Isonitrile ruthenium and iron PNP complexes: synthesis, characterization and catalytic assessment for base-free dehydrogenative coupling of alcohols

Duc Hanh Nguyen, Delphine Merel, Nicolas Merle, Xavier Trivelli, Frédéric
Capet, Régis Gauvin

To cite this version:

Duc Hanh Nguyen, Delphine Merel, Nicolas Merle, Xavier Trivelli, Frédéric Capet, et al.. Isonitrile ruthenium and iron PNP complexes: synthesis, characterization and catalytic assessment for base-free dehydrogenative coupling of alcohols. Dalton Transactions, 2021, 50 (29), pp.10067-10081. 10.1039/d1dt01722e . hal-03358571

HAL Id: hal-03358571

https://hal.science/hal-03358571

Submitted on 29 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Isonitrile ruthenium and iron PNP complexes: Synthesis, characterization and catalytic assessment for base-free dehydrogenative coupling of alcohols.

Duc Hanh Nguyen, ${ }^{a}$ Delphine Merel, ${ }^{a}$ Nicolas Merle, ${ }^{a}$ Xavier Trivelli, ${ }^{\text {b }}$ Frédéric Capet ${ }^{a}$ and Régis M. Gauvin*, ${ }^{\text {. }}$
${ }^{a}$ Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
${ }^{\mathrm{b}}$ Université de Lille, CNRS, INRA, Centrale Lille Institute, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F59000 Lille, France
${ }^{\text {c }}$ Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France.
E-mail : regis.gauvin@chimieparistech.psl.eu

Abstract

Neutral and ionic ruthenium and iron aliphatic $\mathrm{PN}^{H} \mathrm{P}$-type pincer complexes $\left(\mathrm{PN}{ }^{\mathrm{H}} \mathrm{P}=\mathrm{NH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PiPr}\right)_{2}\right)$) bearing benzyl, n-butyl or tert-butyl isocyanide ancillary ligands have been prepared and characterized. Reaction of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]_{2}$ with one equivalent CN-R per ruthenium center affords complexes $\left[\mathrm{RuCl}_{2}\left(\mathrm{PN}{ }^{H} \mathrm{P}\right)(\mathrm{CNR})\right]$ ($\mathrm{R}=$ benzyl, 1a, $\mathrm{R}=n$-butyl, $\mathbf{1 b}, \mathrm{R}=t$-butyl, $\mathbf{1 c}$), with cationic $\left.\left[\mathrm{RuCl}^{(P N}{ }^{\mathrm{H}} \mathrm{P}\right)(\mathrm{CNR})_{2}\right] \mathrm{Cl}$ 2a-c as side-products. Dichloride species 1a-c react with excess NaBH_{4} to afford [RuH(PN $\left.\left.{ }^{H} P\right)\left(B H_{4}\right)(C N-R)\right]$ 3a-c, analogues to benchmark Takasago catalyst [RuH(PN $\left.\left.{ }^{H} P\right)\left(B_{4}\right)(C O)\right]$. Reaction of 1a-c with a single equivalent of NaBH_{4} results in formation of [RuHCI(PN $\left.\left.{ }^{H} \mathrm{P}\right)(\mathrm{CN}-\mathrm{R})\right]$ ($\mathbf{4 a - c}$), from which 3a-c can be prepared upon reaction with excess NaBH_{4}. Use of one equivalent of NaHBEt_{3} with $\mathbf{4 a}$ and $\mathbf{4 c}$ affords bishydrides $\left[\mathrm{Ru}(\mathrm{H})_{2}\left(\mathrm{PN}^{H} \mathrm{P}\right)(\mathrm{CN}-\mathrm{R})\right] \mathbf{5 a}$ and $\mathbf{5 c}$. Deprotonation of $\mathbf{4 c}$ by KOtBu generates amido derivative $[\mathrm{RuH}(\mathrm{PNP})(\mathrm{CN}-t-\mathrm{Bu})](\mathbf{6}, \mathrm{PNP}=-$ $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PiPr}_{2}\right)_{2}\right)$, unstable in solution. Addition of excess benzylisonitrile to 4 a provides cationic hydride $\left[\mathrm{RuH}\left(\mathrm{PN}{ }^{\mathrm{H}} \mathrm{P}\right)\left(\mathrm{CN}-\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{Cl}(7)$. Concerning iron chemistry, $\left[\mathrm{Fe}\left(\mathrm{PN}^{H} \mathrm{P}\right) \mathrm{Br}_{2}\right]$ reacts with one equivalent of benzylisonitrile to afford $\left[\mathrm{FeBr}\left(\mathrm{PN}{ }^{\mathrm{H}} \mathrm{P}\right)\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{Br}(8)$. The out-er-sphere bromide anion can be exchanged by salt metathesis with NaBPh_{4} to generate $\left[\mathrm{FeBr}\left(\mathrm{PN}{ }^{\mathrm{H}} \mathrm{P}\right)\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{2}\right]\left(\mathrm{BPh}_{4}\right)$ (9). Cationic hydride species $\left[\mathrm{FeH}\left(\mathrm{PN}^{\mathrm{H}} \mathrm{P}\right)(\mathrm{CN}-t-\mathrm{Bu})_{2}\right]\left(\mathrm{BH}_{4}\right)(\mathbf{1 0})$ is prepared from consecutive addition of excess $\mathrm{CN}-t-\mathrm{Bu}$ and NaBH_{4} on $\left[\mathrm{Fe}\left(\mathrm{PNP}^{\mathrm{H}}\right) \mathrm{Br}_{2}\right]$. Ruthenium complexes 3a-c are active in acceptorless alcohol dehydrogenative coupling into ester under base-free conditions. From $\mathbf{3 c}$. Hypotheses are given to account for the observed deactivation. Complexes 3b, 3c, 4a, 4c, 5c, 7, cis-8 and 9 were characterized by Xray crystallography.

Introduction

Over the recent years, catalytic processes based on the acceptorless dehydrogenative coupling concept have blossomed, affording novel and efficient access to a cornucopia of value-added products with high atom-economy and release of by-products such as water or hydrogen. Indeed, based on the met-al-ligand cooperation concepts, new organometallic catalysts have been found to be active and selective in such transformations under very mild conditions. ${ }^{1}$ For example, transition metal complexes supported by bifunctional ligands (along with ancillary monodentate ligands) have demonstrated impres-
sive activity towards the (de)hydrogenation and related hydrogen borrowing reactions, ${ }^{2}$ thanks to pioneering works of Shvo, ${ }^{3}$ Noyori ${ }^{4}$ and Milstein. ${ }^{5}$ In the specific case of the systems based on pincer ligands, part of their efficiency stems from the relatively rigid tridentate coordination of these scaffolds, which stabilizes the metal center and induces higher catalyst robustness even under demanding conditions (high temperature, basic conditions etc.). ${ }^{6}$

To date, a fair number of bifunctional pincer ligands bearing coordinating atoms such as phosphorous, ${ }^{7}$ nitrogen, ${ }^{8}$ sulfur ${ }^{9}$ and carbenic carbon ${ }^{10}$ has been designed, aiming at tuning both electronic and steric properties. ${ }^{6}$ In contrast, only little attention has been paid to ancillary monodentate ligands within the metal coordination sphere. ${ }^{11}$ As a matter of fact, CO appears to be a privileged ligand in this context, being involved in some of the most successful catalyst examples. It may be introduced from the starting carbonyl organometallic compound or it can be generated by decarbonylation reaction of alcohol under basic (catalytic) conditions. Interestingly, Gusev reported a series of complexes of general formula $\left[\mathrm{Ru}(\mathrm{Cl})_{2}(\mathrm{~L})\left(\mathrm{NH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SEt}\right)_{2}\right)\right]\left(\mathrm{L}=\mathrm{CO}, \mathrm{PPh}_{3}\right.$ and $\left.\mathrm{AsPh}_{3}\right)$ and found that among them, the complex bearing PPh_{3} as ancillary ligand is the most active one for ester hydrogenation. ${ }^{9}$ Ogaka and Tayaki from Ta-
 $\mathrm{NH}\left\{\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}(\mathrm{Prr})_{2}\right\}_{2}$) complexes by a σ-donor monodentate N -heterocyclic carbene ligand, thus allowing ester reduction under atmospheric hydrogen pressure. ${ }^{12}$ On the other hand, Bernskoetter and Hazari have reported iron isonitrile PNP complexes, catalytically active for CO_{2} hydrogenation to formate, though being less active than the analogous carbonyl derivative. ${ }^{13}$ Along these lines, Guan reported very recently on iron PNP isonitrile derivatives as efficient catalysts for ester hydrogenation. ${ }^{14}$ In the related field of carbonyl hydrogenation, both Reiser and Mezzetti demonstrated the interest of using isonitrile ligands to achieve efficient iron-based catalysis. ${ }^{15}$ Indeed, even if the catalytic transformations involving metal-isonitrile species are less studied than those of isoelectronic metal-carbonyl counterparts, advantages can be gained by the use of CNR-based catalysts ${ }^{16}$: Indeed, R groups on the CNRs allow for broad variation of their steric and electronic properties and of the strength of the $\mathrm{M}-\mathrm{C}$ bonds, thus affecting the metal center electron density and catalytic behavior. Furthermore, similarly to carbonyl ligands, isonitrile ligands have distinctive IR and NMR signatures that contribute to both characterization and mechanistic studies.

As part of our ongoing program on structural and catalytic investigations around base-free dehydrogenative coupling reaction of alcohols, ${ }^{17}$ we investigated the synthesis of ruthenium and iron

PNP supported complexes bearing isonitriles as ancillary ligand. These new isonitrile complexes were further catalytically assessed for base-free dehydrogenation reactions.

Results and Discussion

Dropwise addition of an isonitrile $\mathrm{R}-\mathrm{NC}\left(\mathbf{a}: \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, \mathbf{b}: \mathrm{R}=n-\mathrm{Bu}, \mathrm{c}: t-\mathrm{Bu}, 1.02-1.05\right.$ equiv. vs. Ru) THF solution to a suspension of Schneider's dimeric $\left[\mathrm{RuCl}(\mu-\mathrm{Cl})\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]_{2}$ complex ${ }^{18}$ in THF afforded ruthenium isonitrile adducts [$\left.\mathrm{RuCl}_{2}(\mathrm{CN}-\mathrm{R})\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]$ 1a-c (Scheme 1). These complexes were formed along with small amount of cationic bis-isonitrile $\left[\mathrm{Ru}(\mathrm{Cl})(\mathrm{CN}-\mathrm{R})_{2}\left(\mathrm{PN}^{\mathrm{H}} \mathrm{P}\right)\right](\mathrm{Cl})$ complexes $\mathbf{2 a - c}\left(1-5 \%\right.$ from ${ }^{31} \mathrm{P}$ NMR). Since $\left[\mathrm{RuCl}_{2}(\mathrm{CN}-\mathrm{R})\left(\mathrm{PN}^{H} \mathrm{P}\right)\right] \mathbf{1 a}$-c are less soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ than both their ionic 2a-c counterparts and the starting dimeric compound, their separation from the crude reaction mixture can be achieved by washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at low temperature $\left(-5-0^{\circ} \mathrm{C}\right)$, with isolated yield ranging between 78 and 85%. Under similar conditions, performing the reaction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (in which both Schneider's dimer and 2a-c are soluble) produced $\mathbf{1 a - c}$ in a less selective manner, as higher amounts of $\mathbf{2 a} \mathbf{- c}$ were formed (up to 20% from ${ }^{31}$ P NMR). This is likely due to a competitive side-reaction of $\mathbf{1 a}$-c with isonitrile to form 2a-c under such conditions. Indeed, complexes 2a-c were prepared in good isolated yield (69-75\%) by reaction of Schneider's complex or of $\mathbf{1 a} \mathbf{a}$ c with excess isonitrile, followed by crystallization in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ at - $20{ }^{\circ} \mathrm{C}$. Both $\mathbf{1 a} \mathbf{a}$ c and $\mathbf{2 a - c}$ series were characterized by multinuclear $\operatorname{NMR}\left({ }^{1} \mathrm{H},{ }^{31} \mathrm{P},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}\right)$ and IR spectroscopies and elemental analyses. Regarding species $\mathbf{1 a - c}$, the ${ }^{31}$ P NMR chemical shift of the PNP ligand of about 42 ppm is reminiscent of that of the PMe_{3} adduct (41 ppm) which features a PNP bound in meridional coordination mode ${ }^{19}$. On the other hand, Bianchini, Peruzzini and coworkers reported the related isonitrile ruthenium complexes $\left[\mathrm{RuCl}_{2}\left(C N-R^{\prime}\right)\left(\mathrm{PN}^{n P r} \mathrm{P}\right)\right] \quad\left(\mathrm{PN}^{n P r} \mathrm{P}=n \mathrm{nr}\right.$ $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right),{ }^{20}$ in which the less bulky Ph-substituted PNP ligand adopts a facial type coordination mode. These give rise to ${ }^{31}$ P NMR signals at about 58 ppm . Bearing in mind that within the complexes of the isopropyl-substituted ligand ${ }^{31}$ P NMR chemical shifts are about 20 ppm higher than those of the phenyl substituted ligand complexes, ${ }^{17 a}$ the values observed for $\mathbf{1 a} \mathbf{- c}$ are in line with a meridional coordination of the PNP ligand. However, as ${ }^{31}$ P chemical shift values are highly dependent on the nature of the trans ligand, care must be taken in assessing geometry based on these values only. Even if no single crystal was obtained for 1a-c with quality allowing diffraction studies with publishable data, we succeeded in recording diffraction patterns for the $\mathbf{1 a}$ complex. The overall coordination sphere could be assessed (See Electronic Supplementary Information). In this case, the PNP framework is indeed in
meridional configuration, the chloride ligands are located in mutually cis positions, and the isonitrile ligand is in the cis position compared to the ruthenium-bound amino moiety. This contrasts with previous observations on related complexes, where the ancillary ligand in $\left[\mathrm{RuCl}_{2}\left(\mathrm{PN}^{R} \mathrm{P}\right)(\mathrm{L})\right]$ is in trans position from the Ru-N function. 19,21

Within the 1a-c series, the presence of a N-H moiety was evidenced by the elongation vibration band at $3133-3148 \mathrm{~cm}^{-1}$ and by a triplet at $2.5-2.6 \mathrm{ppm}$ on the ${ }^{1} \mathrm{H}$ NMR spectrum. Accordingly, $2 \mathrm{D}\left\{{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}\right\}$ HSQC spectra of 1a-c display signal at about 19 ppm , which is in line with sp^{3} hybridization of the nitrogen center. Furthermore, the isonitrile ligands give rise to intense signals in the infrared spectrum at about $2100 \mathrm{~cm}^{-1}$. According to $\left\{{ }^{1} \mathrm{H}^{-15} \mathrm{~N}\right\}$ HMBC experiments, characteristic ${ }^{15} \mathrm{~N}$ NMR peaks assigned to the isonitrile function are observed in the 160-190 ppm range, thus being shifted highfield by 8-13 ppm from the corresponding free isonitriles' signal. ${ }^{23}$ As a comparison, Bernskoetter and Hazari reported the analogous iron $\left[\mathrm{FeCl}_{2}(\mathrm{CN}-\mathrm{R})\left(\mathrm{PN}^{\mathrm{H}} \mathrm{P}\right)\right]$, for which ${ }^{31} \mathrm{P}$ chemical shift and $\mathrm{C}-\mathrm{N}$ IR absorption values are of about 65 ppm and $2050 \mathrm{~cm}^{-1}$, respectively. ${ }^{13}$

$$
\begin{aligned}
& \mathrm{CN}-\mathrm{R}: \\
& \text { a: } \mathrm{R}=\text { benzyl } \\
& \mathrm{b}: \mathrm{R}=n \text {-butyl } \\
& \mathrm{c}: \mathrm{R}=t \text {-butyl }
\end{aligned}
$$

