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Simple Summary: The alteration of mismatch repair (MMR) genes leads to microsatellite instability
and plays a key role in colorectal cancer (CRC) pathogenesis and prognosis. The transcription factor
NRIP1 is involved in intestinal tumorigenesis and is a good prognostic marker in CRC. In this
study, we demonstrate that NRIP1 induces MSH2 and MSH6 MMR gene transcription and reduces
microsatellite instability. A dominant-negative truncated NRIP1 mutant amplifies the MMR-deficient
phenotype and appears as a key player in MSI-driven tumorigenesis since it significantly correlates
with a short overall survival of patients with advanced CRC, especially MLH1-deficient ones.

Abstract: Microsatellite instability (MSI) is related to the alteration of mismatch repair (MMR) genes
and plays a key role in colorectal cancer (CRC) pathogenesis. We previously reported that the
transcription factor Nuclear Receptor Interacting Protein 1 (NRIP1) is involved in sporadic intestinal
tumorigenesis. The aim of this study was to decipher its role in MSI CRC. By using different mouse
models and engineered cell lines, we demonstrated that NRIP1 increased MSH2 and MSH6 MMR
gene transcription and mRNA/protein levels. In human CRC cells, NRIP1 expression was associated
with decreased MSI and the hypermutator phenotype, and with resistance to chemotherapy drugs.
Using a cohort of 194 CRC patients, we detected in 22% of the cases a MSI-induced frameshift
mutation in the NRIP1 coding sequence. This genetic alteration generates a truncated protein with a
dominant negative activity that increased human CRC cell proliferation and impaired the regulation
of MSH2 and MSH6 gene expression. Moreover, the NRIP1 mutant correlated with a decreased
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overall survival of patients with advanced CRC, especially when MLH1-deficient. By decreasing the
expression of MSH2 and MSH6 gene expression, the NRIP1 variant may amplify MLH1-dependent
CRC progression and behave as a new prognostic marker of advanced MSI CRC.

Keywords: colorectal cancer; mismatch repair; microsatellite instability; RIP140/NRIP1; patient prognosis

1. Introduction

Colorectal cancer (CRC) is one of the most common cancers worldwide [1]. Genetic
instability, including chromosomal and microsatellite instability (MSI), is a key event in
CRC pathogenesis. Indeed, MSI is observed in 15% of CRC, due to loss of expression of
at least one of the genes involved in the mismatch repair (MMR) system implicated in
error correction during DNA replication. Within the MMR system, the DNA recognition
complex MutSα consists of MSH2-MSH6 heterodimers. Following mismatch detection, the
MutSα complex binds to the execution complex MutLα (MLH1 and PMS2) to signal the
need to carry out excision and re-synthesis of the mismatched DNA [2]. MMR impairment
leads to hypermutated tumors that accumulate frameshift mutations in the genome [3]. In
sporadic MSI CRC, MLH1 gene promoter hypermethylation is the main cause of MMR
deficiency (dMMR) [4]. Moreover, an inherited component is observed in about 25% of
CRCs, and this includes Lynch syndrome (LS), which is due to an autosomal dominant
heterozygous constitutional mutation in one of the MMR genes [5].

In comparison with microsatellite stable (MSS) tumors, stage I/II CRC with high-level
MSI (MSI-H) appears less aggressive and exhibits a favorable prognosis [6]. This seems to
be linked to local inflammation [7] in response to the production of highly immunogenic
frameshift peptides [8]. Adjuvant chemotherapy with 5-fluorouracil (5-FU) is inefficient in
patients with stage II dMMR CRC [9]. Conversely, chemotherapy regimens that combine
folinic acid, 5-FU and oxaliplatin are effective in stage III or metastatic MSI-H cancers,
similar to their MSS countertype, although those patients may have worse [6] or better [10]
outcomes. Interestingly, recent studies suggested high efficacy of immune checkpoint
inhibitors in chemoresistant dMMR/MSI metastatic CRC, related to their high tumor
mutational burden [11]. However, few genetic markers have demonstrated prognostic or
predictive value for the treatment decision in MSI CRC, such as the V600E mutation of
B-type raf proto-oncogene (BRAF) [12] and the HSP110 T17 deletion [13], leaving room to
find new candidates.

The transcription coregulator Nuclear Receptor-Interacting Protein 1 (NRIP1), also
known as Receptor Interacting Protein of 140 kDa (RIP140), is a major regulator of various
nuclear signaling pathways such as nuclear hormone receptors (NR) or other transcription
factors, as E2F [14–16]. NRIP1 mainly acts as a transcriptional repressor by means of
four inhibitory domains, recruiting histone deacetylases or CtBPs (C-terminal Binding
Proteins) [17], and several post-translational modifications play important roles in control-
ling its subcellular location and repressive activity [18]. NRIP1 also positively regulates
the transcriptional activity of NRs, including ERR (Estrogen Receptor Related Receptor),
via Sp1 sites [19]. Invalidation of the Nrip1 gene (RIPKO mice) has revealed a role in
ovulation, metabolism, cognition and inflammation [20]. Moreover, a single nucleotide
polymorphism, which introduces an amino-acid change in the NRIP1 coding sequence, was
associated to various pathologies, including endometriosis [21] and lung cancer [22]. We
previously reported that NRIP1 negatively regulates the Wnt/β-catenin signaling pathway
and exerts an important role in normal and malignant development of intestinal epithe-
lium [23]. In CRC, NRIP1 is a good prognostic marker because its expression is significantly
correlated with better overall survival (OS) [23,24]. These data dealing with the role of
NRIP1 in CRC have been obtained mainly in a context of sporadic CRC, independently of
the MSI status. Since MMR deficiency plays a key role in intestinal tumorigenesis as above
detailed, we wanted to explore the role of NRIP1 in this subgroup of CRC and investigate
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its implication in the control of MMR gene expression by combining the use of human CRC
cell lines and genetically modified mouse models.

