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NAKAI-MOISHEZON CRITERION FOR ADELIC R-CARTIER

DIVISORS

FRANÇOIS BALLAŸ

Abstract. We prove a Nakai-Moishezon criterion for adelic R-Cartier divi-
sors, which is an arithmetic analogue of a theorem of Campana and Peternell.

Our main result answers a question of Burgos Gil, Philippon, Moriwaki and

Sombra. We deduce it from the case of adelic Cartier divisors (due to Zhang)
by continuity arguments and reductions involving a generalization of Zhang’s

theorem on successive minima.

1. Introduction

In algebraic geometry, the Nakai-Moishezon criterion asserts that a Cartier di-
visor D ∈ Div(X) on a projective variety X over an algebraically closed field
is ample if and only if DdimY · Y > 0 for every subvariety Y ⊆ X. By a
theorem of Campana and Peternell [CP90], this statement remains valid when
D ∈ Div(X)R = Div(X) ⊗Z R is a R-Cartier divisor. In [Zha95a], Zhang started
the study of arithmetic ampleness in the context of Arakelov geometry, and proved
an arithmetic Nakai–Moishezon criterion for adelic metrized line bundles ([Zha95a,
Theorem 4.2]). Our purpose is to extend this result to adelic R-Cartier divisors (in
the sense of Moriwaki [Mor16]), thus proving an arithmetic analogue of Campana
and Peternell’s theorem.

Let X be a normal and geometrically integral projective scheme over a number
field K. An adelic R-Cartier divisor D = (D, (gv)v) on X is a pair consisting of a
R-Cartier divisor D ∈ Div(X)R and a suitable collection of Green functions (gv)v
on the analytifications Xan

v of X, where v runs over the set of places of K (see

Definition 3.1). The set D̂iv(X)R of adelic R-Cartier divisors is a R-vector space;

it contains the set of adelic Cartier divisors D̂iv(X), defined by

D̂iv(X) = {(D, (gv)v) ∈ D̂iv(X)R | D ∈ Div(X)} ⊆ D̂iv(X)R.

To any adelic Cartier divisor D ∈ D̂iv(X) we can associate an adelic metrized

line bundle (OX(D), (‖.‖Dv )v) in the sense of Zhang [Zha95b], and a global section

s ∈ H0(X,D) of OX(D) is called strictly small if supx∈Xan
v
‖s‖Dv (x) ≤ 1 for every

place v, with strict inequality at archimedean places. We say that an adelic R-
Cartier divisor D is ample if it is semi-positive (see Definition 3.4) and if it can be
written as a finite sum

D =
∑̀
i=1

λiAi

where for each i ∈ {1, . . . , `}, λi ∈ R>0 and Ai = (Ai, (gi,v)v) ∈ D̂iv(X) is an
adelic Cartier divisor such that Ai ∈ Div(X) is ample and H0(X,mAi) has a
K-basis consisting of strictly small sections for every m � 1. This definition of
ampleness for adelic R-Cartier divisors coincides with the one used in [BGMPS16]

(see Remark 6.5). For any semi-positive D = (D, (gv)v) ∈ D̂iv(X)R and for any
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subvariety Y ⊆ X, we denote by hD(Y ) the height of Y with respect to D (see
section 3.2). The main result in this paper is the following (see Corollary 6.4).

Theorem 1.1. Let D = (D, (gv)v) be a semi-positive adelic R-Cartier divisor on
X. Then D is ample if and only if hD(Y ) > 0 for every subvariety Y ⊆ X.

This theorem gives an affirmative answer to a question of Burgos Gil, Moriwaki,
Philippon and Sombra [BGMPS16, Remark 3.21]. To our knowledge, it was known
only under one of the following additional assumptions up to now:

• D is an adelic Cartier divisor (Zhang’s arithmetic Nakai-Moishezon criterion
[Zha95a, Theorem 4.2], [Mor15, Corollary 5.1], [CM18, Theorem 1.2]);

• D is a toric metrized R-Cartier divisor ([BGMPS16, Corollary 6.3]);
• X has dimension one ([Iko21, Corollary A.4]).

Given a semi-positive adelic R-Cartier divisor D = (D, (gv)v) on X and a subvariety
Y ⊆ X with degD(Y ) := DdimY · Y 6= 0, the normalized height of Y with respect
to D is defined by

ĥD(Y ) =
hD(Y )

(dimY + 1) degD(Y )
.

We also let ζabs(D) = infx∈X(K) ĥD(x). The following theorem is our second main

result, which plays an important role in this paper and might be of independent
interest.

Theorem 1.2. Let D = (D, (gv)v) be a semi-positive adelic R-Cartier divisor on
X. If D is ample, there exists a subvariety Y ⊆ X such that

ζabs(D) = ĥD(Y ) = min
Z⊆X

ĥD(Z),

where the minimum is over the subvarieties Z ⊆ X.

In other words, the infimum of the normalized heights of subvarieties Z ⊆ X

is attained at a subvariety Y , which moreover satisfies ĥD(Y ) = ζabs(D). Our
proof of Theorem 1.2 is based on Zhang’s theorem on successive minima [Zha95a,
Theorem 5.2]. Although the latter does not appear in the literature for adelic R-
Cartier divisors, we shall prove that it remains valid in this context thanks to a
continuity property for successive minima (see Lemma 4.1 and Theorem 4.3). This
approach also provides additional information on the subvariety Y ⊆ X of Theorem
1.2 (see Theorem 5.1). Our proof of Theorem 1.1 is very direct, and goes roughly

as follows. Let D = (D, (gv)v) ∈ D̂iv(X)R be semi-positive, with D ample. Given
a real number t ∈ R, we define an adelic R-Cartier divisor D(t) by rescaling the

metrics at archimedean places to have ĥD(t)(Y ) = ĥD(Y ) − t for every subvariety

Y ⊆ X (see Definition 3.3 and Lemma 3.7). In view of Theorem 1.2, it suffices to
prove that

sup{t ∈ R | D(t) is ample} = ζabs(D).

We denote by θ(D) the supremum on the left hand side. We first observe that
Zhang’s arithmetic Nakai-Moishezon criterion [Zha95a, Theorem 4.2] implies that
θ(D) = ζabs(D) provided that D is an adelic Cartier divisor. We simply deduce the
general case (Theorem 6.1) by slightly perturbing D and by applying a continuity
property for the invariants ζabs(D) and θ(D) (see Lemmas 4.1 and 6.2).