Yield:

$$
\text { 1a: } 78 \%, \text { 1b: } 85 \%, \text { 1c: } 82 \%
$$

2a: $72 \%, 2 b: 69 \%, 2 c: 75 \%$

Scheme 1. Syntheses of Ru PN ${ }^{H} \mathrm{P}$ chloride isonitrile adducts.
The 2a-c species afford spectral characteristics in line with the proposed structure as cationic species. ${ }^{31}$ P NMR chemical shifts are found around 49 ppm , which is about 7 ppm higher than the values for 1ac. As a comparison, the ${ }^{31} \mathrm{P}$ chemical shift of the bis-carbonyl $\left[\mathrm{RuCl}(\mathrm{CO})_{2}\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]\left(\mathrm{BF}_{4}\right)$ derivative is of $49.8 \mathrm{ppm} .{ }^{22}$ The amino functionality spectroscopic features indicate that the chloride counter-anion interacts with the $\mathrm{N}-\mathrm{H}$ via H -bonding. Namely, the $\mathrm{v}(\mathrm{N}-\mathrm{H})$ in $\mathbf{2 a}$ is found at about $70 \mathrm{~cm}^{-1}$ lower wavenumbers compared to that of $\mathbf{1 a}$, while the ${ }^{1} \mathrm{H}$ chemical shift of NH within $\mathbf{2 a - c}$ is significantly low-field shifted by $4-5 \mathrm{ppm}$ compared to that of $\mathbf{1 a - c}$. In agreement with the presence of two inequivalent isonitrile ligands, the ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC spectrum of $\mathbf{2 a - c}$ features two cross-signals in the $170-195 \mathrm{ppm}{ }^{15} \mathrm{~N}$ chemical shift range. In the case of $\mathbf{2 a}$, on the $2 \mathrm{D}^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HMBC}$ spectrum, two cross-peaks are detected
between the methylenic $\mathrm{C} \equiv \mathrm{N}-\mathrm{CH}_{2}$ protons and the isonitrile $\mathrm{N} \equiv \mathrm{C}$ carbon atoms (corresponding ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ pairs: $5.15 / 153.5 \mathrm{ppm}$ and $4.90 / 160.1 \mathrm{ppm}) .^{23}$

Treatment of 1a-c with excess NaBH_{4} (5 equiv.) in ethanol at room temperature led to the formation of borohydride complexes $\left[\mathrm{RuH}\left(\mathrm{BH}_{4}\right)(\mathrm{RNC})\left(\mathrm{PN}^{\mathrm{H}} \mathrm{P}\right)\right](3 \mathrm{a}-\mathrm{c})$ in $\sim 70 \%$ isolated yield after crystallization from toluene/n-pentane at $-20^{\circ} \mathrm{C}$ (Scheme 2). It is worth noting that the reaction of 1 c with NaBH_{4} proceeds with lower rate than that of $\mathbf{1 a}$ and $\mathbf{1 b}$. In this case, a longer reaction time (48 h instead of 14 h) is required to reach full conversion. This series of complexes displays spectroscopic properties similar to that of the related $\left[\mathrm{RuH}\left(\mathrm{BH}_{4}\right)(\mathrm{CO})\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]$ complex, with inter alia a ${ }^{31} \mathrm{P}$ NMR chemical shift of about 78 ppm , and Ru-H resonating as a triplet centered at about -15 ppm (to be compared to 77.8 ppm and 13.5 ppm for the carbonyl complex, respectively). The $\mathrm{K}^{1}-\mathrm{HBH}_{3}$ ligand resonates as a broad signal centered at about -1.5 ppm which is indicative of a rapid exchange between the BH_{4} hydrogen atoms at room temperature. The presence of a $\mathrm{N}-\mathrm{H}$ moiety was confirmed by both IR as well as ${ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC NMR. Noteworthy, from the two-dimensional ${ }^{1} \mathrm{H}_{-}{ }^{1} \mathrm{H}$ NOE experiment (NOESY), a correlation between the $\mathrm{N}-\mathrm{H}$ and the $\mathrm{Ru}-\mathrm{HBH}_{3}$ peaks indicates a mutual syn-position of NH and $\mathrm{Ru}-\mathrm{HBH}_{3}$ moieties.

Scheme 2. General syntheses of $\mathrm{Ru} \mathrm{PN}^{\mathrm{H}} \mathrm{P}$ hydride isonitrile complexes.
The solid-state structure of $\mathbf{3 b}$ and $\mathbf{3 c}$ was further determined by X-ray diffraction studies (Figures 1 and 2). Both adopt similar configuration, namely distorted octahedral coordination sphere, with a PNP framework in meridional configuration, the isocyanide being in the trans-position to the amino group. The borohydride and hydride groups are located in syn- and anti-position compared to the N-H bond, respectively. The isonitrile ligand adopts a nonlinear configuration, as evidenced by the C17-N2-C18 angle (3b: 163.23(13), 3c: $160.70(13)^{\circ}$). It coordinates to the $\mathrm{Ru}(1)$ atom with a bond distance of $1.8944(10)$ and $1.8886(13) \AA$ for $\mathbf{3 b}$ and $\mathbf{3 c}$ respectively, which is in the range of the Ru-C(isonitrile) distances of known isonitrile complexes of ruthenium (1.8-2.1 \AA). ${ }^{24}$ These complexes are isostructural to $\left[R u H\left(B H_{4}\right)(C O)\left(P N^{H} P\right)\right],{ }^{17 a}$ the carbonyl and isonitrile ligands occupying the same coordination site.

The Ru-C bond distances of 3b and 3c are longer than the Ru-C bond distance (1.8389(12) A) for $\left[\mathrm{RuH}\left(\mathrm{BH}_{4}\right)(\mathrm{CO})\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]$. This is in line with a higher π-accepting character of the carbonyl ligand with respect to that of isonitrile ligands. ${ }^{13}$

Figure 1. ORTEP of solid-state structure of $\mathbf{3 b}$. All H atoms (except the H on Ru, B and N) are omitted for clarity. Selected bond distances (A): Ru1-P1 = 2.3092(3), Ru1-P2 $=2.3055(3)$, Ru1-N1 $=2.1884(9)$, Ru1C17 $=1.8944(10)$, Ru1-H1B $=1.843(17)$, Ru1-H = 1.507(17), N2-C17 $=1.1779$ (14). Selected angles (deg): P1-Ru1-H1B = 91.6(5), P1-Ru1-H = 89.7(6), P2-Ru1-P1 = 165.054(10), P2-Ru1-H1B = 92.8(5), P2-Ru1-H = 86.4(6), N1-Ru1-P1 = 82.71(2), N1-Ru1-P2 = 82.76(2), N1-Ru1-H1B = 93.8(5), N1-Ru1-H = 88.4(6), C17-Ru1-P1 = 97.69(3), C17-Ru1-P2 = 96.67(3), C17-Ru1-N1 = 177.36(4), C17-Ru1-H1B = 88.8(5), C17-Ru1-H = 89.0(6), H1B-Ru1-H = 177.6(8), C17-N2-C18 = 163.23(13).

Figure 2. ORTEP of solid-state structure of $\mathbf{3 c}$. All H atoms (except the H on Ru, B and N) are omitted for clarity. Selected bond distances (Å): Ru1-P1 = 2.3089(3), Ru1-P2 = 2.3009(3), Ru1-N1 = 2.1914(11), Ru1C17 = 1.8886(13), Ru1-H1B = 1.834(17), Ru1-H = 1.559(17). Selected angles (deg): P1-Ru1-H1B =
91.4(5), P1-Ru1-H = 88.7(6), P2-Ru1-P1 = 165.350(12) , P2-Ru1-H1B = 93.4(5), P2-Ru1-H = 87.5(6), N1-Ru1-P1 $=82.85(3)$, N1-Ru1-P2 $=82.93(3)$, N1-Ru1-H1B $=95.3(5)$, N1-Ru1-H $=88.5(6)$, C17-Ru1-P1 $=$ 97.25(4), C17-Ru1-P2 = 96.73(4), C17-Ru1-N1 = 176.51(5), C17-Ru1-H1B = 88.2(5), C17-Ru1-H = 88.0(6), H1B-Ru1-H = 176.3(8), C17-N2-C18 = 160.70(13).

Use of a stoichiometric quantity of NaBH_{4} towards $\mathbf{1 a} \mathbf{a}$ in EtOH allows to predominantly produce the hydridochloride [RuHCI(CN-R)(PN ${ }^{H}$ P)] species 4a-c, along with small amount of 3a-c (<5\%) (Scheme 2). Complexes 4a-c can be obtained as pure products in $55-62 \%$ isolated yield range upon crystallization from a toluene/n-pentane mixture at $-18^{\circ} \mathrm{C}$. As for the $3 \mathrm{a}-\mathrm{c}$ hydridoborohydride derivatives, these display NMR features similar to that of their carbonyl parent compound, $\left[\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]$. The isonitrile hydridochloride species ${ }^{31}$ P NMR chemical shift of about 74 ppm compares well to that of the CO derivative (75.8 ppm). In addition, the RuH ${ }^{1} \mathrm{H}$ NMR signal appears as triplet centered at about -17.5 ppm for $\mathbf{4 a}-\mathrm{c}$, to be compared to $-\mathbf{1 6 . 3 0} \mathrm{ppm}$ for the carbonyl analogue. The retention of the N-H moiety is evidenced by the $v(\mathrm{~N}-\mathrm{H})$ at about $3170 \mathrm{~cm}^{-1}$, and by the ${ }^{15} \mathrm{~N}$ NMR signal at about 54 ppm . This rules out the presence of cationic species $\left[\mathrm{RuH}(\mathrm{CN}-\mathrm{R})\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]^{+}$with outer-sphere, H-bonded chloride countercation, as was observed in the case of the more sterically crowded $\left.\left.\left[\mathrm{RuH}(\mathrm{CO})\left(\mathrm{HN}^{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}(t \mathrm{Bu})_{2}\right)_{2}\right\}\right)\right]^{+} .{ }^{17 \mathrm{a}}$

Figure 3. ORTEP of solid-state structure of $\mathbf{4 a}$. All H atoms (except the H on Ru and N) are omitted for clarity. Selected bond distances (Å): Ru1-P1 = 2.3225(4), Ru1-Cl1 = 2.5555(4), Ru1-P2 = 2.3050(4), Ru1N1 = 2.1931(13), Ru1-C17 = 1.8819(16), Ru1-H = 1.56(2), N2-C17 = 1.179(2). Selected angles (deg): P1-Ru1-Cl1 $=88.995(13), \mathrm{P} 1-\mathrm{Ru} 1-\mathrm{H}=89.4(8), \mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{H}=173.5(8), \mathrm{P} 2-\mathrm{Ru} 1-\mathrm{P} 1=164.463(14), \mathrm{P} 2-\mathrm{Ru} 1-\mathrm{Cl} 1=$ 92.044(14), P2-Ru1-H = 87.8(8), N1-Ru1-P1 = 82.71(3), N1- Ru1-Cl1 = 84.05(4), N1-Ru1-P2 = 81.98(3), N1-Ru1-H = 89.5(8), C17-Ru1-P1 = 100.38(5), C17-Ru1-Cl1 = 99.67(5), C17-Ru1-P2 = 94.73(5), C17-Ru1$\mathrm{N} 1=175.16(5), \mathrm{C} 17-\mathrm{Ru} 1-\mathrm{H}=86.8(8), \mathrm{C} 17-\mathrm{N} 2-\mathrm{C} 18=154.34(16)$.

This was confirmed by X-ray diffraction studies on $\mathbf{4 a}$ and $\mathbf{4 c}$ (Figures 3 and 4). These compounds adopt a distorted octahedral configuration, with the PNP ligand set in a meridional arrangement. Their structure is similar to that of above-described $\mathbf{3 b}$ and $\mathbf{3 c}$, with the borohydride being formally substituted by a chloride ligand, or to that of the CO analogue, $\left[\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]$.

Figure 4. ORTEP of solid-state structure of $\mathbf{4 c}$. All H atoms (except the H on Ru and N) are omitted for clarity. Selected bond distances (A): Ru1-Cl1 = 2.5426(3), Ru1-P1 = 2.3097(3), Ru1 P2 2.3071(3), Ru1-N1 $=2.1783(10)$, Ru1-C17 = 1.8831(13), Ru1-H = 1.588(17), N2-C17 = 1.1847(17). Selected angles (deg): Cl1-Ru1-H = 172.9(6), P1-Ru1-Cl1 = 89.589(12), P1-Ru1-H = 88.6(6), P2-Ru1-Cl1 = 90.372(12), P2-Ru1$\mathrm{P} 1=165.230(12), \mathrm{P} 2-\mathrm{Ru} 1-\mathrm{H}=89.6(6), \mathrm{N} 1-\mathrm{Ru} 1-\mathrm{Cl} 1=83.91(3), \mathrm{N} 1-\mathrm{Ru} 1-\mathrm{P} 1=82.92(3), \mathrm{N} 1-\mathrm{Ru} 1-\mathrm{P} 2=$ 82.39(3), N1-Ru1-H = 89.0(6), C17-Ru1-Cl1 = 100.19(4), C17-Ru1-P1 = 96.96(4), C17-Ru1-P2 = 97.58(4), C17-Ru1-N1 = 175.90(5), C17-Ru1-H = 86.9(6), C17-N2-C18 = 154.91(14).

Reaction of 4a-c with excess of NaBH_{4} resulted in the formation of 3a-c in quantitative manner based on ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR (Scheme 2). The reaction of 1 a with 1.0 equiv. of NaHBEt_{3} affords the dihydride complex $\left[\mathrm{RuH}_{2}\left(\mathrm{CN}^{2} \mathrm{CH}_{2} \mathrm{Ph}\right)\left(\mathrm{PN}^{H} \mathrm{P}\right)\right] 5 \mathrm{a}$, with a NMR yield of about 50%. Hydrido chloride derivative $\mathbf{4 a}$ was not detected. This indicates that the reaction of $1 \mathbf{a}$ with NaHBEt_{3} to form the intermediate $\mathbf{4 a}$ takes place with lower rate than that of $\mathbf{4 a}$ with NaHBEt_{3} to form $\mathbf{5 a}$, probably due to the higher solubility of intermediate $\mathbf{4 a}$ with respect to the starting compound $\mathbf{1 a}$. Addition of 2 equiv. of NaHBEt_{3} to the suspension of 1a resulted in the full conversion of the latter, affording 5 a as the main species, along with some unidentified hydride ruthenium products. Attempts to isolate $\mathbf{5 a}$ as a pure product were unsuccessful as the compound suffers from low stability, affording unidentified species upon standing at room temperature in solution. Thus, 5a was characterized in-situ by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR: Ru-H hydrides resonate as two triplets of doublets centered at $-6.25\left(^{2} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=18.4 \mathrm{~Hz}\right)$ and at $-6.48\left(^{2} J_{\mathrm{HH}}=\right.$
$6.9 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=19.0 \mathrm{~Hz}$, while the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum features a singlet at 86.89 ppm , in line with a structure featuring two equivalent phosphorus atoms.

Similar reaction with NaHBEt_{3} was performed with $\mathbf{1 c}$, resulting in the formation of a mixture of two stereoisomeric compounds, meridional mer-5c and facial fac-5c of general formula [$\mathrm{RuH}_{2}(\mathrm{NC}-$ $t \mathrm{Bu})\left(\mathrm{PN}^{H} \mathrm{P}\right)$] in respective ratio of $1.5 / 1$ with a cumulated isolated yield of 62% after crystallization from toluene/n-pentane at low temperature. The higher stability of mer-5c/fac-5c with respect to that of 5 a could be attributed to the bulkier nature of t-butyl groups that may stabilize the hydride species. As a comparison, Gusev isolated a structurally related fac- $\left[\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{HN}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{SEt}\right)_{2}\right\}\right]$ complex. ${ }^{9 \mathrm{a}}$ Both mer$\mathbf{5 c}$ and fac-5c were characterized by multinuclear NMR spectroscopy and X-ray diffraction. For mer-5c, two inequivalent Ru-H hydrides resonate as one triplet of doublets centered at $-6.86\left(^{2} J_{\mathrm{HH}}=4.9 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}\right.$ $=18.0 \mathrm{~Hz}$) and one broadened triplet at $-7.05 \mathrm{ppm}\left({ }^{2} \int_{\mathrm{HP}}=19.0 \mathrm{~Hz}\right)$ that are assigned to the Ru-H in antiand syn-positions with respect to NH proton, respectively (Figure 5). The assignments are supported by the fact that such specific broadening in related bishydride complexes was observed and attributed to the presence and concentration of water in the sample. ${ }^{25}$ The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum displays a singlet at 84.78 ppm . The ${ }^{15} \mathrm{~N}$ chemical shifts values were determined at 31.0 and 184.6 ppm for the NH and isonitrile functions, respectively. For the fac-5c, the two chemically equivalent Ru-H hydrides resonate as a multiplet centered at -8.82 ppm , being the $A A^{\prime}$ part of a $A A^{\prime} X X$ system. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum displays a singlet at 74.08 ppm . The ${ }^{15} \mathrm{~N}$ chemical shift values for the complex were determined at 19.5 and 178.0 ppm (assigned to NH and isonitrile functions, respectively) thanks to HSQC and HMBC experiments.

