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1  |  INTRODUC TION

Besides its physiological relevance, blood flow in microcapillar-
ies is a prime example of a biological fluid- structure interaction 
problem between the elastic red blood cells (RBCs) and the hy-
drodynamic flow of plasma.1– 3 Over recent years, quite some at-
tention has been paid to the dynamics of RBCs in cylindrical or 
rectangular channels, which are known to be the most common 
configurations in model microfluidic flows. Depending on external 
parameters such as flow speed, channel size, and plasma viscos-
ity, two main shapes have emerged from these experimental4– 9 as 

well as numerical studies.9– 18 The first, called “slipper”, is an elon-
gated, non- axisymmetric shape in which the RBCs tend to flow at a 
steady position slightly away from the channel center. The second 
one, almost axis- symmetric in cylindrical capillaries and with two 
planes of symmetry in rectangular channels, is termed "parachute" 
in cylindrical tubes or "croissant" in rectangular cross- sections and 
flows in the channel center. In addition, some works reported on 
observations of clusters of two or more RBCs formed without any 
molecular interactions that can be induced by the plasma mole-
cules (often referred to as rouleaux formation) but kept together 
with a certain distance of a few microns in- between the cells by 
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Abstract
Objective: Knowledge about the flow field of the plasma around the red blood cells in 
capillary flow is important for a physical understanding of blood flow and the trans-
port of micro-  and nanoparticles and molecules in the flowing plasma. We conducted 
an experimental study on the flow field around red blood cells in capillary flow that is 
complemented by simulations of vortical flow between red blood cells.
Methods: Red blood cells were injected in a 10 × 12 µm rectangular microchannel at 
a low hematocrit, and the flow field around one or two cells was captured by a high- 
speed	camera	that	tracked	250	nm	nanoparticles	in	the	flow	field,	acting	as	tracers.
Results: While the flow field around a steady “croissant” shape is found to be similar 
to that of a rigid sphere, the flow field around a “slipper” shape exhibits a small vortex 
at the rear of the red blood cell. Even more pronounced are vortex- like structures 
observed in the central region between two neighboring croissants.
Conclusions: The rotation frequency of the vortices is to a good approximation, in-
versely proportional to the distance between the cells. Our experimental data are 
complemented by numerical simulations.
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hydrodynamic interactions.19– 26 While there is good agreement 
between numerical simulations and experiments regarding the 
actual shape of RBCs, less attention has been paid to resolve the 
flow field of the surrounding plasma experimentally. While in the 
absence	of	RBCs,	the	flow	would	be	a	simple	parabolic	Poiseuille	
profile, the presence of RBCs strongly disturbs the flow.27 
Understanding the actual flow pattern is essential, for example, 
for the distribution of nanometric drug delivery agents or dis-
solved substances in microcapillary blood flow26,28–	35 as well as to 
understand	the	nature	of	interactions	between	cells.	For	a	simple	
sphere in a cylindrical channel, the flow pattern can be computed 
analytically, but nevertheless results in surprisingly intricate dy-
namics of the solute.36 While there is quite some literature on the 
flow field in microchannels around rigid or only slightly deformable 
objects such as microspheres or droplets,37– 40 experimental data 
are rare for the complex flows arising due to the above- described 
croissant and slipper motions of red blood cells. In RBC clusters, 
computer simulations have indicated the presence of vortex- like 
structures between neighboring RBCs.19,20,22,26	Here,	we	present	
experimental observations of (i) the flow around isolated RBCs 
and (ii) the vortical flow between clustering RBCs in a rectangu-
lar microchannel using particle tracking. We find that the rotation 
frequency of the vortices scales inversely proportional to the RBC 
distance. Our particle tracking measurements are in reasonable 
agreement with corresponding boundary- integral (BI) simulations.

2  |  MATERIAL AND METHODS

2.1  |  Experiments

To mimic blood capillaries, we used rectangular straight chan-
nels of 12 µm width, 10 µm depth, and about 40 mm in length as 
microfluidic chips. The camera was positioned such that the long 
(12 µm) side was viewed in the images. Channels were made from 
polydimethylsiloxane	(PDMS).41 To avoid RBCs adhering onto the 
walls, the channels were flushed with a buffer solution contain-
ing	BSA	at	1%.	The	flow	of	the	suspension	was	observed	in	a	mi-
croscope	with	 an	 oil-	immersion	 objective	 (Nikon	 CFI	 Plan	 Fluor	
60x,	NA	1.25).	The	field	of	observation	was	at	10	mm	away	from	
the pressure inlet above the microfluidic chip. We used a high- 
speed	 camera	 (HiSpec	 Fastec	 2G)	 to	 record	 image	 sequences	 at	
frame rates of 9000 fps. We investigated the flow at cell speeds 
at a physiologically relevant parameter range and beyond, from 
1 mm/s up to 10 mm/s. The various flow and cell speeds were 
achieved with a pressure controller (Elveflow OB1+) at pressure 
drops ranging from 100 to 1000 mbar, respectively.9

