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Dual Quaternion-Based Visual Servoing
for Grasping Moving Objects

Cristiana de Farias1,†, Maxime Adjigble1, Brahim Tamadazte2, Rustam Stolkin1, Naresh Marturi1

Abstract— This paper presents a new dual quaternion-based
formulation for pose-based visual servoing. Extending our
previous work on local contact moment (LoCoMo) based
grasp planning, we demonstrate grasping of arbitrarily moving
objects in 3D space. Instead of using the conventional axis-angle
parameterization, dual quaternions allow designing the visual
servoing task in a more compact manner and provide robustness
to manipulator singularities. Given an object point cloud,
LoCoMo generates a ranked list of grasp and pre-grasp poses,
which are used as desired poses for visual servoing. Whenever
the object moves (tracked by visual marker tracking), the
desired pose updates automatically. For this, capitalising on the
dual quaternion spatial distance error, we propose a dynamic
grasp re-ranking metric to select the best feasible grasp for
the moving object. This allows the robot to readily track and
grasp arbitrarily moving objects. In addition, we also explore
the robot null-space with our controller to avoid joint limits
so as to achieve smooth trajectories while following moving
objects. We evaluate the performance of the proposed visual
servoing by conducting simulation experiments of grasping
various objects using a 7-axis robot fitted with a 2-finger
gripper. Obtained results demonstrate the efficiency of our
proposed visual servoing.

I. INTRODUCTION

Currently, many industries are increasingly using robotic
manipulators on their production lines to perform pick and
place of objects, e.g. bin picking, box packaging, etc. Over
the years, grasping and manipulation of static objects has
been well-explored, and a plethora of methodologies are
presented in the literature [?], [?], [?], [1]. With the recent
advancements in computing for industrial automation, few
industries have adopted to use vision systems to localize,
track and grasp planar-moving objects, e.g., from a moving
conveyor. However, most of these systems still rely on
vacuum suction and assume constant moving speed where
uncertainties in perception (e.g., error in predicted object
pose due to varied speed) or inaccurate robot modeling may
lead to pick-up failures. Nevertheless, handling arbitrarily
moving objects in a 3D space is an open challenge to
solve mainly due to the difficulties associated with planning
arm plus hand motions while simultaneously tracking the
object trajectory. The methodologies designed to grasp static
objects are not feasible and robots need to be integrated with
controllers bearing superior decision-making abilities to cope
with uncertainties in perceived exteroceptive information.
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Fig. 1. Grasping arbitrarily moving objects in 3D space using the
proposed dual quaternion based visual servoing. Arrow represents grasp re-
ranking between two poses marked with circled numbers. (inset) Screenshots
showing grasp candidates generated by LoCoMo at these two poses. Green
gripper represents pre-grasp and red gripper is the grasp.

In this context, we present a singularity-robust dual
quaternion-based visual servoing integrated with an efficient
grasping algorithm to grasp arbitrarily moving objects in the
robot’s task space as shown in Fig. 1. A variety of visual
servoing methods have emerged in the literature, which are
broadly classified into image-based (IBVS), position-based
(PBVS) and hybrid approaches [?]. In this work, we are
particularly interested in PBVS where the object’s relative
position, estimated using perceived vision information, is
used to control the manipulator’s movements. Multiple meth-
ods are available in the computer vision literature to estimate
the full six Degrees of Freedom (DoF) pose (3 rotations and
3 translations) of an object in 3D space [?]. This is a vital
step in any PBVS where the estimated object pose is used to
regulate the error between current and desire positions of the
robot’s end-effector. Consequently, any grasp planned on the
object can be robustly updated or re-planned to the dynamic
movements and perturbations.

Most of the existing state-of-the-art in grasping are one-
shot, i.e., they perceive once and plan grasps assuming the
object is stationary; the arm is then commanded to the grasp
pose without using any feedback [?]. However, they often
fail in case of unplanned object movements or when there
are uncertainties in the estimated hand to object relative
poses. Few works have considered visual feedback to correct
hand poses while reaching to grasp [?], [?], [?], [?]. In [?],



Marturi et al. presented an approach to dynamically replan
to grasp a moving object based on the vision information
from two depth cameras, one hand mounted and the other
scene camera. In [?], Kim et al. proposed a prediction-based
programming by demonstration approach to catch objects
in flight. An IBVS technique integrated with shared control
grasping is presented in [?]. Although, most of these methods
have shown satisfactory performance in grasping moving
objects, their efficiency depends on the availability of inverse
kinematic solutions throughout the trajectory. In addition,
especially in the presence of redundant joints, manipulators
might get caught in singular configurations.

Camera placement also plays a significant role in grasping
moving objects. Two types of configurations are possible,
i.e., eye-in-hand where the camera is positioned on the robot
end-effector; and eye-to-hand, where the camera is placed
somewhere in the scene observing both robot end-effector
and task object. For dynamic grasping tasks, the latter is
often preferred as it does not suffer “blind spots” while
visual tracking and is more biologically inspired. However,
it still requires simultaneous tracking and pose estimation of
both hand and object, which makes it challenging to use due
to the lack of robust online tracking methodologies. As the
main focus of this work is to design a new visual servoing
controller, object pose estimation and visual tracking are not
in its scope. For the sake of tracking object movements, we
have used the conventional fiducial markers.