Figure 5. Hydride region of the ${ }^{1} \mathrm{H}$ NMR spectrum of the mer-5c/fac-5c mixture (400 MHz).
Though purification attempts were not met with success, due to thermal instability of the bishydride species, we succeeded in obtaining single crystals from a synthesis batch. Remarkably, both mer and fac isomers, mer-5c and fac-5c, co-crystallized along with one molecule of NaBEt_{4}. As seen on Figure 6, they thus form an entity where the two different ruthenium bishydride isomers assemble around a sodium cation, with tetraethylborate as non-interacting counteranion (Figure 6). ${ }^{26}$ The two organometallic fragments arrange around the sodium so that the isonitrile ligands are organized in eclipsed, head-to-tail configurations. The ruthenium fragments both feature a distorted octahedral configuration. Within mer-5c, the PNP ligand set binds to the metal center in a meridional arrangement. The tert-butylisonitrile ligand is in trans position with respect to the PNP framework's nitrogen. Accordingly, both hydrides $\left(\mathrm{H}_{\mathrm{a}}\right.$ and H_{c} on Figure 6) are in mutual trans-position. For fac-5c, the PNP ligand set features a facial arrangement. The tert-butylisonitrile ligand is in trans-position with respect to the PNP's nitrogen. Both hydrides (H and H_{b} on Figure 6) are in mutual cis position. The Ru-C bond distance of mer-5c (Ru1-C17 = 1.871(4) Å) is shorter than that of fac-5c (Ru2-C38 = 1.893(4) Å). This owes in part to the interaction with the intercalated Na cation, which is preferentially interacting with the mer-5c framework. This reflects in the Na1-C17 and Na1-N2 distances of 2.619(4) and $2.671(4)$ Å, respectively, which are shorter than the Na1-C38 and Na1-N4 distances of 2.784(4) and 3.297(5) Å, respectively. The sodium is also stabilized by further interaction with the two mutually cis hydrides from mer-5c ($\mathrm{Na} 1-\mathrm{H}$:
$2.22(5) \AA$ And $\mathrm{Na} 1-\mathrm{Hb}: 2.31(5) \AA$) and with a single hydride from 5 c with a significantly shorter $\mathrm{Na} 1-\mathrm{Hc}$ distance of 2.06(6) Å.

Figure 6. ORTEP of solid-state structure of the cation from $5 \mathrm{c} \cdot \mathrm{NaBEt}_{4}$. All H atoms (except those on Ru and N), $i \operatorname{Pr}$ groups on P, Me groups from $t \mathrm{Bu}$ moieties and the $\mathrm{BEt}_{4}{ }^{-}$anion are omitted for clarity. Selected bond distances (Å): mer-5c: Ru1-P2 = 2.2945(10), Ru1-P1 = 2.2942(11), Ru1-N1 = 2.218(3), Ru1$\mathrm{C} 17=1.871(4), \mathrm{Ru} 1-\mathrm{HA}=1.62(5), \mathrm{Ru} 1-\mathrm{Hc}=1.607(10), \mathrm{N} 2-\mathrm{C} 17=1.193(5)$. fac-5c: Ru2-P3=2.3208(9), Ru2-P4 = 2.3142(9), Ru2-N3 = 2.219(3), Ru2-C38 = 1.893(4), Ru2-H = 1.66(5), Ru2-Hb = 1.68(5), N4-C38 $=1.174(5)$. Selected angles (deg): mer-5c: P2-Ru1-Ha $=87.3(19), \mathrm{P} 2-\mathrm{Ru} 1-\mathrm{Hc}=94(3), \mathrm{P} 1-\mathrm{Ru} 1-\mathrm{P} 2=$ 163.97(4), P1-Ru1-Ha = 85.4(19), P1-Ru1-Hc = 93(3), N1-Ru1-P2 = 82.15(9), N1-Ru1-P1 = 83.33(9), N1-Ru1-Ha $=87.9(19)$, N1-Ru1-Hc $=93(3)$, C17-Ru1-P2 $=98.04(12), \mathrm{C} 17-\mathrm{Ru} 1-\mathrm{P} 1=96.64(12), \mathrm{C} 17-\mathrm{Ru} 1-\mathrm{N} 1=$ 178.68(15), C17-Ru1-Ha = 93.4(19), C17-Ru1-Hc = 86(3), $\mathrm{Ha}-\mathrm{Ru} 1-\mathrm{Hc}=178(3), \mathrm{C} 17-\mathrm{N} 2-\mathrm{C} 18=157.9(5)$. fac-5c: P3-Ru2-H = 81.0(16), P3-Ru2-Hb = 159.8(18), P4-Ru2-P3 = 110.82(3), P4-Ru2-H = 163.5(16), P4-Ru2-Hb = 84.3(18), N3-Ru2-P3 = 82.67(8), N3-Ru2-P4 = 82.25(9), N3-Ru2-Na1 = 117.01(9), N3-Ru2-H = 88.1(16), N3-Ru2-Hb = 86.3(18), C38-Ru2-P3 = 97.73(10), C38-Ru2-P4 94.48(11), C38-Ru2-N3 = 176.61(14), C38-Ru2-H = 95.3(16), C38-Ru2-Hb = 94.3(18), $\mathrm{H}-\mathrm{Ru} 2-\mathrm{Hb}=82(2), \mathrm{C} 38-\mathrm{N} 4-\mathrm{C} 39=171.6(4)$.

In analogy with the well-known chemistry of the hydrido chloro carbonyl derivatives, preparation of the amido species through N-H deprotonation of the hydrido chloro isonitrile species was attempted. Thus, reaction of $\mathbf{4 c}$ with $t B u O K$ (1.0 equiv.) was performed, leading to the formation of a new amido complex [RuH(CN-tBu)(PNP)] (6, Scheme 3). Attempts to isolate this compound were unsuccessful, due to its low stability. Thus, formation of 6 was proposed based on in-situ NMR characterization: In the hydride region, the ${ }^{1} \mathrm{H}$ NMR spectrum displays a triplet centered at $-18.74 \mathrm{ppm}\left({ }^{2}{ }_{\mathrm{H} P}=16.5 \mathrm{~Hz}\right)$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum features a singlet at 91.8 ppm . In comparison, $[\mathrm{RuH}(\mathrm{CO})(\mathrm{PNP})]$ features ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR signals at -18.71 and 94.0 ppm ; respectively. The fate of this complex remains undetermined, as decomposition into an unidentified mixture of products occurred.

In the presence of excess benzylisonitrile, the hydrido chloride derivative 4a reacts to afford the cationic species $\left[\mathrm{RuH}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]^{+}\left(\mathrm{Cl}^{-}\right)(7$, Scheme 3$)$. The solid state structure of this complex was established by a single crystal X-rays diffraction study (Figure 7). 7 features a distorted octahedral geometry, with the PNP ligand in meridional configuration. The two isonitrile ligands occupy two mutually cispositions, one being coordinated in the trans position amino group, and the other in cis position compared to the N-H functionality. Noteworthy, the (N1-H1‥Cl1) distance of 2.433(2) Å and the corresponding angle ($\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$) of $164.8(1)^{\circ}$ are indicative of a weak-strength hydrogen-bonding interaction involving ($\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$) atoms. ${ }^{27}$ In addition, the Ru1-C17 bond distance (2.0056(11) A) is longer than the Ru1-C25 bond distance (1.9070(11) \AA), likely due to the trans-influence of the hydride ligand exerted on the former.

Scheme 3. Reactivity examples of 4a and 4c

Figure 7. ORTEP of solid-state structure of 7. All H atoms (except the H on Ru and N) are omitted for clarity. Selected bond distances (Å): Ru1-P1 = 2.3258(3), Ru1-P2 = 2.3287(3), Ru1-N1 = 2.1880(9), Ru1C17 = 2.0056(11), Ru1-C25 = 1.9070(11), Ru1-H = 1.622(17), N2-C17 = 1.1609(15), N3-C25 =
1.1686(15). Selected angles (deg): P1-Ru1-P2 = 165.235(11), P1-Ru1-H = 88.5(6), P2-Ru1-H = 88.1(6), N1-Ru1-P1 = 82.68(3), N1-Ru1-P2 = 82.78(3), N1-Ru1-H = 86.8(6), C17-Ru1-P1 = 92.36(3), C17-Ru1-P2 = 90.04(3), C17-Ru1-N1 = 89.37(4), C17-Ru1-H = 175.9(6), C25-Ru1-P1 = 95.53(3), C25-Ru1-P2 = 98.66(3), C25-Ru1-N1 = 173.82(4), C25-Ru1-C17 = 96.62(5), C25-Ru1-H = 87.3(6), C17-N2-C18 = 175.61(12), C25 N3 C26 $=165.79(13)$.

Spectroscopic features of 7 are in line with this structure. On the ${ }^{1} H$ NMR spectrum, the RuH and the $\mathrm{N}-\mathrm{H}$ resonate at -8.48 and 8.43 ppm , respectively (Figure 8). The latter chemical shift (being severely low-field shifted compared to non-interacting NH moieties) combined with the $v(\mathrm{~N}-\mathrm{H})$ band at 3055 cm^{-1} on the IR spectrum, is indicative of H -bonding between the amino hydrogen and the chloride atom. ${ }^{142,28}$ Furthermore, the low field shift of this hydride peak stems from the strong trans-effect from the opposite axial isonitrile ligand. As a comparison, the ${ }^{1} \mathrm{H}$ chemical shift of the similar cationic biscarbonyl $\left[\mathrm{RuH}(\mathrm{CO})_{2}\left(\mathrm{PN}^{\mathrm{H}} \mathrm{P}\right)\right]^{+}$hydride is of $-6.2 \mathrm{ppm} .{ }^{29}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} 2 \mathrm{D}$ NOESY experiment shows no throughspace correlation between the Ru-H hydride peak and the $\mathrm{N}-\mathrm{H}$ peak, indicating a mutually antiarrangement of the $\mathrm{Ru}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ fragments. In addition, the presence of two different isonitrile ligands is evidenced by the two ${ }^{15} \mathrm{~N}$ NMR signals at 172.8 and 159.4 ppm , and by the two $v(\mathrm{C} \equiv \mathrm{N})$ bands at 2135 and $2059 \mathrm{~cm}^{-1}$ on the infrared spectrum. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum displays two downfield triplets centered at $171.38\left({ }^{2} J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right)$ and $157.42 \mathrm{ppm}\left({ }^{2} J_{\mathrm{CP}}=8.4 \mathrm{~Hz}\right)$: The more downfield signal is attributed to the isonitrile carbon atom in trans-position with respect to the hydride ligand (trans-effect) while the less downfield one is assigned to the isonitrile carbon atom in cis-position to the hydride ligand. This is showed by comparison with the values of 160.0 and 153.5 ppm observed in 2a: Formal substitution of the chloride by the hydride ligand causes a downfield shift of 11.38 ppm for the ${ }^{13} \mathrm{C}$ signal of the isonitrile ligand in trans position).

Figure 8. ${ }^{1} \mathrm{H}$ NMR spectrum of $7\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$
Bearing in mind the recent progresses on the use of Earth-abundant metal complexes as efficient catalysts in hydrogenation and dehydrogenation processes, ${ }^{6 C, 30}$ the analogous iron chemistry was also explored, following on the work of Hazari and collaborators on arylisonitrile PNP complexes. ${ }^{13}$ Synthetic studies were performed starting from the iron (II) complex $\left[\mathrm{FeBr}_{2}\left(\mathrm{PN}^{H} \mathrm{P}\right)\right] .{ }^{\text {d }}$ In contrast to ruthenium chemistry, the reaction with benzylisonitrile (even upon addition of sub-equivalent quantities of isonitrile) exclusively lead to the formation of the ionic complex of formula $\left[\mathrm{FeBr}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]^{+}\left(\mathrm{Br}^{-}\right) 8$ (Scheme 4). Formation of a neutral mono-ligated isonitrile [$\left.\mathrm{FeBr}_{2}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)\left(\mathrm{PN}^{\mathrm{H}} \mathrm{P}\right)\right]$ complex was not observed. Under similar conditions, Hazari et al. reported the formation of a mixture of neutral dichloride $\left[\mathrm{FeCl}_{2}(\mathrm{CNAr})\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]$ and cationic monochloride $\left[\mathrm{FeCl}(\mathrm{CNAr})_{2}\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]^{+}\left(\mathrm{Cl}^{-}\right)$when starting from the less sterically crowded $\left[\mathrm{FeCl}_{2}\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]$ derivative (chloride being smaller than bromide). ${ }^{13 a}$ The chemistry of such isonitrile iron complexes was recently extended to CNtBu derivatives by Guan and coworkers, who thoroughly investigated inter alia the steroeselective issues during the synthesis of iron PNP complexes. ${ }^{14^{a}}$

Extensive NMR characterization studies on $\mathbf{8}$ revealed that there are actually two stereoisomers formed in $15.6 / 1$ ratio: the major (cis-8) comprizes two isonitrile ligands in mutually cis-position while the minor one (trans-8) has two isonitrile moieties in mutually trans position. The relevant ${ }^{13} \mathrm{C}$ NMR signals of isonitrile $\mathrm{C} \equiv \mathrm{N}$ carbons are determined at 171 and 166 ppm for cis-8 and at 174 and 168 ppm for trans8. The corresponding isonitrile nitrogen resonates at 188.7 and 183.5 ppm for cis-8 and at 186.3 and 183.2 ppm for trans-8. Salt metathesis reaction of 8 with excess NaBPh_{4} followed by recrystallization produced the complex $\left[\mathrm{FeBr}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{PN}^{\mathrm{H}} \mathrm{P}\right)\right]^{+}\left(\mathrm{BPh}_{4}{ }^{-}\right) 9$ in moderate isolated yield (53\%). ${ }^{31}$ The NH proton of cis-8 resonates at lower field (6.51 ppm) with respect to that of $9(2.40 \mathrm{ppm})$ which is in line with a ($\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$) hydrogen bonding interaction in the former, and no H -bonding interaction in the latter. Accordingly, the $v(\mathrm{~N}-\mathrm{H})$ of cis-8 is found at about $165 \mathrm{~cm}^{-1}$ lower wavenumbers compared to that of 9 (3061 vs. $3227 \mathrm{~cm}^{-1}$, respectively). The solid-state structure of cis-8 and 9 were further determined by X-ray diffraction analysis (Figure 9 for cis-8; Figure 10 for 9 see Supporting Information). Complex cis-8 features a distorted octahedral geometry with the PNP ligand in meridional configuration. Similarly to 7, two isonitrile ligands occupy two mutually cis-positions. The ($\mathrm{N} 1 \cdots \mathrm{Br} 2$) and ($\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Br} 2$) distances of $3.355(4)$ and $2.487(4) \AA$, respectively, and the corresponding angle ($\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Br}$) of $168.82(3)^{\circ}$ are
indicative of a weak-strength hydrogen-bonding interaction involving ($\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$) atoms. The solid-state structure of $\mathbf{9}$ is very close to that of cis-8, except that, as the bromide counter-anion is replaced by tetraphenyl borate, the NH moiety is not involved in H -bonding interaction.

In order to access catalytically relevant hydride species, the reaction of $\mathbf{8}$ with excess of NaBH_{4} was probed. It resulted in the formation of several unidentified complexes. Noteworthy, reaction of [$\mathrm{FeBr}_{2}\left(\mathrm{PN}^{H} \mathrm{P}\right)$] with t-butylisonitrile and then with NaBH_{4} resulted in the formation of a new hydride iron complex of formula $\left[\mathrm{FeH}(\mathrm{CNtBu})_{2}\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]^{+}\left(\mathrm{BH}_{4}{ }^{-}\right) \mathbf{1 0}$ in 49% yield that was fully characterized by IR and NMR spectroscopies (Scheme 4). Guan recently described an ionic complex featuring the same cationic moiety as $\mathbf{1 0}$, with BPh_{4} as the counter-anion. ${ }^{14 \mathrm{a}}$ The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra display a characteristic hydride signal as a triplet centered at $-10.48 \mathrm{ppm}\left({ }^{2} J_{\mathrm{HP}}=50 \mathrm{~Hz}\right.$) and a singlet at 100.01 ppm, respectively. On the ${ }^{11} B$ NMR spectrum, the free BH_{4} anion resonates as a quintet centered at $38.9 \mathrm{ppm}\left({ }^{1} J_{\mathrm{BH}}=82 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}\right\}$ NMR spectrum displays two downfield signals at 175.4 and 166.2 ppm that are assigned to the two inequivalent $\mathrm{C} \equiv \mathrm{N}$ carbon atoms from the equatorial and axial isonitrile ligands, respectively. Thanks to ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N} \mathrm{HSQC}$ and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC measurements, ${ }^{15} \mathrm{~N}$ chemical shift values of NH and isonitrile functions were determined to be 31.7, 193.2 and 196.5 ppm , respectively.

Scheme 4. General syntheses of iron complexes.