Organization of the paper. We fix some notation in section 2. In section 3
we recall the definition of adelic R-Cartier divisors and of height of subvarieties.
We also study some basic properties of ample adelic R-Cartier divisors. We define
successive minima in section 4, and we establish a continuity property allowing us
to extend Zhang’s theorem on minima to adelic R-Cartier divisors (Lemma 4.1 and
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Theorem 4.3). We prove Theorem 1.2 in section 5 (Theorem 5.1) and Theorem 1.1
in section 6 (Corollary 6.4).

2. Conventions and terminology

2.1. We say that a scheme is integral if it is reduced and irreducible. Given a
Noetherian integral scheme X, we denote by Div(X) the group of Cartier divisors
on X and by Rat(X) the field of rational functions on X. If K denotes Z, Q or
R, we let Div(X)K = Div(X)⊗Z K. The elements of Div(X)K are called K-Cartier
divisors on X. If X is normal, we denote by SuppD the support of a K-Cartier
divisor D (see [Mor16, section 1.2] for details). It is a Zariski-closed subset of X.
We let (φ) be the Cartier divisor associated to a rational function φ ∈ Rat(X)×.

2.2. Let X be a projective variety over a field K, i.e. X is an integral projective
scheme on SpecK. A subvariety Y ⊆ X is an integral closed subscheme of X. Given
an integer r ∈ {0, . . . ,dimX}, a r-cycle is a formal linear combination with integer
coefficients of r-dimensional subvarieties in X. Given a K-Cartier divisor D on X,
we define the degree of a r-cycle Z with respect to D by degD(Z) = DdimZ ·Z. In
particular, if x ∈ X(K) is a closed point (considered as a subvariety of X), then
degD({x}) = [K(x) : K] is the degree over K of the residue field K(x) of x ∈ X.

2.3. Throughout this text, we fix a number field K and an algebraic closure K
of K. We denote by ΣK the set of places of K and by ΣK,∞ ⊂ ΣK the set of
archimedean places. For each v ∈ ΣK , we let Kv be the completion of K with
respect to v and we denote by |.|v the unique absolute value on Kv extending the
usual absolute value |.|v on Qv : |p|v = p−1 if v is a non-archimedean place over a
prime number p, and |.|v = |.| is the usual absolute value on R if v is archimedean.

2.4. Let X be a scheme on SpecK. For each v ∈ ΣK , we let Xv = X ×K SpecKv

be the base change of X to Kv, and we denote by Xan
v the anylitification of Xv in

the sense of Berkovich (see [Mor16, section 1.3] for a short introduction). Given a
closed point x ∈ Xv, we let xan ∈ Xan

v be the point corresponding to the unique
absolute value on Kv(x) extending |.|v.

2.5. Let X be a normal projective variety on SpecK. Let D ∈ Div(X)R, v ∈ ΣK
and let Dv ∈ Div(Xv)R be the pullback of D to Xv. We consider an open covering
Xv = ∪`i=1Ui such that Dv is defined by fi ∈ Rat(Xv)

× ⊗Z R on Ui for each
i ∈ {1, . . . , `}. A continuous D-Green function on Xan

v is a function

gv : Xan
v \ (SuppDv)

an → R

such that gv + ln |fi|2v extends to a continuous function on the analytification Uan
i

of Ui for each i ∈ {1, . . . , `}. When v is archimedean, we say that gv is smooth
(respectively plurisubharmonic) if the extension of gv + ln |fi|2v to Uan

i is smooth
(respectively plurisubharmonic) for each i ∈ {1, . . . , `}. We refer the reader to
[Mor16, sections 1.4 and 2.1] for more details on Green functions.

2.6. Let X be a normal projective variety on SpecK. Let D ∈ Div(X)K and
let U ⊆ SpecOK be a non-empty open subset, where OK is the ring of integers
of K. A normal model X of X over U is an integral normal scheme X together
with a projective dominant morphism πX : X → U with generic fiber X. If D is a
K-Cartier divisor on X such that the restriction of D to X is equal to D, we say
that (X ,D) is a normal model of (X,D) over U . For each non-archimedean place
v ∈ U , we denote by gD,v the D-Green function on Xan

v induced by D (see [Mor16,
section 0.2] for details on this construction).
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3. Adelic R-Cartier divisors

In the rest of the text, we consider a normal and geometrically integral projective
variety X over the number field K. We define adelic R-Cartier divisors in subsection
3.1. We then recall the notion of semi-positive adelic R-Cartier divisors and we
define heights of subvarieties in subsection 3.2. Subsection 3.3 contains basic facts
concerning ample adelic R-Cartier divisors.

3.1. Definitions. In this paragraph, K denotes either Z, Q or R.

Definition 3.1. An adelic K-Cartier divisor on X is a pair D = (D, (gv)v∈ΣK
)

consisting of a K-Cartier divisor D on X and of a continuous D-Green function
gv on Xan

v for each v ∈ ΣK , satisfying the following condition: there exist a dense
open subset U of SpecOK and a normal model (X ,D) of (X,D) over U such that
gv = gD,v for all v ∈ U .

The set of adelic K-Cartier divisors on X is a K-module, denoted by D̂iv(X)K.
Since X is normal, the natural map Div(X) → Div(X)K is injective. It follows

that D̂iv(X)Z ⊂ D̂iv(X)Q ⊂ D̂iv(X)R. In the sequel, the elements of D̂iv(X) :=

D̂iv(X)Z will be called adelic Cartier divisors for simplicity.
Let D = (D, (gv)v∈ΣK

) be an adelic R-Cartier divisor on X. We consider the
K-vector space

H0(X,D) := {φ ∈ Rat(X)× | D + (φ) ≥ 0} ∪ {0}.

For any φ ∈ (Rat(X)× ⊗Z R) ∪ {0} and any v ∈ ΣK , we let φv be the pullback of

φ on Xan
v and we consider the function ‖φ‖Dv := |φv|v exp(−gv/2), defined on an

open subset of Xan
v . If φ ∈ H0(X,D), the function ‖φ‖Dv extends to a continuous

function on Xan
v (see [Mor16, Propositions 1.4.2 and 2.1.3]). In that case, we let

‖φ‖Dv,sup := supx∈Xan
v
‖φ‖Dv (x). We also define the set of strictly small sections of

D by

Ĥ0(X,D) := {φ ∈ H0(X,D) | ‖φ‖Dv,sup ≤ 1 ∀v ∈ ΣK , ‖φ‖Dv,sup < 1 ∀v ∈ ΣK,∞}.

