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Closed ray affine manifolds

Raphaël V. ALEXANDRE*

November 26, 2021

Abstract

We consider closed manifolds that possess a so called rank one ray structure.
That is a (flat) affine structure such that the linear part of the holonomy is given
by products of a diagonal transformation and a commuting rotation.

We show that closed manifolds with a rank one ray structure are either com-
plete or their developing map is a cover onto the complement of an affine sub-
space.

We prove, in the line of Markus conjecture, that if the rank one ray geometry
has parallel volume, then closed manifolds are necessarily complete. Finally, we
show that if the automorphism group of a closed manifold is non-compact then
the manifold is complete.

1 Introduction

The class of affine manifolds is still rich of open questions. If we consider a closed
affine manifold, under which conditions is it (geodesically) complete? what happens
when it is incomplete?

In 1962, Markus [Mar62] conjectured that a closed affine manifold with parallel
volume should always be complete. Although important cases of this conjecture are
known [Smi77; FGH81; GH86; Fri86; Car89; JK04; Tho15], it is still open and remains
a central challenge.

Carrière [Car89] made a study about affine manifolds that have a 1-discompacity
holonomy group. This hypothesis means that a sequence of affine transformations
should never have more than one singular value tending to zero. Carrière proved
Markus conjecture under that condition. But in larger discompacity, it is still open.

The incompleteness of a manifold is also an interesting phenomenon. Among
incomplete manifolds, some are nonetheless Kleinian: they can be obtained as the
quotient of a non-maximal open. Some are close to be Kleinian and have their
developing map that is a cover onto its image. (When the image is simply connected,
it implies that it is in fact Kleinian.)

Fried [Fri80] has shown that incomplete closed similarity manifolds are always
radiant: their developing map is a cover onto the complement of a single point.

Fried and Carrière have different objectives (one studies the incompleteness of
similarity manifolds, the other shows the completeness of some closed affine mani-
folds). But they share a common point: the study of a dynamical system associated
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to the incompleteness of a geodesic curve. Carrière [Car89] refers to Fried [Fri80] for
this consideration and therefore we call a Fried dynamics such a dynamical system.

The affine geometry is described by the affine group GLn(R)oRn acting on the
space Rn . In the isotropy group GLn(R), we can consider the Cartan decomposition
GLn(R) = K AK . The subgroup A is diagonal and represents the singular values of
a considered transformation. The subgroup K is O(n). The complexity of a Fried
dynamics is closely related to the projection in A of the linear holonomy.

Fried supposes that A is reduced to AF = {λ id} (the homotheties). Note that
in this case, K = O(n) centralizes AF . Carrière supposes that A is reduced to AC =
{diag(λ,1, . . . ,1,λ−1)} ⊂ SLn(R) the set of diagonal transformations with at most one
singular value tending to zero.

Note that in both cases, dim AF = dim AC = 1.
We can give an interpretation of both hypotheses. Fried’s hypothesis gives the

following property: with a diverging sequence fn ∈ AF either tends to the null-
application 0 or f −1

n does. A subgroup AD ⊂ A verifying this property for any sequence
is said to be a dilation subgroup and is necessarily 1-dimensionnal. In [Ale21a] we
proved Fried’s theorem for any dilation subgroup. Carrière’s hypothesis allows the fol-
lowing: with a diverging sequence fn ∈ AC , an open ball tends (up to a subsequence)
to a 1-codimensionnal ellipsoid. Again, this property can only be verified for any
sequence if AC has dimension 1.

We say that KR AR ⊂ K AK is a ray affine isotropy if KR ⊂ K centralizes a subgroup
AR ⊂ A. We think that ray geometries (KR AR oRn ,Rn) form an important class of
affine geometries.

Those isotropies do not rely on either being a dilation group or being a 1-discompacity
subgroup. For instance AR = {diag(λ,λ,λ−2)} ⊂ SL3(R) is not a dilation subgroup and
has 2-discompacity.

We propose to study the subgroups KR AR ⊂ K AK when AR ⊂ A is any 1-dimensional
subgroup. We will say in this case that KR AR oRn =G1 has rank one. In general, the
rank of the ray structure is the dimension of AR .

The following result puts in a same perspective Fried’s and Carrière’s theorems.

Theorem (3.26). Let (G1,Rn) be a rank one ray geometry. Let M be a closed (G1,Rn)-
manifold. Then M is either complete or there exists an affine subspace I ⊂ Rn such that
the developing map D : M̃ → Rn − I is a cover.

With further analysis of I (proposition 3.27), we can fully recover Fried’s theorem.
With a classic argument by Goldman and Hirsch [GH84], there can be no reducible
closed affine manifold with parallel volume. By consequence, it implies a new case of
Markus conjecture. (Note that there is a parallel volume if and only if AR ⊂ SLn(R).)

Corollary (4.1). Let (G1,Rn) be a rank one ray geometry with parallel volume. Every
closed (G1,Rn)-manifold is complete.

With the perspective of Markus conjecture, the existence of a parallel volume
is an interesting condition that may imply the completeness of a closed manifold.
Another one is the non-compactness of the automorphism group.

A “vague general conjecture” by D’Ambra and Gromov [DG91, p. 24] states that a
sufficiently large automorphism group should suffice to classify manifolds. We prove
the following.
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Theorem (4.3). Let (G1,Rn) be a rank one ray geometry. Let M be a closed (G1,Rn)-
manifold. If Aut(M) is non-compact then M is complete.

Interestingly, there are counter-examples in higher rank ray geometries. We will
give an example of a radiant manifold (therefore incomplete) having a rank two ray
structure with an automorphism group that is non-compact.

Therefore, theorem 4.3 suggests that the completeness of closed manifolds with
large automorphism groups is a phenomenon very special to rank one ray geometries.
It strongly contrasts with Markus conjecture which could be true in any rank.

Other geometries Miner [Min90] generalized Fried’s theorem to the Heisenberg
space instead of Rn ([Ale21a] generalized it to every Carnot group). We expect the
study of ray structures to not be too much dependent on Rn but rather on the choice
of a nilpotent space, such as the Heisenberg space. In [Ale21b] we examine this
generalization to 2-step nilpotent spaces.

