Phenyl-pyta-tricarbonylrhenium(I) complexes: Combining a simplified structure and steric hindrance to modulate the photoluminescence properties

Alexandre Poirot, Corinne Vanucci-Bacqué, Béatrice Delavaux-Nicot, Nadine Leygue, Nathalie Saffon-Merceron, Fabienne Alary, Florence Bedos-Belval, Eric Benoist and Suzanne Fery-Forgues*

Infrared spectroscopy

Figure S1. ATR IR spectra of powder complexes 1, 2 and 3	2
Crystallographic data	
Table S1. Selected bond lengths (Å) for complexes 1-3	2
Table S2 Selected angles (?) for complexes 1-3	3
Figure S2 Crystallographic arrangement of complexes 1-3 showing the absence of overlap	4
Figure 52. Crystander an angement of complexes 1.2, showing the absence of overlap	5
Figure 55. Short contacts (in A) in complexes 1, 2 and 3	5
Figure S4. Crystal cell units of complexes 1, 2 and 3	5
Electrochemistry	
Table S3. Selected electrochemical data of Re complexes, determined by OSWV	6
Table S4. Experimental electrochemical data and calculated energy gaps (<i>Eg</i>) for 1-3	6
Comments on the evaluation of the energy gap values (<i>Eg</i>) for the Re complexes	6
Figure S5 OSWVs: anodic (left) and cathodic (right) scans of complex 1	7
Figure S6 Cyclic voltammorrams of 1 and of instruction and reduction processes	7
Figure 50. Cyclic voltamograms of F and of its first oxidation and reduction processes	'
a fit for the first encoded to $\frac{1}{2}$ of $\frac{1}{2}$ for $\frac{1}{2}$ of $\frac{1}{2}$ for	7
of the first feddetion process at 0.2, 1, 5, 10 V/s	/
Figure S8. OS w vs: anodic and cathodic scans of complex 2	8
Figure S9. Cyclic voltammograms of 2 and of its reduction processes at increasing potential	8
Figure S10. Complex 2: Cyclic voltammograms of the first oxidation process at 1, 5, 10, 50 V/s and	
of the first reduction process at 0.2, 0.5, 1, 5 V/s	8
Figure S11. Cyclic voltamograms of the oxidation processes of 2 at 5 V/s and 50 V/s	9
Figure S12. OSWVs: anodic (left) and cathodic (right) scans of complex 3	9
Figure \$13. Cyclic voltammograms of 3 and of its first oxidation and reduction processes.	9
Figure \$14 Complex 3: Cyclic voltammograms of the first oxidation process at 1, 5, 10	
50 and 100 V/s and of the first radiation process at $0.2, 1, 5, 10$ V/s	0
So and of vis and of the first reduction process of the oxidation part at increasing potential and	,
Figure S15, Complex 5. Cycle voltaminograns of the oxidation part at increasing potential and	10
Figure S16. Cyclic voltammogram of complex 3 in the presence of ferrocene	10 10
Quantum chemistry calculations	
Figure S17. Theoretical UV-vis absorption spectrum and main electronic transitions for 1 in DCM	10
Table S5. Main electronic transitions for 1 in DCM calculated using the TD-DFT method, with	
corresponding wavelength (λ) energy (F) and oscillator strength (f)	11
corresponding wavelengin (x), energy (L) and osemator strength ()	11
Photochemistry	
Figure S18. Evolution of the UV-vis absorption spectrum of 1 in DCM under irradiation at 350 nm	11
Emission spectroscopy	
Figure S19. Photoluminescence decay curves of complexes 1, 2 and 3 in CH ₂ Cl ₂	12
Comments on the solid-state emission decay acquisition	12
Table SC Pasults of the amission decay magnitude of 1-3 in the solid state	12
Table 50. Results of the emission decay measurements of 1–5 in the solid state	12
Figure S20. Theoretical UV-vis absorption spectrum and main electronic transitions for complex 1	
calculated considering crystal geometry and using the TD-DFT method	13
Figure S21. Emission spectra of 3 as pristine microcrystalline powder, excitation at 382 nm and 470 nm	13
Figure S22. Geometry and phenyl-pyta angle value of 1 in the ground and first triplet excited state	13
Figure S23. Graphical representation of the triplet excited state spin density of 1	13
Fluorescence microsconv	
Figure S24. Fluorescence microscopy image of crystals of 1 and 2.	14
- gare s= writesteeteete interesteepy intege of erystals of I and I that I the second se	
NMR	
Figure S25. Carbon numbering for ¹ H and ¹³ C NMR chemical shift attribution	14
Figure S26. NMR spectra of complexes 1–3	14