Remark 3.2. Let D ∈ D̂iv(X) be an adelic Cartier divisor. With the above

notation, the pair (OX(D), (‖.‖Dv )v∈ΣK
) is an adelic metrized line bundle in the

sense of Zhang [Zha95b, (1.2)]. One can see that every adelic metrized line bundle
L = (L, (‖.‖v)v∈ΣK

) on X can be obtained in this way by considering the Cartier
divisor D = div(s) associated to a trivialization s of L and the D-Green functions
gv = − ln ‖sv‖2v for every v ∈ ΣK , where sv is the pullback of s to Xan

v .

We end this paragraph with the definition of twists of adelic R-Cartier divisors,
which we shall use frequently in the rest of the text.

Definition 3.3. Let D ∈ D̂iv(X)R. For any real number t ∈ R, we define the
t-twist of D by

D(t) = D − tξ∞ ∈ D̂iv(X)R,

where ξ∞ = (0, (ξv)v∈ΣK
) is the adelic Cartier divisor on X given by ξv = 2 if v is

archimedean, and ξv = 0 otherwise.

It follows from the definitions that for any φ ∈ H0(X,D), we have ‖φ‖D(t)
v =

et‖φ‖Dv for every v ∈ ΣK,∞ and ‖φ‖D(t)
v = ‖φ‖Dv for every v ∈ ΣK \ ΣK,∞.
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3.2. Semi-positivity and heights of subvarieties. Let us first define the height
of a point x ∈ X(K) with respect to an adelic R-Cartier divisor D on X. Let φ ∈
Rat(X)×⊗Z R be a function with x /∈ Supp(D+ (φ)) and let K(x) be the function
field of x ∈ X. For each place w ∈ ΣK(x), we fix a K-embedding σw : K(x) ↪→ Kv,
where v denotes the restriction of w to K (note that there are exactly [K(x)w : Kv]
such embeddings). The pair (x, σw) determines uniquely a point xw ∈ Xv, and

the quantity ‖φ‖Dw (x) := ‖φ‖Dv (xan
w ) does not depend on the choice of σw. The

normalized height of x with respect to D is the real number

ĥD(x) = −
∑

w∈ΣK(x)

[K(x)w : Qw]

[K(x) : Q]
ln ‖φ‖Dw (x).

This definition does not depend on the choice of φ by [Mor16, (4.2.1)]. Moreover,
if φ ∈ H0(X,D) \ {0} then it follows from the definitions that

(3.1) ĥD(x) ≥ −
∑
v∈ΣK

[Kv : Qv]
[K : Q]

ln ‖φ‖Dv,sup.

In order to define the height of higher dimensional subvarieties, we need the notion
of semi-positive adelic R-Cartier divisors which we recall below.

Definition 3.4. LetD = (D, (gv)v∈ΣK
) ∈ D̂iv(X)R. We say thatD is semi-positive

if there exists a sequence (Xn,Dn, (gn,v)v∈ΣK
)n∈N such that :

• for all n ∈ N, (Xn,Dn) is a normal SpecOK-model for (X,D) with Dn
relatively nef,
• for all n ∈ N, gn,v is a smooth plurisubharmonic D-Green function if v ∈

ΣK,∞ and gn,v = gDn,v for every non-archimedean v ∈ ΣK ,
• for every v ∈ ΣK , (gn,v)n∈N converges uniformly to gv.

Remark 3.5.

(1) It follows from the definition that the sum of semi-positive adelic R-Cartier

divisors is semi-positive. Moreover, if D ∈ D̂iv(X)R is semi-positive then
D(t) is semi-positive for any t ∈ R.

(2) An adelic Cartier divisor D ∈ D̂iv(X) is semi-positive if and only if the

associated line bundle (OX(D), (‖.‖Dv )v∈ΣK
) of Remark 3.2 is semi-positive

in the sense of Zhang [Zha95b, (1.3)] (see [BGMPS16], (1) page 229).

Following [BGMPS16], we say that an adelic R-Cartier divisor D on X is DSP

if D = D1−D2 is the difference of two semi-positive D1, D2 ∈ D̂iv(X)R. Let D be
a DSP adelic R-Cartier divisor on X and let Y ⊆ X be a r-dimensional subvariety,
where 0 ≤ r ≤ dimX is an integer. For any place v ∈ ΣK , we define a measure
c1(D)∧ dimY ∧ δY an

v
on Xan

v as in [BGMPS16, page 225]. It is obtained by multi-
linearity from the corresponding measures associated to semi-positive adelic Cartier
divisors defined in [BGPS14, Definition 1.4.6]. The measure c1(D)∧ dimY ∧ δY an

v
is

supported on Y an
v ⊆ Xan

v and has total mass degD(Y ).
Let Φ = (φ0, . . . , φr) ∈ (Rat(X)× ⊗Z R)⊕r be a family intersecting Y properly

in the following sense: for every I ⊆ {0, . . . , r},

Y ∩

(⋂
i∈I

Supp((φi) +D)

)
is of pure dimension r −#I. The local height hD,Φ,v(Y ) of Z at v with respect to

(D,Φ) is defined inductively as follows. We put hD,Φ,v(∅) = 0, and

(3.2) hD,Φ,v(Z) = hD,(φ1,...,φr),v(Y ·(D+(φ0)))−
∫
Xan

v

ln ‖φ0‖Dv c1(D)∧ dimY ∧δY an
v
.
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It follows from [BGPS14, Proposition 1.5.14] that hD,Φ,v(Y ) = 0 for all except

finitely many places v ∈ ΣK . The height of Y with respect to D is the real number

hD(Y ) =
∑
v∈ΣK

[Kv : Qv]
[K : Q]

hD,Φ,v(Y );

it does not depend on the choice of Φ. If Y ⊆ X is a subvariety with degD(Y ) 6= 0,
the normalized height of Y with respect to D is the real number

ĥD(Y ) =
hD(Y )

(dimY + 1) degD(Y )
.

Remark 3.6.

(1) If Y = {x} is a closed point in X, then ĥD(Y ) coincides with the normalized

height ĥD(x) of x.
(2) The height function is continuous in the following sense: for any DSP adelic

R-Cartier divisor D
′

on X, we have

lim
t→0

hD+tD
′(Y ) = hD(Y ).