Organization of the paper In section 2, we introduce ray structures and convexity
arguments. In section 3, we study Fried dynamics: those are the dynamics associated
to an incomplete geodesic. We show theorem 3.26 on the completeness and incom-
pleteness of closed manifolds. In section 4 we show the completeness in the case
of parallel volume (corollary 4.1) and in the case of an automorphism group acting
non-properly (theorem 4.3).

Acknowledgment This work is part of the author’s doctoral thesis, under the super-
vision of Elisha Falbel. The author is indebted and thankful to E. Falbel for the many
hours devoted to discuss this paper.

2 Ray structures

Definition 2.1. Let D : M̃ → Rn be a local diffeomorphism. A curve γ : [0 ,1] → M̃ is
geodesic if D(γ) is a geodesic segment in Rn .

For any p ∈ M̃, define Vp ⊂ Tp M̃ the set of the vectors such that there exists a
geodesic segment γ : [0 ,1] → M̃ with γ(0) = p, γ′(0) ∈Vp . We say that Vp is the visibility
set from (or of) p ∈ M̃.

Definition 2.2. Let D : M̃ → Rn be a local diffeomorphism. A subset C ⊂ M̃ is convex
if D is injective on C and D(C ) is convex. Let x ∈ M̃, a point y ∈ Rn is visible from x if
there exists a geodesic segment from x to z such that D(z) = y.

Following Carrière [Car89] (see also [Ben60; Kos65]):

Proposition 2.3 ([Car89]). Let D : M̃ → Rn be a local diffeomorphism for any p ∈ M̃.

• If C1,C2 are convex subsets in M̃ and C1 ∩C2 6= ;, then D is injective on C1 ∪C2.

• The visible set Vp ⊂ Tp M̃ is open.

• Let C be convex and containing p ∈ M̃. Then C ⊂ expp (Vp ).

• D is injective on expp (Vp ) for any p ∈ M̃.
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• If for p ∈ M̃, expp (Vp ) is convex then expp (Vp ) = M̃.

• D is a diffeomorphism if and only if for any p ∈ M̃, Vp = Tp M̃.

Definition 2.4. A manifold M is a (G , X )-manifold (or, equivalently, has a (G , X )-
structure) for G a group acting (by analytic diffeomorphisms) on a space X if there
exists (D,ρ) a pair of a local diffeomorphism D : M̃ → X (called the developing map)
and a morphism ρ : π1(M) →G (called the holonomy morphism) such that

∀γ ∈π1(M),∀x ∈ M̃ , D(γ · x) = ρ(γ)D(x). (1)

Let Aff(Rn) = Rn oGL(Rn). We say that (Aff(Rn),Rn) is the affine geometry of Rn

and if M has a (Aff(Rn),Rn)-structure then it is an affine manifold.

Definition 2.5. Let M be an affine manifold. It is complete if D : M̃ → Rn is a diffeo-
morphism.

Definition 2.6. A ray geometry on the space Rn is a model geometry (G ,Rn) with
G = Rn oK A and K A ⊂ GL(Rn) such that the following conditions are verified.

1. The subgroup A is isomorphic to a multiplicative group (R∗+)r , with r called the
rank of the ray geometry. The subgroup K is compact and centralizes A.

2. There exists a fixed basis (e1, . . . ,en) of Rn such that for an isomorphism (β1, . . . ,βr ) : A →
(R∗+)r there exist di , j ∈ R such that A consists of the transformations:

β
d1,1
1 · · ·βdr,1

r
. . .

β
d1,n
1 · · ·βdr,n

r

 . (2)

Limit sets Later one we will need to study sequences of subsets that have a limit.

Definition 2.7. Let Bn be a sequence of subsets. Its limit set, denoted limBn , is the set
of the points lim xn for sequences xn ∈ Bn (with xn chosen for each Bn).

Proposition 2.8. Let gi ∈π1(M) be a sequence of transformations and S ⊂ M̃ be closed
and convex. Assume that gi S has a limit point y ∈ M̃. Consider B∞ = limD(gi S) =
limρ(gi )D(S) the limit set in the developing map. Then B∞ is closed, convex and there
exists a closed and convex subset S∞ containing y such that D(S∞) = B∞.

Proof. Observe that by convexity, each D(gi S) is closed and convex. Therefore B∞
is again closed. It is also convex. If two points x1, x2 belong to the limit set B∞ then
we consider their associated converging sequences. We can form geodesics in each
gi S that joins the points from each sequence. The limit of those geodesics exists, is
geodesic and connects x1 and x2.

Similarly, S∞ = lim gi S is closed and convex. We show its developing image covers
B∞. Let yi ∈ gi S be a sequence tending to y . Let z ∈ B∞ be the limit of D(zi ) for
zi ∈ gi S. The geodesics γi from yi to zi are developed into D(γi ) and those tend to
the geodesic from D(y) to D(z). This geodesic is compact (defined on [0,1]) and each
γi is completely visible. Therefore limγi corresponds to a visible geodesic issued
from y . It necessarily ends at z by injectivity.
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3 Fried dynamics

Let M be an incomplete closed affine manifold. Choose any metric on M compatible
with its topology. Denote π : M̃ → M its universal cover. If x ∈ M̃ and γ ⊂ M̃ is a
geodesic issued from x, incomplete at t = 1, then the projection of γ in M is an open
curve without any continuous completion at t = 1. Since M is closed, the projection
π(γ) has a recurrent point y ∈ M .

Let U ⊂ M be a compact neighborhood of y , convex and trivializing the universal
cover. For the choice of a decreasing sequence εi → 0 we can define ti the time such
that π(γ(ti )) belongs to U and is at distance at most εi to y ∈ M . We ask that π(γ) exits
U between the times ti and ti+1. We have that ti → 1 since the geodesic is incomplete
at t = 1.

We use the trivialization of the universal cover by U . It provides Ui ⊂ M̃ such
that γ(ti ) ∈Ui . Let yi ∈Ui ⊂ M̃ be the lifts of y ∈U ⊂ M . Every Ui is again a compact
convex neighborhood of yi . Through the developing map D : M̃ → Rn , each D(Ui ) is
compact, convex and they accumulate along the compactification D(γ) of D(γ) at
t = 1. Since the intersections of γ with the Ui ’s are transverse and disjoint along γ,
the D(Ui )’s intersect transversally and disjointly D(γ).

