
impedance for each cell at each time step. Once again we observe that the right impedance matches the
trajectory of the right moving shock as expected for this problem involving only simple waves and only one
shock wave.

Extreme double rarefaction. This problem is inspired from the 123 problem [57]. The latter is one of
benchmark tests presenting near vacuum state as it involves two rarefaction fans moving in opposite di-
rections therefore emptying the central zone where a trivial steady contact discontinuity remains. Here
we consider an extreme version where the initial condition on a computational domain Ω = [0, 2] is in
table 1. Outflow boundary conditions are considered. In this extreme configuration with γ = 7/5, the res-
olution of the Riemann leads to values of density ρ∗ ' 1.124 × 10−6 and pressure p∗ ' 1.875 × 10−9 and
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Figure 6: Woodward-Collela blastwave problem — 1st order Lagrangian scheme using the first method to determine the impedances
— Left : Mesh convergence from N = 100 to 400 cells of the numerical density over the full domain – Right : zoom on the central
area
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Figure 7: Woodward-Collela blastwave problem — 1st order Lagrangian scheme — Mesh N = 200 — Left : Comparison of different
methods to determine the impedances z over the full domain such as Method 1 represented in magenta diamond, Method 2 represented
in green square and Method 3 represented in blue circle — Right : zoom on the central area.
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Figure 8: Woodward-Collela blastwave problem — 1st order Lagrangian scheme — Evolution of the normalized right impedance zr
with each time step: (a) Method 1, (b) Method 2 and (c) Method 3.
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Figure 9: Le Blanc shock tube problem — 1st order Lagrangian numerical scheme with Method 1 (to determine the impedance z)
for N = 900, 1800 and 3600 cells — Left: Mesh convergence of numerical density — Middle: Mesh convergence for the numerical
specific internal energy — Right: Evolution of the normalized right impedances zr for each time step.
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ε∗ ' 1.192 × 10−3, see figure 10 at final time. In figure 10 we plot the results for successively refined grids.
The numerical solutions are compared to the exact solution (black line). The spurious peak in the internal
energy profile is a classical flaw of any numerical schemes due to entropy dissipation. Nevertheless we do
not observe any lack of positivity for the numerical scheme, although the smallest numerical densities reach
8.65 × 10−3 for 800 cells. Moreover the numerical solution seems to converge towards the exact one.
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Figure 10: Extreme double rarefaction problem — 1st order Lagrangian scheme — Density (left), velocity (middle) and specific
internal energy (right) — Mesh convergence from N = 100 to 400 cells.
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Figure 11: Eulerian approximate Riemann solvers at cell interfaces.

5. Godunov-type Finite Volume scheme for one-dimensional Eulerian gas dynamics

The aim of this section is to provide a first-order space and time Finite Volume discretization of the
one-dimensional gas dynamics equations written under Eulerian formalism as a derived version from the
Lagrangian one. The resulting numerical method is a Godunov-type scheme since the updated cell-averaged
value are computed by combining the cell-interface approximate Riemann solvers that have been con-
structed in section 3.3.

5.1. Governing equation and notation

The one-dimensional Eulerian gas dynamics equations read

∂u
∂t

+
∂ f
∂x

= 0,

where u = (ρ, ρu, ρe)t, f (u) = (ρu, ρu2 + p, ρeu + pu)t, where e = ε + 1
2 u2. The set of physically admissible

states for this system of conservation laws writes

AE =
{
u = (ρ, ρu, ρe)t, ρ > 0, ε > 0

}
. (77)

The computational domain ω = [xmin, xmax] is partitioned into nc non overlapping cells [xi− 1
2
, xi+ 1

2
], where

xi+ 1
2

denotes the fixed position of a generic node. The cell volume is ∆xi = xi+ 1
2
− xi− 1

2
. At time tn, we

assume that the solution of the foregoing system of conservation laws is piecewise constant over each cell
and defined by the cell-averaged value

un
i =

1
∆xi

∫ xi+ 1
2

xi− 1
2

u(x, tn) dx. (78)

5.2. Godunov-type scheme

We define the discrete solution of the system of conservation laws at time tn+1 = tn + ∆t in terms of the
piecewise solution at time tn combining the approximate Riemann solvers located at xi− 1

2
and xi+ 1

2
, refer to

figure 11. The time step, ∆t, has been chosen sufficiently small to ensure that the rightgoing wave emanating
from xi− 1

2
does not interact with the leftgoing one emanating from xi+ 1

2
. Then, the updated cell-averaged
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value writes

∆xi un+1
i =

∫ xi

xi− 1
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i ,u
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)
dx. (79)

The first term at the right-hand side corresponds to the integral of the approximate Riemann solver at
xi− 1

2
over [xi− 1

2
, xi] where xi = 1

2 (xi− 1
2

+ xi+ 1
2
), whereas the second term corresponds to the integral of the

approximate Riemann solver at xi+ 1
2

over [xi, xi+ 1
2
]. After some algebra we arrive at the explicit expressions

of these integrals∫ xi
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Here, S l,i+ 1
2
, S ?

i+ 1
2

and S r,i+ 1
2

are the waves speeds of the Eulerian approximate Riemann solver at xi+ 1
2
. These

Eulerian speeds are computed from the underlying Lagrangian approximate Riemann solver according to
respectively (50a), (50b) and (50c). In addition, x+ = 1

2 (| x | +x) denotes the positive part of the real x,
whereas x− = 1

2 (| x | −x) denotes its negative part. These are non negative functions of x respectively
increasing and decreasing. We observe that the positive part (resp. negative part) of the waves emanating
from xi− 1

2
(resp. xi+ 1

2
) contributes to update the solution at time tn+1. Summing the foregoing results and

collecting the terms in factor of the intermediate states, we finally obtain

un+1
i =

∆t
∆xi

S +

l,i− 1
2
un

i−1 +
∆t
∆xi

(S ?,+

i− 1
2
− S +

l,i− 1
2
)u?

l,i− 1
2

+
∆t
∆xi

(S +

r,i− 1
2
− S ?,+

i− 1
2
)u?

r,i− 1
2

(80)

+
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The underlying approximate Riemann solver, w, being consistent with the integral form of the system of
conservation laws, the foregoing numerical scheme is of Godunov-type and can be equivalently written
under the flux form

∆xi (un+1
i − un

i ) + ∆t ( f?
i+ 1

2
− f?

i− 1
2
) = 0, (81)

where f?
i+ 1

2
is the numerical flux at interface xi+ 1

2
resulting from the Eulerian approximate Riemann solver.