To visualize the flow field around the moving RBC, we added 
nanoparticles	with	a	surface	coating	of	polyethylene	glycol	(PEG)	
and	measuring	250	nm	in	diameter	(MicroMod)	in	an	aqueous	solu-
tion	containing	0.1%	of	BSA.	Blood	was	drawn	from	healthy	donors	
after giving an informed consent in compliance with the ethical 
requirements of Saarland University, Saarbrücken, Germany 

(Ärztekammer des Saarlandes, approval number 24/12). We used 
a	suspension	of	washed	RBCs	in	phosphate-	buffered	saline	(PBS)	
at	 0.5%	hematocrit	with	 nanoparticles	 as	 tracers.	 Samples	were	
mixed regularly to prevent the sedimentation of RBCs. The shape 
and speed of individual cells depended on the applied pressure 
drop and remained stationary within the time of observation in 
our experiments. We observed two main steady cell shapes in 
our rectangular channel geometries: croissants at rather low flow 
speeds	 and	 slippers	 at	 higher	 flow	 speeds,	 Figure	 1.	We	 deter-
mined the speed of the RBCs from the recorded image sequence 
over a distance of 100 µm. The trajectories of the tracers were 
determined	using	our	own	MATLAB	code	in	the	co-	moving	frame	
of the individual RBC.

Figure	 1A	 and	 B	 (Multimedia	 view)	 shows	 typical	 trajectories	
of tracers as overlayed images of snapshots of a flowing RBCs for 
two different velocities. The motion of tracers between two RBCs 
is studied in a similar manner. During the observation time span, the 
distance dRBC between two consecutive RBCs never changed more 
than	 10%	 in	 our	 experiments;	 that	 is,	 both	 cells	 had	 comparable	
velocities.

F I G U R E  1 Snapshots	of	RBCs	in	(A)	croissant	and	(B)	slipper	
shape, together with an overlay of experimental recorded 
trajectories of tracers. Images (C) and (D) represent the streamlines 
and cell shapes from the numerical simulations in the central plane 
of	the	channel.	The	speed	in	(A)	and	(C)	is	�RBC = 2.83 mm s−1 and 
in (B) and (D) �RBC	=	6.50	mm	s

−1).	A	closed	vortex	can	be	seen	(in	
yellow)	in	both	(B)	and	(D).	Particle	trajectories	and	streamlines	are	
shown in the co- moving frame of the RBCs. The fluid flows from 
left	to	right,	and	RBCs	appear	to	be	closer	to	the	walls	in	(A)	and	(B)	
due	to	the	camera's	position.	Experimental	videos	from	(A)	and	(B)	
can	be	found	in	Supplementary	Material	(Multimedia	view)
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2.2  |  3D simulations

In brief, our 3D boundary- integral simulations solved the Stokes 
equations for the fluid inside and outside the red blood cell,9,42,43 
which is justified by the small Reynolds number of approximately 
0.1.	A	specific	advantage	of	BI	simulations	is	that	the	full	 instan-
taneous flow field at any time can be computed knowing only the 
parabolic background flow, the forces on the channel wall, and 
the RBC membrane.42,43 Time integration is not necessary to com-
pute the flow field. In our model, the membrane forces were com-
puted	following	the	models	by	Skalak	and	Helfrich	for	shear,	area,	
and bending elasticity, respectively.2,44,45	 At	 the	membrane,	 we	
applied a no- slip boundary condition as well as a stress jump be-
tween the interior and exterior fluid which is caused by membrane 
elasticity.	 Periodic	 boundary	 conditions	 along	 the	 channel	 were	
used with a computation window length of 42 µm. This length was 
sufficient	to	recover	a	nearly	undisturbed	Poiseuille	flow	far	away	
from	the	cell.	For	the	velocity	field	computation,	a	snapshot	of	the	
simulation was selected and the shape of the RBC at that time was 
frozen. Then, the velocity field was computed on a regular grid in 
the central plane and transformed to the frame of reference of 
the	moving	RBC	using	 its	center-	of-	mass	velocity.	As	 the	slipper	
exhibited periodic oscillations through a series of slightly varying 
shapes, an arbitrary shape out of these was selected for comput-
ing the streamlines, following the procedure described above. In 
an ideal situation, the mirror symmetry of the system around the 
central plane would forbid the existence of out- of- plane currents. 
Due to rounding and discretization errors, small spurious out- of- 
plane currents may nevertheless arise, which however were set 
to zero.