We found that NRIP1 increases MSH2 and MSH6 gene expression, alters microsatellite
stability and mutation repair efficiency and modifies their response to cytotoxic drugs.
Moreover, in MSI CRC cells and tumors, a frameshift mutation in the NRIP1 coding
sequence impairs its biological activity. This mutation is associated with poor OS of
patients with stage III CRC, especially those with MLH1 deficiency (dMLH1). We propose
that through the modulation of MutSα levels, NRIP1 actively participates in the dMMR
phenotype of intestinal epithelial cancer cells, and represents a promising prognostic
marker to adapt the management of patients with MSI CRC.

2. Materials and Methods
2.1. Mouse Models

C57BL/6J Nrip1−/− (RIPKO) mice were provided by M.G. Parker [25]. C57BL/6/129
NRIP1 transgenic (RIPTg) mice were previously obtained using Speedy Mouse Technology
(Nucleis) by insertion of a copy of human Nrip1 cDNA at the HPRT locus as described [23].
The selection of the ES cell clones with homologous recombination was realized with
hypoxanthine-aminopterin-thymidine-supplemented (HAT-supplemented) medium. Tar-
geted ES cells were injected into C57BL/6-derived blastocysts before recipient female
transplantation and backcrossing. Genotyping of animals was realized by qPCR.

2.2. Plasmids

The pRL-CMV-renilla and pGL vectors were from Promega (Charbonnieres, France).
pEF-cmyc-RIP140 and pEGFP-RIP140 were previously described [26,27]. pEF-cmyc-RIPMSI

was generated using QuikChange (Agilent Technologies, Santa Clara, CA, USA). pEF-cmyc-
RIPMSI was digested with AflII and EcoRV enzymes, and the resulting insert was cloned
into pEGFP-RIP140 to create pEGFP-RIPMSI. Green Fluorescent Protein (GFP), GFP-RIP140
and GFP-RIP140MSI were PCR-amplified and cloned in the pTRIPZ vector previously
digested with AgeI and MluI to create pTRIPZ-GFP, pTRIPZ-RIP140 and pTRIPZ-RIPMSI,
respectively. All the engineered PCR constructs were sequenced.

2.3. Cell Culture and Transfections

Mouse embryonic fibroblasts (MEFs) derived from wild-type (WT) and RIPKO mice
were grown in DMEM-F12 medium supplemented with 10% FCS, 100 U/mL penicillin,
100 mg/mL streptomycin and 100 mg/mL sodium pyruvate, transfected using Lipofec-
tamin 2000 (ThermoFisher Scientific, Waltham, MA USA) with the pTRIPZ plasmids en-
coding GFP alone, GFP-RIP140 or GFP-RIP140MSI and selected with 40 µg/mL puromycin.
Different human CRC cell lines including SW480, HT29, RKO and LoVo cells were used and
cultured as recommended by the ATCC. Some of these cell lines were used because they
exhibited high levels of endogenous NRIP1. Stably transfected HCT116-GFP and HCT116-
RIP140 were grown in McCoy medium completed as the MEFs but selected by 750 µg/mL
G418 [23]. Two HCT116 cell lines with different levels of NRIP1 gene expression (low in
HCT116LR and high in HCT116HR) were used in some experiments. Transfections with
siRNAs (Supplementary Table S1) were performed using INTERFERin on cells seeded the
day before (3 × 105 cells in 6-well plates) and validated by RT-qPCR.

2.4. Luciferase and ChIP Assays

The MSH2 and MSH6 luciferase reporter and NRIP1 expression vectors were pre-
viously described [26–29]. HCT116 cells were transfected in 96-well plates (2.5 × 104

cells per well) 24 h prior to DNA transfection with Jet-PEI (275 ng of total DNA). In-
creasing doses of pEF-c-myc-RIP140 or pEF-c-myc-RIPMSI were cotransfected with the
pGL3-MSH2-Luc or the Sp1 mutant pGL3-MSH2m1-Luc (kind gifts of E. Huang [28]).
Similar experiments were performed with the pGL3-MSH6-Luc reporter vector and a Sp1
mutant pGL3-MSH6M1-2/7-Luc (kind gifts of R.D. Kolodner [29]). The pRL-CMV-renilla
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plasmid (Promega, Charbonnières-les-Bains, France) was used to normalize transfection
efficiency. Firefly luciferase values were measured and normalized by the Renilla luciferase
activity. Values were expressed as the mean ratio of luciferase activities.

ChIP assays for proteins at the MSH2 and MSH6 promoters were performed in HT29
cells using the CHIP-IT kit (Active Motif, Carlsbad, CA, USA). Sonicated chromatin was
immunoprecipitated with antibodies against IgG (sc-3739, Santa Cruz Biotechnology, Inc,
Heidelberg, Germany), H3pan (CC16310135, Diagenode, Liège, Belgium) and NRIP1
(ab42126, Abcam, Paris, France). Immunoprecipitated DNA was amplified by qPCR using
the primers listed in Supplementary Table S1.

2.5. Cell Proliferation and Cytotoxicity Assays

Cells were seeded in quadruplicate in 96-well plates at a density of 2 × 103 cells per
well. At the indicated time, 0.5 mg/mL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) (Sigma-Aldrich, Saint-Quentin, France) were added and incubated at 37 ◦C
for 4 h. Formazan crystals were solubilized in DMSO and absorbance read at 560 nm on a
spectrophotometer. Results were normalized to the cell density at day 1. For cytotoxicity
assays, cells were seeded in quadruplicate in a 96-well plate (2.5 × 103 cells per well)
and exposed the day after to increasing concentrations of cytotoxic drugs including 5-
fluorouracil, SN38, oxaliplatin (Sigma-Aldrich, Saint-Quentin, France) or to vehicle alone.
The cells were exposed to the drug during six days, and cell viability was quantified each
day using MTT assay. Values were normalized to the mean optical density of the control
for each day.

