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Abstract

Accurate fatigue lifetime prediction is a central element in many industries.

Often, a damage tolerant approach is used to ensure that some given imper-

fections are safe. In this context, these lifetime predictions are frequently

made using simplified crack geometries leading to costly conservatism. In

particular for a closed crack front, a circular or elliptical crack enclosing the

real defect is generally used leading to an underestimation of the real life-

time. Using an iterative perturbation method to simulate the fatigue growth

of many tensile complexly shaped cracks, we show that in the absence of any

additional complexity, (i) the front quickly becomes circular; (ii) its evolu-

tion with the number of loading cycles can be obtained analytically using a

circular crack of same area as the original distorted defect. In practice, it

means that replacing a complex crack front shape with this simple, analyt-

ically solvable configuration is an effective way to improve predictions and

that it is not useful to invoke more complex shapes such as elliptical cracks.

These take-home messages are illustrated by an example from the aviation

industry.
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Introduction

Accurate lifetime prediction is crucial in many domains: hydroelectric

dams, nuclear power plants, bridges, aircraft, railways to cite a few. Overes-

timating the lifetime in comparison to the real one can lead to catastrophic

consequences, whereas underestimation leads to additional environmental

costs. Refined models may help to increase the reliability of the forecasting

while limiting the effects on the ecological footprint. In particular in a dam-

age tolerance approach, where the presence of cracks or defects are assumed,

whether due to manufacturing or detected at a later stage of use, accurate

crack growth calculations are necessary to ensure appropriate safety: it de-

termines the time span to next inspection and the moment where reparation

becomes mandatory. Yet these predictions are generally done using simpli-

fied, mostly 2D, geometries: straight, circular cracks or elliptical cracks as

those indexed in handbooks [1, 2]. But, as shown both in postmortem fracto-

graphy and initial defect observation, the real shape of the crack is mostly

much more complex.

The aim here is to focus on the influence of the crack front shape on

lifetime predictions. Hence, we consider a planar crack embedded in an

infinite, linear elastic isotropic material, loaded by a uniform cyclic tensile

stress. We assume the crack advances following a simple Paris’ law. In this

way, the sole complexity comes from a possible distorted crack front, avoiding

any additional effect that may be induced by the finite size of the domain,

multimode loading, non flatness of the crack, material anisotropy or non-

linearity, complex loading condition and history, or sophisticated propagation

laws.
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Methods based on Finite Elements are not suitable for this purpose since

a finite size body has to be considered. Therefore, boundary effects can not

be excluded unless working with a small crack in a huge body, but then the

effects of the front distortions are impossible to catch accurately. An altern-

ative and efficient way to deal with it is to resort to perturbation approaches

(see [3] for a review). Assuming a flat crack and an infinite body, the method

reduces the geometry involved in the problem to that of the crack front, so

that the meshing operation is restricted to this line. Initiated by Bueckner

[4] and Rice [5] at about the same time, it gives the variation of the Stress

Intensity Factor (SIF) due to a small perturbation of the crack front. Applied

iteratively, following a seminal idea of Rice [6], the SIF along an arbitrary

large perturbed front can be computed.

The method has been implemented numerically by Bower and Ortiz as

described in [7], and used in the case of propagation through an array of

tough microparticles [8], tough particles and microcracks [9], as well as non-

uniform remote stresses and residual stresses [10]. Lazarus and co-workers

have adapted the method to study the propagation of closed crack fronts

(circular, elliptical, rectangular, heart-shaped) in a homogeneous material

in both mode I [11] and mode II+III [12] loading conditions, but also for

a tensile crack propagating in a highly heterogeneous solid [13] and for the

coalescence of two circular cracks [14].

A first rough study of the influence of the shape on the evolution of the

crack size with the number of loading cycles N has been done in [11] to

illustrate the possibility of the perturbation approach to deal with this issue.

Here, thanks to the systematization of the study to an extensive panel of
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Figure 1: Problem statement and definition of some characteristic lengths.

crack front shapes, the influence of the choice of the crack size definition

(perimeter, surface, width, length, circumcircle diameter) on the results is

discussed systematically. We show first that perimeter and width are not

admissible options since they may decrease during propagation, and second

that under the assumptions set out below, the lifetime predictions are weakly

dependent on the precise crack shape provided that the crack surface area

is chosen as the representative size of a crack. In practice, it means that

the lifetime can be computed analytically using a circular crack of same area

and that it is not worth to invoke more complex crack shapes as ellipses for

instance. We use the case of shrinkage cavities to illustrate the results for

practical engineering purposes.
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1. Methods

1.1. Problem statement

Consider a flat crack in an infinite linear elastic isotropic body subjected

remotely to a uniform tensile cyclic stress of constant amplitude ∆σ (Fig. 1a).