Definition 3.1. Let γ⊂ M̃ be an incomplete geodesic at t = 1. Let y ∈ M be a recurrent
point of its projection into M. Let U be a convex, compact, trivializing neighborhood
of y. Let εi → 0 be decreasing and let ti → 1 be an associated sequence of times such
that (for the lifts yi ∈Ui of y ∈U ) we have γ(ti ) ∈Ui and the distance between π(γ(ti ))
and y is lesser than εi . Define g j i ∈π1(M , y) the transformations of M̃ verifiying

g j i (Ui ) =U j . (3)

Those data define a Fried dynamics.

Note that a subsequence of the times {ti } (or the distances {εi }) corresponds
univocally to a subsequence of the pairs {yi ∈Ui }.

The transformations g j i verify a cocycle property:

gki = gk j g j i . (4)

For the affine geometry (G ,Rn) considered, denote by T j i the corresponding transfor-
mations by the holonomy morphism T j i = ρ(g j i ) ∈G .

Idea of the proof of theorem 3.26 To prove theorem 3.26 we use a strategy compa-
rable to what Fried [Fri80] employed.

First, we study Fried dynamics. It is the most important step. Later we will
introduce a convex subset S (with smooth boundary) that contains the invisible
geodesic γ. The goal of this first step will be to be able to describe what is the shape of
T −1

j i (S) when j À i →∞. This study is independent of the rank of the ray geometry.

Then, by using the convexity argument in proposition 2.8, we show how to con-
struct from S a half-space of Rn that is completely visible. This step will depend on
the fact that the ray geometry has rank 1.

Finally, we will show how the different half-spaces obtained by varying x and γ
can be combined in D(M̃). This will imply that the developing map avoids every
invisible point, and therefore is a covering onto its image.
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Figure 1: A Fried dynamics.

Now we return to the study of the Fried dynamics. We assume that (G ,Rn) is a
ray geometry. We have a basis (e1, . . . ,en) of Rn such that A ⊂ K A ⊂G acts diagonally.
Once a base point of Rn is chosen, we can express any T j i ∈G by

T j i (x) = c j i + f j i (x), (5)

with c j i ∈ Rn and f j i ∈ K A. Recall that a change of the base point is expressed by

T j i (x) = T j i (y − y +x) = (c j i + f j i (y))+ f j i (−y +x). (6)

It preserves the linear part f j i . Decompose each f j i into

f j i = f j i ,K f j i ,A (7)

with f j i ,K ∈ K et f j i ,A ∈ A. Recall that K centralizes A, so both factors commute. The
cocycle property on T j i implies that each factor also verifies the cocycle relation:

fki ,K = fk j ,K f j i ,K , fki ,A = fk j ,A f j i ,A (8)

Lemma 3.2. Up to a subsequence of {yi ∈Ui }, we have

lim
j→∞

lim
i→∞

f j i ,K = id. (9)

Let eq be a basis vector. Denote by β j i ,q the diagonal element of f j i ,A ∈ A for the
direction eq . Up to a subsequence of {yi ∈Ui }, we have

lim
j→∞

lim
i→∞

β j i ,q =ωq ∈ {0,1,∞}. (10)

Proof. Since K ⊂G is compact, we can suppose up to a subsequence of {yi ∈Ui } that
f j i ,K → L ∈ K when j À i →∞. But then the cocycle property implies L2 = L that can
only be verified for L = id. By an analogous argument, with the compactification of
R+ into R+∪ {∞} we have a limit β j i ,q →ωq that verifies ω2

q =ωq , and it can only be
true if ωq ∈ {0,1,∞}.
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It should be noted that if βk j ,q → ωq when k À j →∞, then we can obtain an
information on how βki ,q can evolve when i is fixed and k →∞. Indeed, we have

lim
k→∞

βki ,q = lim
k→∞

lim
j→∞

βki ,q = lim
k→∞

lim
j→∞

βk j ,qβ j i ,q =ωq lim
j→∞

β j i ,q . (11)

If βki ,q → r when k →∞ (up to a subsequence) then r =ωq r . If ωq ∈ {0,∞} it implies
r =ωq .

Lemma 3.3. Let i > 0 fixed. If βki ,q → r and ωq = 1 then r must be a (finite) real
positive number.

Proof. Assume that r = 0, we show that ωq = 0. For any j > i large enough, there
exists k > j such that βki ,q < β2

j i ,q < 1. It implies that βk j ,q = βki ,qβ
−1
j i ,q < β j i ,q < 1.

Therefore βk j ,q can only tend to 0 =ωq . An analogous argument shows that if r =∞
then ωq =∞.

Proposition 3.4. There exists a subsequence of {yi ∈Ui } such that:

• for i > 0 fixed, f j i ,K converges;

• for i > 0 fixed, the sequence {β j i ,q } is monotonic or constant for j > i .

Once this proposition is proven, we will assume that we chose such a subsequence
of {yi ∈Ui }.

Proof. For the first property, by compacity of K , we can assume that f j i ,K converges
since it must have an accumulation point in K .

For the last property, it can be done for a single i0 > 0 up to a subsequence of
j > i0. Now let i > i0. Then β j i ,q = β j i0,qβ

−1
i i0,q and it must be again monotonic or

constant.

Note that the last property implies that β j i ,q → r and therefore the preceding
discussion applies.

Definition 3.5. We define a linear decomposition E ⊕P ⊕F of Rn by deciding that
eq ∈ E if ωq = 0, eq ∈ P if ωq = 1 and eq ∈ F if ωq =∞.

Since A acts diagonally and K centralizes A, we have that f j i preserve the decom-
position E ⊕P ⊕F .

Note that dimE > 0 since D(Ui ) accumulates disjointly on D(γ). The other sub-
spaces might be reduced to {0}.

If we chose any base point p, it gives three affine subspaces based at p:

∀L ∈ {E ,F,P }∀p ∈ Rn , L|p := p +exp(L). (12)

We come back to M and discuss the choice of U ⊂ M . Choose V ⊂U a smaller
neighborhood of y . Since we chose distances εi → 0, for i ≥ i0 large enough, every
π(γ(ti )) will also belong to V . Note that we can lift V ⊂ M into Vi ⊂Ui ⊂ M̃ .

Lemma 3.6. For any i > 0, g−1
j i γ has yi for limit point when j →∞.