If moreover degD(Y ) 6= 0, then degD+tD′(Y ) 6= 0 for any sufficiently small

t ∈ R and we have limt→0 ĥD+tD
′(Y ) = ĥD(Y ).

(3) Assume that D ∈ D̂iv(X)R is semi-positive, and let

(Xn,Dn, (gn,v)v∈ΣK
)n∈N

be a sequence as in Definition 3.4. Given n ∈ N, let Dn = (D, (gn,v)v∈ΣK
).

Then we have limn→∞ hDn
(Y ) = hD(Y ), and moreover limn→∞ ĥDn

(Y ) =

ĥD(Y ) if degD(Y ) 6= 0.

(4) Assume that D = (D, (gv)v∈ΣK
) ∈ D̂iv(X) is a semi-positive adelic Cartier

divisor such that there exists a SpecOK-model (X ,D) of (X,D) with gv =
gD,v for every non-archimedean place v ∈ ΣK . Then

L = (OX (D), (‖.‖Dv )v∈ΣK,∞)

is a semi-positive hermitian line bundle in the sense of [Zha95a] and we
have hD(Y ) = c1(L|Y)dimY , where Y is the Zariski-closure of Y in X (see

[Zha95a, (1.2)] for the definition of c1(L|Y)dimY).

We have the following lemma concerning the behaviour of heights with respect
to twists of adelic R-Cartier divisors (see Definition 3.3).

Lemma 3.7. Let D = (D, (gv)v∈ΣK
) be a DSP adelic R-Cartier divisor on X and

let Y ⊆ X be a subvariety. For any t ∈ R, we have

hD(t)(Y ) = hD(Y )− t(dimY + 1) degD(Y ).

In particular, if degD(Y ) 6= 0 then ĥD(t)(Y ) = ĥD(Y )− t.

Proof. The result follows from (3.2) by induction on dimY . �

Let r ∈ {0, . . . ,dimX} and let Z be a r-cycle in XK = X ×K SpecK. There
exists a finite extension K ′ of K such that Z is defined over K ′, i.e. Z is a r-cycle
in XK′ = X×K SpecK ′: there exists integers a1, . . . , a` and subvarieties Y1, . . . , Y`
of XK′ such that Z =

∑`
i=1 aiYi,K . Given a DSP D ∈ D̂iv(X)R, we define a DSP

adelic R-Cartier divisor DK′ by pulling back D to XK′ . The height of Z with

respect to D is then defined by hD(Z) =
∑`
i=1 aihDK′ (Yi). This definition does

not depend on the choice of K ′ by [BGPS14, Proposition 1.5.10].
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Lemma 3.8. Let D be a DSP adelic R-Cartier divisor on X. The following con-
ditions are equivalent:

(1) hD(Y ) > 0 for every subvariety Y ⊆ X;
(2) hD(Y ) > 0 for every subvariety Y ⊆ XK .

Proof. The implication (2) =⇒ (1) is clear. Assume that (1) holds and let Y ⊆ XK

be a subvariety. Let Gal(K/K) be the set of K-automorphisms σ : K → K. For
any σ ∈ Gal(K/K), we denote by Y σ the pullback of Y by the automorphism of
XK induced by σ; it is a subvariety of XK . We consider the set

O(Y ) = {Y σ | σ ∈ Gal(K/K)}.

It follows easily from the definitions that hD(Y ′) = hD(Y ) for any Y ′ ∈ O(Y )
(alternatively, this fact is a direct consequence of [BGPS14, Theorem 1.5.11]). By
[BG06, A.4.13],

ZY =
⋃

Y ′∈O(Y )

Y ′

is a subvariety of X (i.e. its image in X is an irreducible Zariski closed subset of X,
which we still denote by ZY ). Therefore hD(ZY ) > 0 by assumption. Let K ′ be a
finite extension such that every Y ′ ∈ O(Y ) is a subvariety of XK′ . Let (ZY )K′ be
the cycle in XK′ associated to ZY : we have

(ZY )K′ =
∑

Y ′∈O(Y )

nY ′Y ′,

where nY ′ is a positive integer for every Y ′ ∈ O(Y ). By [BGPS14, Proposition
1.5.10], we have hD((ZY )K′) = hD(ZY ) > 0. On the other hand, we have

hD((ZY )K′) =
∑

Y ′∈O(Y )

nY ′hD(Y ′) = hD(Y )×
∑

Y ′∈O(Y )

nY ′ ,

and therefore hD(Y ) > 0. �

We end this paragraph with a sufficient condition for the ampleness of the un-
derlying divisor of an adelic R-Cartier divisor.

Lemma 3.9. Let D = (D, (gv)v∈ΣK
) ∈ D̂iv(X)R be semi-positive. Assume that

hD(Y ) > 0 for every subvariety Y ⊆ X. Then D is ample.

We want to combine Campana and Peternell’s Nakai-Moishezon criterion for R-
Cartier divisors [CP90] with Moriwaki’s generalized Hodge index theorem [Mor16,
Theorem 5.3.2] applied to subvarieties of X. We must pay attention to the fact
that [Mor16, Theorem 5.3.2] applies only to normal and geometrically integral
subvarieties.

Proof. Let Y ⊆ XK be a subvariety and let K ′ be a finite extension of K such

that Y is defined over K ′. We consider the adelic R-Cartier divisor DK′ =
(DK′ , (gw)w∈ΣK′ ) defined by pulling back D to XK′ . Let f : Y ′ → Y be the nor-
malization of Y and let φ ∈ Rat(XK′)× ⊗Z R be such that Y * Supp(DK′ + (φ)).
Note that Y ′ is normal and geometrically integral. We define a semi-positive
adelic R-Cartier divisor DY ′ = (DY ′ , (gY ′,w)w∈ΣK′ ) on Y ′ as follows: DY ′ =
f∗(DK′ + (φ))|Y and for each w ∈ ΣK′ , the DY ′ -Green function gY ′,w is the pull-
back of (gw − 2 ln |φ|w)|Y an

w
to (Y ′w)an. By [BGPS14, Theorem 1.5.11 (2)], we have

hDY ′ (Y
′) = hDK′ (Y ). Therefore our assumption together with Lemma 3.8 implies

that hDY ′ (Y
′) = hDK′ (Y ) > 0. It follows from [Mor16, Theorem 5.3.2] that DY ′ is

big in the sense of [Mor16, Definition 4.4.1]. In particular, DY ′ is big. Since DY ′
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is also nef by semi-positivity, we have DdimY
K′ · Y = DdimY ′

Y ′ · Y ′ > 0. Therefore D
is ample by [CP90, Theorem 1.3].