The simulations were performed in the same channel geom-
etry	 as	 the	 experiments.	 Figure	 1C	 and	D	 shows	 the	 converged	
3D RBC shapes and corresponding streamlines in the channel mid-
dle plane for a croissant and a slipper, respectively. To compute 
the streamlines between two cells in a cluster, we selected a con-
verged croissant shape from the simulation with a single RBC at 
the corresponding speed. This shape was then copied, and both 
cells	 placed	 into	 the	 channel.	 At	 steady	 state,	 the	 distance	 dRBC 
between two RBCs in a cluster is constant and depends on the 
flow	velocity.	However,	 in	 the	experiments	many	distortions	can	
disturb the equilibrium distance positions and different distances 
can be observed for the same flow condition. This also means that 
the clusters are not yet at their converged distance. To mimic this 
situation in the simulations, we placed two cells with the approx-
imated	shape	at	the	desired	distance	in	the	channel.	After	a	short	
time span of typically 70 ms, the streamlines were computed start-
ing at a vertical line between the two cells. The reference frame is 
the center- of- mass velocity of the left RBC. Streamlines contain 
only directional information but no absolute velocities which are 
needed to compute the rotation period of particles trapped in 
flow vortices. To obtain this information, we place virtual tracer 
particles (again starting from a line of seed points) and integrate 
their trajectory in time given the flow field extracted from BI 

simulations (which is assumed to be stationary). This procedure 
allowed us to obtain not only the particle trajectories, but also 
the temporal information such as rotation periods. In addition, 
Figure	5	 shows	particle	 trajectories	 integrated	backward	 in	 time	
in order to demonstrate the possibility of particle escape from the 
central vortices in non- perfectly symmetric situations.

3  |  RESULTS

3.1  |  Flow field in the vicinity of a single RBC

Figure	1	shows	the	experimental	and	numerical	results	of	our	flow	
field	measurements	around	 the	 two	characteristic	cell	 shapes.	Far	
away from the cell, the velocity profile in the rectangular channel 
is almost parabolic.46 The speed of the RBCs is approximately the 
mean velocity of the free liquid flow in the channel because the 
volume flux is conserved. The cell speed defines the speed of the 
co- moving frame and is always lower than the fluid velocity in the 
middle of the channel far away from the cell.

At	 low	 flow	 speeds,	 the	 observed	 cell	 shape	 is	 a	 symmetric	
croissant	 Figure	 1A	 and	C.9	 As	 depicted	 by	 the	 blue	 arrows	 fol-
lowing	 the	 streamlines	 (Figure	 1C),	 tracers	 in	 the	 middle	 of	 the	
channel and in front of the cell move away from the cell. Tracers 
move toward the cell when they are situated in the middle, behind 
the cell. In the co- moving frame, the flow velocity is zero at the 
cell surface and there is a stagnation point on the cell surface on 
the center line. Closer to the walls, this flow direction is reversed. 
The combination of those motions leads to a strongly elongated 
half ellipse for the trajectory of a single tracer. These streamlines 
are comparable to what was observed experimentally for flowing 
droplets in microchannels.39

From	the	experimental	particle	tracking	velocimetry	(PTV)	of	the	
tracers, we can also deduce the relative velocity in the co- moving 
frame ��⃗vr. The component in flow direction vr,x is shown as function 
of	time	in	Figure	2B.

The velocity can be fitted with a heuristic sigmoidal function. 
Obviously, tracers decelerate when approaching the cell and ac-
celerate to the faster fluid motion in the middle of the channel 
when they move away from the cell. With our microscopic setup, 
we imaged the full sample height, and therefore, the observed 
position of tracers was always their projection in the x– y plane. 
Therefore, we also observed trajectories that approach and de-
part from the cell in the y	=	0	plane	(Figure	1A).	This	is	especially	
the case when the tracer's motion is in the orthogonal plane 
with	 respect	 to	 the	 plane	 of	 projection.	 At	 higher	 flow	 speeds,	
the cells attain a slipper shape.9 In this asymmetric configuration, 
a	 vortical	 flow	 can	 be	 observed	 behind	 the	 cell	 (see	 Figure	 1B)	
even though the flow remains laminar. The slipper shape and the 
existence of the vortices are confirmed by our numerical sim-
ulations	 (Figure	 1D).	However,	 a	 fully	 closed	 vortex	 flow	 in	 the	
middle plane of the channel as predicted from the numerical sim-
ulations could not be seen in the experimental situation where 
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small irregularities are enough to displace tracer particles out of 
the vortex zone. This indicates that in realistic situations it will 
be unlikely that particles will be trapped in such a vortex. In both 
cases, for croissants as well as for slippers, the presence of RBCs 
reduces the spatial variations in fluid velocities over the channel 
width to an almost plug- like flow, and therefore, the spreading of 
suspended tracers in the flow direction over the channel is also 
reduced. This becomes even more pronounced for clusters of two 
RBCs as we will see in the following.