Infrared spectroscopy

Figure S1. ATR IR spectra of complexes 1 (a), 2 (b) and 3 (c). The sample of 1 was a powder dispersed in KBr. Samples of 2 and 3 were as-prepared microcrystalline powders.

Crystallographic data

Table S1. Selected bond lengths (Å) for complexes 1-3. Data related to the second molecule of the asymmetric unit of 1 are mentioned in blue ink. The atoms were numbered like on the molecular views. For the sake of comparison, each line corresponds to the same bond in every complex.

Bond	1	2	Bond	3
Donu	-	-	Donu	5
Re1-Cl1/Re2-Cl2	2.474(2)/2.476(2)	2.4766(8)	Re1-Cl1	2.4712(7)
Re1-N1/Re2-N5	2.200(7)/2.191(7)	2.202(3)	Re1-N1	2.204(2)
Re1-N2/Re2-N6	2.147(7)/2.157(8)	2.153(2)	Re1-N2	2.147(2)
Re1-C1/Re2-C17	1.935(10)/1.899(10)	1.921(3)	Re1-C1	1.908(3)
Re1-C2/Re2-C18	1.902(11)/1.900(10)	1.917(4)	Re1-C3	1.914(3)
Re1-C3/Re2-C19	1.869(10)/1.895(10)	1.908(4)	Re1-C2	1.916(3)
01-C1/04-C17	1.140(11)/1.150(10)	1.144(4)	01-C1	1.156(4)
O2-C2/O5-C18	1.171(11)/1.148(10)	1.147(4)	O3-C3	1.147(4)
O3-C3/O6-C19	1.182(10)/1.159(10)	1.147(4)	O2-C2	1.144(4)

Table S2. Selected angles (°) for complexes 1-3. Data related to the second molecule of the asymmetric unit of 1 are mentioned in blue ink. The atoms were numbered like on the molecular views. For the sake of comparison, each line corresponds to the same bond in each complex.

Bond angles	1	2	Bond angles	3
C3-Re1-C2/C19-Re2-C18	89.0(4)/89.5(4)	89.67(15)	C2-Re1-C3	88.85(15)
C3-Re1-C1/C19-Re2-C17	89.5(4)/87.0(4)	88.16(15)	C2-Re1-C1	87.74(14)
C2-Re1-C1/C18-Re2-C17	90.1(4)/89.3(4)	88.16(14)	C3-Re1-C1	88.80(14)
C3-Re1-N2/C19-Re2-N6	97.2(3)/96.7(3)	96.32(12)	C2-Re1-N2	97.59(12)
C2-Re1-N2/C18-Re2-N6	98.1(3)/99.1(3)	98.37(12)	C3-Re1-N2	98.37(12)
C1-Re1-N2/C17-Re2-N6	169.5(3)/170.8(3)	172.08(12)	C1-Re1-N2	171.12(12)
C3-Re1-N1/C19-Re2-N5	93.0(3)/93.9(3)	93.70(13)	C2-Re1-N1	93.98(12)
C2-Re1-N1/C18-Re2-N5	171.9(3)/173.1(3)	171.87(12)	C3-Re1-N1	172.05(11)
C1-Re1-N1/C17-Re2-N5	97.7(3)/97.0(3)	99.33(12)	C1-Re1-N1	98.73(11)
N2-Re1-N1/N6-Re2-N5	73.9(3)/74.5(3)	73.92(10)	N2-Re1-N1	73.91(9)
C3-Re1-Cl1/C19-Re2-Cl2	176.5(3)/177.1(3)	176.99(10)	C2-Re1-Cl1	178.49(11)
C2-Re1-Cl1/C18-Re2-Cl2	94.5(3)/93.5(3)	93.04(11)	C3-Re1-Cl1	92.66(11)
C1-Re1-Cl1/C17-Re2-Cl2	90.7(3)/92.9(3)	93.23(11)	C1-Re1-Cl1	92.30(10)
N2-Re1-Cl1/N6-Re2-Cl2	82.09(18)/82.94(18)	82.00(7)	N2-Re1-Cl1	82.19(7)
N1-Re1-Cl1/N5-Re2-Cl2	83.53(19)/83.23(18)	83.44(7)	N1-Re1-Cl1	84.53(6)
O1-C1-Re1/O4-C17-Re2	178.3(9)/176.4(9)	178.5(3)	O1-C1-Re1	178.8(3)
O2-C2-Re1/O5-C18-Re2	177.5(9)/179.7(9)	178.5(3)	O3-C3-Re1	177.7(3)
O3-C3-Re1/O6-C19-Re2	177.1(8)/176.7(8)	177.9(3)	O2-C2-Re1	178.7(4)