2.6. Reverse Transcription-Real-Time Quantitative PCR (RT-qPCR)

Total RNA was extracted with the Quick-RNA kit (Zymo Research, Irvine, CA,
USA), and 1 µg was subjected to reverse-transcription using qScript cDNA SuperMix
(QuantaBio, VWR, Strasbourg, France). RT-qPCR were performed with the Roche LightCy-
cler 480 instrument and the PerfeCTa SYBR Green FastMix (QuantaBio, VWR, Strasbourg,
France) and were carried out in a final volume of 10µL using 0.25 µL of each primer
(25 µM), 5 µL of the supplied enzyme mix, 2.5 µL of H2O and 2 µL of the template diluted
at 1:10 (See Supplementary Table S1 for primer sequences). After pre-incubation at 95 ◦C,
runs corresponded to 35 cycles of 15 s each at 95 ◦C, 5 s at 60 ◦C and 15 s at 72 ◦C. Melting
curves of the PCR products were evaluated using the LightCycler 480 SW1.5 software to
eliminate amplification of unspecific products [23]. Results were normalized to the mouse
RS9 or human 28S housekeeping gene transcripts.

2.7. MSI and HPRT Mutation Assay

MMR status was determined by fluorescent multiplex PCR-based analysis of five mi-
crosatellite markers [30]. For HPRT mutation assay, HCT116-GFP and HCT116-RIP140 cells
were incubated in HAT medium (Life Technologies, Paisley, UK) to eliminate cells harbor-
ing preexisting hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutants. After
3 days, cells were seeded in Petri dishes, incubated with 20 µM O6-benzylguanine (Sigma-
Aldrich, Saint-Quentin, France) for 2 h to deplete O-6-methylguanine-DNA methyltrans-
ferase (MGMT) and then supplemented or not with 1 µM methyl-nitro-nitroso-guanidine
(MNNG) (TCI Europe) for 1 h. Cells were seeded in 6-well plates (200 cells/well), and
cloning efficiency was analyzed 10 days later. In parallel, 105, 2 × 105 or 5 × 105 cells
per well were plated with 5 µg/mL 6-thioguanine (6-TG, Sigma-Aldrich, Saint-Quentin,
France) and cultured for 30 days. After staining with crystal violet, the mutation frequency
was calculated (number of colonies/cloning efficiency × 105).

2.8. Immunoblotting

Whole cell extracts prepared in RIPA buffer (40 µg) were analyzed by western blot-
ting using antibodies against NRIP1 (ab42125), MSH2 (ab70270) and MSH6 (ab92471)
(Abcam, Paris, France). Signals were revealed using a rabbit peroxidase-conjugated sec-
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ondary antibody (1/5000, A6154 Sigma-Aldrich, Saint-Quentin, France) and enhanced
chemiluminescence (ECL-RevelBlotPlus; GE Healthcare) according to the manufacturer’s
instructions. Normalization was conducted relative to β-actin (A3854; Sigma-Aldrich,
Saint-Quentin, France).

2.9. Immunofluorescence (IF) and Immunohistochemistry (IHC) Analysis

For IF, cells were fixed with 3.7% paraformaldehyde, permeabilized and incubated
with primary antibodies against NRIP1 (1:100, ab42126), MSH2 (1:1000, ab70270) and
MSH6 (1:1000 ab92471) (Abcam, Paris, France) at 4 ◦C overnight, diluted in PBS-Tween,
3% BSA and then with Alexa-conjugated secondary rabbit IgG (AF488, AF594, AF546,
1/400, Invitrogen) at room temperature for 1 h. Cells were counterstained with Hoechst
(1/1000, Sigma-Aldrich, Saint-Quentin, France), and slides were mounted with Mowiol
(Sigma-Aldrich, Saint-Quentin, France). Staining quantification was performed at x40
magnification using the AxioVision ZEN 2 software (Carl Zeiss).

For IHC, following incubation in citrate buffer solution, paraffin-embedded tissue sec-
tions were incubated with anti-MSH2 (ab70270) and -MSH6 (ab92471) (Abcam, Paris, France)
antibodies at 4 ◦C overnight, and then with a peroxidase-conjugated secondary antibody
(Jackson Immunoresearch) at room temperature for 1 h, followed by 3,3’-Diaminobenzidine
revelation (DAKO cytomation). Sections were counterstained with hematoxylin and images
taken using NanoZoomer NDP.view2 software (Hamamatsu Photonics).

For IHC of human CRC samples, two TMA were obtained from the Biological Re-
sources Center (BB-033-00059) of the Institute for Cancer of Montpellier (ICM). They were
incubated with antibodies against NRIP1 (ab42126, Abcam, Paris, France), MSH2 (clone
FE11, Agilent Dako, Santa Clara, CA, USA) and MSH6 (ab92471 Abcam, Paris, France)
using the Autostainer Link48 platform (Agilent Dako, Santa Clara, CA, USA). Signal ampli-
fication was conducted with the Flex+ system. The H-score was determined for each spot,
by taking into account the percentage of positive tumor cells and the staining intensity [31].

2.10. Patients and Specimens

MSI CRC samples at different stages were obtained from ICM (n = 80 patients), Saint
Antoine Hospital (Paris) (n = 68 patients) and the Cancer Research Center of Toulouse
(CRCT) (n = 46 patients), in accordance with the French regulatory laws. All surgical CRC
specimens were dMMR (presence of MSI and/or loss of MMR protein expression in the
tumor). For samples from ICM and CRCT, the frameshift mutation in the NRIP1 coding
sequence (RIPMSI) was detected by Illumina HiSeq4000 deep-sequencing (Integragen
genomics, France) using specific primers (Supplementary Table S1) and DNA extracted
using the QIAamp DNA FFPE kit (Qiagen, Hilden, Germany). For the Saint Antoine
hospital cohort, RNA-seq analysis was performed as described [32]. NRIP1, MSH2 and
MSH6 mRNA expression was analyzed using published DNA microarray data from
different cohorts of patients with CRC [3,33,34].

