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Abstract

Purpose. We propose to learn a 3D keypoint descriptor which we use to match
keypoints extracted from full-body CT scans. Our methods are inspired by
2D keypoint descriptor learning, which was shown to outperform hand-crafted
descriptors. Adapting these to 3D images is challenging because of the lack of
labelled training data and high memory requirements.

Method. We generate semi-synthetic training data. For that, we first esti-
mate the distribution of local affine inter-subject transformations using la-
belled anatomical landmarks on a small subset of the database. We then sam-
ple a large number of transformations and warp unlabelled CT scans, for which
we can subsequently establish reliable keypoint correspondences using guided
matching. These correspondences serve as training data for our descriptor,
which we represent by a CNN and train using the triplet loss with online
triplet mining.

Results. We carry out experiments on a synthetic data reliability bench-
mark and a registration task involving 20 CT volumes with anatomical land-
marks used for evaluation purposes. Our learned descriptor outperforms the
3D-SURF descriptor on both benchmarks while having a similar runtime.
Conclusion. We propose a new method to generate semi-synthetic data and
a new learned 3D keypoint descriptor. Experiments show improvement com-
pared to a hand-crafted descriptor. This is promising as literature has shown
that jointly learning a detector and a descriptor gives further performance
boost.
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1 Purpose

Computational anatomy focuses on the analysis of the variability of the human
anatomy. Typical applications are the discovery of differences across healthy
and diseased subjects and the classification of anomalies. A fundamental tool
in computational anatomy, which forms the central focus of this paper, is
the computation of point correspondences across volumes (3D images) such
as Computed Tomography (CT) volumes, for multiple subjects. Keypoint de-
scriptors are used to find correspondences across images to further achieve
image registration. More specifically, we consider automatically detected key-
points and their local descriptors, computed from the image or the 3D volume
patch surrounding each keypoint. These descriptors are essential and must
be discriminant and repeatable [5, 13]. Learned descriptors based on Con-
volutional Neural Networks (CNN) have recently shown great success for 2D
images [4]. However, while classical 2D image descriptors were extended to vol-
umes [1, 16], recent learning-based approaches have been limited to 2D detec-
tion and description. The extension to 3D descriptors was only proposed in [6],
where a network is trained to generate descriptors with binary components,
which allows a fast computation of a similarity metric adapted to an 3D im-
age retrieval task. However, the implementation of this method is not publicly
available, preventing direct empirical comparison. We propose a methodology
to learn 3D keypoint descriptors from volumetric data suitable for image regis-
tration. The main difficulty is to define a sound training approach, combining
a training dataset and a loss function. In short, we propose to generate semi-
synthetic data by transforming real volumes and to use a triplet loss inspired
by 2D descriptor learning. Our experimental results show that our learned de-
scriptor outperforms the hand-crafted descriptor 3D-SURF [1], a 3D extension
of SURF, with similar runtime.

2 Methods

Our first goal is to create a reference dataset defining keypoint correspondences
between multiple volumes. In 2D, these correspondences can be established
using Structure-from-Motion [3]. For 3D medical images, however, no such
large annotated dataset is publicly available. We thus propose to create a
semi-synthetic reference dataset by transforming real volumes.

2.1 Constructing a semi-synthetic dataset

We use two subsets from the Visceral dataset [12]. The first subset, named
Gold, contains 20 CT volumes, each annotated with about 40 anatomical land-
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marks, placed by medical experts. These landmarks were visualised in [11]. The
second subset, Silver, contains 60 CT volumes without any landmarks.

In order to generate new volumes, we estimate the probability density of
possible inter-volume transformations, and sample from this density to create
new CT volumes by warping original volumes. We subsequently define key-
point correspondences between original and generated volumes using guided
matching. We first estimate a local affine transformation between two subjects
using the minimal amount of 4 point correspondences. We use the anatomical
landmarks, providing reliable correspondences. Landmarks are points placed
in images by experts on certain anatomical locations, contrary to keypoints
which are automatically detected by handcrafted or learned detectors and do
not necessarily correspond to similar anatomical locations. For each landmark
in each volume of the Gold subset, we use the landmark, its three closest land-
marks and the four corresponding landmarks in another volume to estimate
a local transformation. When the landmark and its three neighbours are al-
most collinear (e.g. vertebral landmarks), the problem is ill-conditioned and
we therefore discard the transformation. Thus we obtain at most Lk(k —1)/2
affine transformation matrices of size 4 x 4, where L = 40 is the number of
landmarks and k = 20 is the number of volumes. Now with these affine trans-
formation matrices obtained on each subject, we compute the element-wise
Pearson correlation coefficients, excluding elements corresponding to transla-
tion, and obtain a 9x9 coefficient matrix. Inspecting this matrix confirms that
its non diagonal elements are close to 0, hence that the estimated transfor-
mation parameters are pairwise independent. This allows us to sample each
parameter independently. We apply Kernel Density Estimation (KDE) to these
matrices to estimate the density of inter-volume transformations. Student’s t-
test shows that a Gaussian Kernel is a good fit for the KDE. We estimate the
kernel bandwidth via Scott’s rules [15]. To generate our semi-synthetic dataset,
we sample transformations from this density and apply them to volumes in
the Silver subset. More specifically, for a sampled transformation ¢ and a silver
volume V;, we obtain the volume V. We detect the keypoints in V; and V}
using 3D-SURF and obtain two keypoint sets P; and P!. Note that 3D-SURF
is both a detector and a descriptor. We then apply the inverse transform ¢~!
to the keypoints from V;'. Finally we implement guided matching using a k-d
tree to construct the set of corresponding keypoints between the volumes as
the set of pairs: (p € P;,q € t71(P})), where the distance p to g is lower than
8 mm. This threshold was chosen to obtain a large number of correct corre-
spondences. As the voxels have side length of about 1 mm, 8 mm is slightly
smaller than 10 voxels in our images.