�

3.3. Ample adelic R-Cartier divisors. We now define ample adelic R-Cartier
divisors and study some of their properties.

Definition 3.10. Let D = (D, (gv)v∈ΣK
) be an adelic R-Cartier divisor. We say

that D is

• weakly ample (w-ample for short) if D =
∑`
i=1 λiAi is a R-linear combina-

tion of adelic Cartier divisors Ai ∈ D̂iv(X) such that for each i ∈ {1, . . . , `},
λi > 0, Ai is ample and for every m� 1, H0(X,mAi) has a K-basis con-
sisting of strictly small sections;
• ample if it is w-ample and semi-positive.

The terminology of weakly ample adelic R-Cartier divisors is due to Ikoma
[Iko21].We end this section with three lemmas concerning basic properties of w-
ample adelic R-Cartier divisors.

Lemma 3.11. Let D,D
′ ∈ D̂iv(X)R. If D is w-ample, there exists a real number

ε > 0 such that D + tD
′

is ample for any t ∈ R with |t| ≤ ε.

Proof. Without loss of generality, we only consider the case where D
′ ∈ D̂iv(X)

and t ≥ 0. If D is w-ample, D =
∑`
i=1 λiAi is a R-linear combination with positive

coefficients of adelic Cartier divisors Ai ∈ D̂iv(X) such that for each i ∈ {1, . . . , `},
Ai is ample and H0(X,mAi) has a K-basis consisting of strictly small sections for

m� 1. By [Iko16, Proposition 5.4 (5)], there exists a δ > 0 such that A1 + δD
′

is
w-ample. Let ε = δλ1. Then for every real number t ∈ [0, ε],

D + tD
′

=
t

δ
(A1 + δD

′
) + (λ1 −

t

δ
)A1 +

∑̀
i=2

λiAi

is w-ample. �

Remark 3.12. By Lemma 3.11 and [Mor16, Lemma 1.1.1], an adelic Cartier divisor

D = (D, (gv)v∈ΣK
) ∈ D̂iv(X) on X is w-ample if and only if D is ample and

H0(X,mD) has a K-basis consisting of strictly small sections for every m� 1.

Lemma 3.13. Let D be a w-ample adelic R-Cartier divisor on X. Then

inf
x∈X(K)

ĥD(x) > 0.

Proof. By definition, we can write D =
∑`
i=1 λiAi where for each i ∈ {1, . . . , `}, λi

is a positive real number, Ai is an adelic Cartier divisor such that Ai is ample, and
H0(X,mAi) has a K-basis consisting of strictly small sections for every m � 1.
Let m ≥ 1 be an integer such that for each i ∈ {1, . . . , `}, there exists a set of

functions φi,1, . . . , φi,ki ∈ Ĥ0(X,mAi) with

ki⋂
j=1

Supp(mAi + (φi,j)) = ∅.

Letting

Λi := − max
1≤j≤ki

∑
v∈ΣK

[Kv : Qv]
[K : Q]

ln ‖φi,j‖mAi
v,sup > 0,
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we have ĥAi
(x) ≥ Λi/m for every x ∈ X(K) (see (3.1)). Therefore we have

inf
x∈X(K)

ĥD(x) ≥
∑̀
i=1

λi inf
x∈X(K)

ĥAi
(x) ≥

∑̀
i=1

λiΛi/m > 0.

�

Lemma 3.14. Let D = (D, (gv)v∈ΣK
) be an adelic R-Cartier divisor. If D is

ample, there exists a real number t ∈ R such that D(t) is w-ample.

Proof. Since D is ample, there exists an ample A ∈ D̂iv(X)R such that D − A ∈
D̂iv(X)Q and D − A is ample. For a sufficiently large and divisible integer m,
m(D − A) is a very ample Cartier divisor on X. Let (φ1, . . . , φ`) be basis of

H0(X,m(D − A)) such that ‖φi‖m(D−A)
v,sup ≤ 1 for every i ∈ {1, . . . , `} and every

non-archimedean place v ∈ ΣK . Let t ∈ R be a real number such that

t < − max
1≤i≤`

max
v∈ΣK,∞

ln ‖φi‖m(D−A)
v,sup .

Then φi ∈ Ĥ0(X,m(D−A)(t)) for every i, and it follows that A
′
t := (D−A)(t) =

D(t)−A is ample. Therefore D(t) = A+A
′
t is ample. �

4. Zhang’s theorem on successive minima

In this section we recall the notion of successive minima for adelic R-Cartier
divisors, which was first introduced by Zhang for hermitian line bundles [Zha95a,
section 5]. We then prove a continuity property which allows to extend Zhang’s
theorem on minima [Zha95a, Theorem 5.2] to the case of adelic R-Cartier divisors
(see Lemma 4.1 and Theorem 4.3 below).

Let D ∈ D̂iv(X)R and let Z ⊆ X be a subvariety. For any i ∈ {1, . . . ,dimZ+1},
we define the i-th successive minimum of D on Z by

ζi(D,Z) = sup
Y⊆Z

dimY <i−1

inf
x∈Z(K)\Y

ĥD(x) ∈ R ∪ {−∞},

where the supremum is over all the Zariski-closed subsets Y ⊆ Z of dimension
dimY < i− 1. We obtain a chain of real numbers

ζdimZ+1(D,Z) ≥ ζdimZ(D,Z) ≥ · · · ≥ ζ1(D,Z).

Successive minima satisfy the following properties.

Lemma 4.1. Let D = (D, (gv)v∈ΣK
) ∈ D̂iv(X)R. Let Z ⊆ X be a subvariety and

let 1 ≤ i ≤ dimZ + 1 be an integer.

(1) For any D
′ ∈ D̂iv(X)R, we have

ζi(D +D
′
, Z) ≥ ζi(D,Z) + ζi(D

′
, Z).

(2) Let D1, . . . , D` ∈ D̂iv(X)R. If D is ample, then

lim
max{|t1|,...,|t`|}→0

ζi(D + t1D1 + · · ·+ t`D`, Z) = ζi(D,Z).