2.11. Statistical Analysis

All experiments were realized independently at least three times. Results were pre-
sented as the mean ± standard deviation (SD). For continuous parameters, descriptive
analyses were performed using median and ranges and compared with the Kruskal–Wallis
or Wilcoxon test. Frequencies and percentages were used for categorical variables that
were compared using the Chi2 or Fisher’s exact tests. The association of clinical and
mutation/tumor parameters with OS was assessed using univariate Cox proportional haz-
ard regression analyses (“survival” R package). Censoring was systematically applied at
5 years, and survival was described using Kaplan–Meier curves. Other statistical analyses
were performed using the Mann–Whitney, Spearman or log-rank test and STATEL, STATA
13.1 or GraphPad Prism version 8. Differences between groups were considered statistically
significant at p < 0.05.
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3. Results
3.1. NRIP1 Regulates MSH2 and MSH6 Gene Expression in Mouse Models

To determine the NRIP1 role in MMR gene expression, we analyzed transgenic mice in
which Nrip1 was knocked-out (RIPKO mice) or overexpressed (RIPTg mice). We previously
used these mice models and validated by immunofluorescence that the NRIP1 protein was
undetectable in the RIPKO mice and overexpressed in the nuclei of all intestinal epithelial
cells in the RIPTg mice as compared with wild-type (WT) animals [23]. Compared with WT
littermates, Msh2 and Msh6 mRNA levels were lower in the whole small intestine of RIPKO
mice, whereas they were increased in RIPTg mice (Figure 1A). These effects appeared to
be specific because the expression of other MMR genes, such as Mlh1, was not affected by
Nrip1 deletion and overexpression (data not shown). The decreased Msh2 and Msh6 gene
expression in the intestinal epithelium of RIPKO mice was confirmed by IHC (Figure 1B).

Msh2/Msh6 gene and protein (by western blotting and immunofluorescence) levels
were also significantly reduced in MEFs obtained from RIPKO mice, compared with WT
MEFs (Figure 1C–E). These results showed that in mouse intestinal epithelium, NRIP1
increases the expression of the two MutSα components: Msh2 and Msh6.

3.2. NRIP1 Regulates MSH2/MSH6 Gene Transcription in Human CRC Cells

To get closer to the human pathology, we then analyzed the NRIP1 effect on MutSα
gene expression in human CRC cell lines. MSH2/MSH6 mRNA (Figure 2A) and protein
(Figure 2B) levels were also increased in HCT116 cells (MSI CRC line) that stably over-
express NRIP1 compared with control cells (empty vector). We obtained similar results
after transient transfection of HCT116 cells (Supplementary Figure S1A). MSH2/MSH6
mRNA (Figure 2C) and protein levels (Supplementary Figure S1B) significantly decreased
in HCT116 cells upon NRIP1 silencing. The effect of NRIP1 ectopic expression and silencing
were confirmed in other CRC cells, namely SW480 cells (Supplementary Figure S2A,B) and
RKO cells (Supplementary Figure S2C,D), respectively. In addition, similar results were
obtained in the human HT29 CRC cell line (data not shown).

To investigate the underlying molecular mechanisms, we transiently transfected
HCT116 cells with luciferase reporter constructs that harbor the proximal promoter region
of MSH2 or MSH6. The luciferase activity driven by the MSH2 and MSH6 promoters was
significantly increased by NRIP1 transfection in a dose-dependent manner (Figure 2D),
supporting a positive transcriptional regulation of these two genes.

Although NRIP1 was first identified as a transcriptional repressor, we and others
reported positive regulation of gene expression (for a review see [35]) that, at least in part,
implicates Sp1-mediated mechanisms [19]. As both MSH2 and MSH6 promoters harbor
Sp1 binding sites, we tested whether mutation of these sites affected their transcriptional
regulation by NRIP1 (Figure 2E, top). The induction of luciferase activity by NRIP1
was significantly reduced when we used the Sp1-mutated reporter constructs (Figure 2E,
bottom panels), suggesting that NRIP1 regulation of MSH2 and MSH6 expression is partly
Sp1-mediated.

Finally, ChIP experiments demonstrated the specific recruitment of NRIP1 only to the
MSH2 and MSH6 promoter sequences that encompassed the Sp1-1 and the Sp1-1/Sp1-2
binding sites that conferred regulation by NRIP1 in the luciferase assays (Msh2-7 and
Msh6-2 sequences, respectively) (Figure 2F). We did not observe any NRIP1 recruitment
to the upstream region encompassing the Sp1-3 to Sp1-5 binding sites (Msh6-4 sequence),
whereas significant amplifications were observed after anti-histone H3 ChIP (αH3pan).
These results indicated that MSH2 and MSH6 are direct transcriptional targets of NRIP1.



Cancers 2021, 13, 4449 7 of 20

Figure 1. NRIP1 regulates MutSα gene expression in mouse tissue and cells. (A) RT-qPCR analysis
of Msh2 and Msh6 expression in whole small intestine isolated from RIPKO, wild-type (WT) and
RIPTg mice. Results represent the fold change ± SD compared with WT mice (dotted line) after
normalization to Rs9 level; * p < 0.05, ** p < 0.01, *** p < 0.001 (Student t-test). (B) MSH2 and MSH6
expression (IHC) in intestinal epithelium of RIPKO mice and WT littermates (x10). Scale bar, 100 µm.
(C) Msh2 and Msh6 expression in immortalized WT and RIPKO MEFs; *** p < 0.001 (Mann–Whitney
test). (D) Western blot analysis of MSH2 and MSH6 protein expression in WT and RIPKO MEFs (left),
and data quantification (right; in arbitrary units, AU). (E) MSH2 and MSH6 immunofluorescence
analysis in WT and RIPKO MEFs (40×), and quantification (lower panels) shown as the mean
intensity per µm2 ± SD; Scale bar, 20 µm; * p < 0.05 (Student t-test).
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Figure 2. NRIP1 regulates MUTSα gene expression in human CRC cells. (A) mRNA levels measured by RT-qPCR in
HCT116LR cells that stably express NRIP1 (RIP140) or not (GFP). Results are the fold change ± SD relative to control (GFP)
after normalization to 28S mRNA. (B) Western blot analysis of MSH2 and MSH6 in the same cells described in panel A
(left), and data quantification (right) in arbitrary units (AU). (C) mRNA levels quantified (as in panel A) in HCT116HR cells
transiently transfected with control (siCTRL) and anti-NRIP1 (siNRIP1) siRNAs. n = 3 independent experiments for each
condition. (D) Luciferase activity of HCT116LR cells co-transfected with the MSH2 or MSH6 promoter reporter and with
increasing concentrations of pEF-cmyc-RIP140. RLU, relative luciferase values (i.e., percentage of the activity measured
in the absence of NRIP1). Data are the mean ± SD of 3 independent experiments. (E) Schematic representations of the
luciferase reporters with mutated Sp1 sites in the MSH2/MSH6 promoters. Lower panel, luciferase activity of HCT116LR
cells co-transfected with the indicated mutated reporter constructs and increasing concentrations of pEF-cmyc-RIP140 (mean
± SD of 3 independent experiments). (F) ChIP assay using HT29 cells and anti-IgG, anti-H3pan or anti-NRIP1 antibodies.
Purified DNA was amplified by qPCR using MSH6 (2 and 4) or MSH2 promoter (7) primer pairs (see upper panel in E). For
all panels: * p < 0.05, ** p < 0.01 and *** p < 0.001 (Mann–Whitney test).
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3.3. Correlations between NRIP1 and MSH2/MSH6 Expression in Human CRC Samples