2.2 Training the descriptor with the triplet loss

We learn a descriptor CNN mapping a 3D patch of 103 voxels surrounding a
keypoint to a descriptor vector. We use a patch size of 10® for two reasons:
memory requirements which grow cubically in 3D, and our use of the output of
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Fig. 1: Architecture of our CNN and the triplet-loss. The input patches are
10% voxels. The CNN has two convolutions with tanh activation, one max-
pooling and a fully-connected layer. The triplet {a, p,n} is passed through the
network, and descriptor vectors are fed to the triplet loss.

3D-SURF in training and testing, which is of dimension of 103. Recent work in
2D has shown that learning descriptors using triplets yields better results than
using pairs [10]. Triplet learning requires forming triplets of patches {a,p,n}
where a is an anchor, p a positive representing a different patch of the same
class as a, and n a negative representing a patch of a different class. In our
case a and p are two patches around corresponding keypoints from different
volumes and n is a patch around a different keypoint. The aim is to optimize
the CNN parameters in order to bring a and p close together in descriptor
space and to push n away from a. Thus the triplet loss is defined by:

L(a,p,n) = max(|[f(a) = f(p)|* = [If (a) — f(m)|* + o, 0) (1)

where f(-) is the CNN and « the margin parameter.

By minimizing this loss, the network brings the distance between a and
p, d(a,p), towards 0 and the distance between a and n, d(a,n), to greater
than d(a,p) + a. For a given network state, randomly selected triplets are not
equally useful for training. A triplet with high loss in the beginning can have
zero loss later in the training. We thus follow an online triplet mining approach
for selective training on the most useful triplets. First, we define three types of
triplets: easy triplets with a zero loss, where d(a, p) +a < d(a,n); hard triplets
with d(a,n) < d(a,p); semi-hard triplets, where d(a,p) < d(a,n) < d(a,p)+c.
Using this definition, we exclude easy triplets from the next training round by
identifying hard and semi-hard triplets based on respective loss values, and feed
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Table 1: Ranges used for hyperparameter tuning.

Hyperparameter  Search type Range
Margin Grid [0.1,0.2,0.4,0.8,1.5]
Descriptor size Grid [24, 48, 64,90, 128]
Batch size Grid (10,50, 100, 200, 500, 1000]
Learning rate Random [1075,0.9]
Momentum Random [0.1,0.9]

a subset to the network: for every mini-batch of size b, we form all possible
triplets, and keep the b triplets with the highest loss value.

Our CNN is defined by two 3D convolution layers, the first one is a con-
volution with a kernel size of 3 and with 32 output channels, the second one
has a kernel size of 2 and 64 output channels. The max-pooling layer between
the convolutions has a kernel size of 2 and a stride of 2. The last layer is a
fully-connected layer which gives the final descriptor. The network architec-
ture is illustrated in Figure 1. Passing a patch of size 103 through this CNN
gives us a descriptor vector of the desired size. We use a size of 48 for direct
comparability with 3D-SURF; this size of 48 corresponds to the descriptor size
which is the vector size of a described patch after passing through the CNN.
We also tested alternative descriptor sizes experimentally. The descriptor size
is unrelated to the patch size; it is dimensionless, hence unitless. For exam-
ple, the well-known SIFT and 3D-SURF descriptors have sizes of 128 and 48
respectively [5, 13].

3 Results
3.1 Data split

We divide the Silver dataset into training and validation subsets. The training
data consists of 55 subjects with 10 transformed volumes each, following our
procedure of semi-synthetic data generation. The validation data consist of
5 subjects with 10 transformed volumes each. For testing, we use the Gold
subset with 20 subjects and the associated anatomical landmarks.