According to (58) the expression of the interface flux, with an obvious notation adaptation, reads
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5.3. Time step monitoring
We shall compute the time step, ∆t, to ensure that the updated cell-averaged value, un+1

i , is a convex
combination of un

i−1, u?
l,i− 1

2
, u?

r,i− 1
2
, un

i , u?
l,i+ 1

2
, u?

r,i+ 1
2

and un
i+1. This amounts to investigate the positivity of the

coefficients of the linear combination present at the right-hand side of (80). Firstly, the positive part and the
negative part of the wave speeds are non negative. Secondly, the wave speeds of the approximate Riemann
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solvers at xi− 1
2

and xi+ 1
2

are ordered according to S l,i± 1
2
≤ S ?

i± 1
2
≤ S r,i± 1

2
. Bearing this in mind and recalling

that x 7→ x+ (resp. x 7→ x−) is an increasing (resp. decreasing) function yields
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Finally, all the coefficients at the right-hand side of (80) are unconditionally positive except the one in factor
of un

i . This latter coefficient is positive if the time step ∆t satisfies
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. (83)

Therefore un+1
i is a convex combination of un

i and the intermediate states of the approximate Riemann
solvers located at xi± 1

2
provided that ∆t satisfies condition (83), which can be viewed as a CFL-like condi-

tion. Developing the expression of the Eulerian wave speeds in terms of the underlying Lagrangian mass
fluxes, i.e., S r,i− 1
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Employing this lower bound leads to replace (83) by a more explicit condition

∆t ≤
∆xi

| un
i | +
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2

+ zl,i+ 1
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. (84)

Likewise for the Lagrangian case the time-step is practically computed as

∆t = CFL
∆xi

maxi

(
| un

i | +
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2
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2

ρn
i

) . (85)

In the following we focus on the positivity and entropy issues.

5.4. Positivity of mass density and specific internal energy

The Finite Volume scheme (81) for Eulerian gas dynamics has been constructed through the use of the
Eulerian approximate Riemann solver described in section 3.3, which inherits all the properties from its
Lagrangian counterpart. More precisely, provided that the parameters (zl, zr) of the Lagrangian Riemann
solver satisfies condition (42) the positivity of specific volume and specific internal energy is ensured.
Therefore, the waves speeds of the Riemann solvers are ordered according to (51) and the positivity of mass
density and specific energy for the intermediate states is also ensured. Under the time step condition (83),
un+1

i is a convex combination of un
i and the intermediate states of the approximate Riemann solvers located

at the cell interfaces, refer to (80). Therefore, if ρn
i > 0 and εn

i > 0 then ρn+1
i > 0 and εn+1

i > 0. This shows
that Finite Volume scheme (81) preserves the positivity of mass density and specific internal energy under
the time step condition (83).

5.5. Entropy inequality

In this paragraph, we aim at constructing the discrete entropy inequality satisfied by the Godunov-type
Finite Volume scheme (81) following [11]. We shall start by recalling the expression of the updated cell-
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Let us recall that under time step condition (83), un+1
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i+1. The strict concavity of u 7→ (ρη)(u) with respect to u, refer to [30], and Jensen’s

inequality yield the following inequality for the cell-averaged entropy time-increment
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It remains to exhibit a lower bound to the right-hand side of the foregoing inequality. This is achieved
invoking the consistency of the underlying Eulerian approximate Riemann solver with the integral form of
the Eulerian entropy inequality (15). Namely, (62) holds true
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?
l η

?
l ) − S r(ρrηr − ρ

?
r η

?
r ) + ρrηrur − ρlηlul ≥ 0.

Substituting the foregoing inequality at the right-hand side of (86) for the terms located at xi− 1
2

(resp. xi+ 1
2
)

and developing the expressions of the negative and the positive parts of the wave speeds, we finally obtain
the cell entropy inequality
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where the entropy flux, ρηu, at xi− 1
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writes
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This concludes the design of the Eulerian scheme. The next section focuses on its numerical validation.

5.6. 1D Eulerian numerical validation

In this section, we test the first-order Finite Volume scheme which has been previously described for
Eulerian gas dynamics. Here, our main purpose is to ensure that this Eulerian numerical method preserves
the theoretical properties and behaves accordingly. We fix the CFL to 0.9 and the initial conditions of the
test cases are all gathered in table 1.
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Figure 12: Modified Sod problem — Eulerian numerical scheme — Density, velocity, and specific internal energy for the exact
solution (black line) vs the numerical results (symbols) with mesh convergence such as N = 100 cells (red cross), 200 (blue circle)
and 400 (green square).

Modified Sod shock tube. The modified Sod test simulates the impact of a dense fluid onto a light one at
rest. The simulation is ran on the interval of [0, 1] with the interface located at x = 0.3. The initial set up
reads ρl = 1, ul = 0.75, pl = 1, ρr = 0.125, ur = 0, pr = 0.1. A piston boundary condition is imposed on the
left with u? = ul = 0.75, while u? = 0 is imposed on the right. This test case ensures that the sonic glitch in
the rarefaction wave is absent. The numerical results at final time tfinal = 0.2 with N = 100 to 400 cells are
presented in figure 12. The numerical solution seems to converge towards the exact one. More important
we do not observe any sonic glitch in the rarefaction wave, see [57].

Collela-Woodward blastwave. In figure 13, we present the numerical density obtained for N = 800 to 6400
cells, with a zoom of the central area. The quality of the solution improves with the mesh refinement. Then
we present on the middle panel the time-step evolution which clearly adapts to the numerical solution. On
the right panel, the plot of the normalized right impedance as a function of time allows us again to track the
main shock waves and their interactions.
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Figure 13: Woodward-Collela blastwave problem — Eulerian numerical scheme — Density for the reference solution (black line)
vs the numerical results — Left: Mesh convergence of the density variable on N = 800 cells (red cross), 1600 (blue circle), 3200
(green square) and N = 6400 cells (magenta diamond) — Middle: Time step evolution — Right: Evolution of the normalized right
impedance zr with each time step with N = 1600.
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Le Blanc shock tube. We simulate the Le Blanc shock tube with the Eulerian scheme. Figure 14 (left panel)
shows the numerical density plotted in the log scale for the Le Blanc shock tube problem for N = 900, 1600
and 3200 cells. The panel in the middle presents the time-step evolution showing that the main adaptation
is related to the separation of the simple waves Then the evolution of the normalized right impedance that
traces the path of the right moving shock is presented on the right panel. Again beause only one single
shock is present in this problem, then only one curves can be observed.
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Figure 14: Le Blanc shock tube problem — Eulerian numerical scheme — Left : Density plotted on the log scale with mesh conver-
gence on N = 900 (red cross), N = 1800 (blue circle) and N = 3600 (green squares) cells — Middle: Time step evolution — Right:
Evolution of the normalized right impedance zr with each time step with N = 1800.