To validate these data in human CRC, we analyzed three transcriptomic datasets.
Analysis of the data from 396 CRC tissue samples [33] showed that NRIP1 mRNA levels
were significantly correlated with MSH2 (ρ = 0.65; p < 2.2 × 10−16) and MSH6 (ρ = 0.57;
p < 2.2 × 10−16) mRNA levels (Figure 3A,B). The correlations were stronger when we con-
sidered only MSS CRC samples, although the correlation with MSH2 was also significant
in MSI tumors despite the low number of samples (Figure 3B).

Analysis of the TCGA-COAD RNA-seq dataset (n = 415 CRC samples) [3] confirmed
the significant correlation between NRIP1 and MSH2 (r = 0.43; p < 2.2 × 10−16) and
MSH6 (r = 0.31; p = 3.6 × 10−16) mRNA levels (Figure 3C). We then considered the six
different CRC molecular subtypes previously identified [34], C1 (immune pathways down
regulated), C2 (enriched in dMMR tumors), C3 (KRAS mutated), C4 (enriched in cancer
stem cells), C5 (wnt signaling up) and C6 (enriched for tumors with a normal-like gene
expression profile). We observed the best correlations in the C1, C3 and C6 subgroups.
Conversely, correlations were not significant in the C4 (for MSH2) and in the C2 and C5
groups (for MSH6) (Figure 3C). A significant positive correlation between NRIP1 and
MSH2 gene expression (data not shown) was also found in a third dataset corresponding
to a multicenter cohort of 750 patients set up by the French national CIT program [34].
Finally, we confirmed the significant associations between NRIP1 and MSH2 (p = 0.023)
and MSH6 (p < 0.00013) also by analysis of their protein level by IHC in 122 CRC samples
(Figure 3D,E, and Supplementary Table S2). Altogether, these data strongly supported the
positive regulation of MSH2 and MSH6 gene/protein expression by NRIP1 in human CRC.

3.4. Functional Consequences of MutSα Regulation by NRIP1

One of the cellular consequences of disrupting the MMR system is a differential
sensitivity to cytotoxic drugs used in CRC chemotherapy such as 5-FU [36]. Using our
cell models (HCT116 cells and MEFs), we observed higher sensitivity to 5-FU, oxaliplatin
and SN38 (the active metabolite of irinotecan) in RIPKO than in WT MEFs (Figure 4A,B;
Supplementary Figure S3 and Table S3). This sensitivity was significantly decreased
upon NRIP1 overexpression in HCT116 cells (Figure 4C–E; Supplementary Table S3). To
determine whether the difference in drug sensitivity was dependent on MSH2 and MSH6
gene expression induction, we monitored the response to SN38 in HCT116 cells that
overexpress or not NRIP1 after siRNA-mediated knockdown of both MSH2 and MSH6.
The specificity and efficacy of the two siRNAs were validated (Supplementary Figure S4).
MSH2 and MSH6 downregulation completely abolished the effect of NRIP1 overexpression
on sensitivity to SN38 (Figure 4F). This demonstrated that the NRIP1 effect on SN38
sensitivity was dependent on its regulation of MutSα gene expression.

As MSI is the major consequence of dMMR [37], we asked whether MSH2 and MSH6
expression regulation by NRIP1 could affect MSI in human CRC cells by analyzing five
nearly monomorphic mononucleotide repeat markers (BAT-25, BAT-26, MONO-27, NR-21,
NR-24) using a multiplexed PCR assay. First, we analyzed two HCT116 cell lines with low
(HCT116LR) and high (HCT116HR) NRIP1 expression levels, respectively. As expected,
MSH2 and MSH6 expression levels were higher in HCT116HR than in HCT116LR cells (Sup-
plementary Figure S5A). Microsatellite analysis revealed higher instability in HCT116LR
cells. Indeed, four of the five mononucleotide repeat loci were unstable in HCT116LR cells
and only two in HCT116HR cells (Figure 4G and Supplementary Figure S5B).
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Figure 3. NRIP1 and MUTSα gene expression in human CRC samples. (A) Correlation plots between NRIP1, MSH2 (left
panel) and MSH6 (right panel) gene expression in the whole cohort (n = 396 CRC samples) [33]. (B) Correlations in the whole
cohort and in subgroups corresponding to MSS or MSI CRC samples analyzed with the Spearman test. (C) Correlation
between NRIP1 and MSH2/6 mRNA expression in the TCGA-COAD RNA-seq dataset [3] (n = 415 CRC samples classified
according to their molecular subtypes [34]). (D) Representative images showing NRIP1 (a,b), MSH2 (c,d) and MSH6 (e,f)
immunostaining in a stage IV primary CRC (a,c,e) and its synchronous liver metastasis (b,d,f). Magnification ×400. (E)
Correlation between NRIP1 and MSH2/MSH6 protein levels in the CRC samples described in Supplementary Table S2 and
illustrated in panel E. The Spearman correlation coefficient and p-values are indicated.
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Figure 4. Cellular consequences of MutSα regulation by NRIP1. (A,B) Cytotoxic effect of increasing doses of 5-fluorouracil
(5-FU) (panel A) and oxaliplatin (panel B) in WT and RIPKO MEFs; the IC50 and p values are indicated. (C,D) Same
experiment in HCT116-RIP140 (RIP140) or HCT116-GFP (GFP) for 5-FU (panel C) and oxaliplatin (panel D). (E,F) SN38
effect in HCT116-GFP and HCT116-RIP140 cells transfected with control siRNA (panel E) or with siRNAs targeting MSH2
and MSH6 (panel F). (G) MSI status of the indicated cell lines (raw data in Supplementary Figure S5B,C). (H) HPRT mutation
assay after exposure to 6-TG of HCT116-GFP or HCT116-RIP140 (three seeding conditions). Results are the mean ± SD of
triplicates for each condition. * p < 0.05, ** p < 0.01 and *** p < 0.001.