3

Figure S2. Crystallographic arrangement of complexes **1**, **2** and **3**. The values of the dihedral pytaphenyl angle are indicated with green ink. View perpendicular to the plane formed by the pyta moieties, showing the absence of overlaps between the aromatic moieties of neighbouring molecules I and J. The distances between the ring center-of-gravity Cg indicated by pink balls are the shortest ones.

Figure S3. Short contacts (in Å) in complexes 1, 2 and 3.

Figure S4. Crystal cell units of complexes 1, 2 and 3.

Electrochemistry

Table S3. Selected electrochemical data of Re complexes $[1.0 \times 10^{-3} \text{ M}]$. Values determined by OSWV on a Pt working electrode in CH₂Cl₂ + 0.1 M *n*-Bu₄NBF₄ at room temperature.^{a,b} Ferrocene was used as internal reference.

Compound	Oxidation		Reduction		
	E_2	E_{I}	E_{I}	E_2^{e}	E_3
1	1.78	1.46	-1.29 ^d	-1.78	
2	1.81	1.49 ^c	-1.28 ^d	-1.89	
3	1.78	1.46 ^c	-1.33 ^d	-1.78	
RePBO ^h	1.73	1.44	-1.28^{f}	-1.58	-1.83 ^g

^a OSWVs were obtained using a sweep width of 20 mV, a frequency of 20 Hz, and a step potential of 5 mV. ^b Potential values in Volts vs. SCE (Fc⁺/Fc is observed at 0.55 V \pm 0.01 V vs. SCE).

^c This process presents some slightly reversible character at 50 V/s.

^d One-electron quasi-reversible process at 1.0 V/s.

^e This process has a weak intensity when compared to the E_1 reduction process or appears as a shoulder.

^f Quasi-reversible process at 0.2 V/s.

^g With a shoulder at the right side

^h From J. Wang, A. Poirot, B. Delavaux-Nicot, M. Wolff, S. Mallet-Ladeira, J. P. Calupitan, C. Allain, E. Benoist and S. Fery-Forgues, *Dalton Trans.*, **2019**, *48*, 15906–15916.

Table S4. Experimental electrochemical data used, and calculated values of the energy gaps (Eg) for compounds 1-3.

Compound	Eonset ox	E _{onset} red	E _{HOMO}	E _{LUMO}	$E_{\rm g}^{\rm \ el}$	$E_{\rm calc}^{a}$
	(V)	(V)	(eV)	(eV)	(eV)	(eV)
1	1.42	-1.23	-6.16	-3.51	2.65	2.73
2	1.40	-1.22	-6.14	-3.52	2.62	2.74
3	1.41	-1.24	-6.15	-3.50	2.65	2.74
RePBO	1.34	-1.16	-6.08	-3.58	2.50	2.73
						2.65^{b}

^{*a*} When not specified, values obtained from theoretical study in the present work, using TD-DFT method and considering the S₁ state.