3.2 Training

Optimization is performed via Stochastic Gradient Descent, with a batch size
of 1000 patches, a learning rate of 0.1, a momentum of 0.9, a weight decay
of 1076 (L regularization weight) and a loss margin a of 0.2. We also use
online triplet mining to find the best triplets for learning. Our CPU-based
implementation uses the PyTorch library. The training of a single epoch with
108 triplets takes about 30 minutes and approximately 10 GB of memory on
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(a) patches around keypoints (b) 3D-SURF descriptors (c) learned descriptors

Fig. 2: 2D t-SNE embeddings of 200 randomly selected sets of 10 corresponding
keypoints (identical colors) detected by 3D-SURF, (a) patches around detected
keypoints, (b) SURF descriptors of the same keypoints, (¢) descriptors of the
same keypoints, calculated by our CNN.

a Linux 64-bit platform running on an Intel Xeon 2.6 GHz CPU. Our model
is light enough to be trained on a CPU; GPU-based training did not signif-
icantly reduce training time as the training process is mostly I/O-bound i.e.
loading image patches is the bottleneck. Our hyperparameter search was done
with Ray Tune. We followed a grid search strategy for batch size, descriptor
size parameters and a random search strategy for learning rate, margin and
momentum parameters. Table 1 summarizes parameter ranges.

3.3 Evaluation

To illustrate the effect of learning descriptors, Figure 2 shows the 2D projection
of keypoint descriptors computed via the t-SNE method [14]. In this figure, 200
keypoints were randomly selected in the validation dataset. As each keypoint
is present in 10 transformed volumes, there is a total of 2000 keypoints. Cor-
responding keypoints are displayed with the same color. Figure 2a shows the
2D projection of original patches, while Figure 2¢ shows the projection of de-
scriptors computed by our CNN. Our descriptors yield tighter clusters, with a
better overall spatial distribution, similar to that of the 3D-SURF descriptors,
shown in Figure 2b.

We have carried out quantitative evaluation with two different metrics. The
first metric, measuring the reliability of the CNN, is the false positive rate at
0.95 true positive recall (FPR95) [7]. This metric indicates performances in
terms of the percentage of false matches when 95% of all correct matches are
detected. To compute the FPR95, 100k pairs of keypoints with 50k corre-
sponding and 50k non corresponding pairs from the generated dataset were
randomly selected. We extract patches around these 100k pairs of keypoints,
compute their descriptor and compute euclidean distance between each pair
of descriptors. We can now compute FPR95 with the percentage of false and
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Fig. 3: 3 different landmark types in the registration common space for 20 pa-
tients: tracheal bifurcation (best case, blue, top), thoracic vertebra #9 (inter-
mediate case, red, middle) and xiphoid (worst case, green, bottom), registered
with 3D-SURF descriptors (left) and our CNN descriptors (right).

correct matches. A low FPR95 indicates good results. The second metric is the
mean landmark distance (in millimeters) calculated on ground-truth anatom-
ical landmarks in Gold volumes after registering them in a common space
using the keypoint-based FROG registration algorithm [2]. For comparison,
we replace the 3D-SURF descriptor used in this algorithm with our learned
descriptor. Low mean distance between landmarks indicates good results. Ta-
ble 2 compares the results between the 3D-SURF descriptor and our learned
descriptor with different descriptor sizes. Our descriptor gives the best results:
it outperforms the 3D-SURF descriptor in terms of both FPR95 and mean
landmark distance, regardless of the descriptor size.

To illustrate the landmark spread after registration, Figure 3 shows 3 differ-
ent landmark types in the common space: tracheal bifurcation (blue), thoracic
vertebra #9 (red) and xiphoid (green). The registration was carried out with
the FROG algorithm using 3D-SURF (left) and our learned descriptors (right).
As each landmark is present in 20 subjects from the Gold group, there is a
total of 60 landmarks. The best case of landmark registration, for both de-
scriptors, corresponds to the tracheal bifurcation (blue), with a mean distance
of 4.8 mm for CNN and 4.6 mm for 3D-SURF. The worst case, for both de-
scriptors, corresponds to the xyphoid (red) with a mean distance of 14.4 mm
for CNN and 12.7 mm for 3D-SURF. The thoracic vertebra #9 (blue) corre-
sponds to an intermediate case, with a mean distance of 8.4 mm for CNN and
10.5 mm for 3D-SURF. Analysis shows that our method yields better results
than 3D-SURF for all vertebral landmarks.
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Table 2: Performance comparison of the 3D-SURF and our learned descriptor
with varying descriptor size.

Type of descriptor FPR95  Mean landmark distance (mm)  Descriptor size

3D-SURF 0.077 8.74 48
0.010 8.74 24

0.007 8.54 48

Learned 0.008 8.64 64
0.022 8.64 128

4 Conclusions and future work

Our results, although preliminary, show that a learned 3D descriptor, trained
on semi-synthetic data, can outperform a carefully hand-crafted one. We in-
tend to further explore these promising results by extending our training
dataset and conducting more experiments. Future research will address train-
ing a 3D keypoint detector. Indeed, as shown in recent work [9, 8], simul-
taneously learning a detector and a descriptor has given better results than
learning them separately.
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