Figure 9. ORTEP of solid-state structure of cis-8. All H atoms (except the H on N) are omitted for clarity. Selected bond distances (Å): Br1-Fe1 = 2.4894(5), Fe1-P1 = 2.2804(9), Fe1-P2 = 2.2840(9), Fe1-N1 = 2.073(2), Fe1-C25 = 1.826(3), Fe1-C17 = 1.824(3), N2-C17 = 1.160(3), N3-C25 = 1.152(3). Selected angles (deg): P1-Fe1-Br1 = 91.33(3), P1-Fe1-P2 = 168.03(3), $\mathrm{P} 2-\mathrm{Fe} 1-\mathrm{Br} 1=90.70(2), \mathrm{N} 1-\mathrm{Fe} 1-\mathrm{Br} 1=88.28(7)$, N1-Fe1-P1 = 84.06(8), N1-Fe1-P2 = 84.21(8), C25-Fe1-Br1 = 179.00(9), C25-Fe1-P1 = 88.29(9), C25-Fe1P2 = 89.86(9), C25-Fe1-N1 = 92.60(11), C17-Fe1-Br1 = 89.69(8), C17-Fe1-P1 = 95.11(9), C17-Fe1-P2 = 96.70(9), C17-Fe1-N1 = 177.79(11), C17-Fe1-C25 = 89.42(12), C17-N2-C18 = 173.7(3), C25-N3-C26 169.2(3).

Figure 10. ORTEP of solid-state structure of 9 . BPh_{4} anion and all H atoms (except the H on N) are omitted for clarity. Selected bond distances (Å): Br1-Fe1 = 2.5091(5), Fe1-P1 = 2.2726(10), Fe1-P2 = $2.2638(11)$, Fe1-N1 = 2.073(3), Fe1-C25 = 1.828(3), Fe1-C17 = 1.824(3), N2-C17 = 1.158(4), N3-C25 = 1.157(4). Selected angles (deg): P1-Fe1-Br1 = 90.22(3), P1-Fe1-P2 = 169.75(4), P2-Fe1-Br1 = 91.07(3),

$$
\begin{aligned}
& \text { N1-Fe1-Br1 }=88.72(8), \mathrm{N} 1-\mathrm{Fe} 1-\mathrm{P} 1=84.53(10), \mathrm{N} 1-\mathrm{Fe} 1-\mathrm{P} 2=85.32(10), \mathrm{C} 25-\mathrm{Fe} 1-\mathrm{Br} 1=88.83(9), \mathrm{C} 25- \\
& \mathrm{Fe} 1-\mathrm{P} 1=95.67(10), \mathrm{C} 25-\mathrm{Fe} 1-\mathrm{P} 2=94.52(10), \mathrm{C} 25-\mathrm{Fe} 1-\mathrm{N} 1=177.55(12), \mathrm{C} 17-\mathrm{Fe} 1-\mathrm{Br} 1=178.25(9), \mathrm{C} 17- \\
& \mathrm{Fe} 1-\mathrm{P} 1=89.03(10), \mathrm{C} 17-\mathrm{Fe} 1-\mathrm{P} 2=89.38(10), \mathrm{C} 17-\mathrm{Fe} 1-\mathrm{N} 1=89.63(12), \mathrm{C} 17-\mathrm{Fe} 1-\mathrm{C} 25=92.81(12), \mathrm{C} 17- \\
& \mathrm{N} 2-\mathrm{C} 18=175.7(3), \mathrm{C} 25-\mathrm{N} 3-\mathrm{C} 26179.7(3) .
\end{aligned}
$$

Catalytic studies in alcohol acceptorless dehydrogenation

Complexes 3a-c were further assessed in base-free dehydrogenative coupling of n-butanol into butyl butyrate. As a comparison, the carbonyl $\left[\mathrm{RuH}\left(\mathrm{BH}_{4}\right)(\mathrm{CO})\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]$ derivative was also evaluated under identical catalytic conditions. TON $_{\text {max }}$ (maximal turnover number) and TOF $_{0}$ (initial turnover frequency) values were summarized in Table 1. It is worth noting that the cationic iron complex $\mathbf{9}$ is inactive for conversion of n-butanol into ester. Comparative kinetic profiles of n-butanol conversion into ester are presented on Figure 11. Interestingly, complexes 3a $\left(\right.$ TOF $\left._{0}=6220 \mathrm{~h}^{-1}\right)$ and $\mathbf{3 b}\left(\mathrm{TOF}_{0}=5970 \mathrm{~h}^{-1}\right.$) bearing respectively benzyl and n-butyl isonitrile were found to be initially more active than the benchmark carbonyl complex ($\mathrm{TOF}_{0}=4300 \mathrm{~h}^{-1}$). However, the latter is catalytically more robust: Its corresponding TON $_{\text {max }}$ value (14100) is higher than that of $3 \mathbf{a}(10200)$ and $\mathbf{3 b}$ (9000). These isonitrile adducts reach a plateau after about 3 hours of reaction, which may indicate catalyst deactivation. On the other hand, the $t \mathrm{Bu}$ isonitrile derivative reaches its deactivated regime after about one hour, totaling about 2900 TON. These reactivity patterns illustrate that the substitution of the carbonyl by the isonitrile ligand has a beneficial effect. Catalytic behavior is indeed modulated by the nature of the isonitrile substituent. Thus, according to TOF $_{0}$ and TON $_{\text {max }}$ values, the catalytic activity and robustness can be classified as follows: for catalytic activity, $\mathbf{3 a} \approx \mathbf{3 b}>\left[\mathrm{RuH}\left(\mathrm{BH}_{4}\right)(\mathrm{CO})\left(\mathrm{PN}^{H} \mathrm{P}\right)\right] \gg \mathbf{3 c}$; for robustness, $\left[\mathrm{RuH}_{(}\left(\mathrm{BH}_{4}\right)(\mathrm{CO})\left(\mathrm{PN}^{\mathrm{H}} \mathrm{P}\right)\right]>\mathbf{3 a}>\mathbf{3 b} \gg \mathbf{3 c}$. Considering that the bulky t-butyl group is rather remote from the metal center, it is doubtfull that the lowest catalytic performance of $\mathbf{3 c}$ is related to steric effects. The origin of this behavior may be found in the more donating character of the t-butyl-substituted isonitrile, or to deactivation pathways specific to this ligand. The kinetic profile recorded for the t butylisonitrile precatalyst (Figure 11) hints at a behavior different from that of its benzyl and n-butyl counterparts, reaching a plateau after about 90 minutes and achieving less than 3000 turnover numbers. As reported by Walton and Jones, complexes featuring this specific ligand can thermally decompose into cyanide derivatives, with release of isobutene or isobutane. ${ }^{32}$ In the present case, this would result in formation of complexes featuring Ru-CN groups. However, spectroscopic investigations on
reaction mixtures did not allow us to identify such species. More generally, the lesser robustness of the isonitrile derivatives compared to that of their carbonyl counterpart may be ascribed to known reactivity patterns of metal-coordinated isonitrile ligands, such as $\mathrm{Ru}-\mathrm{H}$ insertion into coordinated $\mathrm{C} \equiv \mathrm{N}$ - or nucleophilic attack on the Ru- $\mathrm{C} \equiv \mathrm{N}$ - carbon by the alcohol substrate. ${ }^{33,34,35,36}$

Figure 11. Comparative kinetic profiles of butanol conversion mediated by Ru PNP complexes. Conditions: Ru loading $=60 \mathrm{ppm}, \mathrm{T}=130^{\circ} \mathrm{C}$.

Table 1. TON $_{\text {max }}$ and TOF $^{\circ}$ values for butanol conversion to butyl butyrate.

Complexes	TOF $^{\mathbf{0}} \mathbf{(h}^{\mathbf{- 1}} \mathbf{~}$	TON	Conversion $\mathbf{(\%)}^{\mathbf{a}}$
3a	6220	10200	61
3b	5970	9000	54
3c	2930	2900	17
$\left[R u H\left(\mathrm{BH}_{4}\right)(\mathrm{CO})\left(\mathrm{PN}^{\mathrm{H}} \mathrm{P}\right)\right]$	4300	14100	85
9c	0	0	0

Conditions: Ru loading $=60 \mathrm{ppm}, \mathrm{T}=130^{\circ} \mathrm{C}$. ${ }^{\text {a }}$: measured by ${ }^{1} \mathrm{H} \mathrm{NMR}$

Conclusions

A series of neutral and cationic ruthenium and iron aliphatic PNP-type pincer complexes bearing benzyl, n-butyl or tert-butyl isocyanides as ancillary ligands have been prepared. Their structure was inves-
tigated notably by multinuclear NMR spectroscopy, as well as by single crystal X-ray diffraction studies. Borohydride ruthenium isonitrile complexes, structurally similar to the benchmark Ru-MACHO-BH carbonyl derivative, were catalytically evaluated for base-free acceptorless dehydrogenative coupling reactions (ADC) of butanol. Catalytic activities were found to be related to the nature of isonitrile bound to the metal center, as shown by kinetic follow-up. Although their intial catalytic activity is better or comparable to that of the carbonyl parent compound, the robustness of [Ru]-CNR bond may be compromised under catalytic reaction conditions, undergoing decomposition to afford inactive species. While these results with isonitrile-containing systems bring positive elements for catalytic activity improvement of Ru PNP systems, the future implementation of this class of ancillary ligands is bound to the understanding of the deactivation pattern(s), and to the possibility to shut down such pathway(s). This will be the focus of future studies.

Experimental Section

All experiments were carried out under argon atmosphere using a glovebox or a vacuum line using standard Schlenk techniques unless some special conditions are pointed out. All ruthenium and iron complexes and tridentate ligands were stored under argon. $\left[\mathrm{Ru}(\mathrm{Cl})(\mu-\mathrm{Cl})\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]_{2}{ }^{18}$ and $\left[\mathrm{FeBr}_{2}\left(\mathrm{PN}^{H} \mathrm{P}\right)\right]$ ${ }^{2 d, 37}$ were prepared according to literature procedures. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{P},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$ and ${ }^{11} \mathrm{~B} \mathrm{NMR}$ spectra were recorded at 300 K on a Bruker Avance 300 and 400 NMR spectrometers. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm (δ) downfield from tetramethylsilane. ${ }^{31} \mathrm{P}$ NMR chemical shifts are reported in ppm (δ) downfield from $\mathrm{H}_{3} \mathrm{PO}_{4} .{ }^{15} \mathrm{~N}$ NMR chemical shift are reported in ppm (δ) downfield from NH_{3}, and were indirectly determined from $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N} \mathrm{HMBC} / \mathrm{HSQC} .{ }^{11} \mathrm{~B}$ NMR chemical shift are reported in $\mathrm{ppm}(\delta)$ downfield from $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$. Common abbreviations used in the NMR experiments are as follows: s singlet (s), doublet (d), triplet (t), virtual triplet (vt), quartet (q), quintet (q t , , multiplet (m). IR spectra were recorded on a Nicolet 6700 FT-IR spectrometer equipped with a Praying Mantis mirror chamber (from Harrick Scientific) by using a DRIFT cell equipped with KBr windows. The samples were prepared under argon in a glovebox. Typically, 64 scans were accumulated for each spectrum (resolution $4 \mathrm{~cm}^{-1}$). Data are reported as follows: weak (w), medium (m), strong (s) and very strong (vs).
 plex ($1.38 \mathrm{~g}, 1.45 \mathrm{mmol}$) in THF (50 mL) was added dropwise a solution of benzyl isocyanide (2.1 equiv., 0.35 mL) in THF (10 mL) at room temperature. The mixture was stirred for 14 h at RT, affording an offwhite suspension. The reaction mixture was evaporated under reduced pressure to give an off-white
solid, which was further washed with small amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}(5 \times 3 \mathrm{~mL})$ and then with n pentane ($3 \times 20 \mathrm{~mL}$) and finally dried under high vacuum. Yield: $1.35 \mathrm{~g}, 78 \%$. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Ru}$: C 48.48; H 7.46; N 4.71 . Found: C 48.32; H 7.37; N 4.64. FT-IR (cm^{-1}): $3133\left(\mathrm{~s}, \mathrm{v}_{\mathrm{N}-\mathrm{H}}\right)$, 2105 (vs, $\mathrm{v}_{\mathrm{C}=\mathrm{N}}$). ${ }^{1} \mathrm{H}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 400.33 \mathrm{MHz}, \mathrm{ppm}$): $\delta 7.45-7.26\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NC}\right), 4.88$ (s , $2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NC}$), 3.19 (m, 2H, CH iPr), 3.01 (m, 2H, CH CH_{2} PNP), 2.66 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$ PNP), 2.54 (brt, 1H, NH PNP), 2.38 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}$ iPr), 2.24 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}$), 1.51 (dt, $6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{HP}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} i \mathrm{Pr}$), 1.40 (dt, 6H, $J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, J_{\mathrm{HP}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} i \operatorname{Pr}$), $1.36\left(\mathrm{dt}, 6 \mathrm{H}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, J_{\mathrm{HP}}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3} i \operatorname{Pr}\right), 1.30(\mathrm{dt}, 6 \mathrm{H}$, $\left.J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, J_{\mathrm{HP}}=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} i \mathrm{Pr}\right), 1.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(298 \mathrm{~K}^{2} \mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.663 \mathrm{MHz}\right.$, ppm): $\delta 134.14\left(\mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 129.19,128.28,127.52\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 56.1,51.4\left(\mathrm{CH}_{2} \mathrm{PNP}\right), 49.3\left(\mathrm{CH}_{2}, \mathrm{PhCH}_{2} \mathrm{NC}\right)$, 29.2 (CH iPr), 28.0, 27.0 ($\mathrm{CH}_{2} \mathrm{PNP}$), 25.2, $23.0(\mathrm{CH} i \mathrm{Pr}), 19.9,19.7,19.0\left(\mathrm{CH}_{3} \mathrm{iPr}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(298 \mathrm{~K}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162.057 \mathrm{MHz}, \mathrm{ppm}\right): \delta 42.37 .2 \mathrm{D}\left\{{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}\right\}$ HSQC NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 19.1$ (NH PNP). 2D $\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HMBC NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 164.1$ ($\mathrm{PhCH}_{2} \mathrm{NC}$).
$\left.\left[\mathrm{RuCl}_{\mathbf{2}}(\mathbf{C N}-n \mathrm{Bu})\left(\mathbf{P N}^{\mathrm{H}} \mathbf{P}\right)\right] \mathbf{(1 b}\right)$. The complex was prepared in a similar manner to the procedure described above for 1a. Yield: 1.38 g, 85%. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Ru}$: C 45.00; H 8.27; N 5.00.
 $\mathrm{MHz}, \mathrm{ppm}): \delta 3.68\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CNCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 3.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Pr}), 2.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right)$, 2.75-2.52 (m, 3H, CH 2 PNP and NH), 2.45 (m, 2H, CH iPr), $2.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right.$), $1.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CN}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.55-1.21 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CN}-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{2} \mathrm{PNP}$), $1.51\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.49(\mathrm{~m}, 6 \mathrm{H}$, CH_{3} iPr), $1.38\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.36\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 0.93\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 162.057 \mathrm{MHz}, \mathrm{ppm}$): $\delta 42.76$ (PNP). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 100.663 \mathrm{MHz}, \mathrm{ppm}$): $\delta 51.6\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=2.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right), 45.6\left(\mathrm{CNCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 33.2\left(\mathrm{CH}_{2}\right), 29.04\left(\mathrm{~d}, J_{\mathrm{CP}}=10 \mathrm{~Hz}, \mathrm{CH}\right.$ iPr), 28.3 ($\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=8.7 \mathrm{~Hz}, \mathrm{CH}_{2}$ PNP), $23.09\left(\mathrm{~d}, 2 \mathrm{C}, J_{\mathrm{CP}}=8.9 \mathrm{~Hz}, \mathrm{CH} \operatorname{Pr}\right.$), $20.4\left(\mathrm{CH}_{2}\right), 20.3,20.2,20.1,19.3\left(\mathrm{CH}_{3} \mathrm{iPr}\right)$, $14.3\left(\mathrm{CNCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) .2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}^{1} \mathrm{H}\right\}$ HSQC NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 18.5$ (NH PNP). 2D $\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HMBC NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 162.5\left(\mathrm{CN}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right)$.
$\left[\mathrm{RuCl}_{\mathbf{2}}(\mathbf{C N}-\mathbf{t B u})\left(\mathbf{P N}^{\mathrm{H}} \mathbf{P}\right)\right](\mathbf{1 c})$. The complex was prepared in a similar manner to the procedure described above, though with a reaction time of 48 hours. Yield: $1.33 \mathrm{~g}, 82 \%$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}$ 45.00; H 8.27; N 5.00. Found: C 44.92; H 8.29; N 4.95. FT-IR $\left(\mathrm{cm}^{-1}\right): 3148\left(\mathrm{~s}, \mathrm{v}_{\mathrm{NH}}\right), 2102\left(\mathrm{~s}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right) .{ }^{1} \mathrm{H}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 400.33 \mathrm{MHz}$, ppm $\delta 3.19$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{iPr}$), 2.99 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}$), 2.66 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}$), $2.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{iPr}), 2.47\left(1 \mathrm{H}, \mathrm{brt}, \mathrm{J}_{\mathrm{HH}}=12.2,4.0 \mathrm{~Hz}, \mathrm{NH}\right), 2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right), 1.56\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right)$, $1.53\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} t \mathrm{Bu}\right), 1.40\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.37\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$