^b Value obtained in a previous work using another procedure: (*Dalton Trans.*, **2019**, 48, 15906–15916).

Comments on the evaluation of the energy gap values (Eg) for the Re complexes.

The onset oxidation and reduction potentials (E_{onset} ox, E_{onset} red) were measured by cyclic voltammetry in volt *versus* SCE. The CVs were carried out at a potential scan rate of 200 mV s⁻¹ at room temperature.

The HOMO and LUMO energy levels (EHOMO and ELUMO) in electron volt (eV) were calculated according to the empirical equations (1) and (2):^[1]

Eномо (eV) = -e (E onset ox (V vs. SCE) + 4.74 V)	Eq(1)
ELUMO (eV) = -e (E onset red (V vs. SCE) + 4.74 V)	Eq(2)

and the energy gap value was obtained as follows: $E_{g^{el}} = (E_{LUMO} - E_{HOMO})$.

The differences observed for the estimation of the energy gaps using experimental methods or theoretical calculations are well known. See for example: R. Stowasser, R. Hoffmann, J. Am. Chem. Soc. **1999**, *121*, 3414-3420.

[1] a) Y. Zhou, J. W. Kim, R. Nandhakumar, M. J. Kim, E. Cho, Y. S. Kim, Y. H. Jang, C. Lee, S. Han, K. M. Kim, J.-J. Kim and J. Yoon, *Chem. Commun.* **2010**, *46*, 6512-6514 and references therein; b) G. V. Loukova, *Chem. Phys. Lett.* **2002**, *353*, 244–252

Electrochemical selected curves

OSWV study was performed on a Pt working electrode in $CH_2Cl_2 + 0.1 \text{ M } n[Bu_4N][BF_4]$ at room temperature in the presence of ferrocene used as internal reference. Frequency 20 Hz, amplitude 20 mV, step potential 5 mV.

Cyclic voltammograms of the indicated compounds were performed on a Pt working electrode in $CH_2Cl_2 + 0.1 \text{ M } n[Bu_4N][BF_4]$ at room temperature at a scan rate of 0.2 Vs⁻¹ or at other mentioned scan rates.

Figure S5. OSWVs: anodic (left) and cathodic (right) scans of complex 1.

Figure S6. Cyclic voltammograms of complex **1** (left), and of its first oxidation and reduction processes (right).

Figure S7. Complex 1: Cyclic voltammograms of the first oxidation process at 1, 5, 10, 20 V/s from bottom to top (left), and of the first reduction process at 0.2, 1, 5, 10 V/s from bottom-black line to top-blue line (right).

Figure S8. OSWVs: anodic (left) and cathodic (right) scans of complex 2.

Figure S9. Cyclic voltammograms of complex **2** (left), and of its reduction processes at increasing potential (right).

Figure S10. Complex **2**: Cyclic voltammograms of the first oxidation process at 1, 5, 10, 50 V/s from bottom-black line to top-grey line (left) and of the first reduction process at 0.2, 0.5, 1, 5 V/s from bottom-black line to top-grey line (right).

Figure S11. Cyclic voltammograms of the oxidation processes of complex **2** at 5 V/s (black line), and 50 V/s (grey line).

Figure S12. OSWVs: anodic (left) and cathodic (right) scans of complex 3.

Figure S13. Cyclic voltammograms of complex 3 (left), and of its first oxidation and reduction processes (right).

Figure S14. Complex **3**: Cyclic voltammograms of the first oxidation process at 1, 5, 10, 50 and 100 V/s from bottom-black line to top-blue line (left), and of the first reduction process at 0.2, 1, 5, 10 V/s from bottom-black line to top-grey line (right).

Figure S15. Complex **3**: Cyclic voltammograms of the oxidation part at increasing potential and of the reduction part at 0.5, 1, and 5 V/s from bottom-black line to top-light grey-line (right).

Figure S16. Cyclic voltammogram of complex 3 in the presence of ferrocene.