We use dual quaternions as our main basis for the visual
servoing in this paper. Similar to homogeneous transforma-
tion matrices or angle-axis representations, dual quaternion
can be used to represent full 6 DoF. Moreover, unit dual
quaternions are singularity-free and have the benefit of
being more compact and less computationally demanding
than traditional representations, which makes them more
suitable for visual servoing tasks. More specifically, they
have proven to be an efficient and useful representation for
many topics related to vision, such as hand-eye calibration
[?], simultaneous mapping and localisation [?] and pose
estimation and tracking [?], [?], [?]. Despite the increased
interest on using dual quaternion for both robotic control
and vision applications, literature which combines both is
still scarce. No known instances of using dual quaternion
for visual servoing are reported in the literature until very
recently a method has been presented by Saltus et al. in [?].
There, the authors presented a PBVS schema to regulate
the camera velocity with pose tracking achieved using an
Extended Kalman filter.

In this paper, we take a different approach for the design
of a dual quaternion-based visual controller by explicitly
integrating grasping into our visual servoing framework.
With this aim, we explore our previous local contact moment
(LoCoMo)-based unknown object grasping [?] to grasp arbi-
trarily moving objects in a 3D space. Firstly, LoCoMo will
generate a ranked list of stable grasp poses on the perceived
point cloud data of the scene object. Combining this with
dual quaternion-based visual servoing, we will demonstrate
the task of tracking and grasping arbitrarily moving objects.

Capitalising on the dual quaternion spatial distance error
between current end-effector pose and LoCoMo-provided
pre-grasp pose, we built a dynamic grasp re-ranking metric to
select the best feasible grasp for a moving object. In other
words, the proposed visual servoing framework simultane-
ously analyses the quality of multiple grasp configurations
and their distance to the gripper. Such analysis is performed
in real-time, which allows the robot to switch between
grasps as the object moves. Finally, as the robot dynamically
tracks the object and switches among feasible grasps, it may
encounter undesired configurations, such as singularities and
joint limits. Therefore, the developed dual quaternion-based
control strategy (while ensuring a singularity free represen-
tation) explores the robot null-space to provide a smooth
motion avoiding joint limits. Overall, the main contributions
of this paper are summarised as follows:
• A dual quaternion-based PBVS scheme described on the

manipulator’s joint space, which is robust to singular-
ities. This ensures smooth motion for the manipulator
while tracking moving objects.

• We extend our previous work on stationary unknown
object grasping based on local contact moments to
grasp arbitrarily moving objects. For this purpose, we
designed a new ranking metric based on dual quaternion
error and vantage-point tree (vp-tree) to dynamically se-
lect the best feasible grasp during tracking trajectories.

In the remainder of this paper, in Section II, we introduce
the problem tackled in this paper and present the developed
method pipeline. Section III presents the technical details of
the developed method. Thereafter, in Section IV, we discuss
the simulation experiments conducted using a 7-DoF robot
fitted with a parallel-jaw gripper.

II. PROBLEM DESCRIPTION

A. Problem Statement

In general, PBVS problems aim at regulating the pose of
a system based on visual information. Traditionally, these
servoing systems are described using the axis-angle notation
for rotations and have position and orientation decoupled. In
this work, we tackle the problem of developing an efficient
and generic robotic visual servoing strategy by designing a
joint space visual regulator based on dual quaternion algebra.

Following dual quaternion notations, let us assume that
the current pose is x and the desired pose is xd, the visual
servoing problem is defined as

arg min [e(x,xd)] (1)

where, e is the dual quaternion error function for the pose.
Hence, our problem becomes finding a control strategy which
controls the manipulator velocities to minimise e. Given
the perceived point cloud of an object, LoCoMo provides
feasible grasp (xg) and pre-grasp (xpg) poses. These are
then used as visual servoing reference poses xd = xpg|xg .
More details are presented in the next section. The desired
poses are automatically updated with a change in the object
pose that is obtained via visual tracking. Throughout this
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Fig. 2. Control flow of the proposed method to grasp moving objects. It consists of five stages, which are marked with circled numbers. Using point
cloud captured by a scene-mounted depth camera, LoCoMo grasp planner provides initial best grasp candidates of the object. Simultaneously, object pose
is estimated by tracking fiducial markers placed on the object. Whenever the object moves, the desired pose for visual servoing, i.e., the pre-grasp pose
computed by the grasp planner, is updated via re-ranking. Once the visual servoing converged and the object is grasped, the grasp stability is tested.

process, by using visual servoing instead of conventional path
planning, we are able to accomplish moving object grasping.