Proof. (1) We may assume that ζi(D,Z) > −∞ and ζi(D
′
, Z) > −∞. Let t <

ζi(D,Z) and t′ < ζi(D
′
, Z) be real numbers. By definition, there exist two closed

subsets Y, Y ′ ⊆ Z of dimension < i− 1 such that for any x ∈ Z(K) \ (Y ∪ Y ′), we
have

ĥD+D
′(x) = ĥD(x) + ĥD′(x) ≥ t+ t′.
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Since dim(Y ∪ Y ′) < i− 1, we have

ζi(D +D
′
, Z) ≥ inf

x∈Z(K)\(Y ∪Y ′)
ĥD(x) ≥ t+ t′,

and we conclude by letting t and t′ tend to ζi(D,Z) and ζi(D
′
, Z).

(2) If we replace D by D(t) for some real number t, both sides of the equality
differ by −t. By Lemma 3.14, we may therefore assume that D is w-ample. Let
ε > 0 be a real number. For t1, . . . , t` ∈ R small enough, the adelic R-Cartier
divisors

(1 + ε)D − (D + t1D1 + · · ·+ t`D`) = εD − (t1D1 + · · ·+ t`D`)

and

D + t1D1 + · · ·+ t`D` − (1− ε)D = εD + (t1D1 + · · ·+ t`D`)

are w-ample by Lemma 3.11. Combining (1) and Lemma 3.13, we have

(1 + ε)ζi(D,Z) ≥ ζi(D + t1D1 + · · ·+ t`D`, Z) ≥ (1− ε)ζi(D,Z)

and the result follows. �

Remark 4.2. Let D = (D, (gv)v∈ΣK
) ∈ D̂iv(X)R be semi-positive. We consider

a sequence (Xn,Dn, (gn,v)v∈ΣK
)n∈N associated to D as in Definition 3.4. For each

n ∈ N, let Dn = (D, (gn,v)v∈ΣK
). Then we have

lim
n→∞

ζi(Dn, Z) = ζi(D,Z)

for any subvariety Z ⊆ X and any i ∈ {1, . . . ,dimZ + 1}. Indeed, the sum

εn := 2
∑
v∈ΣK

[Kv : Qv]
[K : Q]

sup
z∈Xan

v

|gv(z)− gn,v(z)|

is finite for every n ∈ N, and the sequence (εn)n∈N converges to zero. By construc-
tion, we have

ĥDn
(x)− εn ≤ ĥD(x) ≤ ĥDn

(x) + εn.

for any n ∈ N and x ∈ X(K). It follows that

ζi(Dn, Z)− εn ≤ ζi(D,Z) ≤ ζi(Dn, Z) + εn

as in the proof of Lemma 4.1 (1), and we conclude by letting n tend to infinity.

The following theorem was originally proved by Zhang for adelic Cartier divisors
equipped with Green functions induced by a fixed model [Zha95a, Theorem 5.2].
Thanks to the continuity property of Lemma 4.1, it remains valid for adelic R-
Cartier divisors.

Theorem 4.3. Assume that D = (D, (gv)v∈ΣK
) ∈ D̂iv(X)R is semi-positive and

that D is ample. For any subvariety Z ⊆ X, we have

ζdimZ+1(D,Z) ≥ ĥD(Z) ≥ 1

dimZ + 1

dimZ+1∑
i=1

ζi(D,Z).

Proof. Since D is ample, we can write D =
∑`
i=1 λiAi where for each i ∈ {1, . . . , `},

λi ∈ R>0 and Ai ∈ Div(X) is an ample Cartier divisor on X. Let (gi,v)v∈ΣK
be a

collection of Ai-Green functions such that Ai = (Ai, (gi,v)v∈ΣK
) is a semi-positive

adelic Cartier divisor on X. Given a `-tuple of real numbers t = (t1, . . . , t`) ∈ R`,
we denote by Dt = (Dt, (gt,v)v∈ΣK

) the adelic R-Cartier divisor

Dt = D +
∑̀
i=1

tiAi = (
∑̀
i=1

(λi + ti)Ai, (gv +
∑̀
i=1

tigi,v)v∈ΣK
).
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Let ε > 0 be a real number. We can choose t ∈ [0, ε]` such that Dt ∈ D̂iv(X)Q.

Note that Dt ∈ D̂iv(X)Q is semi-positive. We consider a sequence

(Xt,n,Dt,n, (gt,n,v)v∈ΣK
)n∈N

associated to Dt as in Definition 3.4, and we let Dt,n = (Dt, (gt,n,v)v∈ΣK
) ∈

D̂iv(X)Q. Let m be a positive integer such that mDt,n ∈ Div(X). By [Mor15,

Theorem 0.2], the hermitian metrized line bundle Lm,t,n associated to mDt,n in
Remark 3.6 (4) is semiample metrized in the sense of [Zha95a, section 5]. Therefore
we can apply [Zha95a, Theorem 5.2] to the restriction of Lm,t,n to the closure of Z
in Xt,n. We obtain

(4.1) ζdimZ+1(mDt,n, Z) ≥ ĥmDt,n
(Z) ≥ 1

dimZ + 1

dimZ+1∑
i=1

ζi(mDt,n, Z)

for any n ∈ N (see Remark 3.6 (4)). On the other hand we have ĥmDt,n
(Z) =

mĥDt,n
(Z) and ζi(mDt,n, Z) = mζi(Dt,n, Z) for any i ∈ {1, . . . ,dimZ + 1}, and

therefore (4.1) remains true for m = 1. Letting n tend to infinity, we obtain

ζdimZ+1(Dt, Z) ≥ ĥDt
(Z) ≥ 1

dimZ + 1

dimZ+1∑
i=1

ζi(Dt, Z)

by Remarks 3.6 (3) and 4.2. Letting ε tend to zero, the result follows from the
continuity of normalized heights and successive minima given by Remark 3.6 (2)
and Lemma 4.1 (2).

�

5. Absolute minimum and height of subvarieties

For any D ∈ D̂iv(X)R, we call ζabs(D) := ζ1(D,X) = infx∈X(K) ĥD(x) the

absolute minimum of D. The goal of this section is to prove the following statement,
which refines Theorem 1.2 in the introduction.

Theorem 5.1. Let D = (D, (gv)v∈ΣK
) be a semi-positive adelic R-Cartier divisor

on X. If D is ample, there exists a subvariety Y ⊆ X such that

ζabs(D) = ĥD(Y ) = min
Z⊆X

ĥD(Z),

where the minimum is over the subvarieties Z ⊆ X. Moreover, ζabs(D) = ζi(D,Y )
for any i ∈ {1, . . . ,dimY + 1}.