Suppose that the normal crack advance at each point s is ruled by Paris’ law:

da(s)

dN
= C (∆K(s))n , (1)

∆K(s) being the amplitude of the SIF during one cycle.

If the crack front is a circle of radius r, the SIF K0 is uniform along the

crack front:

∆K0 = 2∆σ
√
r/π, (2)

resulting in a uniform crack advance, so that the shape remains the same

during propagation. If the crack front is tortuous, K(s) is not uniform,

the shape of the front evolves during propagation involving a succession of

complex crack forms for which the values of K(s) have to be updated.

Herein, we aim to replace this complex 3D evolution problem that has to

be solved for each point of the crack front, with the one of the radius evolution

of a circular crack, that is to replace Eq. (1) with a unique equation:

dr

dN
= C(∆K0)n (3)

Several choices to define the equivalent radius r are possible, they will be

introduced in next section.

1.2. How to define the equivalent crack size r?

Let us discuss several options for the choice of r to be used in Eq. 3.

Monitoring the position of a particular point, as was done in the prelimin-
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ary studies of [11], is a subjective way to define this variable. It can’t be

generalized to arbitrary shapes. We propose five objective measurements to

define the size : area, perimeter, length, width, and the diameter of the cir-

cumscribed circle. While the precise definition of the area, perimeter, and

circumscribed circle is straightforward, it is less trivial for the length and

width. Herein, the length of a crack is defined to be the greatest length

between any two points of the crack front. The width is taken to be the dis-

tance between the two points the furthest away along an axis perpendicular

to the length (Fig. 1b). Each of these measurements will be used to define

variables representing the crack size.

In order to have sizes which equalize to the radius if the crack is circular,

we define length (L), width (W ), perimeter (P ), circumcircle diameter (C),

or surface area(S) based sizes respectively by :

r ≡ L

2
r ≡ W

2
r ≡ P

2π
r ≡ C

2
r ≡

√
S

π
(4)

Among them, the surface-based size has a special significance later on, this

is why we introduce the following specific notation:

a ≡
√
S

π
(5)

These equivalent sizes will be used to post-process the results of the sim-

ulations of crack propagation made using the method shown in the next

section.

1.3. The iterative perturbation approach

In short, the perturbative method is based on the weight-function theory

developed by Rice [6], and permits the computation of the variation of the
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Stress Intensity Factor (SIF) along a given plane crack caused by some small

perturbation of the crack front, knowing the SIF along the original front.

This method makes no assumptions on the crack shape other than its flatness,

which makes it suitable to study arbitrarily shaped cracks.

Denote F the crack front, s the curvilinear abscissa1 along F , W (s, s′),

an influence function derived from the SIF at point s when a doublet of point

forces is applied in the vicinity of s′. By using the linearity of the elasticity

problem, we introduce a dimensionless SIF κ(s), that depends only on the

crack shape and is independent of the initial crack size and of the loading

amplitude:

κ(s) =
K(s)

∆σ
√
r0

(6)

For any small normal perturbation δa(s) of the crack front, the variation of

δκ(s0) that will arise for any point at abscissa s0, is given to the first order

in δa by:

δκ(s0) =
1

2π
PV

∫
F

W (s0, s)

D2(s0, s)
κ(s)(δa(s)− δ∗a(s))ds, (7)

where D(s, s′) is the euclidean distance between points s and s′, and δ∗a(s) is

a normal advance that preserves the shape and size of the front and verifies

δa(s0) = δ∗a(s0). This condition ensures that the Principal Value integral

PV
∫

exists.

Similarly, an analogous formula for W is:

δW (s0, s1) =
D2(s0, s1)

2π
PV

∫
F

W (s0, s)W (s1, s)

D2(s0, s)D2(s1, s)
(δa(s)− δ∗∗a(s))ds, (8)

1Such that
∥∥dx

ds

∥∥ = 1, where x(s) is the point of the front at the abscissa s
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with δ∗∗a(s) any normal advance that preserves the shape of the front and

verifies δa(s0) = δ∗∗a(s0) and δa(s1) = δ∗∗a(s1).