B. Method Overview

Fig. 2 depicts the pipeline of our dual quaternion-based
visual servoing to grasp arbitrarily moving objects. It consists
of five different stages (numbers inside circles in figure):
1 Visual tracking from fiducial markers, 2 grasp planning
from LoCoMo [?], 3 velocity regulator and robot joint space
visual servo control, 4 joint limit avoidance as a secondary
task projected at the robot null-space and 5 grasping and
testing. The process starts with 1 , where we capture the
object point cloud and an image to estimate initial object
pose. It is worth noting that we use a scene mounted and
hand-eye calibrated RGB-D camera for this purpose. As
mentioned earlier, we compute the pose by detecting the
fiducial markers that are placed on the object’s surface [?].
Alternatively, any other visual object pose tracker can be
used. At each subsequent step, the object pose is updated and
is passed to the grasp planning module. In 2 , for the first
iteration, a list of best grasping and pre-grasping poses are
generated by our LoCoMo grasp planner on the object point
cloud. Pre-grasping poses are selected as the poses with a
fixed offset on the approach axis, as shown in Fig. 1. For the
subsequent iterations, as the object moves, the best grasping
pose may change due to kinematic constraints of the robot.
Therefore, given the current manipulator configuration, at
each step, the grasping poses are dynamically re-ranked and
the best pre-grasping pose is used by visual servoing as
the desired pose xd to reach. Once the robot is at pre-
grasping pose, the grasping pose is used as desired pose
such that the robot can proceed to grasp the object. This

two-point reach reduces the chance of collision between the
end-effector and the object on its approach. In 3 , we have
the main controller that minimises the dual quaternion error
as in (1). The error here is defined as the dual quaternion
spatial distance between the end-effector’s current pose and
the desired pose from previous step. Additionally, to avoid
joint limits, we add a secondary task projected to the robot’s
null space. This is depicted by 4 in Fig. 2. Finally, in 5 , we
execute the grasp and test its stability by performing a series
of tests as described in [?]. All the technical details regarding
our dual quaternion visual controller, grasp generation by
LoCoMo and our re-ranking schema are described in the
next sections.

III. METHODOLOGY

This section provides compact formulations of our PBVS
schema using dual quaternion algebra instead of the tradi-
tional axis-angle notation [?].

A. Mathematical Preliminaries

Quaternions are an extension of imaginary numbers, usu-
ally used to define three-dimensional rotations. First, let us
consider ı̂, ̂, k̂ be the three quaternion unit vectors such that
ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1. The algebra of quaternions [?] is
generated by the basis elements 1, ı̂, ̂, and k̂, yielding the
non-commutative set

H ,
{
η + µ : µ=µ1 ı̂+ µ2̂+ µ3k̂, η, µ1, µ2, µ3∈R

}
(2)

where, for any quaternion x ∈ H, η and µ are respectively
the real and imaginary (or vector) parts. The quaternion
conjugate is then defined as x∗ , η − µ, which in turn



allows to define the quaternion norm as ‖x‖2 = xx∗.
Particularly, we define the subset of unit norm quaternions
under multiplication, S3 , {x ∈ H : ‖x‖ = 1} to represent
spatial rotations, and the pure quaternions subset H0 ,
{x0 : η + µ ∈ H , η = 0}, to represent spatial translations.
Those two subsets have important properties in representing
rigid body motions. The vector isomorphism under H0 allows
for operations such as inner and vector products and the
group multiplication of unit quaternions. This guarantees
that, for any x1,x2 ∈ S3, the quaternions multiplication
x3 = x1x2 ∈ S3. Besides, a unit quaternion with rotation φ
around the axis n ∈ H0, can be given by

x = cos(
φ

2
) + nsin(

φ

2
). (3)

Let x1,x2 ∈ H0, the quaternion inner and vector products
are

〈x1,x2〉 , −x1x2 + x2x1

2

x1 × x2 ,
x1x2 − x2x1

2
(4)

A further extension of imaginary numbers is the dual
quaternion, which is introduced as non-minimal, non-
commutative, singularity-free description of rigid body mo-
tions [?]. Dual quaternions are defined as the set

H⊗ D , {x = xP + εxD | xP ,xD∈H} (5)

where, ε is called dual unit with ε2 = 0, ε 6= 0, and xP and
xD are the primary and dual parts of the dual quaternion x,
respectively. Furthermore, analogous to quaternions, the dual
quaternion conjugate is x∗ , x∗P +εx∗D and subsequently, its
norm is ‖x‖2 = xx∗. Next, the unit dual quaternion subset
under multiplication, S , {x ∈ H⊗ D : ‖x‖ = 1}, forms
the Lie group Spin(3) nR3 that double covers SE(3). The
group inverse of x ∈ S is x∗. Finally, we define the pure dual
quaternion as H0 ⊗ D , {x0 = xP + εxD | xP ,xD∈H0}
such that for x0 ∈ H0 ⊗ D, x∗0 = −x0.