Proof. Let i > 0. Choose any neighborhood Vi of yi contained in Ui . Then Vi cor-
responds to a neighborhood V ⊂ U of y in M . Therefore for j large enough, V j

intersects γ and therefore Vi = g−1
j i V j intersects g−1

j i γ.
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Definition 3.7. In M, let U1 = U . Define for a sequence of {0 < r < 1} tending to
0 a sequence {Ur } of compact convex neighborhoods of y ∈ M. Assume that Ur is
decreasing for the inclusion and that Ur → {y} when r → 0. In M̃, define U1,i =Ui and
Ur,i the lift of Ur such that Ur,i ⊂U1,i . In D(M̃), define

Cr,i = D(Ur,i ). (13)

Recall that U1 =U is a convex, compact and trivializing neighborhood of y ∈ M .
Every Cr,i is convex and compact in Rn since Ur is a convex, compact and trivializing
neighborhood of y in M . By construction:

Lemma 3.8. For any i , j and r ≥ 0, g j iUr,i =Ur, j and by consequence T j i Cr,i =Cr, j .

As discussed before, since Ur ⊂U is a neighborhood of y , D(γ)(1) is a limit point
of {Cr,i } since for j > j0 large enough D(γ(t j )) belongs to Cr, j .

Proposition 3.9. Let r > 0. Any accumulation point of {Cr,i } is a limit point.

Proof. Choose any base point in Rn . We know that D(γ)(1) is a limit point. Let y j ∈
Cr, j be tending to D(γ)(1). Each y j ∈Cr, j can be written c j i + f j i (xi , j ) for xi , j ∈Cr,i .
We can write any z ∈Cr,i as xi , j −xi , j + z so that with Lr,i =−xi , j +Cr,i we have:

Cr, j = T j i (Cr,i ) = c j i + f j i (Cr,i ) (14)

= (c j i + f j i (xi , j ))+ f j i (−xi , j +Cr,i ) (15)

= y j + f j i (Lr,i ). (16)

Therefore, since y j converges, an accumulation point zσ( j ) → z of the sequence
{Cr, j } corresponds to an accumulation point wσ( j ) → w of { f j i (Lr,i )}. So we only need
to prove that { f j i (Lr,i )} has for limit set its set of accumulation points. Note that
0 ∈ Lr,i and Lr,i is convex and compact. (The point 0 ∈ Lr,i corresponds in fact to y j

tending to D(γ)(1).)
Let i > 0 and consider j ≥ j0. Then f j i has its rotational part that converges and

its diagonal factors that converges by monotonic or constant values. Recall that K
centralizes A. So the action by the rotational part, f j i ,K (Lr,i ), has a limit, say LK .
Now, the diagonal action is monotonic (or constant) in each direction, therefore any
accumulation point of f j i ,A(LK ) is in fact a limit point.

Definition 3.10. For any fixed value r > 0, let Cr,∞ be the limit set of the sequence
{Cr,i }.

Note that when r = 0, each Cr,i is reduced to D(yi ). Those have no reason to
accumulate to D(γ)(1). This is why we asked r to be different from 0.

Definition 3.11. Define
C0,∞ = ⋂

r>0
Cr,∞. (17)

This definition makes sense because the Cr,∞ are decreasing for the inclusion
when r → 0.

Lemma 3.12. All the sets Cr,∞ and C0,∞ are convex. The set C0,∞ is nonempty (it
contains D(γ)(1)) and is an affine subspace.
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Proof. Because every Cr, j is convex, so are the limits Cr,∞ and C0,∞. The fact that
D(γ)(1) ∈ C0,∞ is clear. Now, observe that if C0,∞ = {D(γ)(1)} then the statement is
true.

The set C0,∞ is closed and convex. To show that it is an affine subspace, we show
that any maximal non-zero geodesic in C0,∞ is always open. Let γ⊂C0,∞. For any
r > 0 there exists zi ∈Cr,i and wi ∈Cr,i such that the geodesic ηi from zi to wi tends
to a geodesic containing (or equal) to γ. But then ηi is always contained in Cr+ε,i

and can be extended to a strictly larger geodesic µi . Then µi tends to a geodesic in
Cr+ε,i strictly containing γ. Because this can be done for any ε> 0 small enough, γ is
necessarily open if it is maximal.

Lemma 3.13. Choose D(γ)(1) as base point of Rn .

∀r > 0, Cr,∞ ⊂ (P ⊕F ) |D(γ)(1) (18)

C0,∞ = F |D(γ)(1). (19)

Proof. Choose a Cr,i for i large enough, so that T j i tends to a transformation with
a linear part with almost no rotation and diagonal elements tending to ω ∈ {0,1,∞}.
The limit T j i Cr,i = Cr, j → Cr,∞ can only contain geodesics in the directions where
ω 6= 0. So it is in F⊕P based at D(γ)(1). If r → 0, then the directions of P are contracted
in Cr,∞, so only F remains.

Fixed point Now we return to the general study. The next step is to find an asymp-
totic fixed point for T j i .

We have that for any x ∈ Rn , there exists a unique decomposition x = xL +xF with
xL ∈ E ⊕P and xF ∈ F .

Lemma 3.14. Choose D(γ)(1) as base point and decompose T j i (x) = c j i + f j i (x) with
f j i ∈ K A and c j i ∈ Rn . Let c j i = c j i ,L +c j i ,F be the decomposition following Rn = L⊕F .
Define Q j i (x) = c j i ,F + f j i (x). Then

lim
j→∞

T j i (x)−Q j i (x) = lim
j→∞

c j i ,L = 0 (20)

and therefore this convergence is uniform for x ∈ Rn .

Proof. For any ε > 0, T j i (Cε,i ) has for limit Cε,∞ when j →∞. Consider the linear
decomposition L ⊕F based at D(γ)(1). When ε→ 0 and j →∞, the coordinates of
T j i (Cε,i ) all tend to 0 in the linear subspace L ⊂ Rn . Indeed, C0,∞ = F |D(γ)(1).