Extreme double rarefaction. We present the results for the extreme double rarefaction problem in figure 15.
No positivity issue is encountered and the minimal density is about ρi = 1.48 × 10−3 for N = 800 cells
(ρi = 2.43 × 10−3 for 400 cells and ρi = 9.09 × 10−3 for 100 cells). The mesh convergence results for the
density, velocity and specific internal energy show that the numerical scheme improves the quality of the
numerical solution when the mesh size decreases.
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Figure 15: Extreme 123 problem — Eulerian numerical scheme — Density, velocity, and specific internal energy for the exact
solution (black line) vs the numerical results (symbols) — Top panels: numerical results for N = 100 cells — Bottom panels: mesh
convergence, N = 100 cells (red cross), 200 (blue circle) and 400 (green square).

Test case suite of Toro . In his book [57] Toro has gathered some now-classical test cases. All tests are
simulated on domain Ω = [0, 1] with γ = 7/5, a CFL set to 0.9 and the number of cells is 100. The initial
configurations are recalled in table 2 where the discontinuity is located at x0 and the final time is set to tfinal.
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We refer the readers to [57] for the phenomenological description of the test cases. Remark that the test
labeled 1 corresponds to modified Sod test case that we have already presented. The results are gathered
in figure 16 for tests 2 to 5 for the current Eulerian scheme. We present the density, velocity and internal
energy variables against the exact solution. The present numerical results are perfectly consistent with what
can be obtained by a first-order accurate Eulerian Finite Volume scheme.
Next in figure 17 we present the numerical results obtained by the current scheme and the classical HLL
one on tests 6 and 7, which correspond respectively to a stationnary contact wave and a moving contact
wave. The current numerical scheme is able to exactly resolve a stationary contact by construction (left
panel), and can capture the moving contact discontinuity but with some numerical dissipation. Notice that
the HLL scheme has no embedded mechanism to capture such stationary contact, while the family of HLLC
schemes has, likewise for our approach.

Label Left state Right state Discont. Final time
(ρ, u, p)l (ρ, u, p)r x0 tfinal

2 (1,−2.0, 0.4) (1, 2, 0.4) 0.5 0.15
3 (1, 0, 1000) (1, 0, 0.01) 0.5 0.012
4 (5.99924, 19.5975, 460.894) (5.99242,−6.19633, 46.0950) 0.4 0.035
5 (1,−19.59745, 1000) (1,−19.59745, 0.01) 0.8 0.012
6 (1.4, 0, 1) (1, 0, 1) 0.5 2.0
7 (1.4, 0.1, 1) (1, 0.1, 1) 0.5 2.0

Table 2: Initial conditions for the 1D test cases of Toro from [57].

We would like to emphasize that the Lagrangian scheme naturally adapts its mesh to the flow: some
smaller and compressed cells are encountered after a shock wave and expanded ones after a rarefaction
wave. Moreover moving contact discontinuities are exactly preserved. This however comes with the draw-
back of entropy deposition even in rarefaction waves. On the contrary, an Eulerian scheme considers a
fixed mesh, hence ensuring a better accuracy in rarefaction waves, but less accurate shocks and diffused
moving contact discontinuities. However, the extension to multi-dimensions and high-orders of accuracy is
somewhat simpler with Eulerian schemes since in this formalism the mesh is not moving.

This set of test cases have validated the first order Eulerian FV scheme and its theoretical behaviors are
numerically reproduced or observed. The next step of this work consists in using this scheme as a so-called
’parachute’ scheme in an a posteriori MOOD limited high-order scheme.
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Figure 16: Test 2 to 5 of Toro (top to bottom) — Eulerian numerical scheme N = 100 cells, CFL = 0.9 — Density, velocity, and
specific internal energy (left to right) for the exact solution (black line) vs the numerical results (symbols).
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Figure 17: Test 6 and 7 of Toro (left to right) — Eulerian numerical schemes N = 100 cells, CFL = 0.9 — Density for the current
scheme (red crosses) against the classical HLL scheme (blue bullets) and the exact solution (black line).
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6. Extension to high order of accuracy

In this section we present an extension of the previous first-order Eulerian scheme into a high-order
accurate space/time scheme. Time discretization proceeds via classical Strong Stability preserving Runge-
Kutta (SSPRK) scheme [34, 35]. The space discretization relies on classical polynomial reconstruction with
not-so-classical a posteriori MOOD loop limiting procedure, see [14].
The MOOD paradigm for FV schemes is built upon a try-and-fail concept. Starting from data, (un

i )1≤i≤N

at tn a high-order scheme produces a ’candidate’ solution (u∗,n+1
i )1≤i≤N at tn+1. This candidate solution is

tested against some ’detection’ criteria which determine if the computed cell value at tn+1 is physically
and numerically valid or not. In the case of validity the cell is accepted, otherwise the cell is flagged as
troubled/bad and sent back to tn for re-computation. The re-computation is performed using a lower order
scheme from a ’cascade’ of schemes ordered from the more accurate to the more robust one. The latest
scheme of this cascade is called the ’parachute’ and must always produce a valid solution according to the
detection criteria. This parachute scheme must be extremely robust and provably adapted to the detection
criteria. In the previous sections we have designed such a first-order Eulerian scheme with good properties:
conservation, robustness, positivity preservation under explicit CFL, entropy inequality, etc. The entire
iterative procedure is called a MOOD loop and always converges to an acceptable numerical solution for
which some cells have been updated with a high order scheme, while others with the parachute.
Figure 18 shows an illustration to build a high-order numerical scheme with an a posteriori MOOD loop.

Several works using an a posteriori MOOD loop in different numerical contexts can be found for La-
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Figure 18: Sketch of the high order numerical scheme based on polynomial reconstructions (blue) and a posteriori MOOD loop
(green) embracing the general scheme (black).

grangian, ALE, Discontinuous Galerkin limiter, Smoother-Particle-Hydrodynamics, Adaptative Mesh Re-
finement, WENO schemes, slope limiter, etc. [47, 63, 7, 8, 67, 18, 44, 24, 43], and, physical contexts
like Euler or Navier-Stokes equations, turbulence simulation, shallow-water equations, astrophysics, MHD,
Baer-Nunziato multi-phase model, etc. [41, 15, 67, 23, 42] .