To demonstrate clearly that NRIP1 differential expression was the cause of this in-
stability, we performed the same analysis in HCT116LR cells after transfection of NRIP1
(HCT116-RIP140 cells) and found that they were more stable than cells transfected with the
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empty vector (HCT116-GFP) (Figure 4G and Supplementary Figure S5C). These findings
indicated that high NRIP1 levels correlated with high MSH2 and MSH6 gene expression
and with lower MSI.

To validate the consequences of MutSα regulation by NRIP1 functionally, we per-
formed a HPRT mutation assay in HCT116 cells that overexpress or not NRIP1. MMR
activity is required to repair O6-methylguanine lesions induced by MNNG [38] that can be
detected in the HPRT gene using a colony formation assay in the presence of 6-TG. The
number of 6-TG resistant colonies was strongly and significantly decreased in cells that
overexpress NRIP1 (Figure 4H), thus validating our observation that NRIP1 positively
regulates MMR activity.

All these data indicated that MSH2 and MSH6 expression regulation by NRIP1 cor-
related with changes in drug sensitivity, MSI and mutation repair. Therefore, we hy-
pothesized that MSI-induced NRIP1 loss-of-function mutations might lead to decreased
expression of genes coding for MutSα and might strongly amplify MSI and contribute to
intestinal tumorigenesis.

3.5. Identification and Characterization of a NRIP1 Frameshift Mutation

To test this hypothesis, we screened several MSI CRC cell lines by sequencing the
whole NRIP1 coding exon and identified in LoVo cells a frameshift mutation that leads to
the deletion of an adenosine nucleotide (c.2184delA; p.E729fs) and to a truncated pro-
tein that lacks the last 431 amino acids and exhibits a short specific RKLP sequence
(Supplementary Figure S6A).

This NRIP1 variant (called RIPMSI) displayed the same punctuate subcellular localization
as the WT protein, after transient transfection of HCT116 cells (Supplementary Figure S6B).
However, in reporter assays using Gal4DBD constructs in which the NRIP1 and RIPMSI

coding sequences were fused to the DNA binding domain of the Gal4 transcription factor,
we observed a clear decrease in the intrinsic transrepression of RIPMSI (Figure 5A), probably
due to the loss of the RD3 and RD4 repression domains (Supplementary Figure S6A).

Analysis of RIPMSI biological activity in RIPKO MEFs that stably express NRIP1 or
RIPMSI (Supplementary Figure S7A) showed that MSH2 and MSH6 gene expression was
increased less efficiently by RIPMSI than NRIP1 (Figure 5B and Supplementary Figure S7B).
In luciferase reporter assays (Figure 5C), MSH2 gene promoter activity was lower in cells
transfected with RIPMSI than NRIP1. Similarly, endogenous MSH2 and MSH6 upregula-
tion in HT29 CRC cells was lower after transient overexpression of RIPMSI than NRIP1
(Figure 5D and Supplementary Figure S7C). Interestingly, RIPMSI seemed to exert a domi-
nant negative effect because MSH2 and MSH6 mRNA and protein expression were slightly
increased in RIPKO MEFs (Figure 5E and Supplementary Figure S8A) and reduced in WT
MEFs upon transfection with RIPMSI (see Supplementary Figure S8B).

We observed the same dominant negative effect on the 5-FU response with an in-
creased sensitivity of RIPMSI-expressing cells compared to decreased sensitivity of NRIP1-
expressing cells (Supplementary Figure S8C). Finally, ectopic expression of RIPMSI resulted
in an increase in RIPKO MEF proliferation compared with the significant inhibition ob-
served with NRIP1 (Figure 5F). We obtained similar data in CRC cell lines (Figure 5G and
data not shown). This suggested that RIPMSI abrogates NRIP1 anti-proliferative functions
in a dominant-negative manner. The expression of this MSI-target mutant may play a
critical role in intestinal tumorigenesis and might represent a major prognosis determinant
in MSI CRC.
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Figure 5. Biological characterization of the RIPMSI frameshift mutation. (A) Intrinsic transrepression assay in HCT116LR
cells transiently transfected with increasing doses of the Gal4DBD-fused NRIP1 and RIPMSI expression vectors. (B) MSH2
and MSH6 mRNA levels in RIPKO MEFs stably expressing GFP, GFP-RIP140 or GFP-RIPMSI; n = 3 independent experiments.
(C) Luciferase assay with the MSH2 gene reporter and increasing doses of NRIP1 or RIPMSI expression vectors (mean ± SD;
n = 3 independent experiments). (D) MSH2 and MSH6 mRNA levels in HT29 cells transiently transfected with pEGFP,
pEGFP-RIP140 or pEGFP-RIPMSI expression vectors. (E) MSH2 and MSH6 mRNA levels in stably transfected MEF-WTMSI

and MEF-KOMSI. Data were normalized as compared to WT and RIPKO control cells expressing GFP alone and set at 1.
(F) Cell proliferation of RIPKO MEFs stably expressing GFP, GFP-RIP140 or GFP-RIPMSI at day 4 and 6 after seeding. Results
are the fold-change vs. control (GFP) cells after normalization to the cell density at day 1; n = 3 independent experiments.
(G) Cell proliferation of human RKO CRC cells transiently transfected with pEGFP, pEGFP-RIP140 or pEGFP-RIPMSI

expression vectors over 8 days. Results are the fold-change (triplicates) after normalization to the cell density at day 0. For
all panels: data are the mean ± SD; ns = not significant, * p < 0.05, ** p < 0.01, *** p < 0.001 (Kruskal–Wallis test).