Note that c j i ,L tends or not to 0 when j →∞ independently from the choice of ε.
Now decompose T j i (Cε,i ), and note that f j i preserves the decomposition L⊕F .

c j i + f j i (Cε,i ) = c j i ,L + c j i ,F + f j i (Cε,i )L + f j i (Cε)F (21)

= (
c j i ,L + f j i (Cε,i )L

)+ (
c j i ,F + f j i (Cε,i )F

)
(22)

The term c j i ,F + f j i (Cε,i )F is exclusively in F . Hence the coordinate in L is determined
by c j i ,L + f j i (Cε,i )L and it must tend to 0 when j →∞ and ε→ 0.

But for any j > i , f j i acts as a contraction on (Cε,i )L . Hence, for any j > i fixed,
when ε→ 0 we have f j i (Cε,i )L → 0. By consequence, when j →∞ and ε→ 0, c j i ,L → 0.
It proves the lemma.

Note that Q j i has a fixed point on F , since F is preserved and f j i acts by expan-
sions on it.
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Lemma 3.15. Denote q j i ∈ F the fixed point of Q j i . For i > 0, q j i converges when
j →∞ and we denote qi = lim q j i . Also, D(yi ) ∈ E |qi .

Proof. Choose q j i as base point of Rn when we consider the transformation T j i . We
start by showing that D(yi ) is an accumulation point of E |q j i .

Suppose that D(yi ) is not an accumulation point of the stable subspace (E⊕P )|q j i .
Then there exists ε > 0 so that Cε,i avoids every (E ⊕P )|q j i for j large enough. But
then T j i Cε,i =Cε, j escapes to infinity and cannot accumulate at D(γ)(1), impossible.

If D(yi ) is an accumulation point of (E ⊕P )|q j i then D(yi ) is an accumulation
point of E |q j i since Cε, j accumulates at F |q j i = C0,∞ and therefore has arbitrarily
small coordinates along P .

Now we show that q j i does not tend to infinity. Since E |q j i accumulates at D(yi ),
it comes that q j i must asymptotically be at the intersection of E |D(yi ) = limE |q j i with
C0,∞ = F |q j i . But this intersection is reduced to a single point, so q j i → qi .

Figure 2: The dynamics of Q j i .

Asymptotic dynamics Now we can determine the limits of the orbits in positive
time, and apply proposition 2.8.

Lemma 3.16. Let z ∈ E |qi and V a neighborhood of z. Then {T j i (V )} has F |qi in its
limit set.

Proof. It is the case for Q j i (V ) since V intersects every E |q j i for j large enough, and
we know that T j i −Q j i → 0.

Proposition 3.17. Let S ⊂ M̃ be a convex containing the incomplete geodesic γ. As-
sume that D(S) has a smooth boundary at D(γ)(1). Let i > 0. We have the following
properties.

• The orbit T −1
j i (D(S)) tends to a product E+,i ×Pc of a half-space E+,i ⊂ E |qi and

a neighborhood Pc ⊂ P |qi of the origin.
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• The product E+,i ×Pc is visible from yi .

• The boundary of E+,i is described by the limit of T −1
j i (TD(γ)(1)D(S))∩E |qi .

Proof. To prove this statement, we apply the preceding lemma with proposition 2.8
which allows to prove visibility of the limit of convex subsets.

For i > 0 fixed, we consider the convex subsets T −1
j i (D(S)). We already know that

D(yi ) is a limit point since γ⊂ S (see lemma 3.6). Therefore the limit of T −1
j i D(S) is a

closed convex subset visible from yi .
Consider z ∈ D(S) and write z = zE + zP + zF with zP ∈ P and zF ∈ F . Then

T −1
j i (z) = T −1

j i (zE )+ f −1
j i (zP )+ f −1

j i (zF ). (23)

Note that, up to a rotation, f −1
j i (zP ) → r zP (with r > 0 as in lemma 3.3) and f −1

j i (zF ) →
0.

This observation shows that the limit of T −1
j i D(S) has vanishing coordinates on F

and almost identical coordinates on P (up to a rotation), say Pc .
Now in the coordinate of E , a point z ∈ E |qi is a limit point of T −1

j i (D(S)) if any

neighborhood V of z has T j i (V ) accumulating at D(γ)(1) from inside D(S). This
property is described by the relative position of T j i (V ) to TD(γ)(1)D(S). It describes a
half-space E+,i in E |qi .

Therefore the limit is E+,i ×Pc and the listed properties follow.

To get a better description of E+,i inside E |qi , we must explain how to approximate
T −1

j i relatively to Q−1
j i . Note that a priori

T −1
j i (x)−Q−1

j i (x) =− f −1
j i (c j i ,L) (24)

and might not be tending to zero, or even stay bounded.
The study of − f −1

j i (c j i ,L) is technical. With the two following lemmas, we will later

prove that − f −1
j i (c j i ,L) → 0 when j À i →∞.

Lemma 3.18. Assume that E+,i does not contain qi . For any i > 0, there exists M > 0
such that for any j > i ,

c j i ,L = f j i (b j i ,E )+b j i ,P (25)

with b j i ,E ∈ E, b j i ,P ∈ P verifying b j i ,P → 0 and ‖b j i ,E‖ < M.

Proof. We consider the orbit of D(γ). We know that T −1
j i D(γ) has in its limit set

D(yi ) ∈ E+,i . Furthermore,

T −1
j i (D(γ)) =− f −1

j i (c j i ,L)+Q−1
j i (D(γ)) (26)

and Q−1
j i (D(γ)) tends to an half-line ∆ based at qi ∈ E |qi . Therefore, in order for

T −1
j i (D(γ)) to accumulate at D(yi ) ∈ E |qi , one must have that − f −1

j i (c j i ,L) is either

bounded or the sum of a P-component tending to zero and a point along the opposite
half-line −∆ escaping to infinity. In the latter case, it would imply that qi = ∆(0)
belongs to E+,i .

We will prove in the case of a rank one ray geometry that E+,i never contains
qi . So in fact b j i ,E is bounded. The next lemma explains that in fact T −1

j i is as well

approximated by Q−1
j i as i > 0 gets large.