From this, with multiple successive perturbations, any propagation of a

crack front can be simulated if we know the initial κ and W . Moreover,

we can compute κ and W for any closed crack front by perturbing a circle

for which it is known [15] that W (s, s′) = 1, and κ(s) = 2
√

r
πr0

, r being the

radius. Therefore, the iterative perturbation method can be used to simulate

the propagation and predict the evolution of a crack regardless of its shape

in two stages, as illustrated in Fig. 2 for the case of a rectangular crack:

1. Initialization (Fig. 2a): starting from a circle and perturbing it in order

to get K and W along the desired shape.

2. Propagation (Fig. 2b): applying successive perturbations that corres-

pond to the advance of the crack given by a Paris’ law (Eq. 1) as done

here, or more generally any fatigue propagation law based on the SIF.

In this process, the sole mesh required is that of the crack front F . For

more details, the readers may refer to [11], which lays the foundations of

the simulation software used here. Several improvements have nevertheless

been implemented, and will be the subject of another article focusing on the

numerical methods developed.

1.4. Tested crack shapes

To ensure that we appraise each choice of equivalent crack fairly, it is

important to test a large variety of crack shapes. To verify this requirement,

we use five types of crack shapes in our study : a collection of ellipses and

rectangles with aspect ratios varying from 0.2 to 1, two kinds of heart-shaped
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Figure 2: Selection of some crack fronts encountered during the initialization and propaga-

tion stages of the numerical method in the case of a rectangular crack.

cracks with cusp angles varying from 0◦ to 180◦, flower-shaped cracks with 2

to 8 petals, and finally the external shape of letters and numbers. Figure 3

gives a patchwork of these shapes. A total of 109 crack shapes are considered.

We use five values of n (n = 1, 2, 3, 4, 5) to cover the range of most materials

[16]. This makes a total of 545 crack propagation simulations.

1.5. Numerical implementation

Since the body is assumed to be infinite, the lengths can be rescaled by

the initial size r0 of the crack. The loading amplitude ∆σ being constant

over the cycles, Eq. 1 can be rewritten using the definition of κ(s) (Eq. 6):

da(s)/r0

dN
= κ(s)n, (9)

where

N = NC(∆σ)nr
n/2−1
0 (10)
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Figure 3: Patchwork of the simulated shapes

The number of parameters involved can thus be reduced to the sole parameter

n.

In practice, for a given initial crack shape and value of n, Eq. 9 is solved

iteratively to get the evolution of the crack shape versus N . In this process,

κ(s) is updated using the perturbation approach presented in Section 1.3 and

the evolution of the crack front is obtained from the advance law (Eq. 1)

applied at each point of the front. The evolution of r/r0 with N is extracted

from these successive crack positions for each of the definition of r introduced

in Eqs. 4: the length taking the maximum of D(s, s0); the width can then

be obtained in a straightforward way (see Fig. 1b); the perimeter and area
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by integration along the front of the curvilinear abscissa (P =
∫
F ds; S =∫

F
1
2

∥∥x(s)× dx
ds

∥∥ ds); the circumcircle radius using the method presented in

[17].

1.6. Error estimation and inaccuracy of certain simulations

It happens that the perturbation method yields imprecise results, notably

if the shape has many sections of high curvature. To exclude the simulations

that are subject to large numerical errors, we need a way to assess the pre-

cision. In our problem, the values of Knum(s) at the final stage results from

iterations on many cycles and may thus be error-stained. Yet, the final shape

is always nearly circular (see Fig. 2 and several examples below), and it is

possible to recalculate the SIF with a good accuracy (see Appendix A for

a discussion of this accuracy) starting from the nearest circle since few it-

erations are then necessary. The value K(s) obtained in this way, serves as

reference to obtain an estimation of the relative numerical error E of the SIF

defined by:

E =
1

smax

√∫ smax

0

(Knum(s)−K(s))2

K2
m

ds (11)

where Km is taken to be the mean of K(s) over the front.