Let us consider xt ∈ H0 and xr ∈ S3 being an arbitrary
translation and rotation of a rigid body. The full rigid body
displacement can then be described as follows

x = xr + ε
1

2
xtxr, (6)

and the kinematic equation for the body twist will be

ẋ =
1

2
x ωB , (7)

where, ωB ∈ H0 ⊗ D is the body twist and ẋ is the time
derivative of x. When dealing with rigid body motions, it
is important to efficiently describe transformations between
different frames. Let IxB ∈ S be the transformation
between the inertial frame FI and the moving body frame
FB . Then inertial twist is given by,

ωI = IxBω
BIx∗B (8)

The adjoint transformation is given by

Ad(x)y , xyx∗, (9)

with x ∈ S and y ∈ H0⊗D. Using (9), the inertial twist can
be re-written as ωI = Ad(IxB)ωB , or in (7), as ẋ = 1

2 ω
Ix.

Additionally, the logarithm operation involved within unit
dual quaternion is

log(x) =
φn

2
+ ε

p

2
, (10)

where, p represents translation. Finally, we define an operator
for one-by-one mapping vec6 : H0⊗D→ R6 and its inverse
operation vec6 : R6 → H0 ⊗ D.

B. Controller Design

Now, we show how dual quaternions are used to express
the visual servoing controller. Let us consider xc to be the
current pose of the end-effector, obtained from the robot’s
forward kinematic model. Following (1), the error e to be
regulated is given by

e = (xc)
∗
xd. (11)

where, xd is the reference pose. Selection of the reference
pose is explained in the next section. It is worth noting that
all operations are performed with respect to the robot base
coordinate frame. For this purpose, the visually estimated
poses (grasps) are transformed to the base frame using
camera-robot calibration. For more details, we refer the
readers to [?].

In order to minimise the error and ensure convergence,
we define a logarithmic controller that leads to a closed loop
system, such as ė = − 1

2 log ((e)) e. The stability of such a
system is discussed in [?]. Thereby, using (7),

ẋc =
1

2
xc ω

B
c (12)

in which ωB
c is the current end-effector twist. Hence, from

(11), the error’s first order time derivative is ė = (ẋc)
∗
xd.

Now, substituting for ẋc using (12), we get

ė =

(
1

2
xc ω

B
c

)∗
xd = −1

2
ωB

c x
∗
cxd = −1

2
ωB

c e (13)

Finally, given the desired closed loop dynamics, the current
twist in the end-effector body frame can be defined as

−1

2
log ((e)) e = −1

2
ωB

c e

ωB
c = log(e)

(14)

To perform visual servoing with a robotic manipulator we
need to apply the control input in (14) to the robot joint
space. With our design, we choose to control the robot’s
global pose; thus, we work with the input twist in the robot
base frame, i.e., using (9), ωI

c = Ad(xc)ω
B
c . In Fig. 2,

this operation is represented by the ”frame transformation
block” in stage 3 . For the sake of simplicity, from now
on, inertial twist will be simply denoted as ω and unless
stated, all variables are in the robot base frame. Considering
J ∈ R6×NDoF the dual quaternion-based geometric Jacobian,



which maps the coupled dual quaternion twist to the robot
joint space as in [?], the joint space controller is defined as

qk+1 = qk +KJ† vec6 (ω)

qk+1 = qk +KJ† vec6 (Ad (xc) log(e))
(15)

where, qk+1 and qk are the commanded and the current joint
configurations, respectively, K is the proportional gain, and
J† is the Jacobian damped pseudo-inverse computed as J† =

JT
(
JJT + λI6

)−1
, with λ being a small scalar gain. Note

that if the robot is not redundant, J−1 is sufficient.
Since we consider a redundant robot in this work, we

explore manipulator’s null-space to avoid joint limits. For
this purpose, we define a secondary task joint-space mapping
as Js = q−q̄, with q̄ being the mean position for each joint.
The secondary task cost to be minimized can be defined as
Cnull = 1

2

∑
(q − q̄)

2. Using the Jacobian J , we define a
null-space projector as P =

(
I7 − J†J

)
. Now, (15) with

the added null-space term becomes

qk+1 = qk +KJ† vec6 (ω) +KsPJ
−1
s Cnull, (16)

with Ks being the secondary task gain such that Ks < 0.
Note that the secondary task will not have any effect on the
primary visual servoing task.

C. Grasp Planning and Re-ranking

Moving object grasping is performed by combining a
grasp generator with the proposed visual servoing control
scheme. As mentioned earlier, we have used LoCoMo-based
grasp planner [?] to synthesise grasps on a task object.
The advantage of using the LoCoMo grasp planner is two-
fold. Firstly, the method neither requires any object 3D
models nor offline training, making it easy to integrate with
our visual servoing. Secondly, the grasp ranking scheme
can be extended to provide dynamic grasp selection [?],
which is ideal for moving object grasping. Given an object
point cloud, an initial set of grasp and pre-grasp poses
are generated using the LoCoMo grasp planner. The top-
ranked grasp is selected and the visual servoing controller
is initialized using this pose as the reference xd. Grasp
computation and ranking is given by

Ci =
1

Ns

n∑
j=1

((2π)
n |Σ|)

1
2 N (Ψj ;~0,Σ)

R = γ

Nf∏
i=1

Cωi
i

(17)

where, Ci is the contact moment of each gripper finger
i, R is the ranking score, Ns is a normalizing term, n
is the number of point cloud patches sampled around the
current location of the finger, N (Ψj ;~0,Σ) is the multivariate
Gaussian density function centered at ~0 with co-variance Σ,
Ψj is the difference of zero-moment shift vectors between
object and gripper fingers surface, ωi and γ are weighting
factors, and Nf is the total number of fingers. More details
can be found in [?].