11



Lemma 3.19. Assume that for any i , E+,i never contains qi . Then

lim
k→∞

lim
j→∞

bk j ,E = 0. (27)

Proof. The cocycle relation Tk j T j i = Tki gives:

T j i = f j i (b j i ,E )+b j i ,P + c j i ,F + f j i (28)

Tk j T j i = fk j (bk j ,E )+ fk j ( f j i (b j i ,E ))+bk j ,P + fk j (b j i ,P )+ ck j ,F + fk j (c j i ,F + f j i ) (29)

= fki (bki ,E )+bki ,P + cki ,F + fki (30)

and it implies by identification:

fki (bki ,E ) = fk j (bk j ,E )+ fk j ( f j i (b j i ,E )) (31)

= fk j (bk j ,E )+ fki (b j i ,E ) (32)

bki ,E −b j i ,E = f −1
j i (bk j ,E ) (33)

and since ‖bki ,L −b j i ,L‖ < 2M , we have that bk j ,E must tend to zero since otherwise
f −1

j i (bk j ,E ) would escape to infinity.

Rank one ray manifolds

We examine closed manifolds with a rank one ray geometry. For those manifolds, the
holonomy takes its values in G1 = Rn oK A1, where A1 has dimension 1.

Lemma 3.20. If (G1,Rn) is a rank one ray geometry, then there exists a decomposition
L1 ⊕L2 ⊕L3 such that for any Fried dynamics, P = L3 and {E ,F } = {L1,L2}.

Proof. Because the rank is one, each direction ei has in A1 a single diagonal factor
βdi with degree di ∈ R. Let L1 be generated by the vectors ei such that di < 0, L2 when
di > 0 and L3 when di = 0. Note that if β is exchanged with β−1 then L1 becomes L2

and conversely (L3 is unchanged).
If E ⊕P ⊕F is a Fried dynamics, then we only need to show that P = L3 since

then it is clear that {E ,F } must be equal to {L1,L2}. But in rank one, if a diagonal
factor βdi tends to 1 correspondingly to a direction ei ∈ P , then either di = 0 or β→ 1.
If di = 0 then ei ∈ L3. If β→ 1 then it is true globally on Rn , showing that E = {0},
impossible.

A consequence of this observation is that P is independent from the dynamics,
since di = 0 is a condition on A = A1. Therefore, from a Fried dynamics to another
one E and F are either the same or exchanged. Also, every direction in P is completely
visible by the following lemma.

Lemma 3.21. The direction vector of an incomplete geodesic D(γ) has a non-vanishing
coordinate along E in the linear decomposition Rn = E ⊕P ⊕F associated to its Fried
dynamics.

Proof. Note that D(Ui ) accumulates disjointly on D(γ). Indeed, we asked that π(γ)
exits U in M between the times ti and ti+1. So it is again the case in the developing
map: D(γ) exits D(Ui ) before entering into D(Ui+1).

But if the direction vector of D(γ) vanishes on E then the infinite number of
subsets D(U j ) = T j i D(Ui ) cannot intersect the relatively compact geodesic D(γ)
in such a way. Indeed, D(γ) is relatively compact and by intersecting along D(γ),
T j i (Ui )∩D(γ) would not tend to a point, and therefore can not let D(γ) exits U j

before entering into Tki (Ui )∩D(γ).

12



Proposition 3.22. Let S ⊂ M̃ be a convex containing γ. Assume that D(S) has smooth
boundary at D(γ)(1). Let i > 0. The subspace Hi = E+,i × (P ⊕F )|yi is visible from yi

(this is a half-space of Rn).

Proof. By proposition 3.17, E+,i is a visible from yi . Since the directions in P are
always complete, the product E+,i ×P |yi is fully visible from yi . We show that we can
extend E+,i ×P |yi to a visible open Hi containing E+,i × (P ⊕F )|yi .

Let K ⊂ (E ⊕P |yi ) be convex and visible from yi . Since the visible space from yi is
open, there exists an open convex W ⊂ F such that K ×W is visible and convex. We
can extend K to E+,i ×P |yi . Indeed, otherwise, there exists η an incomplete geodesic
parallel to E+,i ×P |yi with endpoint in K × {w} and with w ∈ W . Because we are in
rank one, its limit C ′

0,∞ must be parallel to F |yi . Therefore it intersects E+,i ×P |yi and
is simultaneously invisible since it is in C ′

0,∞∩ (K ×W ) and visible since E+,i ×P |yi is,
a contradiction.

Now, (E |+×P |yi )×W can be extended to Hi such that it contains E+,i×P |yi ×F |yi =
E+,i × (P ⊕F )|yi . Indeed, apply T j i for j →∞ (note that T j i (x + y) = T j i (x)+ f j i (y)):

lim
j→∞

T j i ((E |+×P |yi )×W ) = (E |+×P |yi )× lim
j→∞

f j i (W ) (34)

= (E |+×P |yi )×F |yi .

Lemma 3.23. The half-spaces Hi tend to a half-space denoted Hx when i →∞. For
i →∞, qi gets closer to Hi .

Proof. For each Hi , note that D(γ)(1) ∈ qi +F . Since D(γ)(1) is invisible, Hi cannot
contain qi in its interior. Therefore lemma 3.19 applies. When i →∞, by the study of
c j i ,L :

lim
j→∞

T −1
j i (D(γ)(1)) = lim

j→∞
− f −1

j i (c j i ,L)+q j i − f −1
j i (q j i ) = qi (35)

is a point of Hx .

Lemma 3.24. Let x ∈ M̃. Let D(S) ⊂ D(M̃) be the maximal Euclidean open ball such
that x ∈ S and S is visible from x. Then Hx = lim Hi contains x.

Proof. Consider the Euclidean metric that makes (e1, . . . ,en) orthonormal. We can
always consider the family of open balls from D(x) that are visible from x. There is a
maximal one S such that γ⊂ S is incomplete at t = 1.

The set Hx is a product E+× (P ⊕F ) with E+ determined by limT −1
j i (S). Therefore

the point x belongs to Hx if we can show that T j i (x) belongs to S + (P ⊕F ) if j À i are
large enough.