6.1. High-order space discretization

Let us denote by o = d + 1 > 0 the target order of accuracy fixed by the user. At discrete time tn

the polynomial reconstruction operator R in cell Ωi is the operator which given a large enough set of 2Ki

neighbor mean values on stencil Sd
i = {ui±k, k = 1, . . . ,Ki} produces the polynomial ũi ∈ Pd(Ω). We skip

the time exponent in this section as no confusion can occur. This polynomial has a degree d ≥ 0 and is such
that its mean value exactly matches ui and best fits the neighbor mean values ui±k, that is

R :
(
x ∈ Ωi,ui, d,Sd

i

)
−→ ũi(x). (89)
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Cell indexes Stencil size Linear system size
Degree d i − 3 i − 2 i − 1 i i + 1 i + 2 i + 3 2Ki = |Sd

i | (2Ki) × d
0 – 0 —
1 X – X 2 2 × 1
2 X X – X X 4 4 × 2
3 X X – X X 4 4 × 3
4 X X X – X X X 6 6 × 4
5 X X X – X X X 6 6 × 5

Table 3: Centered stencils Sd
i used for the polynomial reconstructions of degree d, their size and the linear system size associated to

the reconstruction operator.

ũi is expressed under a Taylor basis as ũi(x) = ui +

d∑
m=1

ri,mψi,m(x) where the unknowns are the polynomial

coefficients ri,m and the polynomial basis functions {ψi,m}m=1,...,d are such that for all m: ψi,m(x) = (x− xi)m −
1

∆xi

∫
Ωi

(x − xi)m dx, where xi =
1
|Ωi|

∫
Ωi

xdx is the cell centroid. The polynomial coefficients are then

optimized in the least-squares sense by the minimization of the cost function

J
(
{ri,m}m=1,...,d

)
=

Ki∑
k=1

∣∣∣∣∣∣ ui±k −
1

∆xi±k

∫
Ωi±k

ũd
i (x) dx

∣∣∣∣∣∣2 , (90)

which amounts to solve an over-determined linear system if the size of the stencil Sd
i is such that Ki > d,

and usually we take Ki ' 1.5d. The size of the linear system is (2Ki) × d. The reconstruction operator is
accurate at order (d + 1) for smooth enough solution. For the sake of simplicity the stencils Sd

i are always
the centered ones and adapt their width as d changes, see table 3. In this work the primitive variables
are reconstructed. Notice that conservative or characteristics variables could also be considered leading to
slightly more or less oscillatory results. The reconstructed values are used in substitution to the mean values
within the Riemann solvers as

ul,i−1/2 ≡ ũi−1(xi−1/2), ur,i−1/2 ≡ ũi(xi+1/2), ul,i+1/2 ≡ ũi(xi+1/2), ur,i+1/2 ≡ ũi+1(xi+1/2). (91)

Also remark that the reconstruction operates at time tn, and, once a maximal polynomial degree is set at
d ≥ 0, then at maximum (d + 1) reconstructions are possible for degrees 0 ≤ k ≤ d. Obviously for d = 0
the reconstruction is trivially equal to the cell mean value.

6.2. a posteriori high-order limiting: detection, parachute scheme and MOOD loop
As is well known, the polynomial reconstruction operator suffers from the Runge phenomena in the

case of non-smooth enough solution, leading to oscillatory polynomials ũi as soon as d ≥ 1. In classical
second-order FV schemes (d = 1) a so-called slope (or flux) limiting procedure is supplemented to avoid
those spurious oscillations. Unfortunately, there exists no agreement on how to limit higher order polyno-
mial reconstructions. In this work we rely on the a posteriori Multi-dimensional Optimal Order Detection
(MOOD) algorithm [14]. For this paradigm three entities are needed:

(i) a list of detection criteria D to assess the validity of a numerical solution. These criteria must
ensure the physical admissibility of the numerical solution (i.e the positivity). Once the physical
admissibility is assured then some numerical acceptability properties may be required. Often an
essentially-non-oscillatory (ENO) behavior, and, possibly the computer representation validity (i.e
no NaN) are enforced. Bad/troubled cells are gathered into set B.

(ii) a parachute scheme which must be a genuinely robust scheme producing a numerical solution fulfill-
ing the detection criteriaD. Here we consider the first order Eulerian scheme developed in this work.
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Indeed it gathers several useful properties: mathematical firmly based grounds, Lagrangian↔Eulerian
mapping, demonstrated ordered wave speeds, positivity under explicit CFL condition, entropy in-
equality and validation of its numerical behaviors on classical test cases (carbuncle-free, robustness,
efficiency);

(iii) a cascade of schemes ranked from the more accurate and prone to spurious instability to the more
robust one, that is the parachute scheme. This cascade may be parametrized by the polynomial
degree d, for instance we can consider the following cascade: d = 4→ 3→ 2→ 1→ 0;

Detection criteria. The physical admissibility criteria P are firmly based on the system of PDEs solved,
they are obviously the positivity of the density and internal energy for the Eulerian scheme, hence

P : ρ∗i > 0, and ε∗i > 0 (92)

Next, the numerical criteria ensuring the ENO behavior are more subjective and somewhat attached to the
developer preferences. Here we rely on a relaxed discrete maximum principle (RDMP) but applied to the
output data of the nodal solver. Indeed the nodal solver is (one of) the constitutive brick, the locality of
which is restricted to the neighbor cells. Moreover the outcome of the nodal solver are the nodal velocity
and sub-pressures, which further serve to determine the impedances, and, ultimately the star states and the
numerical fluxes to update the state vector. A candidate variable q∗p fulfills the RDMP if

N : −δqp + min
k∈C(p)

(
qn

k

)
≤ q∗p ≤ max

k∈C(p)

(
qn

k

)
+ δqp, (93)

where C(p) is the neighborhood associated to point p, δqp = max
(
10−4, 10−3(Mp − mp)

)
, and, Mp and mp

are the maximal and minimal local values of q mp = mink∈C(p)

(
qn

k

)
and Mp = maxk∈C(p)

(
qn

k

)
. If a nodal

solver result does not fulfill (93) then the surrounded cells are marked as ’bad’ ones.
At last we also test if the numerical method has generated any un-representable value such as NaN. If
a cell has been declared as ’invalid’, then only this cell and its neighbors are sent back to tn for a re-
computation with local lower order reconstructions. Possibly some cells are re-computed several times,
and, may ultimately be updated with the parachute scheme. The troubled/bad cells are the cells which do
not fulfill at least one of these detection criteria

D :


P : physically admissible, i.e positivity under explicit ∆t with respect to (92)
C : representable in a computer, i.e no Nan.
N : numerically valid, i.e essentially non oscillating with respect to (93).