3.6. RIPMSI in MSI CRC Clinical Samples

We first investigated the presence of the RIPMSI mutation in 194 non-metastatic MSI
CRC samples (see Table 1 for patients and tumor characteristics). We detected RIPMSI in
22.2% of samples. RIPMSI frequency was not correlated with any clinical or molecular
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characteristic, but was much lower in stage III tumors (14.3%) than in stage I and II tumors
(33.3 and 24.8%, respectively). We found RIPMSI in 23.8% of cancers in the subgroup of
dMLH1 CRCs (i.e., sporadic cases with MLH1 promoter hypermethylation or LS cases
linked to a MLH1 gene mutation). In this subgroup, RIPMSI frequency in stage III tumors
was even lower (12.2% vs. 27.3 and 30% in stage I and II tumors, respectively; p = 0.038).

Table 1. Patients and tumor characteristics. Patients’ clinical features and anatomopathological
characteristics of the related CRC samples used for the analysis of the RIPMSI mutation (all patients
and only patients with dMLH1 CRC). The mutation frequency in each group is indicated.

All CRCs
n = 194

dMLH1 CRCs
n = 122

Characteristic Population
n (%)

RIPMSI

n (%)
Population

n (%)
RIPMSI

n (%)
NRIP1

Wild-type 151 (77.8) / 93 (76.2) /
Mutated 43 (22.2) / 29 (23.8) /

Age
Age at diagnosis 71.5 77
(median, years) [20.7–97] [20.7–97]
<55 68 (35.1) 12 (17.6) 28 (23) 6 (21.4)
≥55 123 (63.4) 31 (25.2) 92 (75.4) 23 (25)
Missing data 3 (1.5) 0 (0) 2 (1.6) 0 (0)

Sex
Men 94 (48.5) 20 (21.3) 53 (43.4) 12 (22.6)
Women 100 (51.5) 23 (23) 69 (56.6) 17 (24.6)

Tumor site
Colon 171 (88.1) 37 (21.6) 112 (91.8) 26 (23.2)
Rectum 21 (10.2) 6 (28.6) 8 (6.6) 3 (37.5)
Missing data 2 (1) 0 (0) 2 (1.6) 0 (0)

pTNM stage
I 18 (9.3) 6 (33.3) 11 (9) 3 (27.3)
II 113 (58.2) 28 (24.8) 70 (57.4) 21 (30)
III 63 (32.5) 9 (14.3) 41 (33.6) 5 (12.2) * $

BRAF V600E
No 91 (46.9) 17 (18.7) 50 (41) 9 (18)
Yes 47 (24.2) 14 (29.8) 47 (38.5) 14 (29.8)
Missing data 56 (28.9) 12 (21.4) 25 (20.5) 6 (24)

MLH1 status
dMLH1 122 (62.9) 29 (23.8) / /
pMLH1 66 (34) 14 (21.2) / /
Missing data 6 (3.1) 0 (0) / /

* stage III versus stage II: p = 0.038. $ stage III versus stage I and II: p = 0.042.

We then analyzed OS in the function of RIPMSI presence. The OS rate was not different
between patients with CRC harboring or not the RIPMSI mutation in the whole cohort
(Figure 6A) and in the group with stage I/II CRCs (Figure 6B). Conversely, the OS rate
was significantly lower in patients with stage III CRC harboring the RIPMSI mutation
(p = 0.01) (Figure 6C). As our molecular data linked NRIP1 to MutSα gene expression, we
expected a stronger impact of RIPMSI in patients with dMLH1 CRC (i.e., tumors deficient
for MutL, the other component of the MMR system; additive effect of the two alterations).
Indeed, the OS rate was lower in patients with dMLH1 stage III CRC harboring also
the RIPMSI mutation (p = 0.0006) (Figure 6D), whereas it was comparable in patients
with MLH1-proficient tumors with/without the RIPMSI mutation (Figure 6E). Due to the
low number of RIPMSI mutated samples, this difference between MLH1 proficient and
deficient tumors, although highly significant, needs to be validated in further studies.
The RIPMSI mutation was also significantly associated with poor prognosis in patients
with stage III CRC and (i) hypermethylated MLH1 (sporadic forms), which represents the
most frequent dMLH1 CRCs (p < 0.0001, Supplementary Figure S9A); (ii) harboring the
BRAFV600E mutation (p = 0.0019, Supplementary Figure S9B) and (iii) older than 55 years
(p < 0.0001, Supplementary Figure S9C). These features correspond mainly to patients with
sporadic MSI CRC. Conversely, OS of stage III CRC was not influenced by the RIPMSI
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mutation in patients with familial CRC, wild-type BRAF tumors or younger than 55 years
(Supplementary Figure S9D–F). Finally, the OS rate was lower also in patients with RIPMSI

stage III CRC treated by chemotherapy (Supplementary Figure S9G, p = 0.003), but not in
untreated patients (Supplementary Figure S9H, p = 0.89).

Figure 6. RIPMSI frameshift mutation and survival of patients with CRC. Kaplan–Meier plots of OS rate in patients with
CRC divided according to the presence/absence of the RIPMSI mutation in the tumor DNA. (A) Whole cohort (n = 189);
Patients with (B) stage I/II CRC (n = 127); (C) stage III CRC (n = 62); (D) stage III CRC with dMLH1 (n = 40); (E) stage
III CRC and proficient MLH1 (n = 20). (F) Forest plot of the associations between the indicated variables and OS (Cox
univariate analysis; * p < 0.05 and ** p < 0.01) in the whole cohort and in the indicated subgroups. HR, Cox Hazard Ratio; CI,
Confidence Interval of HR.