While the object is moving, we visually track its pose,
given by xo, with a scene mounted camera. This in turn

is used to update feasible grasp accordingly. To enable our
controller to be as efficient as possible for dynamic grasping,
a grasp re-ranking scheme is implemented. At each iteration,
we select the K feasible grasps to the current gripper position
using the dual quaternion distance. By feasible, we mean that
there is an inverse kinematics solution from the current robot
configuration. These set of grasps are then re-ranked and the
top ranked grasp is used for visual servoing.

Even though all the generated grasps could be used for
the re-ranking stage, using the K closest grasps allow to
devise a more efficient algorithm, especially for real-time
applications. We use a vantage-point tree (vp-tree) [?] for
searching the nearest grasps to the robot’s gripper. The vp-
tree provides a fast and efficient nearest neighbor algorithm
that can be used with any arbitrary metric space. For our
method, we use the norm of the dual quaternion spatial error
between two dual quaternions, e.g., for two poses x1,x2, this
is computed as xe = 1 − x∗1x2 (then mapped to R8 where
we take the Euclidean norm) in conjunction with the vp-tree
to find the closest grasps. Using the K closest grasps and
dual quaternion distances dqi of the grasp pose i from the
current gripper position, the grasp re-ranking Υ is defined as

Υ =
dqi

dqmax − dqmin
with dqmax 6= dqmin (18)

where, dqmin and dqmax are respectively the minimum and
maximum dual quaternion distances between grasps and
gripper pose among the K closest grasp candidates. Υ is
updated at each iteration and the highest ranked grasp is used
for the visual servoing controller. This technique, however,
can create chattering problem in the controller if the best
grasp changes too frequently due to noise. To account for
that we have set a hysteresis to the switching strategy, i.e.,
we only change the control reference pose if the new grasp
ranking has improved at least by a switching threshold δ [?].
This strategy allows to have a smooth and dynamic reach-
to-grasp trajectory by using the closest best grasp candidate
available.

IV. EXPERIMENTAL RESULTS

In this section we present the simulation experiments
conducted to validate the performance of our proposed dual
quaternion based visual servoing and its ability in grasping
arbitrarily moving objects.

A. Simulation Setup

All experiments are performed using the open source
Python wrapper for Bullet physics engine, Pybullet, which
has been proved to be an efficient and stable simulation tool
for robotics [?]. Our robotic setup consists of a 7-DoF robot
arm fitted with a parallel jaw gripper. For experiments we
have selected three different objects from the YCB object
dataset [?] that are both suitable with our gripper and allow
for marker placement on their surfaces. In order to make the
visual servoing system more realistic, we have also simulated
a virtual rgb-d camera for both pose tracking and point cloud
acquisition. Initially, we move the camera to three different



Fig. 3. Plots describing the convergence of the proposed method. Top
row shows the (a) translation and (b) rotation errors convergence when
approaching the desired grasp configuration with respect to a stationary
object. In the second row, we show the robot tracking an object moving in
a circular trajectory with the grasp re-ranking disabled; (c) and (d) shows
respectively position and orientation errors between the end-effector and
desired pre-grasp pose. In the last row, we show (e) the position and (f)
orientation errors with the proposed method when the grasp re-ranking is
enabled. The displayed trajectory contains three grasp switches, i.e., re-
ranking module adjusted the feasible grasp pose three times.

locations around the object and stitch the clouds captured
at these locations to obtain a task point cloud for LoCoMo.
Besides, for the sake of visual object pose tracking, we have
used ArUco fiducial marker tracking [?] with markers placed
on each object. Object CAD models downloaded from the
YCB dataset with altered textures to include the makers have
been used for the simulation. We report the results following
the evaluation protocol presented in [?]. That is, we simulate
different trajectories for each object to move and attempt to
dynamically grasp them. Once grasped, we perform various
tests as in [?] to evaluate grasp stability.

B. Controller Convergence Analysis

With this set of experiments, performed using “wood-
block” object (YCB ID: 45), we test the convergence of our
visual servoing in case of both static and moving objects.
The plots shown in Fig. 3(a) and 3(b) respectively depict
the translational and rotational evolution of our method for a
stationary object. These results clearly show smooth conver-
gence. Next tests are done to validate and demonstrate the
convergence while following moving objects. Here, we test
the behaviour in case of both grasp re-ranking enabled and
disabled. When the re-ranking is disabled, the system might
run close to singularities and joint limits, and we analyse
the performance of our controller in such harsh conditions.