3.2  |  Flow field in the vicinity of a cluster of 
two RBCs

At	 low	 hematocrit	 levels,	 the	 mean	 distance	 between	 consecu-
tive RBCs in the channel is typically very large compared with 
the cell's size and the channel width. If two cells come close to 
each other, however, they can form a stable cluster due to their 

hydrodynamic interaction.19– 26	A	 significant	amount	of	 the	 liquid	
between the cells seems to be “encapsulated” and does not mix 
anymore with the liquid outside of the cluster. Similarly, to the 
tracer trajectories of single cells, we observed hairpin loops and 
vortices for tracers moving in the plane of observation and straight 
lines	 for	 tracers	moving	 orthogonal	 to	 it	 (Figure	 3A	 (Multimedia	
view)), as a consequence of our optical projection. Our numerical 
simulations confirm that the streamlines correspond to a toroidal 
vortex, just similar to smoke rings, with the axis of symmetry along 
the channel in the +x-	direction,	Figure	3B.	In	the	co-	moving	frame,	
the channel borders move with the speed of the RBC- cluster in 
the	 −x- direction. This relative border motion drives the rotation 
of the liquid between the cells, similar to the case of a lid- driven 
cavity flow,47 and those types of vortices have been observed in 
the case of flowing droplets in microfluidic devices.40	Accordingly,	
the liquid in the inner part of the channel moves in the +x- direction 
with a speed that is somewhat higher than the speed of the cells in 
the laboratory frame.

Here,	 we	 analyze	 only	 the	 flow	 field	 of	 clusters	 of	 two	
croissant- shaped cells. To characterize the torus movement of 
the tracers more quantitatively, we consider the period T for one 
cycle. The vortex forms a deformed torus in 3D and that the flow 
becomes faster with increasing distance from the central axis of 
revolution.	Figure	4	shows	the	period	T as a function of the dis-
tance between the two cells, dRBC. The period increases almost 
linearly with the distance, both for the simulated and for the ex-
perimental	results.	As	a	first	approximation,	a	tracer	is	considered	
to move along the circumference C of an ellipse. The period T was 
experimentally determined by measuring the elapsed time needed 
by a tracer to complete a revolution between two croissants sepa-
rated by the distance dRBC. In simulations, since more periods can 
be obtained, the period T corresponds to an arithmetic average of 
the	collected	periods.	As	can	be	seen	in	Figure	2B,	the	relative	ve-
locity	of	a	tracer	is	not	constant.	However,	to	obtain	an	analytical	
expression for the period T we assume a constant tracer speed vt 
along a particular ellipse circumference drawn by the tracer and vt 
is chosen to be the fitting parameter. The period T(dRBC) is given 
by the ratio of C and vt. Within concentric ellipses and with de-
creasing sizes, the velocity vt decreases as well. The extension of 
the largest ellipse is given by an almost constant semi- minor axis 
a in order of a quarter of the channel width and a major axis dRBC 
in the order of the interior distance between two cells. Using a 
truncated series expansion for the circumference C of the largest 
ellipse (details in the Supporting Information), the estimated pe-
riod T(dRBC) is given by:

with: � = (a − dRBC∕2)∕ (a + dRBC∕2)

This relationship appears valid for both experiments and simu-
lations. In fact, both show that tracer velocities vt in the co- moving 
frame happen to be lower than the velocity of a cell vRBC in the 
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F I G U R E  2 Motion	of	tracers	in	the	co-	moving	frame	of	a	RBC	
in croissant shape flowing with a speed of �RBC = (4.3 ± 0.1) mm s−1. 
A,	Snapshot	of	the	RBC	with	an	overlay	of	a	tracer	trajectory	from	
the image sequence. B, The velocity vr,x in the flow direction of the 
tracer when it approaches and recedes from the cell. The fit curve 
is an empirical sigmoid function. The flow direction of the cell is 
indicated by a yellow arrow in, and the path of motion is indicated 
by numbers: (1) The tracer approaches the RBC, and (2) its relative 
speed in the co- moving frame of the RBC is negligible and (3) finally 
moves away from the RBC with an absolute speed comparable to 
its arrival
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laboratory	 frame.	 However,	 there	 are	 some	 quantitative	 differ-
ences between the simulated and experimental periods which 
we attribute to the fact that the cells at various distances are not 
in their equilibrium situation. This is even more pronounced for 
larger distances dRBC	between	the	RBCs.	We	show	in	Figure	4	the	
extracted periods as a function of the distance between two RBCs 
flowing	at	different	speeds.	As	expected,	an	offset	on	the	period	
(y- axis) can be observed due to the fact that the semi- minor axis α 
is considered constant. We found in simulations that proper vor-
tices were rarely formed for dRBC > 40 µm. In this case, a tracer 