We begin with two preliminary lemmas.

Lemma 5.2. Let D = (D, (gv)v∈ΣK
) be a semi-positive adelic R-Cartier divisor

on X. Assume that D is ample. Then for any subvariety Z ⊆ X, the following
conditions are equivalent:

(1) ĥD(Y ) > 0 for every subvariety Y ⊆ Z;

(2) ζ1(D,Z) > 0.

Proof. (1) =⇒ (2): If Z = {x} is a point, then ζ1(D,Z) = ĥD(x) > 0. We assume

by induction that dimZ > 0 and that ζ1(D,Y ) > 0 for every subvariety Y  Z.

Since ĥD(Z) > 0, it follows from Theorem 4.3 that there exists a closed subset

Y  Z such that infx∈Z(K)\Y ĥD(x) > 0. On the other hand, if Y1, . . . , Y` are the

irreducible components of Y then

inf
x∈Z(K)∩Y

ĥD(x) = min
1≤i≤`

ζ1(D,Yi) > 0
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by the induction hypothesis. Therefore we have

ζ1(D,Z) = min{ inf
x∈Z(K)\Y

ĥD(x), inf
x∈Z(K)∩Y

ĥD(x)} > 0.

(2) =⇒ (1): Let ζ = ζ1(D,Z) > 0. Note that D(ζ) = D − ζξ∞ is semi-positive
and ζ1(D(ζ), Z) = ζ1(D,Z)− ζ = 0. For any subvariety Y ⊆ Z we have

ĥD(ζ)(Y ) ≥ ζ1(D(ζ), Y ) ≥ ζ1(D(ζ), Z) = 0,

where the first inequality is given by Theorem 4.3 and the second one follows from
the definitions. By Lemma 3.7, we have

ĥD(Y ) = ĥD(ζ)(Y ) + ζ > ĥD(ζ)(Y ) ≥ 0.

�

Lemma 5.3. Let D = (D, (gv)v∈ΣK
) be a semi-positive adelic R-Cartier divisor

on X with D ample. Then

ζabs(D) = inf
Z⊆X

ĥD(Z),

where the infimum is over the subvarieties Z ⊆ X.

Proof. By Zhang’s Theorem 4.3, we have

ĥD(Z) ≥ ζ1(D,Z) ≥ ζabs(D)

for any subvariety Z ⊆ X, and we deduce one inequality of the lemma by taking
the infimum on Z. The converse inequality follows directly from the definition of
ζabs(D).

�

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let ζ = ζabs(D) ∈ R. Note that D(ζ) is semi-positive and
ζabs(D(ζ)) = ζabs(D)− ζ = 0. By Theorem 4.3, we have

ĥD(ζ)(Y ) ≥ ζ1(D(ζ), Y ) ≥ ζabs(D(ζ)) = 0

for every subvariety Y ⊆ X. By Lemma 5.2 applied to Z = X, there exists a

subvariety Y ⊆ X such that ĥD(ζ)(Y ) = 0. Therefore Lemma 3.7 gives

ζabs(D) = ĥD(Y )− ĥD(ζ)(Y ) = ĥD(Y ).

The fact that ζabs(D) coincides with the minimum in the theorem follows from

Lemma 5.3. Finally, we observe that ζ1(D,Y ) ≥ ζabs(D) = ĥD(Y ). Therefore

Zhang’s Theorem 4.3 implies that ζabs(D) = ζi(D,Y ) for every integer 1 ≤ i ≤
dimY + 1. �

6. Proof of Theorem 1.1

Given an adelic R-Cartier divisor D on X, we introduce the invariant

θ(D) := sup{t ∈ R | D(t) is w-ample} ∈ R ∪ {−∞}
(with the convention that sup ∅ = −∞). The main result of this section is the
following theorem, from which we shall deduce Theorem 1.1 (see Corollary 6.4
below).

Theorem 6.1. Let D = (D, (gv)v∈ΣK
) be a semi-positive adelic R-Cartier divisor

on X. If D is ample, then ζabs(D) = θ(D).

Before proving this theorem, we gather some basic properties satisfied by the
invariant θ(D) in the following lemma.
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Lemma 6.2. Let D = (D, (gv)v∈ΣK
) ∈ D̂iv(X)R.

(1) For any D
′ ∈ D̂iv(X)R, we have

θ(D +D
′
) ≥ θ(D) + θ(D

′
).

(2) D is ample if and only if θ(D) is finite.

(3) Let D1, D2, . . . , D` ∈ D̂iv(X)R. If D is ample, then

lim
max{|t1|,...,|t`|}→0

θ(D + t1D1 + · · ·+ t`D`) = θ(D).

Proof. (1) Clearly we may assume that θ(D) > −∞ and θ(D
′
) > −∞. It suffices

to observe that the sum of two w-ample adelic R-Cartier divisors is w-ample.
(2) If θ(D) is finite, then clearly D is ample. Conversely, assume that D is ample.

By Lemma 3.14, there exists t ∈ R such that D(t) is w-ample. Therefore θ(D) ≥ t
is finite.

(3) If we replace D by D(t) for some real number t, both sides of the equality
differ by −t. By Lemma 3.14, we may therefore assume that D is w-ample. Let
ε > 0 be a real number. For sufficiently small real numbers t1, . . . , t`, the adelic
R-Cartier divisors

(1 + ε)D − (D + t1D1 + · · · t`D`) = εD − (t1D1 + · · ·+ t`D`)

and

D + t1D1 + · · ·+ t`D` − (1− ε)D = εD + (t1D1 + · · ·+ t`D`)

are w-ample by Lemma 3.11. In particular,

θ(εD − (t1D1 + · · ·+ t`D`)) ≥ 0 and θ(εD + (t1D1 + · · ·+ t`D`)) ≥ 0

by definition of θ. By (1), we infer that

(1 + ε)θ(D) ≥ θ(D + t1D1 + · · ·+ t`D`) ≥ (1− ε)θ(D),

and the result follows. �

Let us now prove Theorem 6.1. We shall combine Zhang’s arithmetic Nakai-
Moishezon criterion [Zha95a, Theorem 4.2] and the continuity property given by
Lemma 6.2 (3).

Proof of Theorem 6.1. Since D is ample, we have θ(D) > −∞ by Lemma 6.2 (2).
Let t < θ(D) be a real number. By definition, D(t) is w-ample and Lemma 3.13
gives

ζabs(D)− t = ζabs(D(t)) > 0.