Plots in Fig. 3(c) and 3(d) show how our velocity regulator
given by (16) can simultaneously follow same grasp without
re-ranking. Comprehensively, it performed well where robot
closely followed the trajectory. Plots in Fig. 3(e) and 3(f)
show the behaviour when re-ranking given by (18) is enabled.
Particularly, we show the desired configuration switching to
three different grasps, with the last one remaining stable until
the moment of grasping (at the end of plot). These results
clearly demonstrate the efficiency of our controller. In case
of grasp switching, the controller successfully stabilised mid-
trajectories and continued tracking the object. Particularly,
we note that the orientation error in both Fig. 3(d) and
Fig. 3(f) remain low. That is one of the advantages of
using the dual quaternion representation, which has coupled
rotation and translation. Overall, the quick stabilisation to
perturbations and robustness to singularities and joint limits
make our dual quaternion-based visual servoing well suited
for the problem of grasping moving objects.

C. Grasping Arbitrarily Moving Objects

The second set of experiments are conducted to evaluate
the performance of our method in grasping arbitrarily moving
objects. For this, we have identified 5 different trajectories
for the object to move: (i) horizontal line from left side of the
table to the right; (ii) vertical line, i.e., object moving away
from the robot; (iii) diagonal line, from left bottom to right
upper corner; (iv) ellipsoid with radius (15, 8) cm; (v) sine
wave with an amplitude and frequency of 15 cm and 0.02 Hz,
respectively. For each trajectory, we do two different tests:
(i) we move the object in the space without any rotations;
and (ii) we move the object with added arbitrary rotations.

Our visual servoing is initialised when the LoCoMo pro-
vides initial best grasp and pre-grasp poses. By using the
pre-grasp pose as a reference pose, the robot starts moving
towards it. This is when the object is moved in one of the
five aforementioned trajectories. While the object moves, we
constantly monitor the error between the desired pre-grasp
configuration and the current end-effector pose. Once the
sum of the squared error reaches a threshold, we update the
desired pose to the best grasp pose. When the controller
converges, the robot will execute the grasp with a force of
50 N. As mentioned, this two-point approach reduces the
chances that the robot collides with objects. Once grasped,
the object movement is stopped, and the grasp is evaluated
for stability. For this, we conduct the stability tests defined in
[?]. They are: (i) lifting test, in which we lift the object 20 cm
above the table at the speed of 10 cm/s; (ii) rotation test,
where we move the manipulator to be in 90−90 configuration
[?] and rotate the object from 90◦ to −90◦ with a speed of
45 deg/s; and finally, (iii) shake test, where we shake the
object in a sinusoidal pattern with an amplitude of 0.25 m
and a peak acceleration of 10 m/s2. These three tests are
performed sequentially as in the order mentioned, and if the
object slips from the gripper at any point, they are deemed
failure and the next test is not performed.

Fig. ?? shows some screenshots of grasping moving ob-
jects using our method. Obtained results for all three objects,



Fig. 4. Screenshots depicting the robotic grasping of moving objects. The first three columns show various positions during the trajectory and the fourth
column images show object being grasped and the final column images show a grasp stability test.

i.e., woodblock (YCB id: 45), mustard bottle (YCB id: 9),
and scrub cleanser (YCB id: 20), are summarised in the
Tables ??, ?? and ??, respectively. We report the number of
times the controller has switched the grasping configuration
(re-ranking), the time from the start of the control loop until
grasping, and the grasp success evaluation. Furthermore, we
present the results with and without the null space control
activated as well as the results with and without grasp re-
ranking enabled.

Undoubtedly, the full method with null space control
activated and re-ranking enabled, outperformed the oth-
ers. On average, for all three objects respectively, the
full method achieved [80%,80%,70%] success while the
method without null space achieved [60%, 60%, 40%] suc-
cess and the method without re-ranking enabled achieved
[50%, 30%, 30%] success. With full method, for the first two
objects we got 100% success rate following and grasping the
objects. We note that, due to joint constraints, the controller
without the null space did not converge to grasp the object.
We also note that the number of switches is higher without
the null space. That is because when the null space control
is deactivated, the re-ranking compensates unfeasible con-
figurations. Out of all cases, the method without re-ranking
showcased poor performance. We believe that this is due to
the lack of inverse kinematics during trajectories. Overall,
the obtained results clearly demonstrate the efficiency of our
dual quaternion-based visual servoing in grasping arbitrarily
moving objects in a 3D space.

V. CONCLUSION

In this paper, we have presented a method for grasping
moving objects by formulating a visual servoing controller
based on dual quaternion algebra. For the problem of grasp-

ing we have incorporated a novel re-ranking strategy to the
LoCoMo grasp planner, so that grasp candidates automati-
cally update whenever the object moves. The dual quaternion
proves to be advantageous when performing visual servoing
for grasping. The coupled rotation and translation allow the
manipulator to quickly converge to a desired grasp pose
even in the presence of perturbations. Through simulation
experiments, we have demonstrated that in combination with
joint limit avoidance and dynamic re-ranking, our method
demonstrates high success rate in grasping moving objects.
In future works we plan on improving the control strategy
with optimisation techniques. Furthermore, we also plan on
extending this work by performing real robot experiments
and integrating the object tracking with dual quaternions.