Cancers 2021, 13, 4449 16 of 20

In univariate Cox analyses, only sex and treatment were significantly associated
with OS in the whole cohort (Figure 6F), whereas the RIPMSI mutation was significantly
correlated with OS in patients with stage III CRC and in those receiving chemotherapy
(p = 0.019 and 0.008, respectively). Altogether, the RIPMSI mutation was associated with
decreased OS in patients with advanced CRC, especially in patients with dMLH1 or treated
with chemotherapy.

4. Discussion

CRC is a frequent malignancy displaying MSI due to MMR defects. We recently
showed that the transcription factor NRIP1 has an important role in the regulation of
intestinal homeostasis and tumorigenesis [23]. Here, we demonstrated: (1) NRIP1’s role
in the control of MutSα gene expression and MSI in intestinal epithelial cells, and (2) the
prognostic value of a truncated NRIP1 variant in MSI CRC.

First, our data clearly demonstrated that NRIP1 positively regulates MSH2 and MSH6
expression in mouse and human cells and tissues. This regulation takes place at the
transcriptional level and is at least partly Sp1-mediated. E2F factors [39] and p53 [40] also
regulate the expression of these two genes and might also mediate the positive regulation
by NRIP1. Interestingly, the transcriptional deregulation of the MSH6 and/or MSH2
genes by BCL2 [41] or HIF1α [28] was shown to induce MSI. Recently, Fang et al. showed
that CRTC2 acts as a tumor suppressor gene involved in genomic integrity by inducing
MSH6 gene transcription [42]. Therefore, besides genetic and epigenetic modifications,
MSI may result from MMR gene transcriptional deregulations. Our findings support these
observations by linking the regulation of MutSα gene expression by NRIP1 to a lower
degree of MSI.

Analysis of previously published transcriptomic data [34] in the function of the CRC
molecular classification [43] further strengthened our conclusions. Indeed, NRIP1 expres-
sion was significantly lower in the CMS1 subgroup, which corresponds to MSI CRCs
(Supplementary Figure S10). We previously described NRIP1 as a regulator of the Wnt
signaling pathway in CRC [23] and also as a major metabolic regulator [44]. Because of
these pleiotropic actions, NRIP1 might be at the crossroads of different consensus clusters,
including CMS1 (MSI), CMS2 (Wnt activation) and CMS3 (metabolic deregulation). We
could hypothesize that non-consensus tumors (around 20% of the samples), which do
not have a consistent subtype profile, might correspond to NRIP1-mutated tumors, thus
explaining the difficulty to classify them in a single CMS.

In addition to MSI, MMR activity tightly regulates other cellular parameters [45]. In
agreement, we demonstrated that NRIP1 modulates the sensitivity to the SN38 cytotoxic
drug through the regulation of MSH2 and MSH6 expression, and influences the mutator
phenotype. Concerning the effects of NRIP1 on cell sensitivity to 5FU, our data did
not fit with (a) MMR-mediated mechanism(s) suggesting that other cellular pathways
involved in 5FU resistance (see Blondy et al. [46] for a recent review) could be regulated by
NRIP1. Other phenotypic consequences, such as chromosomal abnormalities or centrosome
amplification, are linked to altered MMR activity [47], and additional work is necessary to
elucidate the precise NRIP1 role on such parameters. Regarding cancer development and
progression, MMR deficiency increases mutation frequency, leading to malignancy [48]. In
MSI CRC cells and samples, we detected a NRIP1 frameshift mutation at the heterozygous
status (RIPMSI). Several findings then suggested that the RIPMSI mutation exerts a dominant
negative effect on MMR gene expression regulation, drug response and, importantly,
inhibition of cell proliferation. Of note, in a family of patients with congenital anomalies of
kidneys and the urinary tract, a heterozygous truncating mutation in the NRIP1 gene [49]
acts in a dominant manner and interferes with the retinoic acid cellular pathway.

In full agreement with our molecular and cellular data, our survival results suggest
that the poor prognosis conferred by the RIPMSI mutation is more significant in the context
of MLH1 deficiency. Indeed, as expected from the positive effect of NRIP1 on MutSα
expression, dMLH1 tumors harboring the RIPMSI mutation displayed a more severe defect
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of MMR activity, resulting from the combination of MutL and MutS alterations. Epigenetic
silencing of the MLH1 gene explains almost all sporadic MSI CRC, and germline MLH1
mutations cause half of the cases of LS-related MSI CRC. More than 30 years ago, it was
proposed that a cascade of alterations in genes controlling MSI might unfold genetic
instability during tumor progression [50]. The NRIP1 gene is clearly involved in this
MSI amplification loop, and dMLH1 tumors harboring the RIPMSI mutation may not only
exhibit a higher overall mutation rate but also a different spectrum of mutations.

Importantly, the RIPMSI mutation is associated with decreased OS in patients with
stage III MSI CRC. Despite the significant progress in CRC treatment, patient outcome is still
difficult to predict. Physicians lack robust prognostic biomarkers for patient management
and follow-up after curative resection. Many studies assessed the potential prognostic
impact of several somatic mutations (e.g., BRAF, KRAS and TP53 mutations), but none
has been validated as a reproducible prognostic biomarker for MSI CRC. RIPMSI is the
first mutation that might improve disease prognostication for MSI tumors. More work is
required to confirm that the RIPMSI mutation is a predictive biomarker of the response to
chemotherapy. Nonetheless, its detection may allow classifying more precisely patients at
high risk to optimize their management (e.g., more intense chemotherapy protocols or early
treatment with immune checkpoint inhibitors). Conversely, in early-stage CRC, the RIPMSI

mutation might contribute to the good prognostic value of MSI, probably by promoting
a better immune response [11]. During tumor progression, this beneficial effect is lost
when tumors escape the immune surveillance. The association of the RIPMSI mutation
with poor prognosis in advanced cases might reflect its dominant positive activity on
cell proliferation.

5. Conclusions

In conclusion, we identified the NRIP1 gene both as a MSI amplifier and as a mutation
target in MSI CRC. The RIPMSI variant, which acts in a dominant-negative manner, appears
to be a key event in MSI-driven tumorigenesis and might be a major determinant of
prognosis and treatment response in MSI CRC.
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