We can then exclude all propagation that have an error above a certain

threshold Eth. In this study, we choose arbitrarily Eth = 0.05. In practice, it

led us to keep 462 of the initial 545 simulations.
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2. Results

2.1. Evolution of a circular crack

For the reference case of a circular crack of radius r, κ = 2
√

r
r0π

so that

Eq. 9 becomes:
dr/r0

dN
=

(
r

r0

)n/2(
2√
π

)n
(12)

For n = 2, the solution of this differential equation is:

r

r0

= exp

(
4

π
N

)
(13)

and for all other n:
r

r0

=

(
1− 2n−1n− 2

πn/2
N

) −2
n−2

(14)

2.2. All the shapes become circular after a transition phase
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Figure 4: Evolution of the crack front shapes for a representative panel in the case n = 3.

Evolution of the circularity as defined in Eq.15 for the same initial shape and different

values of n. Whatever the shape and n, the shape quickly evolves toward a circle, and this

evolution is faster when n is higher (from bottom to top, the curves are always ordered

by growing n values).

Figure 4 gives a representative panel of the evolution of several crack

shapes to illustrate that in all cases of Fig. 3 and for any value of n = 1, 5,
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the crack deforms during propagation during a transitory phase until reaching

a stationary self-sustained circular shape.

To quantify this affirmation, we use the circularity θ of the crack shape

defined by

θ =
4πS

P 2
(15)

If the shape is circular θ = 1. If not, the value departs from 1 in the range

[0; 1[. In Fig. 4, while the crack shape progress is only given for n = 3 for

each of the selected shape, the corresponding evolution of θ with a/a0 is

plotted for different values of n. We observe that it always reaches θ ' 1

quickly. We also notice that the circularity gets closer to 1 more promptly

if n is higher: it is expected since for higher n values, the influence of the

SIF values (dependent on the crack shape) on the crack advance is stronger.

Table 1 quantifies the growth a/a0 that is required to be sure to escape the

transition phase. While for n = 2 a growth of a factor of 3 is necessary, for

n = 5 a factor of 2 is sufficient.

Paris exponent 1 2 3 4 5

(a/a0) 3.3 2.7 2.4 2.1 1.8

Table 1: Crack growth required so that all cracks of Fig. 3 reach a circular state (set here

at θ > 0.95).

Now for practical purpose, it may be useful for a given shape and n, to

estimate the number of cycles that are required to go from the initial form

to the circular one. This can be done in two steps: first on Fig. 4 look for

the value of a/a0 for which θ reaches a targeted precision, for instance 0.95;
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second to use Eq. (14) or (13) to get the corresponding N , hence N thanks

to Eq. (10). In this process, r/r0 can be replaced by the critical value of a/a0

since as will be seen later with the choice r = a, the relation between N and

r/r0 hardly depends on the crack shape.

2.3. Exclusion of the perimeter and the width as relevant size choices

In certain special cases, some sizes that we defined in Eqs. (4) have been

observed to decrease. Such sizes are disqualified as a properly defined crack

size is necessarily monotonic : fracture is indeed an irreversible process. Fig. 5

shows the evolution of the sizes for two special crack shapes that illustrate

this behaviour: a rectangular crack to discard the width, and a flower shape

one to discard the perimeter.

For rectangle shaped cracks, at the beginning, the width is defined along a

perpendicular line to a diagonal that defines the length (maximum distance).

But after a while, it is defined as the small axis of the ellipse-like shape

that appears after some propagation. This transition in the orientation that

defines the width can be visualized in the inset of Fig. 5a. It explains the

small decrease of r/r0 with N observed in this figure (green line).

For flower-shaped cracks with enough petals, the crack advance is ob-

served to be smaller at the tips of the petals than in the most remote zones

of the front (Fig. 5d). This is because the SIF at the peaks is smaller than

at the troughs [13]. This difference in crack advance explains the decrease of

r/r0 with N observed in Fig. 5b when r is defined using the perimeter (grey

line).

The three remaining sizes are monotonic in all circumstances : it is ob-

vious for the surface or circumcircle-based sizes. For the length-based, it is

15
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Figure 5: Examples of shapes discarding perimeter and width based sizes since they yield

decreasing evolutions (n = 3 here). Right: some successive positions of the front during

propagation. Left: full lines represent the evolution of the sizes determined from the real

crack evolution following the method described in Section 1.5, and the dotted line the

evolution of a circle (Eq. 14). For the rectangle, the insert explains why the width is

decreasing : as the shape transitions from a rectangle to an ellipse-like shape, the longest

diagonal that defines the length (dotted line) rotates and so the width (solid straight lines)

changes drastically.
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linked to the facts that (i) the length of a crack is the same as the length of

its convex hull and (ii) convex hull of a crack after propagation completely

contains all the previous convex hulls. Hence, of the five sizes introduces in

Eqs. (4), only three should be retained to preserve irreversibility: surface,

circumcircle and length based ones.