escapes	 the	 vortex	 before	 doing	 a	 full	 revolution.	 For	 distances	
shorter	 than	 5	 µm,	 no	 vortex	 could	 be	 observed	 in	 the	 experi-
ments. This is in agreement with simulations19 that define the 
“vortex existence” boundary to be 1.4 R0 with R0 being the effec-
tive radius of a RBC.

3.3  |  Particle escaping pathways around RBC

Given the vortex- like structures between two clustering RBCs, one 
may expect that these vortices should be able to capture small par-
ticles and trap them between the cells similar to earlier observations 
for microparticles.26	 In	Figure	5,	we	 illustrate	 such	events,	 that	 is,	
the pathways by which particles can enter into the vortices from 
the	main	 flow.	For	 this,	 a	 line	of	 tracer	particles	has	been	 seeded	
into the central region between the two RBCs and their trajectories 

F I G U R E  3 A,	Snapshot	of	a	cluster	
of two RBCs in croissant shape with a 
distance of dRBC	=	5.2	µm	together	with	
an overlay of tracer trajectories. The 
liquid between the cells seems to be 
encapsulated in a vortex and to rotate 
as a torus with the axis of symmetry 
in x- direction. B, Numerical simulation 
of a cluster. The streamlines indicate 
how tracers will be transported from 
the middle along helical trajectories 
(Figure	6).	An	experimental	video	from	(A)	
can	be	found	in	Supplementary	Material	
(Multimedia	view)

F I G U R E  4 Period	of	cycles	for	a	toroidal	tracer	motion	
between two RBCs as a function of the distance between the cells. 
Experimental data are represented by solid symbols and lines and 
numerical results by open symbols and dashed lines, respectively. 
The fit represents a motion on an axial stretched torus with ellipses 
of revolution. It is based on Equation (1), with �∕vt as a fitting 
parameter and the minor axis fixed as a = 3 µm (Supplementary 
Material)

F I G U R E  5 3D	view	showing	the	provenance	(blue	arrow)	of	the	
tracers and their trajectories for a cell velocity of 2.2 mm s−1
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integrated backward in time. Thus, the colored lines illustrate the 
entry of tracer particles into the vortices.

As	can	be	seen	 in	the	streamlines	 in	Figure	3,	 the	vortices	be-
tween two flowing RBCs typically are not fully closed. One can 
therefore expect that tracer particles should, depending on their 
initial position, also be able to escape from these vortices back into 
the main flow. Indeed, we do observe such trajectories as illustrated 
in	Figure	6.	Note	that,	in	the	experiment	the	period	T is not affected 
by	the	projective	view.	For	a	fixed	distance	between	the	cells	dRBC, 
we find that the period T remains constant, independent of the am-
plitude in x- direction. This result is supported by numerical simula-
tions	(see	Figure	6).	Here,	a	particle	first	performs	a	spiraling	motion	
between the two RBCs but eventually escapes from the region be-
tween the two RBCs. Due to the short observation time, we were 
unfortunately not able to observe such trajectories in the experi-
ment	(Figure	1	in	Supplementary	Material).

4  |  DISCUSSION

Using	PTV	experiments,	we	measured	the	 flow	field	around	RBCs	
flowing	in	small	microchannels.	For	 isolated	RBCs,	we	found	a	sig-
nificant difference in the flow field depending on whether the RBC is 
in	the	croissant	or	in	the	slipper	state.	At	the	rear	of	a	slipper,	a	small	
but characteristic vortex- like structure was observed. If two cells 
flow in close vicinity to each other in the croissant shape, another 
toroidal vortex- like structure appears between the cells as predicted 
by earlier numerical simulations.19,20,22,26	However,	while	 in	earlier	
work numerical simulations of flowing RBCs have been compared 
with experiments only with respect to the shape of the RBCs, we 
here also compare the surrounding flow field.