PNP). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 162.057 \mathrm{MHz}, \mathrm{ppm}$): $\delta 42.06$ (PNP). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, $100.663 \mathrm{MHz}, \mathrm{ppm}): \delta 51.27\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=2.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right.$), $31.75\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{tBu}\right), 29.80\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=10.4 \mathrm{~Hz}, \mathrm{CH} \mathrm{iPr}\right)$, $28.35\left(\mathrm{t}, J_{\mathrm{CP}}=8.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right), 22.93\left(\mathrm{t}, J_{\mathrm{CP}}=7.9 \mathrm{~Hz}, \mathrm{CH} i \mathrm{Pr}\right), 20.18\left(\mathrm{CH}_{3} \mathrm{iPr}\right), 19.90\left(\mathrm{CH}_{3} i \operatorname{Pr}\right)$, $19.49\left(\mathrm{CH}_{3}\right.$ iPr), 19.44 (CH_{3} iPr). 2D $\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HSQC NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 19.1$ (NH, PNP). 2D $\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HMBC NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 187.7$ (CN-tBu).
$\left[\mathrm{RuCl}\left(\mathrm{CN}-\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{PN}^{\mathrm{H}} \mathrm{P}\right)\right](\mathrm{Cl})(\mathbf{2 a})$. To a yellow-orange solution of dimeric $\left[\mathrm{Ru}(\mathrm{Cl})(\mu-\mathrm{Cl})\left(\mathrm{PN}{ }^{\mathrm{H}} \mathrm{P}\right)\right]_{2}$ complex ($1.0 \mathrm{~g}, 1.05 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was added dropwise a solution of benzyl isocyanide (5.6 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature. The reaction mixture immediately turns to green. After stirring for 20 h at RT, a pale yellow suspension was obtained. The reaction mixture was evaporated to dryness. The obtained residual solid was washed with diethyl ether ($3 \times 5 \mathrm{~mL}$) and n-pentane $(3 \times 5 \mathrm{~mL})$ and dried under vacuum. The product was further purified by crystallization into $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ diethyl ether at $-20^{\circ} \mathrm{C}$ as a white solid. Yield: $1.08 \mathrm{~g}, 72 \%$. The complex can also be synthesized by using THF as solvent. Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{P}_{2} \mathrm{Ru}$: C 54.01; H 7.22; N 5.90. Found: C 54.2; H 7.91; N 6.10. FT-IR (cm^{-1}): 3062 ($\mathrm{m}, \mathrm{v}_{\mathrm{NH}}$), $2140\left(\mathrm{vs}, \mathrm{v}_{\mathrm{C} \equiv \mathrm{N}}\right.$). ${ }^{1} \mathrm{H}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 400.33 \mathrm{MHz}, \mathrm{ppm}$): $\delta 7.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}, \mathrm{Ph}\right), 7.46-7.31$ ($\mathrm{m}, 8 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}, \mathrm{Ph}$), $6.91\left(\mathrm{brt}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=9.8,4.1 \mathrm{~Hz}, \mathrm{NH}\right), 5.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.02(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$ PNP), 2.33 (m, 2H, CH iPr), 2.30 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH} i \mathrm{Pr}$), 2.06 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}$), 1.95 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$ PNP), $1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right), 1.28\left(\mathrm{dt}, 6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, J_{\mathrm{HP}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} i \operatorname{Pr}\right), 1.27\left(\mathrm{dt}, 6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{HP}}=\right.$ $\left.7.4 \mathrm{~Hz},-\mathrm{CH}_{3}, i \operatorname{Pr}\right), 1.26\left(\mathrm{dt}, 6 \mathrm{H}, J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, J_{\mathrm{HP}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} i \mathrm{Pr}\right), 1.15\left(\mathrm{dt}, 6 \mathrm{H}, J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, J_{\mathrm{HP}}=6.9 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{3} \mathrm{iPr}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 121.495 \mathrm{MHz}, \mathrm{ppm}$): $\delta 48.77$ (PNP). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, $100.663 \mathrm{MHz}, \mathrm{ppm}): \delta 135.50\left(\mathrm{C}_{\mathrm{Ar}}\right.$ quat., Ph), 132.93 (C_{Ar} quat., Ph), 129.58 ($\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}, \mathrm{Ph}$), 129.31 ($\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$, Ph), 129.25 ($\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}, \mathrm{Ph}\right), 128.89\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}, \mathrm{Ph}\right), 128.10\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}, \mathrm{Ph}\right), 56.17\left(\mathrm{CH}_{2} \mathrm{PNP}\right), 49.29\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 49.13$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 30.68\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right.$), $28.11\left(\mathrm{t}, 2 \mathrm{C}, J_{\mathrm{CP}}=11.1 \mathrm{~Hz}, \mathrm{CH} \mathrm{iPr}\right), 26.12\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=8.9 \mathrm{~Hz}, \mathrm{CH}\right.$ $i \operatorname{Pr}), 19.88\left(\mathrm{CH}_{3} \mathrm{iPr}\right)$, $19.52\left(\mathrm{CH}_{3} \mathrm{iPr}\right), 19.20\left(\mathrm{CH}_{3} i \operatorname{Pr}\right), 19.17\left(\mathrm{CH}_{3} i \operatorname{Pr}\right) .2 \mathrm{D}\left\{{ }^{1} \mathrm{H}^{-13} \mathrm{C}\right\} \mathrm{HMBC}$ NMR $(298 \mathrm{~K}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.663 \mathrm{MHz}$): 160.0, 153.5 ($\mathrm{CN}-\mathrm{CH}_{2} \mathrm{Ph}$). 2D $\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HSQC NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 40.565 \mathrm{MHz}$, ppm): $\delta 16.37$ (NH, PNP). $2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HMBC NMR (293K, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 173.91$ ($\mathrm{CNCH}_{2} \mathrm{Ph}$), $171.37\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)$.
$\left.\left[\mathrm{RuCl}(\mathbf{C N}-n \mathrm{Bu})_{\mathbf{2}}\left(\mathbf{P N}{ }^{\mathrm{H}} \mathbf{P}\right)\right](\mathbf{C l}) \mathbf{(2 b}\right)$. The complex was prepared in a similar manner to the procedure described above for 2a. Yield: 69\%. Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{55} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{P}_{2} \mathrm{Ru}$: C 48.52; H 8.61; N 6.53. Found: C 48.63; H 9.25; N 7.08. ${ }^{1} \mathrm{H}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 400.33 \mathrm{MHz}, \mathrm{ppm}$): $\delta 6.80$ (brt, $1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=10,4.7 \mathrm{~Hz}, \mathrm{NH}$), $3.87\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{CNCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 3.70\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{CNCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 3.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$
 $2 \mathrm{H}, \mathrm{CH}_{2}$ PNP), $1.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.39$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3} i \operatorname{Pr}$), $1.33\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 0.93\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, \mathrm{CNCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 0.92\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.4\right.$ $\left.\mathrm{Hz}, \mathrm{CNCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 121.495 \mathrm{MHz}, \mathrm{ppm}$): $\delta 49.9$ (PNP). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (298 K , $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 100.663 \mathrm{MHz}, \mathrm{ppm}\right): \delta 55.94\left(\mathrm{CH}_{2} \mathrm{PNP}\right)$, $44.98\left(\mathrm{CH}_{2}, n \mathrm{Bu}\right), 44.70\left(\mathrm{CH}_{2} n \mathrm{Bu}\right), 31.38\left(\mathrm{CH}_{2} n \mathrm{Bu}\right), 30.97$ ($\mathrm{CH}_{2} n \mathrm{Bu}$), $30.38\left(\mathrm{t}, J_{\mathrm{CP}}=11.3 \mathrm{~Hz}, \mathrm{CH} i \mathrm{Pr}\right), 27.92\left(\mathrm{t}, J_{\mathrm{CP}}=10.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right), 25.90\left(\mathrm{t}, J_{\mathrm{CP}}=9.3 \mathrm{~Hz}, \mathrm{CH} \mathrm{Pr}\right)$, $20.06\left(\mathrm{CH}_{2} n \mathrm{Bu}\right), 19.98\left(\mathrm{CH}_{2} n \mathrm{Bu}\right)$, $19.86\left(\mathrm{CH}_{3} \mathrm{iPr}\right)$, $19.58\left(\mathrm{CH}_{3} \mathrm{iPr}\right), 19.20\left(\mathrm{CH}_{3} \mathrm{iPr}\right), 13.36\left(\mathrm{CH}_{3} n \mathrm{Bu}\right)$, $13.21\left(\mathrm{CH}_{3}, n \mathrm{Bu}\right) .2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HSQC NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 17.8$ (NH, PNP). $2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}\right.$ $\left.{ }^{1} \mathrm{H}\right\}$ HMBC NMR ($\left.298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 40.565 \mathrm{MHz}, \mathrm{ppm}\right):$: 176.0, $171.8\left(\mathrm{CN}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right)$.
$\left[\mathbf{R u C l}(\mathbf{C N}-\mathbf{t B u})_{\mathbf{2}}\left(\mathbf{P N}{ }^{H} \mathbf{P}\right)\right] \mathbf{C l} \mathbf{(2 C)}$. The complex was prepared in a similar manner to the procedure described above for 2a. Yield: 75\%. Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{55} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{P}_{2} \mathrm{Ru}$: C $48.52 ; \mathrm{H} 8.61 ; \mathrm{N} 6.53$. Found: C 48.63; H 9.25; N 7.08. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 400.33 \mathrm{MHz}, \mathrm{ppm}$): $\delta 6.74\left(\mathrm{br}, \mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=10.4 \mathrm{~Hz}, \mathrm{NH}\right.$ PNP), 3.03 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$ PNP), 2.60 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH} \operatorname{iPr}$), 2.50 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH} \operatorname{Pr}$), 2.15 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}$), 1.92 (m , $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}$), 1.8 (m, 2H, CH2 PNP), 1.56 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3} t \mathrm{Bu}$), $1.53\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.49\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right)$, $1.48\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} t \mathrm{Bu}\right), 1.41\left(\mathrm{dt}, 6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{HP}}=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} i \mathrm{Pr}\right), 1.34\left(\mathrm{dt}, 6 \mathrm{H}, \mathrm{CH}_{3}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, J_{\mathrm{HP}}=\right.$ $\left.6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{iPr}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($300 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 400.33 \mathrm{MHz}, \mathrm{ppm}$) : $\delta 49.07$ (PNP). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (300 K , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.663 \mathrm{MHz}, \mathrm{ppm}\right): \delta 57.53$ (d, C quat. tBu), 57.40 (d, C quat. $t \mathrm{Bu}$), 55.62 ($\mathrm{CH}_{2} \mathrm{PNP}$), 30.90 (t , $\left.J_{\mathrm{CP}}=11.4 \mathrm{~Hz}, \mathrm{CH} i \mathrm{Pr}\right), 30.55\left(\mathrm{CH}_{3} t \mathrm{Bu}\right), 30.21\left(\mathrm{CH}_{3} t \mathrm{Bu}\right), 27.79\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=10.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right), 26.63\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=\right.$ $9.6 \mathrm{~Hz}, \mathrm{CH} i \mathrm{Pr}), 20.09\left(\mathrm{CH}_{3} \mathrm{iPr}\right), 19.88\left(\mathrm{CH}_{3} \mathrm{iPr}\right), 19.54\left(\mathrm{CH}_{3} i \operatorname{Pr}\right) .2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}\right\} \operatorname{HSQC} \operatorname{NMR}\left(300 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, 40.565 MHz, ppm): $\delta 14.7$ (NH PNP). $2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR ($300 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): δ 194.2 (CN-tBu).
$\left[\mathrm{RuH}\left(\mathrm{BH}_{4}\right)\left(\mathbf{C N}^{-C H} \mathbf{C h}\right)\left(\mathrm{PN}^{\mathrm{H}} \mathrm{P}\right)\right]$ (3a). To the suspension of $1 \mathrm{a}(0.5 \mathrm{~g}, 0.84 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(0.160 \mathrm{~g}, 4.2 \mathrm{mmol})$ at RT. The reaction mixture was stirred at RT for 20 h . The resulting colorless solution was evaporated to dryness under reduced pressure. The residual white solids were extracted with toluene $(2 \times 30 \mathrm{~mL})$. The extracts were filtered and evaporated to dryness. Yield: 0.31 g , 67%. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{49} \mathrm{BN}_{2} \mathrm{P}_{2}$ Ru: C 53.43; H 9.16; N 5.19. Found C 54.13; H 9.43; N 5.19. ${ }^{1} \mathrm{H}$ NMR (298 K, $\left.C_{6} \mathrm{D}_{6}, 400.33 \mathrm{MHz}, \mathrm{ppm}\right): \delta 7.21-7.09\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}, \mathrm{Ph}\right), 7.02\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right.$, para-C $\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$, $\mathrm{Ph}), 4.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.98\left(\mathrm{brt}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HN}}=11.1 \mathrm{~Hz}, \mathrm{NH}\right), 2.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \operatorname{Pr}), 2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right)$, $1.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} i \mathrm{Pr}), 1.82-1.56\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right), 1.50\left(\mathrm{dt}, 6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, J_{\mathrm{HP}}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} i \mathrm{Pr}\right), 1.13$ (dt, 12H, $\left.J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, J_{\mathrm{HP}}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3} i \operatorname{Pr}\right), 1.02\left(\mathrm{dt}, 6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, J_{\mathrm{HP}}=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} i \operatorname{Pr}\right),-1.50(\mathrm{brd}$,
$\left.4 \mathrm{H}, \mathrm{BH}_{4}\right),-14.33\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=18.4 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 121.495 \mathrm{MHz}, \mathrm{ppm}\right): \delta 77.57$ (PNP). $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 100.663 \mathrm{MHz}, \mathrm{ppm}$): $\delta 137.19\left(\mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 128.79,127.58,127.17\left(\mathrm{C}_{\text {ar }}-\mathrm{H}\right)$, $54.56\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=5.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right.$), $48.14\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 30.01\left(\mathrm{t}, 2 \mathrm{C}, J_{\mathrm{CP}}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right), 29.02\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=10.2\right.$ $\mathrm{Hz}, \mathrm{CH} \operatorname{Pr}$), 24.46 ($\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=11.7 \mathrm{~Hz}, \mathrm{CH} \mathrm{Pr}$), $21.31\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=3.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{iPr}\right.$), $20.82\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=3.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ iPr), $19.1\left(\mathrm{CH}_{3}\right.$ iPr), $18.08\left(\mathrm{CH}_{3}\right.$ iPr). 2D $\left\{{ }^{15} \mathrm{~N}^{-1} \mathrm{H}\right\} \operatorname{HSQC} \operatorname{NMR}\left(293 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 40.565 \mathrm{MHz}, \mathrm{ppm}\right): \delta 47.3$ (NH). 2D $\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR ($293 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 160.04\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (293 $\left.\mathrm{K}, \mathrm{C}_{6} \mathrm{D}_{6}, 128.442 \mathrm{MHz}, \mathrm{ppm}\right): \delta-33.46\left(\mathrm{br}, \mathrm{BH}_{4}\right)$.