REFERENCES

[1] A. Bicchi and V. Kumar, “Robotic grasping and contact: a review,” in
IEEE Int. Conf. on Rob. and Auto., vol. 1, 2000, pp. 348–353.

[2] A. Sahbani, S. El-Khoury, and P. Bidaud, “An overview of 3d object
grasp synthesis algorithms,” Rob. Auton. Syst., vol. 60, no. 3, pp. 326–
336, 2012.

[3] J. Bohg et al., “Data-driven grasp synthesis—a survey,” IEEE Trans.
on Rob., vol. 30, no. 2, pp. 289–309, 2013.

[4] C. de Farias et al., “Simultaneous tactile exploration and grasp
refinement for unknown objects,” IEEE Rob. and Auto. Lett., vol. 6,
no. 2, pp. 3349–3356, 2021.

[5] F. Chaumette and S. Hutchinson, “Visual servo control. i. basic
approaches,” IEEE Robot. Autom. Mag, vol. 13, no. 4, pp. 82–90,
2006.

[6] E. Marchand, H. Uchiyama, and F. Spindler, “Pose estimation for
augmented reality: a hands-on survey,” IEEE Trans. Vis. Comput.
Graphics, vol. 22, no. 12, pp. 2633–2651, 2015.

[7] N. Marturi et al., “Dynamic grasp and trajectory planning for moving
objects,” Autonomous Robots, vol. 43, no. 5, pp. 1241–1256, 2019.

[8] M. Gridseth, K. Hertkorn, and M. Jagersand, “On visual servoing to
improve performance of robotic grasping,” in Conf. on Comp. and
Rob. Vis. 2015, pp. 245–252.



TABLE I
DYNAMIC GRASPING RESULTS WITH THE “WOODBLOCK” OBJECT FOR VARIOUS TESTING TRAJECTORIES AND FOR VARIOUS TEST CASES.

Trajectory Full Method Without NullSpace Without Re-rank

Switch1 Time2 Lift3 Rot.3 Shake3 Switch1 Time2 Lift 3 Rot.3 Shake3 Switch1 Time2 Lift3 Rot.3 Shake
3

H. Line 1 28.81 100 100 100 0 11.07 100 100 100 NA 26.54 100 100 100
H. Line +
Rot. 1 32.63 100 100 100 3 - - - - NA 30.42 100 100 100

V. Line 2 19.85 100 0 0 1 72.42 0 0 0 NA 10.93 0 0 0
V. Line + Rot. 1 19.313 100 100 100 1 29.71 0 0 0 NA - - - -
Diag. 1 19.63 100 100 100 3 17.15 100 100 100 NA - - - -
Diag. + Rot. 1 22.28 100 100 100 0 20.82 100 100 100 NA 29.4 100 100 100
Circle 0 88.29 100 100 100 0 11.32 100 100 100 NA 81.11 100 100 100
Circle + Rot. 3 91.32 100 100 100 4 97.1 0 0 0 NA 79.27 100 100 100
Wave 2 52.929 100 0 0 9 161.77 100 100 100 NA - - - -
Wave + Rot. 4 77.35 100 100 100 7 134.11 100 100 100 NA - - - -

1 Number of times the re-ranking switched the reference pose.
2 Time in seconds from the start pose until the object is grasped.
3 Percentage of success (%) of lifting, Rotational and Shaking tests.

TABLE II
DYNAMIC GRASPING RESULTS WITH THE “SCRUB CLEANSER ” OBJECT FOR VARIOUS TESTING TRAJECTORIES AND FOR VARIOUS TEST CASES.

Trajectory Full Method Without NullSpace Without Re-rank
Switch Time Lift Rot. Shake Switch Time Lift Rot. Shake Switch Time Lift Rot. Shake

H. Line 2 30.85 100 100 100 3 48.15 100 100 100 NA 48.8 100 100 100
H. Line +
Rot. 2 39.92 100 100 100 3 38.39 100 100 100 NA - - - -

V. Line 2 43.66 100 0 0 2 49.87 0 0 0 NA - - - -
V. Line + Rot. 2 37.76 100 100 0 2 31,08 100 100 0 NA - - - -
Diag. 4 110.26 100 100 100 3 39.55 100 100 100 NA - - - -
Diag. + Rot. 2 31.45 100 100 100 2 50.41 100 100 100 NA - 100 - -
Circle 3 76.81 100 100 100 0 62.44 0 0 0 NA 81.11 100 100 100
Circle + Rot. 5 88.07 100 100 100 4 214.04 100 0 0 NA 82.438 100 100 100
Wave 0 82.438 100 100 100 2 46.29 100 100 100 NA 41.29 100 100 100
Wave + Rot. 2 35.73 100 100 100 2 56.1 100 100 100 NA 156.32 0 0 0

TABLE III
DYNAMIC GRASPING RESULTS WITH THE “MUSTARD BOTTLE” OBJECT FOR VARIOUS TESTING TRAJECTORIES AND FOR VARIOUS TEST CASES.