Our rectangular channels could reproduce trapping events, as 
was also observed in simulations involving cylindrical channels.26 
Thus, it is very likely that such trapping could occur in vivo for 
a very dilute suspension of cells. Of course, cylindrical channels 
reflect better the in vivo situation, but our experiments needed 
a good optical access to the flowing tracer particles which was 
only granted by a flat optical window, that is, the by coverslip 
that was used to seal our channels. We showed that the rotation 
period in these vortices follows a quasi- linear law as a function 
of the distance between the red blood cells. Our experimental 
results show good similarities with numerical boundary- integral 
simulations. Nevertheless, a non- negligible discrepancy between 
the simulations and experimental results can be observed. This 
can be attributed to the fact that RBCs were not at a steady state 
in our simulations nor in experiments and disturbances in the 
flow field could occur. Our simulations could however illustrate 
qualitatively the trapping and escape of tracer particles from 
the vortex structures between the cells, which in principle could 
contribute to the transport and mixing properties of potential 
nanoparticle	drug	delivery	agents.	However,	even	in	our	artificial	
in vitro setup the flow seems not to be sufficiently stable that 
we could reproduce these events experimentally; thus, trapping 
of particles due to the flow field of single or diluted RBCs might 
rarely be the case in vivo.

5  |  PERSPEC TIVES

We provide experimental evidence of the presence of vortices 
around different shapes of red blood cells in capillary flow, and we 
characterize their velocity. The experimental findings are confirmed 
and extended by numerical simulations. This provides the basis for a 
quantitative description of capillary blood flow and drug delivery by 
micro-  or nanoparticles.

ACKNOWLEDG MENTS
F.Y.,	T.J.,	 and	C.W.	 acknowledge	 funding	 from	 the	French	German	
University	(DFH	/UFA).	C.W.	acknowledges	funding	from	the	DFG	
FOR	2688—	Wa1336/12.	F.	Y.	and	T.	P.	acknowledge	support	 from	
CNES	and	LabEx	Tec21.	S.G.	acknowledges	funding	from	the	DFG	

F I G U R E  6 Numerically	calculated	trajectories	of	a	tracer	
escaping from flow vortices between two RBCs with velocity 
2.2 mm s−1 where X0	is	the	center	between	the	two	RBCs.	A,	
Temporal forward- backward motion along the direction of the flow. 
B, Toroidal trajectory in the x- y plane, starting from the middle and 
going outwards



    |  7 of 8VORTICAL FLOW STRUCTURES INDUCED BY RED BLOOD CELLS IN CAPILLARIES

FOR	2688—	GE2214/2-	1.	We	gratefully	acknowledge	computing	time	
provided	by	the	SuperMUC	system	of	the	Leibniz	Rechenzentrum,	
Garching,	and	by	the	Bavarian	Polymer	Institute.	Open	Access	fund-
ing	enabled	and	organized	by	Projekt	DEAL.

DATA AVAIL ABILIT Y S TATEMENT
Data are available from the authors upon reasonable request.

ORCID
Stephan Gekle  https://orcid.org/0000-0001-5597-1160 
Thomas Podgorski  https://orcid.org/0000-0001-6469-9170 
Christian Wagner  https://orcid.org/0000-0001-7788-4594 

R E FE R E N C E S
	 1.	 Vlahovska	 PM,	 Barthès-	Biesel	 D,	 Misbah	 C.	 Flow	 dynamics	 of	

red blood cells and their biomimetic counterparts. C R Phys. 
2013;14:451-	458.

	 2.	 Freund	JB.	Numerical	 simulation	of	 flowing	blood	cells.	Annu Rev 
Fluid Mech.	2014;46:67-	95.

 3. Secomb TW. Blood flow in the microcirculation. Annu Rev Fluid 
Mech. 2017;49:443- 461.

	 4.	 Guest	MM,	Derrick	JR,	Cooper	RG,	Bond	TP.	Red	blood	cells	change	
in shape in capillaries. Science. 1963;142:1319- 1321.

	 5.	 Gaehtgens	P,	Dührssen	C,	Albrecht	KH.	Motion,	deformation	and	
interaction of blood cells and plasma during flow through narrow 
capillary tubes. Blood Cells. 1980;6:799.

	 6.	 Tomaiulo	 G,	 Simeone	 M,	 Martinelli	 V,	 Rotoli	 B,	 Guido	 S.	 Red	
blood cell deformation in microconfined flow. Soft Matter. 
2009;5:3736.

	 7.	 Quint	S,	Christ	AF,	Guckenberger	A,	et	al.	3D	Tomography	of	cells	
in micro- channels. Appl Phys Lett. 2017;111:103701.

	 8.	 Kihm	A,	Kaestner	L,	Wagner	C,	Quint	S.	Classification	of	red	blood	
cell shapes in flow using outlier tolerant machine learning. PLoS 
Comput Biol. 2018;14:e1006278.

	 9.	 Guckenberger	 A,	 Kihm	 A,	 John	 T,	 Wagner	 C.	 Numerical-	
experimental observation of shape bistability of red blood cells 
flowing in a microchannel. Soft Matter. 2018;14:2032- 2043.