$\left[\mathrm{RuH}\left(\mathrm{BH}_{4}\right)(\mathbf{C N}-n \mathrm{Bu})\left(\mathbf{P N}^{\mathrm{H}} \mathbf{P}\right)\right](\mathbf{3 b})$. The complex was prepared in a similar manner to the procedure described above for 3a. Yield: 69\%. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{51} \mathrm{BN}_{2} \mathrm{P}_{2} \mathrm{Ru}$: C 49.90; H 10.17; N 5.54. Found: C 50.04; H 10.26; N 5.68. ${ }^{1} \mathrm{H}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 400.33 \mathrm{MHz}, \mathrm{ppm}$): $\delta 3.92(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 3.07\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ 6.5 Hz, CN-CH2), 2.72 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH} \operatorname{Pr}$), $2.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right.$), $1.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \operatorname{iPr})$, 1.8-1.57 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}$ PNP), 1.50 (dt, $6 \mathrm{H}, J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, J_{\mathrm{HP}}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} i \mathrm{Pr}$), $1.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} n \mathrm{Bu}\right), 1.19-1.1\left(\mathrm{~m}, 14 \mathrm{H}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ $n \mathrm{Bu}$ and $12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}$), $1.02\left(\mathrm{dt}, 6 \mathrm{H}, J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, J_{\mathrm{HP}}=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} i \mathrm{Pr}\right), 0.74\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ $n \mathrm{Bu}),-1.80\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{BH}_{4}\right),-14.67\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=18.8 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(298 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 121.495 \mathrm{MHz}\right.$, ppm): $\delta 77.73$ (PNP). $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 75.468 \mathrm{MHz}, \mathrm{ppm}$): $\delta 176.68\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=12.8 \mathrm{~Hz}, \mathrm{CN}-n \mathrm{Bu}\right.$), $54.2\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=4.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right), 43.57\left(\mathrm{CN}-\mathrm{CH}_{2}\right), 32.63\left(\mathrm{CH}_{2} n \mathrm{Bu}\right), 29.94\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=8.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right), 28.90(\mathrm{t}$, $J_{\mathrm{CP}}=10 \mathrm{~Hz}, \mathrm{CH}$ iPr), $24.5\left(\mathrm{t}, J_{\mathrm{CP}}=11.5 \mathrm{~Hz}, \mathrm{CH} i \mathrm{Pr}\right)$, $21.15\left(\mathrm{CH}_{3} \mathrm{iPr}\right)$, $20.59\left(\mathrm{CH}_{3} \mathrm{iPr}\right)$, $19.87\left(\mathrm{CH}_{2} n \mathrm{Bu}\right), 18.94$ $\left(\mathrm{CH}_{3} \mathrm{iPr}\right), 17.92\left(\mathrm{CH}_{3} i \mathrm{Pr}\right), 13.33\left(\mathrm{CH}_{3} n \mathrm{Bu}\right) .2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HSQC NMR ($293 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): δ 44.6 (NH, PNP). 2D $\left\{{ }^{15} \mathrm{~N}^{-1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 163.02$ (CN-nBu). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (298 K, C C_{8}, $\left.128.442 \mathrm{MHz}, \mathrm{ppm}\right): \delta-33.99\left(\mathrm{br}, \mathrm{BH}_{4}\right)$.
$\left[\mathrm{RuH}\left(\mathrm{BH}_{4}\right)(\mathbf{C N}-t \mathrm{Bu})\left(\mathbf{P N}^{\mathrm{H}} \mathrm{P}\right)\right](3 \mathrm{C})$. The complex was prepared in a similar manner to the procedure described above for 3a. Yield: 73\%. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{51} \mathrm{BN}_{2} \mathrm{P}_{2} \mathrm{Ru}$: C 49.90; H 10.17; N 5.54. Found: C 50.02; H 10.07; N 5.60. FT-IR (v, cm ${ }^{-1}$): 3206.9 (w, NH), 2371, 2327.4 (vs), 2298 ($\mathrm{Ru}-\mathrm{HBH}_{3}$), 2024.2 (vs, Ru-CN), 1837.2 (m, Ru-H). ${ }^{1} \mathrm{H}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 400.33 \mathrm{MHz}, \mathrm{ppm}$): $\delta 3.89$ (br, 1H, NH), 2.75 (m, 2H, CH $i P r), 2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right), 1.97(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{iPr}), 1.72-1.56\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right), 1.52\left(\mathrm{dt}, 6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{HP}}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.15\left(\mathrm{dt}, 12 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, J_{\mathrm{HP}}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3} i \mathrm{Pr}\right), 1.09\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} t \mathrm{Bu}\right), 1.02\left(\mathrm{dt}, J_{\mathrm{HH}}\right.$ $\left.=6.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{HP}}=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right),-1.31\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{BH}_{4}\right),-14.78\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=18.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ru}-\mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($298 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 121.495 \mathrm{MHz}, \mathrm{ppm}$): $\delta 77.32$ (PNP). $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}\right\} \mathrm{NMR}\left(298 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 100.663 \mathrm{MHz}, \mathrm{ppm}\right): \delta$ 169 ($\mathrm{CN}-t \mathrm{Bu}$), 54.7 ($\mathrm{C}_{\text {quat. }} t \mathrm{Bu}$), $54.4\left(\mathrm{CH}_{2} \mathrm{PNP}\right)$, $31.0\left(\mathrm{CH}_{3} t \mathrm{Bu}\right)$, $30.1\left(\mathrm{CH}_{2} \mathrm{PNP}\right), 29.4(\mathrm{CH} i \mathrm{Pr}), 24.9(\mathrm{CH}$ $i \operatorname{Pr}), 21.4\left(\mathrm{CH}_{3} i \operatorname{Pr}\right), 20.7\left(\mathrm{CH}_{3} i \operatorname{Pr}\right), 19.1\left(\mathrm{CH}_{3} i \operatorname{Pr}\right), 17.9\left(\mathrm{CH}_{3} i \operatorname{Pr}\right) .2 \mathrm{D}\left\{{ }^{1} \mathrm{H}^{-13} \mathrm{C}\right\} \mathrm{HMBC}$ NMR $\left(298 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}\right.$,
$100.663 \mathrm{MHz}, \mathrm{ppm}): 169$ (CN-tBu). $2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HSQC NMR ($298 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 47.0$ (NH). $2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 40.565 \mathrm{MHz}, \mathrm{ppm}$) : $\delta 184.61$ (CN-tBu). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (298 K , $\left.\mathrm{C}_{7} \mathrm{D}_{8}, 128.4418 \mathrm{MHz}, \mathrm{ppm}\right): \delta-33.86\left(\mathrm{br}, 1 \mathrm{~B}, \mathrm{BH}_{4}\right)$.
[RuHCl(CN-CH2Ph)(PN ${ }^{H}$ P)] (4a). To the suspension of $1 \mathrm{a}(0.4 \mathrm{~g}, 0.67 \mathrm{mmol})$ in $\mathrm{EtOH}(40 \mathrm{~mL})$ was slowly added the solution of NaBH_{4} (1 equiv., 0.026 g) in $\mathrm{EtOH}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at RT for 20h. The resulting colorless solution was evaporated to dryness under reduced pressure. The residual white solids were extracted with toluene and the solution was filtered and concentrated. The crystallization process was performed by addition of n-pentane while maintaining the solution at -20 ${ }^{\circ} \mathrm{C}$. After 20 h , white crystals formed and were collected and washed with n-pentane ($3 \times 5 \mathrm{~mL}$) and dried under vacuum. Yield: 0.22 g , 59%. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{45} \mathrm{ClN}_{2} \mathrm{P}_{2} \mathrm{Ru}$: C 51.47; H 8.10; N 5.00. Found: C 51.48; H 8.26; N 5.06. ${ }^{1} \mathrm{H}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 400.33 \mathrm{MHz}, \mathrm{ppm}$): $\delta 7.33\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, ortho- $\mathrm{C}_{\mathrm{Ar}}{ }^{-}$ $\mathrm{H}), 7.17\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right.$, meta- $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.05\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}\right.$, para $\left.-\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}, \mathrm{Ph}\right), 4.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $3.55\left(\mathrm{brt}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}}=12.0 \mathrm{~Hz}, \mathrm{NH}\right), 3.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \operatorname{Pr}), 2.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right), 1.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, CH iPr), 1.81 (m, 2H, CH2 PNP), 1.71-1.50 (m, 4H, CH2 PNP), $1.62\left(\mathrm{dt}, 6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{HP}}=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ $i P r), 1.19\left(\mathrm{dt}, 6 \mathrm{H}, J_{\mathrm{HH}}=6.4 \mathrm{~Hz}, J_{\mathrm{HP}}=7.8 \mathrm{~Hz}, \mathrm{CH}_{3} i \mathrm{Pr}\right), 1.17\left(\mathrm{dt}, J_{\mathrm{HH}}=6.4 \mathrm{~Hz}, J_{\mathrm{HP}}=5.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} i \mathrm{Pr}\right), 1.02$ (dt, $\left.6 \mathrm{H}, J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, J_{\mathrm{HP}}=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{iPr}\right),-17.10\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=18.7 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, $121.495 \mathrm{MHz}, \mathrm{ppm}): \delta 74.21$ (PNP). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 100.663 \mathrm{MHz}, \mathrm{ppm}\right): \delta 128.61\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $127.27\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 127.14\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 53.98\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=4.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right), 48.36\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 30.43\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=7.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ PNP), 26.81($\left.\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=9.6 \mathrm{~Hz}, \mathrm{CH} i \operatorname{Pr}\right), 24.27\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=11.4 \mathrm{~Hz}, \mathrm{CH} \operatorname{iPr}\right), 21.33\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=2.7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{iPr}\right), 20.96$ ($\mathrm{t},{ }^{2} J_{\mathrm{CP}}=3.7 \mathrm{~Hz}, \mathrm{CH}_{3} i \operatorname{Pr}$), $19.23\left(\mathrm{CH}_{3} \mathrm{iPr}\right)$, $17.78\left(\mathrm{CH}_{3} i \operatorname{Pr}\right) .2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HSQC NMR ($293 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 40.565$ $\mathrm{MHz}, \mathrm{ppm}): \delta 55.1(\mathrm{NH}) .2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\} \mathrm{HMBC} \operatorname{NMR}\left(293 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 40.565 \mathrm{MHz}, \mathrm{ppm}\right): \delta 160.04\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)$. [RuHCI(CN-nBu)(PN ${ }^{H}$ P)] (4b). Complex 4b was prepared in a similar manner as described for the synthesis of 4a, starting from 1b. Yield: 55\%. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{47} \mathrm{ClN}_{2} \mathrm{P}_{2} \mathrm{Ru}$: C 47.95; H 9.01; N 5.33. Found: 47.40, H 9.72, N 4.95. FT-IR (v, cm ${ }^{-1}$): $3170.1\left(\mathrm{~m}, \mathrm{v}_{\mathrm{NH}}\right), 2075,2056$ ($\mathrm{vs}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}$), $1949.3\left(\mathrm{~s}, \mathrm{v}_{\mathrm{RuH}}\right) .{ }^{1} \mathrm{H}$ NMR (293 K, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 400.33 \mathrm{MHz}, \mathrm{ppm}\right): \delta 3.79\left(\mathrm{brt}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=11.9 \mathrm{~Hz}, \mathrm{NH}\right), 3.23\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.1 \mathrm{~Hz}\right.$, $\mathrm{CNCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$), $3.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \operatorname{iPr}), 2.79\left(\mathrm{br} \mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right.$), $2.0(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{iPr}), 1.89-1.58(\mathrm{~m}, 6 \mathrm{H}$, CH_{2} PNP), $1.68\left(\mathrm{td}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}}=7.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.36-1.19\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CNCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 1.24(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}$), $1.05\left(\mathrm{td}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3} i \operatorname{Pr}\right), 0.75\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right.$, $\left.\mathrm{CNCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right),-17.58\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=18.9 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 121.495 \mathrm{MHz}, \mathrm{ppm}\right): \delta$ 74.54 (PNP). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 100.663 \mathrm{MHz}, \mathrm{ppm}$): $\delta 182.37\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=11.9 \mathrm{~Hz}, \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right)$,
$54.49\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=5.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ PNP), $44.33\left(\mathrm{CNCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 33.40\left(\mathrm{CNCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 30.93\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=7.4\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{PNP}$), $27.25\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=9.2 \mathrm{~Hz}, \mathrm{CH} i \mathrm{Pr}\right), 24.8\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=11.8 \mathrm{~Hz}, \mathrm{CH} \mathrm{Pr}\right), 21.75\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=3 \mathrm{~Hz}, \mathrm{CH}_{3} i \mathrm{Pr}\right)$, $21.31\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=3 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{iPr}\right), 20.50\left(\mathrm{CN}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.63\left(\mathrm{CH}_{3} \mathrm{iPr}\right), 18.24\left(\mathrm{CH}_{3} \mathrm{iPr}\right), 13.94$ $\left(\mathrm{CN}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right) .2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HSQC NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 53.8$ (NH). 2D $\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR (298 K, C $\left.C_{6} \mathrm{D}_{6}, 40.565 \mathrm{MHz}, \mathrm{ppm}\right): \delta 162.5$ (CN-nBu).
[$\left.\mathrm{RuHCl}(\mathbf{C N}-t \mathrm{Bu})\left(\mathbf{P N}{ }^{H} \mathbf{P}\right)\right](4 \mathrm{c})$. Complex $\mathbf{4 c}$ was prepared in a similar manner as described for the synthesis of 4a, starting from 1c. Yield: 62%. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{51} \mathrm{BN}_{2} \mathrm{P}_{2} \mathrm{Ru}$: C 47.95 ; H 9.01; N 5.33. Found: C 47.37, H 9.75, N 5.14. ${ }^{1} \mathrm{H}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 400.33 \mathrm{MHz}, \mathrm{ppm}$): $\delta 3.73\left(\mathrm{brt}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HN}}=11.7 \mathrm{~Hz}, \mathrm{NH}\right.$), 3.05 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}$ iPr), 2.73 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}$), 2.02 (m, 2H, CH iPr), 1.90-1.50 (m, 6H, CH2 PNP), 1.69 (dt, 6H, $\left.{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.25\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.24\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.18\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} t \mathrm{Bu}\right)$, $1.05\left(\mathrm{dt}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{iPr}\right),-17.8\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=18.8 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(298 \mathrm{~K}$, $\left.\mathrm{C}_{7} \mathrm{D}_{8}, 121.495 \mathrm{MHz}, \mathrm{ppm}\right): \delta 74.0$ (PNP). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(298 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 100.663 \mathrm{MHz}, \mathrm{ppm}\right): \delta 174.0(\mathrm{CN}-$ $t \mathrm{Bu}), 54.59$ (C quat. $t \mathrm{Bu}$), $54.22\left(\mathrm{t}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right.$), $31.51\left(\mathrm{CH}_{3} t \mathrm{Bu}\right), 30.72\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=8.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ PNP), 27.36 ($\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=10.2 \mathrm{~Hz}, \mathrm{CH} \mathrm{Pr}$), $24.80\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=10.9 \mathrm{~Hz}, \mathrm{CH} \mathrm{Pr}\right), 21.63\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=2.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{iPr}\right)$, $21.09\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=4.3 \mathrm{~Hz}, \mathrm{CH}_{3} i \operatorname{Pr}\right), 19.28\left(\mathrm{CH}_{3} i \operatorname{Pr}\right), 17.87\left(\mathrm{CH}_{3} i \operatorname{Pr}\right) .2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\} \operatorname{HSQC} \operatorname{NMR}\left(298 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}\right.$, $40.565 \mathrm{MHz}, \mathrm{ppm}): \delta 54.0(\mathrm{NH}) .2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 184.23$ (CN$t \mathrm{Bu})$.