2.4. Real crack versus circular crack evolutions

The plots r/r0 versus N are not convenient for comparisons in terms of

size growth r versus loading cycle N , and notably to discuss the conservatism

of a particular choice as we aim to do in this section, since r0 depends on the

choice of the size definition (Eq. 10). This is why a0 is used instead of r0 as

length scale in Fig. 6, where a0 is the initial value of a as defined in Eq. 5.

This figure shows the evolution of the three remaining sizes for a selection

of shapes. As in Fig. 5, (i) the solid lines represent the evolution of the sizes

computed from the real crack evolution as explained in Section 1.5; (ii) the

dotted lines correspond to the evolution of the three sizes if the shape is

circular (Eq. 14 since n = 3 in the figure). The initial point of each plot,

r0/a0, are choice dependent. This explains why the dotted lines don’t merge

here, although it was the case in Fig. 5 thanks to the rescaling by r0.

Let us define the lifetime as the number of cycles to increase the crack

from its nominal size r0 to a critical value rc. If the shape of the crack has

become circular at this point, it is obviously equivalent to define the final

failure by targeting Irwin’s threshold. As can be observed on Fig. 6, for the

circumcircle and the length, the dotted lines are always located to the left of

the full lines of the same colours. It means that lifetime predicted using these

sizes underestimates the real one, hence are conservative. This result might

17
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Figure 6: Similar figures than in Fig. 5, but for other initial crack shapes and with rescaling

by a0 instead of r0. The evolutions of the equivalent circles depend on the choice of the

size definition since the initial values differ. Predictions taking the circumcircle and length

based definitions are conservative. Surface based choice gives an evolution that is very

close to the real one.
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seem obvious as the substituted circular crack completely encloses the initial

crack. However, it strongly relies on the fact that all the shapes studied here

turn quickly into a circular one. One can not exclude a priori the existence of

a crack shape that has the property of persisting sufficiently in a not circular

one during propagation and that advance faster than the enclosing circular

crack. We found no such shape in our study, while numerous fronts have

been tested (Fig. 3).

The length-based size is often equal to the circumcircle-based one as il-

lustrated by Fig. 6b. But in the cases where this equality does not hold

(Fig. 6a,c), the length is inferior to the diameter of the circumcircle and

the equivalent circular crack does not enclose the real crack. Therefore, life-

time predictions made with this reference size are still conservative, but less

pessimistic than the ones made using the circumcircle.

The most remarkable observation, that will be deepened in next section, is

that for the surface, dotted and full lines are very close, either slightly to the

right or slightly to the left. It means that substituting a complexly shaped

crack by a circular crack having the same area leads to lifetime predictions

that are not always strictly conservative, but much closer to the reality than

any other choice of size that we tested.

2.5. Equivalence between the real crack and a circular crack of same area

Figure 7 aims to compare the evolution of all the crack shapes with the

one of a circular crack, for the different sizes defined in Eqs. (4). In this

figure, the rescaling by r0 is again relevant since the circular crack evolutions

then merge on one single curve (dotted black lines) corresponding to Eq. (12).

Each curve corresponds to the propagation of one crack from Fig. 3 and a

19



n = 1

n = 2

n = 3

n = 4

n = 5

0 2 4 6 8 10

r/r₀

0

0.5

1

1.5

2

2.5

3

3.5

N
̅

(a) Surface

0 5 10
0

2

4

(b) Width

0 5 10
0

2

4

(c) Perimeter

0 5 10
0

2

4

(d) Circumcircle

Figure 7: Impact of the choice of sizes on the crack evolution compared to a circle. The

x and y labels and the colour code are the same for all figures and given only in (a) for

readability. The figure showing the length-based size is not shown as it is almost identical

to the circumcircle-based one. The vertical lines at r/r0 = 1 show that many more shapes

than the few examples shown in section 2.3 actually have decreasing width or perimeters.
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given Paris’ exponent n.