The two neighbors of a bad cell are also recomputed, and, as such flagged as bad ones without polynomial
degree decrementing.
This type of limiting is referred to an a posteriori procedure because the candidate solution at tn+1 is always
confronted to the detection criteria and must pass them. Fortunately in general only few cells need to be
re-computed which renders this a posteriori MOOD loop relatively efficient in comparison to other limiting
approaches.

MOOD loop. The MOOD loop always converges in a finite number of iterations. Indeed there is only
a few and fixed number of schemes in the cascade and a finite number of cells. Moreover a cell is always
considered as valid if its reconstruction degree has dropped down to di = 0. Consequently the number of
MOOD loop iterations is necessarily finite. The final valid solution is then constituted of pieces of high
accurate and low accurate approximations fulfilling the detection criteria. As a consequence the detection
criteria do play a paramount role in the overall quality of the solution.
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6.3. High-order time discretization

For the time discretization we rely on successive explicit sub-steps, which altogether allows to reach a
nominal dth accuracy. Depending on the order of accuracy d, we employ the family of classical Runge-
Kutta (RK) explicit schemes [35]. For d = 0 a forward Euler scheme is used, while for d = 1 an explicit
midpoint method (predictor-corrector or equivalently RK2 scheme) is employed. When d = 2 the classical
SSPRK3 scheme is chosen. Beyond d ≥ 3 there exists no SSPRK method anymore and we then rely either
on RK3 with appropriate time-step limitation or on a RK4 scheme, see table 4 for the associated Butcher
tableaus. We denote by K > 1 the number of RK iterates of the time discretization scheme, each indexed
by κ and 1 ≤ κ ≤ K.
The restriction on the time step ∆t is the one derived in the first sections which ensures the positivity with
a safety coefficient CFL ≤ 1. The time step ∆t ≡ ∆tκ=1 is determined at the end of the first RK iterate as
a function of the minimal/maximal impedances zκ=1

l,i+1/2 and zκ=1
r,i+1/2. It may happen that, during the physical

evolution the time step required at RK iterate κ is such that: ∆tκ < ∆t. In this case the cell is flagged as a
’bad’ one and will be limited (in space and time) by the MOOD loop, possibly dropping its time accuracy
to a first order scheme for which ∆t ≡ ∆tκ=1 always ensures the positivity.

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
. . .

...
cs as1 as2 · · · ass

b1 b2 · · · bs

0 0 0
1 1 0

1/2 1/2

0 0 0 0
1 1 0 0

1/2 1/4 1/4 0
1/6 1/6 2/3

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Generic RK RK2 SSPRK3 RK4

Table 4: Butcher tableau for the Runge-Kutta explicit time discretization schemes and three examples used in this work.

6.4. 1D numerical validation of high order extension.

In the previous numerical sections we have tested the first order Lagrangian and Eulerian schemes. Here
we solely focus on test cases with more complex interacting wave problems, such as the Collela-Woodward
blastwave and the Shu-Osher test. Above all, we perform a convergence analysis of our numerical scheme
using a smooth solution of the gas dynamics equations.

The following schemes are under scrutiny

• Eul-0: 1st order Eulerian scheme;

• Eul-X: (X+1)th order (unlimited) Eulerian scheme;

• Eul-XMOOD: (X+1)th order Eulerian scheme with MOOD limiting, with Eul-0 as parachute scheme.

which will be compared to some classical ones such as: Lag-0, the 1st order Lagrangian scheme from sec-
tion 4, and, Eul-1Lim, the nominally 2nd order Eulerian scheme i.e with piece-wise linear reconstruction
on primitive variables supplemented with classical van Leer slope limiter.

Density sine wave. This paragraph shows that the high order reconstructions and RK schemes allow respec-
tively for 1st, 2nd, 3rd, 4th and 5th order convergence in space for a smooth solution of the 1D compressible
Euler equations. We consider the advection of a sine wave on a [0, 1] mesh with periodic boundaries. The
sine wave is characterized by:

ρ0 = 1 + 0.1 sin(2πX) , u0 = 1 , p0 = 1/γ , (94)
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Density Sine wave problem
N L1 error L2 error L∞ error L1 order L2 order L∞ order

E
u
l-
0

50 2.0762E-02 2.3002E-02 2.9628E-02 — — —

100 1.1403E-02 1.2634E-02 1.6282E-02 0.86 0.87 0.86

200 5.9829E-03 6.6288E-03 8.5436E-03 0.93 0.93 0.93

400 3.0653E-03 3.3962E-03 4.3773E-03 0.96 0.96 0.96

E
u
l-
1

50 9.4635E-04 1.0878E-03 2.0798E-03 — — —

100 2.5988E-04 3.3788E-04 9.7322E-04 1.69 1.86 1.11

200 6.7953E-05 1.0356E-04 4.0150E-04 1.71 1.96 1.28

400 1.6946E-05 3.1778E-05 1.6358E-04 1.70 1.99 1.30

E
u
l-
2

50 9.7772E-05 1.3478E-04 2.5498E-04 — — —

100 8.2715E-06 1.0654E-05 1.7347E-05 3.66 3.56 3.87

200 1.0335E-06 1.1828E-06 1.6504E-06 3.17 3.00 3.39

400 1.2919E-07 1.4423E-07 1.8995E-07 3.03 2.99 3.11

E
u
l-
3

50 8.5786E-07 9.4984E-07 1.2252E-06 — — —

100 5.2418E-08 5.8083E-08 7.4862E-08 4.03 4.03 4.03

200 3.2586E-09 3.6102E-09 4.6527E-09 4.00 4.01 4.01

400 2.0347E-10 2.2543E-10 2.9054E-10 4.00 4.00 4.00

E
u
l-
4

50 2.1204E-07 2.3511E-07 3.0259E-07 — — —

100 7.0001E-09 7.7569E-09 9.9979E-09 4.25 4.26 4.25

200 2.6359E-10 2.9206E-10 3.7642E-10 4.73 4.73 4.73

400 1.3827E-11 1.5320E-11 1.9752E-11 4.92 4.92 4.91

Table 5: L1, L2 and L∞ norm errors on density ρ between the numerical solution and the exact solution of a density since wave problem
until tfinal = 1.

10−23× 10−34× 10−3 6× 10−3 2× 10−2

Mesh spacing ∆x

10−10

10−8

10−6

10−4

10−2

L
2

E
rr

or

slope -0.96

slope -1.86

slope -3.00

slope -4.03

slope -4.92

EUL-0

EUL-1

EUL-2

EUL-3

EUL-4

Figure 19: Density sine wave test case — Eulerian numerical scheme — L2 error for the 1st, 2nd, 3rd, 4th and 5th order schemes —
Numerical results for N = 50, N = 100, N = 200 and N = 400 cells.