Characterization of $\left[\mathrm{RuH}_{2}\left(\mathrm{CN}^{\left.\left(\mathrm{CH}_{2} \mathbf{P h}\right)\left(\mathrm{PN}^{\mathrm{H}} \mathbf{P}\right)\right](5 a) \text {. To the suspension of } \mathbf{1 a}(0.3 \mathrm{~g}, 0.51 \mathrm{mmol}) \text { in tolu- }}\right.\right.$ ene (10 mL) was added a solution of NaHBEt_{3} in toluene ($1 \mathrm{M}, 2.1$ equiv., 1.06 mmol) at $-18{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature. After 14 h , the yellow solution was filtered throughout a celite column and evaporated under vacuum to afford a yellow solid. Attempts to purify the product were unsuccessful due to its low stability. Selected characterization elements: ${ }^{1} \mathrm{H}$ NMR (300 K , $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300.129 \mathrm{MHz}, \mathrm{ppm}\right): \delta 4.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right),-6.25\left(\mathrm{td}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=18.4 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{H}\right),-6.48$ (td, $\left.1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=19 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 121.495 \mathrm{MHz}, \mathrm{ppm}\right): \delta 86.89$ (PNP).
$\left[\mathrm{RuH}_{2}(\mathbf{C N}-\mathrm{tBu})\left(\mathbf{P N}{ }^{\mathrm{H}} \mathbf{P}\right] \mathbf{(5 c)}\right.$. To a suspension of $\mathbf{1 c}(0.34 \mathrm{~g}, 0.61 \mathrm{mmol})$ in toluene (10 mL) was slowly added a solution of NaHBEt_{3} in toluene (2.1 equiv., $1 \mathrm{M}, 1.28 \mathrm{mmol}$) at $-18{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 14 h at room temperature. The resulting yellow solution was filtered throughout a celite column. The obtained solution was concentrated under reduced pressure and n-pentane was poured.Slow crystallization at $-18{ }^{\circ} \mathrm{C}$ afford 5 c . Yield: $0.185 \mathrm{~g}, 62 \%$. As described above, two fac/mer isomers were obtained in respective ratio of $1 / 1.5$. No satisfactory results were obtained due to
complexe decomposition. For fac-isomer fac-5c: Selected data: ${ }^{1} \mathrm{H}$ NMR ($285 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 400.33 \mathrm{MHz}$, ppm): $\delta 3.84$ ($\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}$), 1.14 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CN}-t \mathrm{Bu}$), -8.82 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ru}-\mathrm{H}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($285 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}$, $121.495 \mathrm{MHz}, \mathrm{ppm}): \delta 74.08$ (PNP). $2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HSQC ($285 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 19.45$ (PNP). 2D $\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HMBC ($255 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 178$ (CN-tBu). For mer-isomer mer-5c: Selected data ${ }^{1} \mathrm{H}$ NMR ($285 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 400.33 \mathrm{MHz}, \mathrm{ppm}$): $\delta 2.48$ (br, $1 \mathrm{H}, \mathrm{NH}$), 1.16 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{tBu}$), -6.86 (td, $\left.1 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=4.9 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=18 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{H}\right),-7.05\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=4.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=19 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(285 \mathrm{~K}$, $\left.\mathrm{C}_{7} \mathrm{D}_{8}, 121.495 \mathrm{MHz}, \mathrm{ppm}\right): \delta 84.78$ (s, PNP). 2D $\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\} \mathrm{HSQC}\left(285 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 40.565 \mathrm{MHz}, \mathrm{ppm}\right): \delta 31.0$ (PNP). $2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}^{-1} \mathrm{H}\right\} \mathrm{HMBC}\left(255 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 40.565 \mathrm{MHz}, \mathrm{ppm}\right): \delta 184.6$ ($\mathrm{CN}-\mathrm{tBu}$). Isomeric mixture ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($285 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 100.663 \mathrm{MHz}, \mathrm{ppm}$): $\delta 54.12\left(\mathrm{CH}_{2} \mathrm{PNP}\right), 52.35\left(\mathrm{CH}_{2} \mathrm{PNP}\right), 32.90\left(\mathrm{CH}\right.$ iPr), $31.70\left(\mathrm{CH}_{3}\right.$ $\mathrm{CN}-t \mathrm{Bu})$, $31.59\left(\mathrm{CH}_{3} \mathrm{CN}-t \mathrm{Bu}\right)$, 30.48 (CH iPr), $28.42\left(\mathrm{CH}_{2} \mathrm{PNP}\right)$, $27.13\left(\mathrm{CH}_{2} \mathrm{PNP}\right), 27.11$ (CH iPr), 26.43 (CH iPr), $22.33\left(\mathrm{CH}_{3}\right.$ iPr), $20.46\left(\mathrm{CH}_{3}\right.$ iPr), $20.01\left(\mathrm{CH}_{3}\right.$ iPr), $19.99\left(\mathrm{CH}_{3} \mathrm{iPr}\right), 18.3\left(\mathrm{CH}_{3} \mathrm{iPr}\right)$.
[RuH(CN-tBu)(PNP)] (6). To a solution of $4 \mathrm{c}(30 \mathrm{mg}, 0.057 \mathrm{mmol})$ in deuterated benzene (1 mL) was added $t \mathrm{BuOK}$ (1.02 eq., 0.058 mmol) at ${ }^{\circ} 0 \mathrm{C}$. After stirring for 14 h at RT , the yellow reaction mixture was filtered and analyzed by NMR. Selected characterization data: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 300.129 \mathrm{MHz}$, $\mathrm{ppm}): \delta-18.74\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=16.5 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 121.495 \mathrm{MHz}, \mathrm{ppm}\right): \delta 91.78$ (PNP).
$\left[\mathrm{RuH}\left(\mathbf{C N}-\mathrm{CH}_{2} \mathbf{P h}\right)_{\mathbf{2}}\left(\mathbf{P N}{ }^{\mathrm{H}} \mathrm{P}\right)\right] \mathrm{Cl}(7)$. To a solution of $\mathbf{1 a}(0.15 \mathrm{~g}, 0.268 \mathrm{mmol})$ in toluene (6 mL) was slowly added a solution of benzylisocyanide (2.2 equiv., 69 mg) in toluene (1 mL) at RT. After stirring at RT for 24 h , the resulting solution was evaporated to dryness under reduced pressure. The product was washed with n-pentane ($3 \times 3 \mathrm{~mL}$). The product can be also purified by slow crystallization into tolu-ene/n-pentane mixture at $-18{ }^{\circ} \mathrm{C}$. After a few days, the white crystals were collected and washed with n-pentane (5 mLx 3) and finally dried under vacuum. Yield: $0.12 \mathrm{~g}, 67 \%$. Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{ClN}_{3} \mathrm{P}_{2} \mathrm{Ru}$: C 56.75; H 7.74; N 6.21. Found: 57.03, H 8.01, N 5.98. FT-IR (v, cm ${ }^{-1}$): 3055 (s, v_{NH}), 2135.2 (vs), 2059.3 (vs, $v_{\mathrm{C}=\mathrm{N}}$), 1816 (m, $\mathrm{v}_{\mathrm{Ru}-\mathrm{H}}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(293 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 400.33 \mathrm{MHz}, \mathrm{ppm}\right): \delta 8.43\left(\mathrm{brt},{ }^{3} \mathrm{~J}_{\mathrm{HN}}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right.$), $7.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, ortho- $\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 7.20-7.12 (m, $2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 7.12-7.01 (m, 4H, $\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 7.0-6.96 (m, $2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $5.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.05\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 3.35 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}$), 2.31 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}$), 1.97 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH} \operatorname{iPr}$), $1.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{iPr}), 1.79-1.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right), 1.21\left(\mathrm{dt}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=7.5\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.02\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.01\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 0.98\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right)-8.48\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=18.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Ru-H). ${ }^{31}$ P $\left.{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 121.495 \mathrm{MHz}, \mathrm{ppm}$): $\delta 78.86$ (PNP). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 100.663$ $\mathrm{MHz}, \mathrm{ppm}): \delta 171.38\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=11.0 \mathrm{~Hz}, \mathrm{CNCH}_{2} \mathrm{Ph}\right), 157.42\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=8.4 \mathrm{~Hz}, \mathrm{CNCH}_{2} \mathrm{Ph}\right), 135.50,135.29$
$\left(\mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 129.67,129.34,128.75,127.95,127.07,125.70\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}, \mathrm{Ph}\right), 55.22\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=3.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right)$, $49.42,47.78\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 31.02\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=11.4 \mathrm{~Hz}, \mathrm{CH} \mathrm{Pr}\right), 30.81\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=10.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right), 24.63\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=\right.$ $12.3 \mathrm{~Hz}, \mathrm{CH} i \mathrm{Pr}), 20.53\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=2.5 \mathrm{~Hz}, \mathrm{CH}_{3} i \mathrm{Pr}\right), 18.79\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=1.5 \mathrm{~Hz}, \mathrm{CH}_{3} i \mathrm{Pr}\right), 18.27\left(\mathrm{CH}_{3} i \mathrm{Pr}\right) .2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-\right.$ $\left.{ }^{1} \mathrm{H}\right\}$ HSQC NMR ($293 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 35.3(\mathrm{NH}) .2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HMBC NMR ($293 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$, $40.565 \mathrm{MHz}, \mathrm{ppm}): \delta 172.8,159.4\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)$.
$\left[\mathrm{FeBr}\left(\mathrm{CN}-\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{PN}^{\mathrm{H}} \mathrm{P}\right)\right] \mathrm{Br}(8)$. To a white suspension of $\left[\mathrm{FeBr}_{2}\left(\mathrm{PNP}^{\mathrm{H}}\right)\right](0.5 \mathrm{~g}, 0.96 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$ was added dropwise a solution of benzyl isocyanide (3.0 equiv., $2.88 \mathrm{mmol}, 0.337 \mathrm{~g}$) in toluene $(10 \mathrm{~mL})$ at room temperature. The reaction mixture immediately turned out to green. After stirring for 20 h at RT, the green-lemon solution was concentrated under reduced pressure and n-pentane (30 mL) was added. After overnight storage at $-20^{\circ} \mathrm{C}$, a green precipitate was obtained, washed with n-pentane $(4 \times 20 \mathrm{~mL})$ and dried under vacuum. Yield: $0.59 \mathrm{~g}, 82 \%$. Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{P}_{2} \mathrm{Fe}: \mathrm{C} 50.88 ; \mathrm{H}$ 6.81; N 5.56. Found: C 50.98, H 6.91, N 5.23. FT-IR $\left(\mathrm{cm}^{-1}\right): 3060.9\left(\mathrm{~m}, \mathrm{v}_{\mathrm{NH}}\right), 2148.6,2114.2\left(\mathrm{~s}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right) . \mathrm{Ma}-$ jor isomer (cis-8/trans-8 ratio: 15.6/1): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(293 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 800.13 \mathrm{MHz}, \mathrm{ppm}\right): \delta 7.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}{ }^{-}\right.$ $\mathrm{H}), 7.4-7.33\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.51\left(\mathrm{br} \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 5.06(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CNCH}_{2} \mathrm{Ph}$), 4.80 (s, 2H, CNCH 2 Ph), 3.04 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}$), 2.99 (m, 2H, CH iPr), 2.76 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}$), 2.26 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$ PNP), 2.17 (m, CH C_{2} PNP), 2.14 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{iPr}$), 1.37 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}$), 1.36 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3}$ $i P r), 1.18\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} i \mathrm{Pr}\right), 1.05\left(\mathrm{td}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} i \mathrm{Pr}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.663 \mathrm{MHz}, \mathrm{ppm}\right): \delta 171.1,166.2\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right), 133.44,133.19\left(\mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right)$, 129.32, 129.23, $127.9\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, 51.2, $49.6\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right), 49.6\left(\mathrm{CH}_{2} \mathrm{PNP}\right), 29.44\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=11 \mathrm{~Hz}, \mathrm{CH} \mathrm{Pr}\right)$, $27.67\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right.$), $24.67\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=8.4 \mathrm{~Hz}, \mathrm{CH} i \mathrm{Pr}\right), 20.01,19.73,19.65,19.38\left(\mathrm{CH}_{3} \mathrm{iPr}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 121.495 \mathrm{MHz}, \mathrm{ppm}$): $\delta 72.0$ (PNP). 2D $\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HSQC NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, $40.565 \mathrm{MHz}, \mathrm{ppm}): \delta 30.2$ (NH). 2D $\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HMBC NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 188.7$, 183.5 ($\mathrm{CNCH}_{2} \mathrm{Ph}$). Minor isomer trans-8: ${ }^{1} \mathrm{H}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 800.13 \mathrm{MHz}, \mathrm{ppm}$): $\delta 7.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}{ }^{-}\right.$ $\mathrm{H}), 7.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.45-7.33\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 5.44,5.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CNCH}_{2} \mathrm{Ph}\right), 4.02\left(\mathrm{brt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=11.4 \mathrm{~Hz}\right.$, 1H, NH, PNP), 2.69, 2.60 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}$ iPr), 2.76 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}$), 2.43 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$ PNP), 1.97 (m, 2H, CH_{2} PNP), 1.69 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$ PNP), 1.44, 1.35, 1.34 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}$), 1.30 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$ PNP), 1.22 (m, 6H, $\left.\mathrm{CH}_{3} \mathrm{iPr}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.663 \mathrm{MHz}, \mathrm{ppm}$): $\delta 174,168\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right), 133.3,133.1\left(\mathrm{C}_{\mathrm{Ar}}\right.$ quat.), 129.3, $128.2\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $52.9\left(\mathrm{CH}_{2} \mathrm{PNP}\right)$, $50.3,50.0\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right), 29.4(\mathrm{CH} i \mathrm{Pr}), 27.6\left(\mathrm{CH}_{2} \mathrm{PNP}\right), 24.7(\mathrm{t}$, CH iPr), 20.5, 20.0, 19.8, 19.7 ($\left.\mathrm{CH}_{3} \mathrm{iPr}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 121.495 \mathrm{MHz}, \mathrm{ppm}\right): \delta 58.0$ (PNP). 2D $\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 40.565 \mathrm{MHz}, \mathrm{ppm}$): $\delta 186.3,183.2\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)$.
$\left[\mathrm{FeBr}\left(\mathrm{CN}^{-\mathrm{CH}_{2} \mathrm{Ph}}\right)_{2}\left(\mathrm{PN}^{\mathrm{H}} \mathrm{P}\right)\right]\left(\mathrm{BPh}_{4}\right)$ (9). To a lemon-green solution of $\left[\mathrm{FeBr}\left(\mathrm{CN}^{2}-\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{PN}^{\mathrm{H}} \mathrm{P}\right)\right] \mathrm{Br}$ (8) (0.31 $\mathrm{g}, 0.40 \mathrm{mmol})$ in toluene (20 mL) was added NaBPh_{4} in excess (0.68 g , 5 equiv., 2.0 mmol) at room temperature. The reaction mixture was stirred at room temperature for 20 h , and filtered throughout a celite column. The obtained solution was evaporated to dryness. The residual solid was dissolved in a minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and n-pentane (8 mL) was poured. Slow crystallization at $-18{ }^{\circ} \mathrm{C}$ afforded 9. Yield: $0.21 \mathrm{~g}, 53 \%$. Crystals suitable for X-ray analysis were obtained similarly. FT-IR (cm^{-1}): $3227\left(\mathrm{~s}, v_{\mathrm{NH}}\right), 2146(\mathrm{~s}), 2108\left(\mathrm{~s}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 300.13 \mathrm{MHz}, \mathrm{ppm}$): 8 $7.5-7.3\left(14 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, 7.3-7.18 ($4 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $7.03\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.88\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 4.76,4.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CNCH}_{2} \mathrm{Ph}\right)$, $2.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Pr}), 2.78-2.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right), 2.40\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 2.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right)$, $2.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \operatorname{iPr}), 1.37\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=7.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}, i \mathrm{Pr}\right), 1.34\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=7.5\right.$ $\left.\mathrm{Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right), 1.21\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=6.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} i \mathrm{Pr}\right), 1.09\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $\left.7.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=7.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.468 \mathrm{MHz}, \mathrm{ppm}\right): \delta 164.52\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CB}}=\right.$ $50.1 \mathrm{~Hz}, \mathrm{C}_{\mathrm{Ar}}$ quart. BPh_{4}), 136.58 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 132.54 (C_{Ar} quat.), 130.06, 130.02, 129.66, 129.49, 128.59, 128.34, 126.16, $122.31\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 50.89,49.92\left(\mathrm{CN}-\mathrm{CH}_{2}\right), 49.63\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right), 29.87\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=11\right.$ $\mathrm{Hz}, \mathrm{CH} i \mathrm{Pr}$), $28.23\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=8.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right.$), $25.00\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=9.2 \mathrm{~Hz}, \mathrm{CH} i \mathrm{Pr}\right), 20.03,19.72,19.56,19.42$ $\left(\mathrm{CH}_{3}, i \mathrm{Pr}\right)$.
$\left[\mathrm{FeH}(\mathrm{CN}-t \mathrm{Bu})_{2}\left(\mathbf{P N}^{\mathrm{H}} \mathbf{P}\right)\right]\left(\mathrm{BH}_{4}\right)(\mathbf{1 0})$. To a suspension of $\left[\mathrm{FeBr}_{2}\left(\mathrm{PN}^{H} \mathrm{P}\right)\right](0.3 \mathrm{~g}, 0.58 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$ was added a solution of t-butylisocyanide (3 equiv.; $1.73 \mathrm{mmol}, 0.144 \mathrm{~g}$) in toluene (2 mL) at room temperature. After stirring for 20 h and evacuation to dryness, ethanol (30 mL) was added, affording a yellow suspension. After cooling at $-18{ }^{\circ} \mathrm{C}$, a solution of excess NaBH_{4} (10 molar equiv.) in ethanol (10 mL). The reaction mixture was allowed to warm up to room temperature, stirred for 16 h then evaporated to dryness under reduced pressure. Extraction with toluene ($3 \times 5 \mathrm{~mL}$) was performed and the combined extracts were concentrated. Addition of n-pentane at $-18{ }^{\circ} \mathrm{C}$ afforded a microcrystalline white solid. Yield: 0.154 g , (49\%. Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{60} \mathrm{BFeN}_{3} \mathrm{P}_{2}$: C 57.47; H 11.13; N 7.73 . Found: C 58.29; H 12.21; N 7.91. FT-IR (cm^{-1}): 3058.1 (s, NH), 2284, $2210\left(\mathrm{w}, \mathrm{BH}_{4}\right), 2111.1$ (s$), 2046.9$ (vs, CN). ${ }^{1} \mathrm{H}$ NMR (293 K , $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 400.33 \mathrm{MHz}, \mathrm{ppm}\right): \delta 6.29(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 3.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{PNP}\right.$), $2.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \operatorname{iPrP}), 2.09(\mathrm{~m}, 2 \mathrm{H}$, CH_{2} PNP), 2.02 (m, 2H, CH iPrP), 1.60 (br m, 2H, CH Cl_{2} PNP), 1.56 (s, $9 \mathrm{H}, \mathrm{CH}_{3} t \mathrm{Bu}$), 1.41 (br m, 2H, CH PNP), 1.33 (td, ${ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=7.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPrP}$), $1.15\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{H}}=7.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} i \operatorname{Pr}\right.$), $1.04\left(\mathrm{~m}, \mathrm{~J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{HP}}=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.02\left(\mathrm{~m},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3} i \operatorname{Pr}\right), 0.88(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{CH}_{3} t \mathrm{Bu}\right),-10.48\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{HP}}=50 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ru}\right]-\mathrm{H} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.663 \mathrm{MHz}, \mathrm{ppm}\right): \delta 175.39$,
166.21 (CNtBu), 56.36 , 55.33 (C quat. $t \mathrm{Bu}$), $54.28\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=4.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right.$), $31.63\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=8.9 \mathrm{~Hz}, \mathrm{CH}\right.$ i Pr), $30.77,30.63\left(\mathrm{CH}_{3} t \mathrm{Bu}\right), 30.03\left(\mathrm{t}, \mathrm{J}_{\mathrm{CP}}=9.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{PNP}\right), 25.81\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=12.5 \mathrm{~Hz}, \mathrm{CH} i \mathrm{Pr}\right), 20.73$, 19.07, $18.78\left(\mathrm{CH}_{3} i \mathrm{Pr}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 121.495 \mathrm{MHz}, \mathrm{ppm}$): $\delta 100.01$ (2P). $2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\}$ HSQC NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 40.565 \mathrm{MHz}, \mathrm{ppm}$) : $\delta 31.67(\mathrm{NH}) .2 \mathrm{D}\left\{{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 40.565 \mathrm{MHz}$, ppm): δ 196.5, 193.2 (CNtBu). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($293 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, 128.4418 \mathrm{MHz}, \mathrm{ppm}$): $\delta-38.9\left(\mathrm{BH}_{4}\right)$.