For the surface based choice r =
√
S/π (Fig. 7a), we can clearly see

five bundles of curves, corresponding to the five values of Paris’ exponents n

considered, which are grouped around the reference curve. In comparison, the

evolution of the other sizes (width, perimeter, circumcircle) given in Figs. 7b,

7c, and 7d respectively are more dispersed and depend strongly on the crack

shape. This shows that the evolution of the crack surface area has a weak

dependency on the actual shape of the crack.

Even if not relevant as demonstrated in Section 2.3, we show width and

perimeter based evolution anyway for two reasons. First, to underline their

dispersion in comparison to the surface evolution. Second, to show once

again that for width and perimeter (Figs. 7b, 7c), in contrary to the other

cases (Figs. 7a, 7d), some unacceptable decrease of r/r0 below 1 appear in

many cases.

Evolutions shown in Fig. 7 supposes that the loading amplitude is con-

stant. This assumption can be lifted to take into account complex load

history by proceeding stepwise. Hence, the resulting evolution curves would

still merge around the one obtained for a circular crack of same area.

The dispersion of the curves within the bundles of Fig. 7a has two pos-

sible origins : the effect of the crack shape and numerical inaccuracies. In

Appendix B, we show that the dispersion within a bundle is to some extent

caused by numerical inaccuracies so that the statement whatever the front

shape, the crack surface area evolves exactly like the one of a circular crack

may be right. However, since numerical errors can never be eliminated com-

pletely, one can not fully conclude: Only an analytical proof has the ability
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∆σ

Figure 8: Tomographic image of a shrinkage cavity observed in a nickel alloy

to prove or disprove this affirmation.

2.6. Practical example : shrinkage cavities

To illustrate the usefulness of the method for practical engineering pur-

poses, we use the example of shrinkage cavities, a type of defects that can

arise in nickel alloys and are taken into account in damage tolerant design in

aeronautics. The typical size of such defects is in the range of 0.1 to 1 mm.

A tomography image of such a defect is given in Fig. 8. We consider the

2D projection of these three-dimensional defect as the more noxious crack.

For a numerical application, the following realistic case is considered: the

initial area of the crack is 1 mm2, the cyclic loading is between 0 and ∆σ =

500 MPa, Paris’ law parameters are n = 3 and C = 10−12 mm−1/2.MPa−3,

the critical SIF is Kc = 1500 MPa.
√

mm.

We define the lifetime as the number of cycles from the initial situation

until the Irwin threshold K = Kc is reached at least at one crack front point.

For a circular crack, this corresponds to rc = π
(
Kc

2∆σ

)2 ' 7.1 mm.

22



In Fig. 9, the simulation using the perturbation approach is presented. As

expected from Section 2.2, the front deforms until reaching a quasi-circular

shape (Fig. 9a). We find numerically that Irwin’s criterion is reached at one

point after 10696 cycles. At this number of loading cycles, the sizes of the

crack reach values very close to rc = 7.1 mm (Fig. 9b), consistent with the

fact that the crack is nearly circular at this stage.

We can easily analytically compute the lifetime of a circular crack having

the same initial size as the real crack using Eqs. (10) and (14), with r = rc

and r0 obtained from the initial shape using different definition of r given

in Eqs. 4. In this example, we only consider the surface-based size, and the

circumcircle-based size, which is in this case equal to the length-based size.

If we choose the surface-based size, the initial size of the crack is r0 = 0.56

mm, that yields N = 1.00 that is N = 1.07× 104 cycles (see blue dotted

line in Fig. 9b). If instead we use the substitution of the real crack by the

circular crack of same size using the circumcircle-based size, we would do the

same calculations with r0 = 0.92 mm which leads to a predicted lifetime of

N = 7420 loading cycles (see red dotted line in Fig. 9b). It is conservative,

as expected from Section 2.4.

As expected from Section 2.5, we obtain that the lifetime predicted ana-

lytically using the surface-based size is extremely close to the one found

using the perturbation method with the real crack shape (a difference of

only 6 cycles, that is 0.06% of the total lifetime) but without any compu-

tational cost, whereas the circumcircle-based size yields a prediction that is

more than 30% less than the lifetime predicted using the actual crack shape.

This means that there is plenty of room to refine lifetime assessments and
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Figure 9: Evolution of the crack obtained by the perturbation approach. The initial shape

corresponds to the projection of the defect of Fig. 8 on the orthogonal plane to the load

direction.

that the crack surface area should be conserved in any simplification of the

crack geometry.