Trajectory Full Method Without NullSpace Without Re-rank
Switch Time Lift Rot. Shake Switch Time Lift Rot. Shake Switch Time Lift Rot. Shake

H. Line 0 26.681 100 0 0 2 59.09 100 100 100 NA 49.9 100 100 0
H. Line +
Rot. 0 40.94 100 100 100 3 38.39 100 100 100 NA 37.88 100 100 0

V. Line - - - - - - - - - - NA 52.32 0 0 0
V. Line + Rot. 2 91.75 100 100 100 2 97.56 100 100 100 NA 65.49 100 100 100
Diag. 2 45.31 100 100 100 5 83.55 100 0 0 NA - - - -
Diag. + Rot. 1 45.31 100 100 100 1 32.90 100 0 0 NA - - - -
Circle 5 88.07 100 100 100 7 197.1 0 0 0 NA 145.87 100 100 100
Circle + Rot. 3 179.42 100 100 100 3 66.4 100 100 100 NA - - - -
Wave 1 29.83 100 100 0 1 47.8 0 0 0 NA 48.09 100 100 0
Wave + Rot. 3 45.69 100 100 100 3 0 0 0 0 NA 48.57 100 100 100

[9] F. Husain et al., “Realtime tracking and grasping of a moving object
from range video,” in IEEE Int. Conf. Robot. Autom. 2014, pp. 2617–
2622.

[10] S. Kim, A. Shukla, and A. Billard, “Catching objects in flight,” IEEE
Trans. on Rob., vol. 30, no. 5, pp. 1049–1065, 2014.

[11] K. Daniilidis, “Hand-eye calibration using dual quaternions,” The Int.
J. Rob. Res, vol. 18, no. 3, pp. 286–298, 1999.

[12] K. Li et al., “Simultaneous localization and mapping using a novel
dual quaternion particle filter,” in Int. Conf. on Info. Fus., 2018, pp.
1668–1675.

[13] R. Saltus et al., “Dual quaternion visual servo control,” in IEEE Conf.
Dec. Cont., 2020, pp. 5956–5961.

[14] Yuanxin Wu et al., “Strapdown inertial navigation system algorithms
based on dual quaternions,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 41, no. 1, pp. 110–132, 2005.

[15] B. Busam, T. Birdal, and N. Navab, “Camera pose filtering with local
regression geodesics on the riemannian manifold of dual quaternions,”
in IEEE Int. Conf. Comp. Vis. Workshops, 2017, pp. 2436–2445.

[16] M. Adjigble et al., “Model-free and learning-free grasping by local
contact moment matching,” in IEEE/RSJ Int. Conf. on Intel. Rob. and
Sys., 2018, pp. 2933–2940.

[17] S. Garrido-Jurado et al., “Automatic generation and detection of

highly reliable fiducial markers under occlusion,” Pattern Recognition,
vol. 47, no. 6, pp. 2280–2292, 2014.

[18] Y. Bekiroglu et al., “Benchmarking protocol for grasp planning
algorithms,” IEEE Rob. Auto. Lett., vol. 5, no. 2, pp. 315–322, 2020.

[19] W. R. Hamilton, Elements of quaternions. Longmans, Green, &
Company, 1866.

[20] J. M. Selig, Geometric fundamentals of robotics. Springer Science
& Business Media, 2004.

[21] F. Chaumette, “Visual servoing,” in Robot Manipulators: Modeling,
Performance Analysis and Control, E. Dombre and W. Khalil, Eds.
ISTE, 2007, ch. 6, pp. 279–336.

[22] D. Han, Q. Wei, and Z. Li, “A dual-quaternion method for control of
spatial rigid body,” in IEEE Int. Conf. on Net., Sens. and Cont., 2008,
pp. 1–6.

[23] L. F. Cruz Figueredo, B. Vilhena Adorno, and J. Yoshiyuki Ishihara,
“Robust H-infinity kinematic control of manipulator robots using dual
quaternion algebra,” arXiv e-prints, p. arXiv:1811.05436, 2018.

[24] M. Adjigble et al., “An assisted telemanipulation approach: combining
autonomous grasp planning with haptic cues,” in IEEE/RSJ Int. Conf.
Intel. Rob. Sys., 2019, pp. 3164–3171.

[25] P. N. Yianilos, “Data structures and algorithms for nearest neighbor



search in general metric spaces,” in ACM-SIAM Symp. on Discrete
algorithms, 1993, pp. 311–321.

[26] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

[27] B. Calli et al., “The ycb object and model set: Towards common
benchmarks for manipulation research,” in Int. Conf. Adv. Robot.,
2015, pp. 510–517.