By the preceding study, with D(γ)(1) as base point,

T j i = f j i (b j i ,E )+b j i ,P +Q j i , (36)

Q j i = q j i − f j i (q j i )+ f j i . (37)

We want to show that T j i (x) belongs to S + (P ⊕F ), so in fact we prove that the
E-coordinate of T j i (x) belongs to the euclidean ball (in E) ‖−xE + yE‖E < ‖x‖. With
y = T j i (x) (note that b j i ,P and q j i belong to P ⊕F ) we obtain:

−xE +T j i (x)E =−xE + f j i (b j i ,E )+ f j i (xE ). (38)
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We can now estimate on each subspace on which f j i acts by (almost) homotheties
(note that the rotational part tends to the identity). On a coordinate em of E , f j i acts

like λdm
j i , hence on the coordinate em :

‖ f j i (b j i ,E )+xE − f j i (xE )‖em ≤ ‖ f j i (b j i ,E )‖em +‖xE − f j i (xE )‖em (39)

≤λdm
j i ‖b j i ,E‖em + (1−λdm

j i )‖xE‖em (40)

Since b j i ,E → 0, the inequality ‖ f j i (b j i ,E )+ xE − f j i (xE )‖em < ‖xE‖em is verified on
each coordinate em , so the required (global) inequality on E is verified by summing
the squares.

For any x ∈ M̃ , we choose S ⊂ M̃ the maximal convex open subset such that D(S)
is a Euclidean open ball. By applying the construction to the point x, the convex S
and an incomplete geodesic γ ⊂ S (which exists by maximality of S) we obtain an
half-space Hx = lim Hi and D(x) ∈ Hx . This choice is now assumed.

Lemma 3.25. Let I ⊂ ∂Hx be the invisible set from the interior of Hx . (Note that
(F ⊕P )|D(γ)(1) ⊂ I .) Then I does not depend on x ∈ M̃ and I is an affine subspace.

Proof. Let D(q) ∈ ∂Hx be visible from x ∈Hx . Consider Hq a half-space correspond-
ing to D(q) and containing D(q).

Both half-spaces D−1(Hx ) and D−1(Hq ) are convex and intersect. Therefore the
developing map is injective on the union. The invisible set from Hx must be invisible
from Hq and vice-versa. But under a large T j i (that leaves asymptotically stable Hx ) it
can only be possible if I is common to both since T j i Hq would contain in its interior
invisible points of Hq . (See figure 3.)

It shows also that I is an affine subspace because it is the intersection of a finite
number of half-spaces.

Figure 3: The invisible subspace I .

Theorem 3.26. Let (G1,Rn) be a rank one ray geometry. Let M be a closed (G1,Rn)-
manifold. Then M is either complete or there exists an affine subspace I ⊂ Rn such that
the developing map D : M̃ → Rn − I is a cover.
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Proof. The affine subspace I is constant and contains every D(γ)(1) for any incom-
plete geodesic γ⊂ S in the maximal Euclidean open ball of any x ∈ M̃ . We show it
implies that D : M̃ → Rn − I is a covering map.

Let δ : [0 ,1] → Rn − I be a path. Choose x ∈ M̃ such that D(x) = δ(0). We need to
prove that δ can be lifted to a path in M̃ based at x. We can assume that δ can be
lifted for t < 1. We show that is can be lifted at t = 1. Since δ(1) 6∈ I , there exists a point
δ(s) with s < 1 such that the maximal Euclidean open ball based at δ(s) and avoiding
I contains δ(t) for s ≤ t ≤ 1. But then for the lift at time s, the corresponding open
ball S is convex and allows to lift δ for s ≤ t ≤ 1.

To be more precise on the nature of I , we use a discreteness argument very close
to what Matsumoto [Mat92] proposed (see also [Ale21a, end of sec. 4]).

Proposition 3.27. Let (G1,Rn) be a rank one ray geometry such that for any Fried
dynamics F = {0}. The invisible subspace avoided by the developing map is I = P |w for
any Fried dynamics associated to an invisible geodesic ending at w ∈ I .

Lemma 3.28 ([Mat92, pp. 214-215]). The subset ∆⊂ Γ constituted by the transforma-
tions T j i for every Fried dynamics such that T j i has almost no rotation generates a
discrete subgroup of G1.

Proof. If D : M̃ → Rn−I is a cover onto a simply connected complement, it is certainly
true since the whole holonomy group Γ⊃ 〈∆〉 would be discrete. We need to treat the
case where I has codimension 2.

Consider G ′
1 the stabilizer of I . Assume for simplicity that 0 ∈ I . Note that I

must be stable under A ⊂G1. Then Γ⊂G ′
1. Consider also the cover Q ×R → Rn − I

consisting in taking a half-hyperplane Q (stable by A ⊂G ′
1) with I as boundary and

rotating it around I . The transformation group of this cover is G ′
1 ×R. The developing

map D : M̃ → Rn − I (that is a cover) is lifted to a diffeomorphism D : M̃ → Q ×R.
In Q ×R the new holonomy group Γ̃ is discrete. Now, if T j i has almost no rotation,
then T j i preserves almost P and therefore T̃ j i ' T j i × {0}, showing that 〈∆〉 ' 〈∆̃〉 is
discrete.

Proof of the proposition. The hypothesis F = {0} implies that an asymptotic fixed
point qi for T j i is necessarily equal to D(γ)(1) since qi ∈ F |D(γ)(1) = {D(γ)(1)}.

To prove the proposition, we show that I ∩E |D(γ)(1) is always reduced to D(γ)(1).
It will imply I = P |D(γ)(1).

Assume that T j i are the transformation of the Fried dynamics based at the initial
D(γ)(1). Let R be any other transformation Tmn but for a different Fried dynamics
associated to a geodesic with its endpoint in E |D(γ)(1) but different from D(γ)(1). (It
can be chosen so if, and only if, I 6= P |D(γ)(1).)

By the preceding lemma the subgroup 〈R, {T j i }〉 must be discrete. Now consider

G j = T j i RT −1
j i (41)

for an i > 0 fixed and large enough. We show that G j must converge without being
constant, a contradiction.

Assume for simplicity that D(γ)(1) = 0. For i > 0 fixed, write T j i (x) = c j i + f j i (x)
with c j i → 0 and write also R(x) = b +h(x). Then the linear part of G j is given by
f j i h f −1

j i and therefore must converge in K A ⊂G1.

Now, the translational part is given by c j i + f j i (b)− f j i h f −1
j i (c j i ). Each term must

converge and therefore so does the sum.
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Therefore G j converge, but cannot be constant. Indeed, otherwise, the trans-
lational part converge to f j i (b) (since c j i → 0) and should be constant. But f j i (b)
cannot be constant since b 6= 0 and b ∈ E , since R is associated to a geodesic with
endpoint different from D(γ)(1) but in E .