Since the exact shape has a weak influence, it means in particular, that it

is more accurate to replace oval shape defects, by circular cracks of same area

than to use an external elliptical crack. To illustrate this point further, we

also consider another substitution allowing an analytical prediction of life-

time : the substitution by an elliptical crack enclosing the real crack. Some

commercial lifetime assessment software such as Darwin [18] permits the

simulation of elliptical cracks by assuming the crack stays elliptical through-

out its propagation, and by computing crack advances only at the ends of the

minor and major axes of the ellipse. In our case, the starting crack is enclosed

by an ellipse having a semi-major axis of 0.98 mm and semi-minor axis of

0.48 mm. We find that Irwin’s criterion is reached after 9134 loading cycles.
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This value is larger than the one obtained starting from the external circular

crack. It was expected since we now know that the crack ultimately becomes

circular, the additional cycles correspond to the increase of surface required

to transition from the ellipse (S = 1.5 mm2) to the circle (S = 2.7 mm2).

Anyway, even if less conservative than the prediction using the circumscribed

circle, it still underestimates greatly the real lifetime that would be possible

to obtain very easily by taking a circle of same area.

3. Conclusion

Using an iterative perturbative method whose main advantages are to

restrict the meshing operations to that of the initial crack front, and to focus

on its deformation, we underline the key role of the crack surface area in

lifetime predictions. In particular, we show that under the hypotheses of a

plane crack uniformly loaded in tensile mode I in an infinite media:

1. The shape evolves quickly toward a circular one, even for complex initial

forms.

2. The surface area is an objective way to define an equivalent crack size

that leads to irreversible crack advance contrary to other choices.

3. The evolution of the crack surface area due to its propagation in fatigue

is weakly dependent on the shape of the crack.

4. Using the fact that cracks of equal area have therefore similar lifetimes

in fatigue, it is possible to refine damage tolerant design by using cir-

cular cracks with an area equal to that of the original crack. Invoking

more complex shapes as ellipses for instance is not useful.
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Next steps are to lift certain hypotheses made here to study the effect of

complex loading conditions [12], non-uniform remote loading [10], finite size

domains. In this effort, it shall be kept in mind that the surface area has to

be considered as an objective key parameter to monitor the crack evolution,

as demonstrated here in the simplest possible case.
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Appendix A. Accuracy of the simulation procedure

In section 1.3, we described the method we use to both compute the SIF

of the starting cracks we consider in the study and simulate their growth in

fatigue.

Here we ensure that this procedure yields precise enough results to con-

sider the obtained simulations as valid. For an elliptic crack loaded remotely

by a uniform stress σ of aspect ratio α = a/b where a is the semi-minor axis

and b the semi-major axis, the SIF along the front is known analytically (see

for example [20]) :

K(θ) =
σ
√
aπ

E(
√

1− α2)

(
sin2(θ) + α4 cos2(θ)

sin2(θ) + α2 cos2(θ)

)1/4

(A.1)

where θ is the polar position along the crack front relative to the major axis,

and E() the elliptic integral of the second kind. We can compare the SIF
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obtained by our algorithm to this analytical reference, and as a measure of

the numerical error, we compute the maximal relative error as well as the

root-mean-square relative error between the computed SIF Knum(s) and the

analytical SIF K(s) given by equation (A.1) as follows :

maximal error =
1

K(θ = 0)
max
s∈F
|Knum(s)−K(θ(s))|

RMS error =
1

K(θ = 0)

√∫
F |Knum(s)−K(θ(s))|2 ds∫

F ds
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Figure A.10: Relative error of the SIF computed by the iterative perturbation approach

in the initialization phase for the case of an elliptical crack with α = 1/3.

In figure A.10, these quantities are plotted as a function of the average

mesh size for the case of an ellipse with α = 1/3. We see that for a sufficiently

fine meshing of the crack front, the precision of the computation converges

towards a low relative error (' 1%). In our study, we ensured that the

meshes are always fine enough to reach this convergence.
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To take into account the numerical error that might arise during the

second stage of the procedure corresponding to the propagation of the crack,

we assessed the numerical error accumulated throughout the whole numer-

ical procedure by recalculating the SIF of the final nearly circular crack by

starting from the closest circular crack (see section 1.6). Since this proced-

ure is similar to the one used above for the elliptical crack and even involves

fewer iterations since the final shape is nearly circular, the error committed

on this final SIF is thus less than 1%. This precise value of the final SIF is

compared to the one given by the fatigue propagation simulation (Eq. 11).