The results of the convergence analysis performed with polynomial reconstruction going from d = 0 to
d = 4 are displayed in table 5, and the L2 error is shown in figure 19. The expected rate of convergence is
reached and confirms the high-order accuracy for our numerical scheme.
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Next we make use of this test case to compare the efficiency of the high-order schemes, i.e. the accuracy
as a function of the computation time. In figure 20, we plot the relative L2 error versus the CPU time for
the Eul-0, Eul-1, Eul-2, Eul-3 and Eul-4 schemes. Some efficiency plots have been extrapolated to ease the
visual comparison.
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Figure 20: Density sine wave test case — Efficiency of the Eulerian numerical schemes — L2 error versus CPU time for 1st, 2nd, 3rd,
4th and 5th order schemes.

In table 6, the efficiencies of the different numerical schemes are compared for a fixed error (ε0 = 10−8),
and, then for a fixed execution time (10ms). For large enough CPU time or small error the high-order
schemes out-perform low-order ones.

Eul-0 Eul-1 Eul-2 Eul-3 Eul-4
Fixed ε0 = 10−8 ⇒ CPU → � 1000ms ≈ 100ms 12.5ms 10ms 8ms
Fixed CPU = 10ms⇒ Error ε→ ≈ 10−3 ≈ 10−5 ≈ 5 × 10−7 ≈ 1 × 10−8 ≈ 5 × 10−9

Table 6: Density sine wave test case — Efficiency of the high-order Eulerian numerical schemes — Comparison of efficiency for a
fixed error (horizontal line) and at a fixed CPU time (vertical line).

Modified smooth solution problem. The second test case is a smooth test case derived in the isentropic case,
with a polytropic index of γ = 3 for the perfect gas EOS. In this situation, the characteristic curves of the
Euler equations become straight lines. The governing equations reduce to two Burgers equations, allowing
us to solve this problem analytically. For the numerical simulation, the initial condition is modified to yield
a more challenging example, as

X ∈ [0, 1] , ρ0 = 1 + 0.1 sin(2πX) , u0 = 0 , p0 = ρ
γ
0 , (95)

with periodic boundary conditions. The initial density and pressure being very close to zero would confirm
the positivity-preserving property of the numerical scheme. Figure 21 display the results of the third-order
scheme with 100 cells on the [0, 1] domain with a final time of tfinal = 0.8 and CFL = 0.1. Making use
of the analytical solution, the global truncation error corresponding to the first- to fourth-order scheme are
shown in table 7 and in figure 22. These results confirm the high accuracy of this scheme.
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Figure 21: Smooth solution test case — Third order (d = 3) Eulerian numerical scheme — Density, velocity, and specific internal
energy for the exact solution (black line) vs the numerical results (symbols) — Numerical results for N = 100 cells (red cross) — The
curves are almost superimposed.

Modified smooth solution problem
N L1 error L2 error L∞ error L1 order L2 order L∞ order

E
u
l-
0

50 2.3172E-02 2.7155E-02 2.2356E-02 — — —

100 1.4534E-02 1.7465E-02 1.3051E-02 0.67 0.64 1.02

200 8.5132E-03 1.0735E-02 6.0451E-03 0.77 0.70 0.94

400 4.7798E-03 6.3890E-03 2.6579E-03 0.83 0.75 0.95

800 2.6049E-03 3.6838E-03 1.2324E-03 0.87 0.80 0.98

E
u
l-
1

50 2.9027E-03 4.7513E-03 5.8641E-04 — — —

100 1.0127E-03 2.0078E-03 1.5676E-04 1.52 1.25 1.68

200 3.2378E-04 7.4750E-04 4.3627E-05 1.65 1.43 1.72

400 9.1613E-05 2.3315E-04 1.1739E-05 1.82 1.68 1.73

800 2.3826E-05 6.6826E-05 3.1284E-06 1.94 1.82 1.75

E
u
l-
2

50 1.3677E-03 2.5634E-03 7.8677E-03 — — —

100 3.7045E-04 9.9020E-04 3.8999E-03 1.89 1.92 1.71

200 9.3415E-05 3.0817E-04 1.4564E-03 2.00 2.21 2.06

400 1.6942E-05 7.2047E-05 4.1907E-04 2.47 2.62 2.16

800 2.5154E-06 1.2679E-05 8.4963E-05 2.75 3.02 2.68

E
u
l-
3

50 5.8769E-04 1.1870E-03 4.0506E-03 — — —

100 1.1633E-04 3.6426E-04 1.8608E-03 2.34 1.70 1.12

200 2.2343E-05 7.7895E-05 4.4407E-04 2.38 2.23 2.07

400 2.3799E-06 9.3888E-06 8.3503E-05 3.23 3.05 2.41

800 2.2748E-07 6.5266E-07 6.6083E-06 3.39 3.85 3.66

Table 7: L1−, L2− and L∞−norm errors on density ρ between the numerical solution and the exact solution of the modified smooth
solution problem until tfinal = 0.8.

Shu-Osher oscillatory test case. This test [40] is a 1D hydrodynamic shock tube. The downstream flow
has a sinusoidal density fluctuation ρ = 1 − ε sin(λπx) with a wave length λ = 5 and an amplitude ε = 0.2.
A Mach 3 shock front is initially located at x = −4 on domain X ∈ [−5; 5] and a CFL of 0.1. The left and
the right states are as follows:

ρl = 3.857143 , ul = 2.629369 , pl = 10.33333 , ρr = 1 + 0.2 sin(5πx) , ur = 0 , pr = 1 (96)
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Figure 22: Modified smooth solution test case — Eulerian numerical scheme — L2 error for the 1st, 2nd, 3rd and 4th order accurate
schemes — Numerical results for N = 50, 100, 200, 400 and 800 cells.

Percentage of cell reconstruction type(%) Comparison of CPU time (µs)
d = 0 d = 1 d = 2 d = 3 d = 4 d = 0 d = 1 d = 2 d = 3 d = 4

N = 200 3.0 0.25 3.0 0.25 92.50 129 288 423 869 1254
N = 400 10.25 0 0.5 0.25 89.75 248 980 1716 1791 2292
N = 800 10.5 0 0.15 0.1 89.75 500 2130 3454 4079 4388

Table 8: Shu-Osher oscillatory test case — High-order extension of the Eulerian numerical scheme with 200, 400 and 800 cells
respectively — Percentage of cells with 1st, 2nd, 3rd and 4th order cell reconstruction (Left) — Comparison of the CPU time with 1st,
2nd, 3rd and 4th order cell reconstruction for 200, 400 and 800 cells (Right).