By letting t tend to θ(D), we conclude that ζabs(D) ≥ θ(D).

For the converse inequality, let us first assume that D ∈ D̂iv(X)Q. By homo-

geneity of θ(D) and ζabs(D), we may assume that D is an adelic Cartier divisor
without loss of generality. Let t < ζabs(D) be a real number. Since ζabs(D(t)) =
ζabs(D)− t > 0, we have

hD(t)(Y ) > 0

for any subvariety Y ⊆ X by Lemma 5.2. By [Zha95b, Theorem 1.7] (see also
[Zha95b, Proof of Theorem 1.8]), for any subvariety Y ⊆ X there exists an integer

n > 0 such that Ĥ0(Y, nD(t)|Y ) 6= 0. By [CM18, Theorem 1.2], D(t) is w-ample.

Therefore θ(D) ≥ t, and we conclude by letting t tend to ζabs(D).
Let us now prove the equality ζabs(D) = θ(D) in full generality. Since D is ample,

we can write D =
∑`
i=1 λiAi where for each i ∈ {1, . . . , `}, λi ∈ R>0 and Ai is an

ample Cartier divisor on X. For each i ∈ {1, . . . , `}, we equip Ai with a collection
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of Ai-Green functions (gi,v)v∈ΣK
such that Ai = (Ai, (gi,v)v∈ΣK

) ∈ D̂iv(X) is semi-
positive. For any ε > 0, we can find a `-tuple of real numbers t = (t1, . . . , t`) ∈ [0, ε]`

such that

Dt := D +
∑̀
i=1

tiAi = (
∑̀
i=1

(λi + ti)Ai, (gv +
∑̀
i=1

tigi,v)v∈ΣK
) ∈ D̂iv(X)Q

is an adelic Q-Cartier divisor. Note that Dt is semi-positive. By the above, we
have ζabs(Dt) = θ(Dt). Letting ε tend to zero, we find that ζabs(D) = θ(D) by
continuity of ζabs and θ (Lemma 4.1 (2) and Lemma 6.2 (3)). �

Remark 6.3. In the proof of Theorem 6.1, we used a particular case of a theorem of
Chen and Moriwaki [CM18], which generalizes Zhang’s arithmetic Nakai-Moishezon
criterion [Zha95a, Theorem 4.2]. Using Zhang’s original result would have required
extra work since it involves stronger assumptions on the metrics.

We now deduce a refinement of Theorem 1.1 from Theorems 5.1 and 6.1.

Corollary 6.4. Let D = (D, (gv)v∈ΣK
) be a semi-positive adelic R-Cartier divisor

on X. The following conditions are equivalent:

(1) D is ample;
(2) hD(Y ) > 0 for every subvariety Y ⊆ X;

(3) D is ample and infY⊆X ĥD(Y ) > 0, where the infimum is over all subvari-
eties Y ⊆ X;

(4) D is ample and ζabs(D) > 0.

Proof. The assertion (2) ⇔ (3) ⇔ (4) is given by Lemma 3.9 and Theorem 5.1.
The implication (1)⇒ (4) is Lemma 3.13, so it only remains to prove (4)⇒ (1). If
(4) holds, then θ(D) = ζabs(D) > 0 by Theorem 6.1 and therefore D is w-ample by
definition of θ(D). Since D is also semi-positive, it is ample. �

Remark 6.5. In [BGMPS16, Definition 3.18 (2)], the authors defined arithmetic
ampleness by using the notion of metrized divisors generated by small R-sections. It

is straightforward to check that if D ∈ D̂iv(X)R is ample in the sense of Definition
3.10, then it is ample in the sense of [BGMPS16]. On the other hand, if D is
ample in the sense of [BGMPS16], then clearly ζabs(D) > 0. Therefore, Corollary
6.4 implies that our definition of arithmetic ampleness coincides with the one of
[BGMPS16, Definition 3.18 (2)].

We conclude this article with two direct consequences of our results.

Corollary 6.6. Let D = (D, (gv)v∈ΣK
) ∈ D̂iv(X)R be semi-positive and let A ∈

D̂iv(X)R be w-ample. The following assertions are equivalent:

(1) D is ample;

(2) D is ample and there exists a real number ε > 0 such that ĥD(x) ≥ εĥA(x)

for any x ∈ X(K).

Proof. (1) =⇒ (2): By Lemma 3.11, there exists a real number ε > 0 such that
D − εA is w-ample. By Lemma 3.13, we have

ĥD(x)− εĥA(x) = ĥD−εA(x) > 0

for any x ∈ X(K).
(2) =⇒ (1): Since A is w-ample, ζabs(A) > 0 by Lemma 3.13. Assumption (2)

therefore implies that ζabs(D − ε′A) > 0 for any ε′ ∈ (0, ε). By Lemma 4.1 (1), it
follows that

ζabs(D) ≥ ζabs(D − ε′A) + ζabs(ε
′A) > 0,

and therefore D is ample by Corollary 6.4. �
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Corollary 6.7. Let D = (D, (gv)v∈ΣK
) ∈ D̂iv(X)R be semi-positive. The following

assertions are equivalent:

(1) ζabs(D) ≥ 0;

(2) D +A is ample for any ample A ∈ D̂iv(X)R.

Proof. (1) =⇒ (2): Let A ∈ D̂iv(X)R be ample. Then the underlying divisor A of
A is ample. Since D is nef by semi-positivity of D, D + A is ample. Moreover we
have

ζabs(D +A) ≥ ζabs(D) + ζabs(A) ≥ ζabs(A) > 0,

where the last inequality is given by Lemma 3.13. By Corollary 6.4, D+A is ample.

(2) =⇒ (1): Let x ∈ X(K) be a closed point. We want to prove that ĥD(x) ≥ 0.

Let A ∈ D̂iv(X)R be ample and semi-positive and let ε > 0 be a real number. Since
D + εA is ample, we have

ĥD(x) + εĥA(x) = ĥD+εA(x) > 0,

and we conclude by letting ε tend to zero. �

A semi-positive adelic R-Cartier divisor satisfying ζabs(D) ≥ 0 is usually called
nef in the literature [Mor16, Definition 4.4.1]. Roughly speaking, Corollary 6.7
asserts that an adelic R-Cartier divisor is nef if and only if it is the limit of a
sequence of ample adelic R-Cartier divisors.
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