	10.	 Noguchi	 H,	 Gompper	 G.	 Shape	 transition	 of	 fluid	 vesicles	
and red blood cells in capillary flows. Proc Natl Acad Sci USA. 
2005;102:14159-	14164.

	11.	 Shi	L,	Pan	TW,	Glowinski	R.	Deformation	of	single	red	blood	cell	in	
bounded	Poiseuille	flows.	Phys Rev E.	2012;85:016307

	12.	 Tahiri	N,	Biben	T,	Ez-	Zahraouy	H,	Benyoussef	A,	Misbah	C.	On	the	
problem of slipper shapes of red blood cells in the microvascula-
ture. Microvasc Res.	2013;85:40.

	13.	 Lazaro	 GR,	 Hernandez-	Machado	 A,	 Pagonabarraga	 I.	 Rheology	
of red blood cells under flow in highly confined microchannels: I. 
Effect of elasticity. Soft Matter.	2014;10:7195.

	14.	 Fedosov	DA,	Peltomäki	M,	Gompper	G.	Deformation	and	dynamics	
of red blood cells in flow through cylindrical microchannels. Soft 
Matter.	2014;10:4258.

	15.	 Lanotte	L,	Mauer	J,	Mendez	S,	et	al.	Red	cells	dynamic	morpholo-
gies gover blood shear thinning under microcirculatory flow condi-
tions. Proc Nat Acad Sci USA. 2016;113:13289.

	16.	 Ye	T,	Shi	H,	Peng	L,	Li	Y.	Numerical	studies	of	a	 red	blood	cell	 in	
rectangular microchannels. J Appl Phys. 2017;122:084701.

	17.	 Reichel	F,	Mauer	J,	Nawaz	AA,	Gompper	G,	Guck	J,	Fedosov	DA.	
High-	throughput	 microfluidic	 characterization	 of	 erythrocyte	
shapes and mechanical variability. Biophys J. 2019;14:117.

	18.	 Takeishi	N,	Rosti	ME,	Imai	Y,	Wada	S,	Brandt	L.	Haemorheology	in	
dilute, semi- dilute and dense suspensions of red blood cells. J Fluid 
Mech. 2019;872:818.

	19.	 McWhirter	JL,	Noguchi	H,	Gompper	G.	Deformation	and	clustering	
of red blood cells in microcapillary flows. Soft Matter. 2011;7:10967.

	20.	 McWhirter	 JL,	 Noguchi	 H,	 Gompper	 G.	 Flow-	induced	 clustering	
and alignment of vesicles and red blood cells in microcapillaries. 
Proc Natl Acad Sci USA. 2009;106:6039.

	21.	 Tomaiuolo	 G,	 Lanotte	 L,	 Ghigliotti	 G,	 Misbah	 C,	 Guido	 S.	 Red	
blood	 cell	 clustering	 in	Poiseuille	microcapillary	 flow.	Phys Fluids. 
2012;24:051903.

	22.	 Ghigliotti	G,	Selmi	H,	Asmi	LE,	Misbah	C.	Why	and	how	does	collec-
tive red blood cells motion occur in the blood microcirculation? Phys 
Fluids. 2012;24:101901.

	23.	 Brust	M,	Aouane	O,	Thiébaud	M,	et	al.	The	plasma	protein	fibrino-
gen stabilizes clusters of red blood cells in microcapillary flows. Sci 
Rep. 2014;4:4348.

	24.	 Claveria	V,	Aouane	O,	Thiébaud	M,	et	al.	Clusters	of	red	blood	cells	
in microcapillary flow: hydrodynamic versus macromolecule in-
duced interaction. Soft Matter.	2016;12:8235.

	25.	 Aouane	O,	Farutin	A,	Thiébaud	M,	Benyoussef	A,	Wagner	C,	Misbah	
C.	Hydrodynamic	pairing	of	soft	particles	in	a	confined	flow.	Phys 
Rev Fluids. 2017;2:063102.

	26.	 Takeishi	N,	Imai	Y.	Capture	of	microparticles	by	bolus	flow	of	red	
blood cells in capillaries. Sci Rep.	2017;7:5381.

	27.	 Lew	H,	Fung	Y.	The	motion	of	the	plasma	between	the	red	cells	in	
the bolus flow. Biorheology. 1969;6:109.

	28.	 Nanne	EE,	Aucoin	CP,	Leonard	EF.	Molecular	movement	of	bovine	
albumine in flowing suspensions of bovine erythrocytes. Chem Eng 
Sci.	2010;65:6389.