This problem involves small scales after the shock has interacted with the sine wave. These small scale fea-
tures can be captured either with a fine enough mesh or with high order accurate method. Figure 23 shows
the comparison of numerical solution using different polynomial reconstruction from Eul-0 to Eul-4MOOD

and a reference solution with 200, 400 and 800 cells. As expected the accuracy of the numerical solution
improves with the order of polynomial reconstruction. The reference solution taken here is the numerical
solution of the Eul-0 scheme with N = 10000 cells (the CPU time is about 6100µs). Figure 24 exhibits
the associated cell reconstruction type with each time step and as expected, the shock wave is captured in
its motion. Then in table 8 we present the percentages of cells updated with each polynomial degree from
0 to 4 and for three different meshes. We observe that about 90% of cells are updated with the highest
order scheme, the 10% left are updated with generally the parachute scheme. In the very same table we
gather the CPU time needed to get the final solution as a function of the nominal accuracy of the scheme
employed. d = 0 means that the first order scheme is run, while d = 4 means the 5th order MOOD scheme
is used. As is observed the cost of second order scheme is about 3 times more expensive than a first order
one (respectively 6, 7 and 9 times for third, fourth and fifth order ones).

Woodward-Colella blastwave. The complex flow pattern in the Woodward-Collela blastwave problem is a
good test case to evaluate the high-order extension of our numerical scheme. Similar to the Shu-Osher prob-
lem, we present the numerical density with a zoom at the central area obtained by the Eul-0, Eul-1MOOD,
Eul-2MOOD and Eul-3MOOD schemes compared with a reference solution with 200, and 400 cells in fig-
ure 25. The reference solution taken is the numerical solution computed with the Lagrangian solver. Once
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Figure 23: Shu-Osher oscillatory test case — High-order extension of the Eulerian numerical scheme with a mesh of N = 200 (top),
N = 400 (middle) and N = 800 (bottom) — Evolution of the polynomial reconstruction degree d of each cell with each time step —
Black cells are cells decremented to d = 0 , red cells are cells decremented to d = 1, blue cells are cells decremented to d = 2, green
cells are cells decremented to d = 3 and white cells are cells that stayed at d = 4.
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Figure 24: Shu-Osher oscillatory test case — High-order extension of the Eulerian numerical scheme with a mesh ofN = 200 (left),
N = 400 (right) — Evolution of the polynomial reconstruction degree d of each cell with each time step — Black cells are cells
decremented to d = 0 , red cells are cells decremented to d = 1, blue cells are cells decremented to d = 2, green cells are cells
decremented to d = 3 and white cells are cells that stayed at d = 4.
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Figure 25: Woodward-Collela blastwave — High-order MOOD extension of the Eulerian numerical scheme with a mesh of N = 200
(left), N = 400 (middle) and N = 800 (right) — Numerical density of the Eul-0 (red cross), Eul-1 (blue circle), Eul-2 (green square)
and Eul-3 (magenta diamond) compared with the reference solution (black line)
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Figure 26: Woodward-Collela blastwave — High-order extension of the Eulerian numerical scheme with 200 (left) and 800 (right)
cell — Evolution of the polynomial reconstruction degree d of each cell with each time step — Black cells are cells decremented to
d = 0 , red to d = 1, blue to d = 2, white cells are cells at highest accuracy d = 3.
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Percentage of cell reconstruction type (%) Comparison of CPU time (ms)
d = 0 d = 1 d = 2 d = 3 d = 0 d = 1 d = 2 d = 3

N = 200 6.5 3.5 2.1 85.9 142 923 1062 2126
N = 400 7.5 2.3 0.7 89.75 289 1163 3178 4317
N = 800 0.88 3.75 2.74 92.63 510 2207 7836 8596

Table 9: Woodward-Collela blastwave— High-order extension of the Eulerian numerical scheme with 200, 400 and 800 cells respec-
tively — Percentage of cells with 1st, 2nd, 3rd and 4th order cell reconstruction (Left) — Comparison of the CPU time with 1st, 2nd,
3rd and 4th order cell reconstruction for 200, 400 and 800 cells (Right).

more, we confirm the mesh convergence and the accuracy convergence as the order of the polynomial re-
construction increases. At last in figure 26 we present the polynomial degree used in each cell at each
time-step for N = 200 (left) and 800 cells (right). It can be observed that the main waves are followed by
the lower polynomial degree (black and red) while the maximal accuracy (white) is maintained away from
them as expected.
Then in table 9 we present the percentages of cells updated with each polynomial degree from 0 to 3 and
for three different meshes. We observe that about 85 − 93% of cells are updated with the highest order
scheme, the remaining 7 − 15% left are updated with the other schemes, mainly the parachute one. At last
the CPU times show that the cost of second order scheme is about 5 times more expensive than a first order
one (respectively 11 times and 16 times for third and fourth order ones).
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7. Conclusion and Perspectives

Following the methodology introduced in the pioneering work [29], we have constructed a Lagrangian
simple approximate Riemann solver which preserves contact discontinuities. The monitoring of wave
speeds allows to derive explicit conditions for ensuring positivity and entropy stability. The resulting
Godunov-type Finite Volume scheme preserves the positivity of specific volume and internal energy and
also satisfies an entropic inequality provided a time step condition is satisfied.

Employing the general formalism described in [28, 29] an Eulerian simple approximate Riemann solver
is deduced from its Lagrangian counterpart. In this framework, the Eulerian wave speeds are deduced from
the Lagrangian ones and are naturally ordered provided that the Lagrangian approximate Riemann solver
preserves the positivity of specific volume. Moreover, this framework provides also the transfer of the good
properties (positivity and entropy stability) of the Lagrangian approximate Riemann solver to its Eulerian
counterpart. We observe that the proposed approximate Riemann solver is nothing but the one initially
introduced in [28, 29] in a more general and theoretical context. Here, we have proposed a less formal
derivation based on more intuitive arguments. We also want to acknowledge that the numerical flux induced
by present Eulerian approximate solver has the same structure than the one induced by the famous HLLC
solver. However, the main difference relies on the fact that here the wave speeds are consistently derived
and ordered. This positive and entropic Eulerian simple approximate Riemann solver is the cornerstone
upon which we build a positive and entropic Godunov-type Finite Volume scheme provided an adhoc time
step condition is fulfilled.

The robustness and the accuracy of our basic first-order Finite Volume schemes are assessed against
various classical and demanding numerical tests: Sod and modified shock tube, extreme double rarefac-
tion waves, Woodward-Collela blastwave and Le Blanc shock tube. We witness pertinent results, i.e., the
positivity-preserving and entropy-stability properties are correctly enforced, and mesh convergence was
also achieved. Furthermore, we note that the positivity-preserving property is mainly enforced during com-
pression, thus, the trajectory of shock waves can be tracked along with the evolution of the waves speeds.