Since we ensured that this difference is small (E < 5%), we can conclude

that the error level throughout the whole simulation is acceptable.

Appendix B. Role of numerical inaccuracies on the variability of

N(r/r0) with the crack shape

The dispersion of the curves within the bundles of Fig. 7 has two pos-

sible origins : the effect of the crack shape and numerical inaccuracies. In

Section 2.5, we announced that this dispersion is at least in part due to the

second one. Here we aim to further discuss this affirmation. Only the surface

based size will be considered (Fig. 7a).

To quantify the thickness of a bundle, denote δN i(r/r0) =
|N−Ncircle|
Ncircle

the relative error in predicted lifetime at size r/r0 for a given crack i. The

thickness of the bundle is then naturally defined as :

δN(r/r0) = max
i∈all shapes such as E<Eth

δNi(r/r0) (B.1)

This value depends on the Paris exponent n and the tolerance threshold Eth
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Figure B.11: Illustration of the stable values reached by δN for r/r0 → ∞ for varying

values of n and E.

we set on the numerical inaccuracy E for the calculation of K, as defined in

Section 1.6 by Eq. 11.

We observe in Fig. B.11, that when r/r0 increases, δN(r/r0) converges

towards a constant value δN∞ for all values of n and various Eth. This is

shown in Fig. B.11a for different values of n with a tolerance to numerical

error threshold set to Eth = 0.05, and in Fig. B.11b for n = 3 and varying

Eth. This stabilized value is of interest as it represents the maximal long-

term relative error in predicted lifetime made when substituting a crack by

a circular crack of equal surface.
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Figure B.12: Decrease of the bundle thickness for decreasing error threshold E, for different

values of n. Here, δN∞ is taken as δN(r/r0 = 10).

For a given value of n, it is clear that δN∞ decreases with Eth since there

are fewer shapes in the set on which the maximum is determined (Eq. B.1).

It is confirmed by Fig. B.12 that gives δN∞ as a function of Eth for different

values of n. It remains to be seen whether this decrease can also be attributed

at least in part to the numerical errors that the calculation errors on K

generate on N , or equivalently on r/r0, i.e. the position of the front for a

given number of cycles.

To discuss this point, introduce the Bravais-Pearson correlation coefficient

rp between the numerical errors E and δN∞. It is defined by:

rp =
cov(δN∞, E)

σ(δN∞)σ(E)
(B.2)

where cov is the covariance of two variables and σ(.), the standard deviation

of a variable (.). rp = 0 signifies absence of correlation, 0 < rp ≤ 1 a positive

correlation (mutual increase of both variables) with rp = 1 corresponding to

strict proportionality.
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Paris exponent n 1 2 3 4 5

Pearson correlation coefficient rp 0.20 0.47 0.57 0.58 0.64

Table B.2: Pearson correlation coefficient of Eth with δN∞ for different values of n

Table B.2 gives the value of rp for each value of n. The values are larger

than 0, which indicates as expected from Fig. B.12, a positive correlation

between E and δN∞. The correlation coefficient rp is observed to increase

with n. If the numerical error committed in the calculation of K had no

consequence on the width of the bundle, there would be no reason to have

this positive correlation between n and rp. Indeed, a numerical error on

K has no consequence on the prediction of the shapes in the limiting case

where n = 0 because the Paris law (Eq. 1) is then independent of K, and

has increasingly large consequences when n increases. Hence, this positive

correlation tips the balance in favour of the existence of a real causality

between numerical errors and thick bundles.

This conclusion allows us to affirm that the influence of the shape of a

crack on the fatigue evolution of its surface is weaker than what Fig. 7 sug-

gests. However, we cannot conclude that no influence exists. Since numerical

error can never be eliminated completely and the correlation shown here is

moderate, only an analytical proof would allow us to concur to an eventual

complete absence of influence of the crack shape on the fatigue growth of

its surface. In the absence of such a demonstration, or conversely of counter

examples, we believe that the numerical method used here, focusing on the

crack front alone, is the best to support this conclusion, and that the cor-
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relation shown above is the best hint that there is indeed a causal relation

between the numerical errors and small variations of crack surface growth

from one shape to another.
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