	29.	 Toy	R,	Hayden	E,	Shoup	C,	Baskaran	H,	Karathanasis	E.	The	effects	
of particle size, density and shape on margination of nanoparticles 
in microcirculation. Nanotechnology.	2011;22:115101.

	30.	 Lee	TR,	Choi	M,	Kopacz	AM,	Yun	SH,	Liu	WK,	Decuzzi	P.	On	the	
near- wall accumulation of injectable particles in the microcircula-
tion: smaller is not better. Sci Rep. 2013;3:2079.

	31.	 Zhang	 H,	 Misbah	 C.	 Lattice	 Boltzmann	 simulation	 of	 advection-	
diffusion of chemicals and applications to blood flow. Comput 
Fluids. 2019;187:1.

	32.	 Liu	Z,	Clausen	JR,	Rao	RR,	Aidun	CK.	A	unified	analysis	of	nano-	
to- microscale particle dispersion in tubular blood flow. Phys Fluids. 
2019;31:081903.

	33.	 Liu	 Z,	 Clausen	 JR,	 Rao	 RR,	 Aidun	 CK.	 Nanoparticle	 diffusion	 in	
sheared cellular blood flow. J Fluid Mech. 2019;871:636.

	34.	 Prothero	J,	Burton	A.	The	physics	of	blood	flow	in	capillaries:	I.	the	
nature of the motion. Biophys J.	1961;1:565.

	35.	 Aroesty	J,	Gross	JF.	Convection	and	diffusion	in	the	microcircula-
tion. Microvasc Res. 1970;2(3):247.

 36. Gekle S. Dispersion of solute released from a sphere flowing in a 
microchannel. J Fluid Mech. 2017;819:104.

	37.	 Amini	H,	Lee	W,	Di	Carlo	D.	Inertial	microfluidic	physics.	Lab Chip. 
2014;14:2739.

	38.	 Zurita-	Gotor	M,	 Blawzdziewicz	 J,	Wajnryb	 E.	 Swapping	 trajecto-
ries: a new wall- induced cross- streamline particle migration mech-
anism in a dilute suspension of spheres. J Fluid Mech.	2007;592:447.

	39.	 Lee	W,	Amini	H,	Stone	HA,	Di	Carlo	D.	Dynamic	self-	assembly	and	
control of microfluidic particle crystals. PNAS. 2010;28:22413.

	40.	 Ohmura	T,	Ichikawa	M,	Kamei	K,	Maeda	YT.	Oscillation	and	collec-
tive conveyance of water- in- oil droplets by microfluidic bolus flow. 
Appl Phys Lett.	2015;107:074102.

	41.	 Shin	Y,	Han	S,	 Jeon	 JS,	 et	 al.	Microfluidic	 assay	 for	 simultaneous	
culture of multiple cell types on surfaces or within hydrogels. Nat 
Protoc. 2012;7:1247.

	42.	 Kim	S,	Karrila	S.	Microhydrodynamics	Dover;	2005.
	43.	 Pozrikidis	C.	Boundary integral and singularity methods for linearized 

flow.	Cambridge:	Cambridge	University	Press;	1992.
	44.	 Guckenberger	A,	Schraml	M,	Chen	PG,	Leonetti	M,	Gekle	S.	On	the	

bending algorithm for soft objects in flows. Comput Phys Commun. 
2016;207:1.

https://orcid.org/0000-0001-5597-1160
https://orcid.org/0000-0001-5597-1160
https://orcid.org/0000-0001-6469-9170
https://orcid.org/0000-0001-6469-9170
https://orcid.org/0000-0001-7788-4594
https://orcid.org/0000-0001-7788-4594


8 of 8  |     YAYA et Al.

	45.	 Guckenberger	 A,	 Gekle	 S.	 Theory	 and	 algorithms	 to	 compute	
Helfrich	bending	forces:	a	review.	J Phys Cond Mat. 2017;29:203001.

	46.	 Bruus	H.	Theoretical microfluidics.	Oxford:	Oxford	University	Press;	
2007.

	47.	 Kuhlmann	H,	Romano	F.	The	Lid-	Driven	Cavity.	In:	A.	Gelfgat	(Ed.),	
Computational Modelling of Bifurcations and Instabilities in Fluid 
Dynamics.	New	York:	Springer;	2018.

SUPPORTING INFORMATION
Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting Information section.

How to cite this article: Yaya	F,	Römer	J,	Guckenberger	A,	et	al.	
Vortical	flow	structures	induced	by	red	blood	cells	in	
capillaries. Microcirculation. 2021;28:e12693. https://doi.
org/10.1111/micc.12693

https://doi.org/10.1111/micc.12693
https://doi.org/10.1111/micc.12693