Catalytic tests. TOF ${ }_{0}$ determination: For acceptorless dehydrogenative coupling reactions of butanol, the initial turnover frequency (TOF_{0}) was determined by plotting turnover number as a function of time. TOF $_{0}$ was calculated from the slope of the linear regression performed on the initial linear part of the plot. Typical procedure for acceptorless dehydrogenative coupling of 1-butanol conducted in Schlenk tubes: In an argon filled glove-box, the selected complex ($6.5 \mu \mathrm{~mol} ; 60 \mathrm{ppm}$) was weighted in a Schlenk tube containing a stirring bar. After connection to a Schlenk line, 1-butanol ($10 \mathrm{~mL} ; 8.10 \mathrm{~g} ; 109$ mmol) was added via a syringe under an argon stream. The Schlenk tube was then equipped with a condenser topped by an argon bubbler. The system was heated using an oil bath ($130^{\circ} \mathrm{C}$) and stirred magnetically under an argon stream. Aliquots (ca. 0.1 mL) were periodically sampled to monitor the reaction progress over time. Aliquots were diluted with CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}$ NMR for determination of yield, turnover number and turnover frequency.

X-ray Structure Determination. A single crystal of each compound was mounted under inert perfluoropolyether wax on a Mitegen MicroLoop ${ }^{\text {TM }}$. Single-crystal X-rays measurements were performed at 100 K under N_{2} stream from a Cryostream 700 device (OxfordCryosystems). Data were collected using an Apex II CCD 4K Bruker diffractometer ($\lambda=0.71073 \AA$). The structures were solved using SHELXT ${ }^{38}$ and refined by least-squares procedures on F^{2} using SHELXL2014. ${ }^{39}$ All Hydrogen atoms were placed in theoretical positions and refined riding on their parent atoms except for the hydride H attached to the Ru, B and N atoms which was located from difference Fourier maps and refined isotropically. ORTEP drawings were generated with ORTEP-3. ${ }^{40}$ Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre as Supplementary Publication Nos. CCDC 20065312006538. Copies of the data can be obtained free of charge on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax, (+44) 1223-336-033; e-mail, deposit@ccdc.cam.ac.uk).

Supporting Information

Electronic Supplementary Information (ESI) available: NMR spectra and X-ray crystallographic data (CIF).

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgments

This work was performed in partnership with the SAS PIVERT, within the frame of the French Institute for the Energy Transition (Institut pour la Transition Energétique (ITE) P.I.V.E.R.T. (www.institutpivert.com) selected as an Investment for the Future ("Investissements d'Avenir"). This work was supported, as part of the Investments for the Future, by the French Government under the reference ANR-001-01. The authors also thank the CNRS and University of Lille for their financial support.

References

${ }^{1 .}$ a) J. R. Khusnutdinova and D. Milstein Angew. Chem. Int. Ed. 2015, 54, 12236-12273.
${ }^{2}$. a) A. Corma, J. Navas and M. J. Sabater, Chem. Rev. 2018, 118, 1410-1459; b) T. Irrgang and R. Kempe, Chem. Rev. 2019, 119, 2524-2549.
${ }^{3}$ B. L. Conley, M. K. Pennington-Boggio, E. Boz and T. J. Williams, Chem. Rev. 2010, 110, 2294-2312.
${ }^{4 .}$ R. Noyori, M. Yamakawa and S. Hashiguchi, J. Org. Chem. 2001, 66, 7931-7944.
${ }^{5}$ C. Gunanathan and D. Milstein, Science 2013, 341, 249-260.
${ }^{6}$. a) Ed. Morales-Morales D. Pincer Compounds: Chemistry and Applications; Elsevier Inc. 2018; b) S. Werkmeister, J. Neumann, K. Junge and M. Beller, Chem. Eur. J. 2015, 21, 12226-12250; c) L. Alig, M. Fritz and S. Schneider, Chem. Rev. 2019, 119, 2681-2751; d) P. A. Chase, R. A. Gossage and Gerard van Koten, Top. Organomet. Chem. 2016, 54, 1-16.
${ }^{7}$. a) M. Nielsen, A. Kammer, D. Junge, H. Cozzula, S. S. Gladiali and M. Beller, Angew. Chem. Int. Ed. 2011, 50, 9593-9597; b) M. Bertoli, A. Choualeb, A. J. Lough, B. Moore, D. Spasyuk and D. G. Gusev, Organometallics 2011, 30, 3479-3482; c) S. Chakraborty, H. Dai, P. Bhattacharya, N. T. Fairweather, M. S. Gibson, J. A. Krause and H. Guan, J. Am. Chem. Soc. 2014, 136, 7869-7872; d) S. Chakraborty, P. O. Lagaditis, M. Förster, E. A. Bielinski, N. Hazari, M. C. Holthausen, W. D. Jones and S. Schneider, ACS Catal. 2014, 4, 3994-4003.
${ }^{\text {8. a) J. Zhang, G. Leitus, Y. Ben-David and D. Milstein, J. Am. Chem. Soc. 2005, 127, 10840-10841; b) D. }}$ Spasyuk, S. Smith, and D. G. Gusev, Angew. Chem. Int. Ed. 2012, 51, 2772-2775; c) D. Spasyuk, C. Vicent and D. G. Gusev, J. Am. Chem. Soc. 2015, 137, 3743-3746; d) L. V. A. Hale, T. Malakar, K-.N. T. Tseng, P. M. Zimmerman, A. Paul and N. K. Szymczak, ACS Catal. 2016, 6, 4799-4813; e) Z. Cao, H. Qiao and F. Zeng Organometallics 2019, 38, 797-804.
9. a) M. Gargir, Y. Ben-David, G. Leitus, Y. Diskin-Posner, L. J. W. Shimon and D. Milstein, Organometallics 2012, 31, 6207-6214; b) D. Spasyuk, S. Smith and D. G. Gusev, Angew. Chem. Int. Ed. 2013, 52, 2538-2542; c) P. Puylaert, R. van Heck, Y. Fan, A. Spannenberg, W. Baumann, M. Beller, J. Medlock, W. Bonrath, L. Lefort, S. Hinze and J. G. de Vries, Chem. Eur. J. 2017, 23, 8473-8481; d) P.A. Dub, B. L. Scott and J. C. Gordon, Organometallics 2015, 34, 4464-4479.
${ }^{10}$. a) G. A. Filonenko, M. J. B. Aguila, E. N. Schulpen, R. van Putten, J. Wiecko, C. Müller, L. Lefort, E. J. M. Hensen and E. A. Pidko, J. Am. Chem. Soc. 2015, 137, 7620-7623; b) L. Le, J. Liu, T. He, D. Kim, E. J. Lindley, T. N. Cervarich, J. C.; Malek, J. Pham, M. R. Buck and A. R. Chianese, Organometallics 2018, 37, 3286-3297; c) X. He, Y. Li, H. Fu, X. Zheng, H. Chen, R. Li and X. Yu, Organometallics, 2019, 38, 1750-1760.
${ }^{11}$.E. Fogler, M. A. Iron, J. Zhang, Y. Ben-David, Y. Diskin-Posner, G. Leitus, L. J. W. Shimon and D. Milstein Inorg. Chem. 2013, 52, 11469-11479.
${ }^{12}$ O. Ogata, Y. Nakayama, H. Nara, M. Fujiwhara and Y. Kayaki, Org. Lett. 2016, 18, 3894-3897.
${ }^{13}$ a) N. E. Smith, W. H. Bernskoetter, N. Hazari and B. Q. Mercado, Organometallics, 2017, 36, 39954004; b) J. B. Curley, N. E. Smith, W. H. Bernskoetter, N. Hazari and B. Q. Mercado, Organometallics 2018, 37, 21, 3846-3853.
${ }^{14}$ a) H. Dai, W. Li, J. A. Krause and H. Guan, Inorg. Chem. 2021, 60, 6521-6535; b) Part of the results in reference 14a are very close to those described in our preprint: D. H. Nguyen, D. Merel, N. Merle, X. Trivelli, F. Capet, R. M. Gauvin, ChemRxiv, 2020, doi:10.26434/chemrxiv.12411020.v2.
${ }^{15}$ a) A. Naik, T. Maji and O. Reiser, Chem. Commun., 2010,46, 4475-4477; b) R. Bigler and A. Mezzetti, Org. Lett. 2014, 16, 6460-6463; c) R. Bigler, R. Huber and A. Mezzetti, Angew. Chem. Int. Ed. 2015, 54, 1-5.

16 a) V. P. Boyarskiy, N. A. Bokach, K. V. Luzyanin and V. Y. Kukushkin, Chem. Rev. 2015, 115, 2698-2779; b) K. T. Mahmudov, V. Y. Kukushkin, A. V. Gurbanov, M. A. Kinzhalov, V. P. Boyarskiy, M. F. C. Guedes da Silva and A. J. L. Pombeiro, Coord. Chem. Rev. 2019, 384, 65-89; c) M. Knorn, E. Lutsker and O. Reise, Chem. Soc. Rev., 2020, 49, 7730-7752.
${ }^{17}$ a) L. Zhang, G. Raffa, D. H. Nguyen, Y. Swesi, L. Corbel-Demailly, F. Capet, X. Trivelli, S. Desset, S. Paul, F. Paul, P. Fongarland, F. Dumeignil and R. M. Gauvin, J. Catal., 2016, 340, 331-343; b) D. H. Nguyen, G. Raffa, Y. Morin, S. Desset, F. Capet, V. Nardello-Rataj, F. Dumeignil and R. M. Gauvin, Green Chem. 2017, 19, 5665-5673; c) D. H. Nguyen, X. Trivelli, F. Capet, J.-F. Paul, F. Dumeignil and R. M. Gauvin, ACS Catal. 2017, 7, 2022-2032; d) D. H. Nguyen, X. Trivelli, F. Capet, Y. Swesi, A. Favre-Réguillon, L. Vanoye, F. Dumeignil and R. M. Gauvin, ACS Catal. 2018, 8, 4719-4734.
${ }^{18}$. M. Käß, A. Friedrich, M. Drees and S. Schneider, Angew. Chem. Int. Ed. 2009, 48, 905-907.
${ }^{19}$ A. Friedrich, M. Drees, M. Käss, E. Herdtweck and S. Schneider, Inorg. Chem. 2010, 49, 5482-5494.
${ }^{20}$ C. Bianchini, D. Masi, A. Romerosa, F.; Zanobini and M. Peruzzini, Organometallics 1999, 18, 23762386.
${ }^{21}$. M. S. Rahman, P. D. Prince, J. W. Steed and K. K. Hii Organometallics 2002, 21, 4927-4933.
${ }^{22}$ S. S. Rozenel and J. Arnold, Inorg. Chem. 2012, 51, 9730-9739.
${ }^{23}$ a) R. W. Stephany, M. J. A. de Bie and W. A. Drenth Org. Magn. Reson. 1974, 6, 45-47; b) P. Cmoch, R. Głaszczka, J. Jaźwiński, B. Kamieńskia and E. Senkara, Magn. Reson. Chem. 2014, 52, 61-68; c) P. Cmoch and J. Jaźwiński, J. Mol. Struct. 2009, 919, 348-355.
${ }^{24}$ K. Matsubara, S. Mima, T. Oda and H. Nagashima, J. Organomet. Chem. 2002, 650, 96-107.
${ }^{25}$ A. Friedrich, M. Drees, J. Schmedt auf der Günne and S. Schneider, J. Am. Chem. Soc. 2009, 131, 17552-17553.
${ }^{26}$ Analysis of crystals by ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR shows the presence of $\mathrm{BEt}_{4}:{ }^{1} \mathrm{H}$ NMR $\left(285 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 400.33 \mathrm{MHz}\right.$, $\mathrm{ppm}): \delta ;{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(285 \mathrm{~K}, \mathrm{C}_{7} \mathrm{D}_{8}, 128.4418 \mathrm{MHz}, \mathrm{ppm}\right): \delta-16.14(\mathrm{~s}, 1 \mathrm{~B})$. The formation of $\left[\mathrm{BEt}_{4}\right]^{-}$ probably comes from the disproportionation reactions of NaHEt_{3} or the commercial $\left[\mathrm{Na}\left(\mathrm{HBEt}_{3}\right)\right]$ may contain significant quantities of $\left[\mathrm{BEt}_{4}\right]^{-}$. See refs: a) G. Smith and D. J. Cole-Hamilton, J. Chem. Soc., Chem. Commun. 1982, 490-491. b) G. Smith and D. J. Cole-Hamilton, J. Chem. Soc. Dalton Trans. 1983, 2501-2507.
${ }^{27}$ G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures; Springer: Berlin, 1991.
${ }^{28}$ N. P. N. Wellala, J. D. Luebking, J. A. Krause and H. Guan, ACS Omega 2018, 3, 4986.
${ }^{29}$ S. Kar, R. Sen, J. Kothandaraman, A. Goeppert, R. Chowdhury, S. B. Munoz, R. Haiges and R. G. S. Prakash, J. Am. Chem. Soc. 2019, 141, 3160-3170.
${ }^{30}$ G. A. Filonenko, R. van Putten, E. J. M. Hensen and E. A. Pidko, Chem. Soc. Rev. 2018, 47, 1459-1483.
${ }^{31}$ The anion exchange reaction from the cis-8 and trans-8 mixture affords the related complexes cis-9 and trans-9, from which cis-9 can be obtained as pure compound from crystallization. Only cis-9related data is reported here.
${ }^{32}$ a) S. M. Tetrick and R. A. Walton, Inorg. Chem. 1985, 24, 3363-3366; b) W. D. Jones and W. P. Kosar, Organometallics 1986, 5, 1823-1829.
${ }^{33}$ R. A. Michelin, A. J. L. Pombeiro and M. F. C. Guedes da Silva, Coord. Chem. Rev., 2001, 218, 75-112.
${ }^{34}$ L. De Luca, A. Passera and A. Mezzetti, J. Am. Chem. Soc. 2019, 141, 2545-2556.
${ }^{35}$ A. Naik, T. Maji and O. Reiser, Chem. Commun. 2010, 46, 4475-4477.
${ }^{36}$ S. B. Duckett, J. P. Lowe and R. J. Mawby, Dalton Trans. 2006, 2661-2670.
${ }^{37}$ W. Ma, S. Cui, H. Sun, W. Tang, D. Xue, C. Li, J. Fan, J. Xiao and C. Wang, Chem. Eur. J. 2018, 24, 13118-13123.
${ }^{38}$ G. M. Sheldrick, SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3-8.
${ }^{39}$ G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr Sect. C 2015, 71, 3-8.
${ }^{40}$ L. J. Farrugia, ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI); J. Appl. Crystallogr. 1997, 30, 565.