Due to its good properties, the first-order Eulerian scheme is then used in a last part as a parachute
scheme for a high-order extension under MOOD paradigm. We have implemented high-order cell polyno-
mial reconstruction in space, the Runge-Kutta method in time and the MOOD a posteriori limiting. In this
part, we demonstrate that the high-order extension has similar positivity-preserving property as the first-
order numerical scheme while improving the numerical accuracy. The nominal accuracy is extended up to
5th order and may be decremented to the 1st order when needed. Two test cases with smooth solutions are
first presented as a proof of rate of convergence and to validate the cell polynomial reconstruction. On the
advanced test cases presenting complex wave interactions, the numerical results improve with the order of
the reconstruction and the MOOD limiting ensures the robustness of the scheme.

In the future, we plan to implement a similar concept, meaning developing a cell-centered Eulerian
positivity-preserving Riemann solver derived from the Lagrangian framework, in a multi-dimensional ge-
ometry on structured and unstructured mesh. We will study the ability of the numerical scheme to cure
numerical shock instabilities such as the odd-even decoupling and carbuncle phenomenon [50], and others
[58]. We also consider achieving multi-dimensional high-order extension with a MOOD limiting which
may be an interesting challenge.
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[21] B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjögreen. On Godunov-type methods near low densities. Journal of Computational

Physics, 92:273–295, 1991.
[22] B. Engquist and S. Osher. One-sided difference approximations for nonlinear conservation laws. Mathematics of Computation,

36(154):321–321, May 1981.
[23] F. Fambri, M. Dumbser, and O. Zanotti. Space-time adaptive ADER-DG schemes for dissipative flows: Compressible Navier-

Stokes and resistive MHD equations. Computer Physics Communications, 220:297 – 318, 2017.
[24] P. S. Farmakis, P. Tsoutsanis, and X. Nogueira. WENO schemes on unstructured meshes using a relaxed a posteriori MOOD

limiting approach. Computer Methods in Applied Mechanics and Engineering, 363:112921, 2020.
[25] G. Gallice. Matrices de Roe pour des lois de conservation générales sous forme eulérienne ou lagrangienne : applications à la
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[27] G. Gallice. Schémas de type Godunov entropiques et positifs préservant les discontinuités de contact. C.R. Acad. Sci. Paris, Ser.

I, 331(2):149 – 152, 2000.
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8. Appendices: Positivity of specific volumes (τ?
l
, τ?r )

Let us study under which conditions on zl and zr, the specific volumes τ?l and τ?r remain positive assum-
ing that τl and τr are strictly positive, recalling that

τ?l = τl +
1

zl(zl + zr)
(zr~u� − ~p�) , τ?r = τr +

1
zl(zr + zr)

(zl~u� − ~p�) . (97)

These explicit expressions of the specific volumes τ?l and τ?r have been obtained substituting the expression
of u? (35) into the left and right jump relations, respectively (33a) and (34a). To ease the study let us rename
the unknowns as x = zl > 0, y = zr > 0 and the parameters are for s = l, r

as =
~u�
τs

, bs =
~p�
τs

=⇒ sgn(al) = sgn(ar) and sgn(bl) = sgn(br). (98)

Notice that the signs of a and b are a priori unspecified but τl > 0 and τr > 0, and, al = ar, bl = br if and
only if τl = τr. Then (97) recasts into

(x, y) ∈ R+ × R+ 7−→

{
L(x, y) = x(x + y) + al y − bl,
R(x, y) = y(x + y) + ar y + br.

(99)

Hence depending on the signs of a and b we may have different situations to consider, each L and R functions
having different positive regions. Because L and R must be positive simultaneously, the intersection of
these regions will be carried on as a last step. Notice that the terms x(x + y) ≥ 0 and y(x + y) ≥ 0 because
(x, y) ∈ R+ × R+, therefore the negative parts of L(x, y) and R(x, y) are necessarily resulting from the terms
asy − bs. Let us first study L(x, y) as a function of the sign of al and bl.

Case ++: al > 0, bl > 0. In this case we have only bl which contributes for the negativity:

L(x, y) = x(x + y) + y al︸           ︷︷           ︸
≥0

−bl︸︷︷︸
≤0

,

The hyperbole L intersects the x-axis at x =
√

bl and the y-axis at y = bl
al

, and to ensure the positivity it is
sufficient that (x, y) belongs to the following positivity region

C++
L =

{
M = (x, y), s.t. x >

√
bl and y >

bl

al

}
. (100)

Case +-: al > 0, bl < 0. L is always positive in this case, hence C+−
L = (R2)+.

Case -+: al < 0, bl > 0. In this case L presents a vertical asymptote at location xl ∈ [αl, βl] with αl =

min(
√

bl,−al) and βl = max(
√

bl,−al). The positivity region is then

C−+
L = {M = (x, y), s.t. x > βl} . (101)

Case - -: al < 0, bl < 0. This last case corresponds to a branch of hyperbole intersecting the y-axis and
with a vertical asymptote at x = −al. Hence

C−−L =

{
M = (x, y), s.t. y <

bl

al
or x > −al

}
. (102)

The same study can be made for function R, the situation being equivalent inverting the role of x for
y, and, bl for −br, therefore the set C++

R , C+−
R , C−+

R and C−−R can be derived accordingly. Moreover the
constraints on the acoustic impedances state that x ≥ ρlal and y ≥ ρrar.
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At last gathering all constraints in the case of compression we can define the regions for (x, y) = (zl, zr)
ensuring the positivity of the specific volumes

C++ =

{
M = (zl, zr), s.t. zl ≥ max

( √
bl, ρlal

)
and zr ≥ max

(
bl

al
, ρrar

)}
,

C+− =

{
M = (zl, zr), s.t. zr ≥ max

( √
−br, ρrar

)
and zl ≥ max

(
−

bl

al
, ρlal

)}
,

C−+ = {M = (zl, zr), s.t. zl ≥ max (βl, ρlal) and zr ≥ max (−ar, ρrar)} ,

C−− =
{
M = (zl, zr), s.t. zr ≥ max

( √
br, ρrar

)
and zl ≥ max (−al, ρlal)

}
,

where βl = max(
√

bl,−al) and βr = max(
√
−br,−ar). As final remarks, let us point that these sufficient con-

strains could be more precisely derived but at expensive cost. More importantly, recall that these constrains
only apply in a compression situation.
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