Quantum chemistry calculations

Figure S17. Theoretical UV-vis absorption spectrum and main electronic transitions for complex **1** in CH₂Cl₂ calculated using the TD-DFT method at the PBEO/LANL2DZ level.

Table S5. Description of the main electronic transitions for complex 1 in CH ₂ Cl ₂ calculated using the
TD-DFT method at the PBEO/LANL2DZ level, with corresponding wavelength (λ), energy (E) and
oscillator strength (f).

Electronic	Contribution	Assignment		λ	Ε	f
transition				(nm)	(eV)	
$S_0 \rightarrow S_2$	H-1→LUMO	$p(Cl) + \pi(CO) + d(Re) \rightarrow \pi^*(Pyta) + p(Re) + \pi^*(CO)$	MLCT	418.2	2.97	0.0919
$S_0 \rightarrow S_{10}$	H-4→LUMO	$p(Cl)+d(Re)+\pi(Phe) \rightarrow \pi^*(Pyta)+p(Re)+\pi^*(CO)$	MLCT/LLCT	305.3	4.06	0.0925
	H-5→LUMO	$\pi(\text{Phe})+p(\text{Cl})+d(\text{Re}) \rightarrow \pi^*(\text{Pyta})+p(\text{Re})+\pi^*(\text{CO})$	LLCT			
$S_0 \rightarrow S_{20}$	H-7→LUMO	$p(Cl)+d(Re)+\pi(Pyta) \rightarrow \pi^*(Pyta)+p(Re)+\pi^*(CO)$	MLCT	254.2	4.88	0.1057
$S_0 \rightarrow S_{21}$	H-2→L+2	$d(\text{Re})+\pi(\text{CO})+p(\text{Cl}) \rightarrow p(\text{Re})+\pi^*(\text{CO})+\pi^*(\text{Phe})$	MLCT	251.4	4.93	0.0742
	H-1→L+7	$p(Cl) + \pi(CO) + d(Re) \rightarrow \pi^*(CO) + \pi^*(Pyta)$	MLCT			
	H-7→LUMO	$p(Cl)+d(Re)+\pi(Pyta) \rightarrow \pi^*(Pyta)+p(Re)+\pi^*(CO)$	LLCT			
$S_0 \rightarrow S_{21}$	H-3→L+1	$p(Cl)+d(Re)+\pi(Pyta)\rightarrow\pi^*(Pyta)$	LLCT/MLCT	248.8	4.98	0.0435
$S_0 \rightarrow S_{24}$	H-1→L+5	$p(Cl)+\pi(CO)+d(Re) \rightarrow$	LLCT	243.4	5.09	0.0424
		$\pi^*(\text{Phe}) + \pi^*(\text{Pyta}) + p(\text{Re}) + \pi^*(\text{CO})$				
	H-8→LUMO	$p(Cl)+d(Re) \rightarrow \pi^*(Pyta)+p(Re)+\pi^*(CO)$	LLCT			
$S_0 \rightarrow S_{30}$	H-5→L+1	π (Phe)+p(Cl)+d(Re) $\rightarrow \pi^*$ (Pyta)	ILCT/LLCT/	232.7	5.33	0.0522
			MLCT			
$S_0 \rightarrow S_{48}$	H-1→L+10	$p(Cl) + \pi(CO) + d(Re) \rightarrow p(Re) + \pi^*(CO) + \pi^*(Pyta)$	LLCT	213.2	5.82	0.0799
	H-3→L+4	$p(Cl)+d(Re)+\pi(Pyta) \rightarrow p(Re)+\pi^*(CO)+\pi^*(Phe)$	LLCT			
$S_0 \rightarrow S_{54}$	H-13→LUMO	$\pi(CO) + \pi(Pyta) \rightarrow \pi^*(Pyta) + p(Re) + \pi^*(CO)$	LLCT	202.7	6.12	0.0488
	H-2→L+10	$d(\text{Re})+\pi(\text{CO})+p(\text{Cl}) \rightarrow p(\text{Re})+\pi^*(\text{CO})+\pi^*(\text{Pyta})$	LLCT			
$S_0 \rightarrow S_{58}$	H-11→LUMO	$\pi(\text{Pyta}) \rightarrow \pi^*(\text{Pyta}) + p(\text{Re}) + \pi^*(\text{CO})$	LMCT	197.1	6.29	0.0300

Photochemistry

Figure S18. Evolution of the UV-vis absorption spectrum of **1** in undegassed dichloromethane solution $(7.5 \times 10^{-5} \text{ M})$ under irradiation at 350 nm over almost 9h30. Photolysis is achieved at 485 min (~8h). Arrows indicate the evolution of absorbance. Inset: Variation of absorbance at 382 nm as a function of time.