Example 1 Fried’s theorem [Fri80] and other generalizations on Rn [Ale21a], all
depend dynamically on the hypothesis F = P = {0}. The preceding proposition shows
that an incomplete manifold is radiant.

Example 2 We can easily construct examples with F = {0} and P 6= {0}. Let K = {e}
and A = {(λx, y)} for λ> 0, x ∈ Rk and y ∈ Rm . Then let Γ be a subgroup generated by
(2x, y) and a lattice on Rm 3 y . Then Rk − {0} ×Rm quotiented by this subgroup gives
a product of a radiant manifold with a Euclidean manifold. Here, I = {0}×Rm .

Note In the case of Carrière [Car89], the hypothesis of 1-discompacity implies
necessarily I = (P ⊕F )|D(γ)(1) by dimensionality. Now the same construction given
by the last proposition can be applied by taking T −1

j i HT j i : it furnishes a convergent

sequence of transformations (a contradiction). Therefore (for such ray geometries)
it does not require an additional argument such that the irreducibility given by
Goldman-Hirsch [GH84].

Open question Is it true that for any rank one ray geometry we always have I =
P |D(γ)(1)? It would show the completeness of the structures having a non-zero F for
any Fried dynamics. In the next section, we show the completeness for the structures
having a parallel volume (for those, F can never be zero), but we believe that this
dynamic-geometric property on I is intriguing.

4 Reducibility of incomplete manifolds

Markus conjecture A first consequence of theorem 3.26 is about Markus conjec-
ture [Mar62]. This conjectures states that closed manifolds with parallel volume are
complete.

The fact that an incomplete manifold has its holonomy that preserves I implies
that the holonomy is reducible. But by Goldman-Hirsch [GH84], the holonomy of a
closed manifold with parallel volume can never be reducible.

Corollary 4.1. Let (G1,Rn) be a rank one ray geometry with parallel volume. Every
closed (G1,Rn)-manifold is complete.

The automorphism group It is a vague conjecture [DG91] that geometric manifolds
with large automorphism groups should be classifiable.

Definition 4.2. Let M be a (G , X )-manifold. An automorphism f : M → M is a diffeo-
morphism such that if f̃ : M̃ → M̃ is any lift then there exists a unique χ( f̃ ) ∈ N (Γ) in
the normalizer of the holonomy group, such that D( f̃ (x)) =χ( f̃ )D(x).

By unicity of χ( f̃ ), if f̃1 and f̃2 are two lifts of f then f̃2 = g f̃1 for g ∈ π1(M) and
therefore χ( f̃2) = ρ(g )χ( f̃1).
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The hypothesis that χ( f̃ ) normalizes Γ follows from the fact that if f̃ lifts f then it
must preserves the fibers π1(M) of M̃ and therefore

χ( f̃ )Γ ·D(x) = D( f̃ (π1(M) · x)) = D(π1(M) · f̃ (x)) = Γ ·χ( f̃ )D(x). (42)

Theorem 4.3. Let (G1,Rn) be a rank one ray geometry. Let M be a closed (G1,Rn)-
manifold. If Aut(M) is non-compact then M is complete.

A non-compact automorphism group acts non-properly on a closed manifold M
The fact that Aut(M) acts non-properly on M is equivalent to the existence of xn → x
in M and diffeomorphisms fn such that fn(xn) → y , and such that in Γ\N (Γ), lifts of
fn escape every compact. So we can assume that xn → x in M̃ , gn ∈ N (Γ) with Γgn

escaping every compact of Γ\N (Γ), and y ∈ M̃ such that ΓgnD(xn) → ΓD(y).

Proof. Assume that M is not complete, then by theorem 3.26, we get that D : M̃ →
Rn − I is a cover. Therefore the holonomy Γ preserves I and so does the normalizer
N (Γ). Both must be subgroups of I oK A1. We show that Aut(M) must act properly.

Choose a base point p ∈ I which is the asymptotic fixed point of a Fried dynamics
and consider the decomposition I ⊕V = Rn with V ⊂ E .

Assume that Aut(M) acts non-properly. As noted, let gn ∈ N (Γ) be escaping
every compact of Γ\N (Γ), let xn → x∞ and y such that ΓgnD(xn) → ΓD(y). Write
gn(x) = cn + fn(x) with cn ∈ I and fn ∈ K A1. The Fried dynamics T j i ∈ Γ considered
can be written T j i x = c j i + f j i (x). Note that

T j i gn(x) = c j i + f j i (cn)+ f j i fn(x). (43)

It shows that we can assume f j i fn bounded in K A1 since A1 has rank one (up to
exchange T j i with T −1

j i ).

Hence there exists γn ∈ Γ such that γn gn = hn has its K A1-factor that converges,
up to a subsequence. The convergence ΓgnD(xn) → ΓD(y) says that there exists
ηn ∈ Γ such that ηnhnD(xn) → D(y).

Write ηn(x) = bn +qn(x) and hn(x) = cn + rn(x) we have by construction rn → r
and

(ηnhn)(D(xn)) = bn +qn(cn)+qnrn(D(xn)) → D(y). (44)

We again have a decomposition in I ⊕V = Rn . The term bn +qn(cn) must belong to I
since cn ∈ I . So the V -coordinate ((ηnhn)(D(xn)))V tending to D(y)V is determined
by (qnrn(D(xn)))V . But since D(y)V 6= 0 and V ⊂ E , it shows that qn itself must
converge to q ∈ K A1 (note that rn(D(xn)) → r (D(x∞))).

The I -coordinate ((ηnhn)(D(xn)))I tending to D(y)I has the same limit as the
I -factor of bn +qn(cn)+qr (D(xn)). Since D(y)I and D(x∞) are both finite, bn +q(cn)
must converge.

Therefore ηnhn converges in I oK A1, contradicting the fact that Γgn escapes
every compact of Γ\N (Γ).

In higher rank We give a relatively generic example showing that in higher rank
this phenomenon can no longer be true. Consider the rank two ray geometry
given by the diagonal action of (β1x,β1β2 y). Then consider the radiant manifold
R2 − {0}/〈(2x,2y)〉. Let f (x, y) = (x/2, y) and p = (x,1). Then f n(p) → (0,1) and it
corresponds in M to an automorphism acting non-properly. The radiant manifold
being incomplete, it gives a counter-example in rank two.
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