Emission spectroscopy

Figure S19. Photoluminescence decay curves of complexes 1–3 in CH₂Cl₂. $\lambda_{ex} = 370$ nm; $\lambda_{em} = 626$ nm.

Comments on the solid-state emission decay acquisition. Regarding the collection of data on solid samples, the spectrofluorimeter used has a flow: the decay is dominated by an artifact, which generates a signal in the μ s range. We could not fix this problem, but measurements were done on many closely related complexes, the emission decay of which had been previously measured on a properly working apparatus by our collaborators in the ENS of Paris Saclay (see refs. 13 and 14, for example). If the long lifetime is not considered, the results were very close. Fitting with two exponentials is enough to obtain satisfying χ^2 values. Of course, the χ^2 values are improved when fitting with three exponentials. In this case, a short lifetime appears, the contribution of which is about one tenth of the contribution of the emission due to the complexes, and very minor with respect to the whole signal. According to the difficulties encountered in data recording, it seemed reasonable to consider only the results of the two-exponential fitting.

Table S6. Results of the emission decay measurements of the complexes 1-3 in the solid state (pristine and ground powders). Luminescence decay times (τ_i) with their respective fractions of intensity (f_i) defined by the multiexponential analysis of the decay curves: $I_F(t) = \sum a_i \times \exp(-t/\tau_i)$ and $f_i = a_i \times \tau_i/(\sum a_j \times \tau_i)$ where a_i is the normalized pre-exponential factor.

Complex		$ au_{l}$	f_1	$ au_2$	f_2	χ^2
1	Pristine	190	5.43	1255	94.57	1.11
	Ground	220	17.05	1141	82.95	1.21
2	Pristine	188	5.38	1400	94.62	1.07
	Ground	219	13.43	1415	80.25	1.17
3	Pristine	204	6.49	2385	93.51	1.17
	Ground	224	22.05	1718	77.95	1.28

Figure S20. Theoretical UV-vis absorption spectrum and main electronic transitions for complex **1** calculated considering the crystal geometry and using the TD-DFT method at the PBEO/LANL2DZ level.

Figure S21. Normalized emission spectra of complex **3** as pristine microcrystalline powder, with excitation at 382 nm (orange line) and 470 nm (blue line).

Figure S22. Geometry and phenyl-pyta dihedral angle value of complex **1** in the ground and first triplet excited state.

Figure S23. Graphical representation of the triplet excited state spin density of **1**. The isodensity plots are calculated for isovalue of 0.03 eV.

Fluorescence microscopy

Figure S24. Fluorescence microscopy images of crystals of complexes **1** (a) and **2** (b). $\lambda_{ex} = 450-490$ nm, $\lambda_{em} > 500$ nm.

NMR

Figure S25. Carbon numbering for attribution of ¹H and ¹³C NMR chemical shifts.

Figure S26. NMR spectra of complexes 1-3 in solution.

¹H NMR spectrum of complex 1 in CDCl₃

¹³C NMR spectrum of complex 1

HSQC ¹H-¹³C 2D NMR spectrum of complex 1 in CDCl₃

 ^1H NMR spectrum of complex 2 in CDCl_3

¹³C NMR spectrum of complex 2

HSQC ¹H-¹³C 2D NMR spectrum of complex 2 in DMSO-d6

¹H NMR spectrum of complex 3 in CDCl₃

¹³C NMR spectrum of complex 3

HSQC ¹H-¹³C 2D NMR spectrum of complex 3 in DMSO-d6