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HOMOLOGICAL SPLITTING RESULTS FOR MODULES OVER LEIBNIZ ALGEBRAS

GEOFFREY POWELL

Abstract. A unified splitting result for Ext calculated in the category of modules over a Leibniz algebra is
given for the case where coefficients are either both symmetric modules or both antisymmetric modules. This

is a generalization of results of Loday and Pirashvili and others.

1. Introduction

Leibniz algebras are ‘non-commutative algebra’ generalizations of Lie algebras. Given a Leibniz algebra
g, there is a universal surjection g � gLie to a Lie algebra; the homological relationship between the category
ModLeib

g of g-modules and the category ModLie
gLie

of right gLie-modules is of significant interest, even when g = gLie,
as in Loday and Pirashvili’s work [LP96].

There are two natural ways in which a right gLie-module N can be considered as a g-module, either by
forming the associated symmetric g-module N s or the antisymmetric module Na. These are of fundamental
importance in studying g-modules: as observed by Loday and Pirashvili [LP93], they allow the dévissage of the
category of g-modules. Explicitly, a g-module M fits into a natural short exact sequence

0→M0 →M →M/M0 → 0

where M0 is antisymmetric and M/M0 is symmetric.
The functor (−)s has a left adjoint sym and a right adjoint (−)sym; likewise, (−)a has a left adjoint asym

and a right adjoint (−)asym. Their derived functors are important; for instance, the left derived functors
L∗sym yield Leibniz homology HL∗(g;−) and the right derived functors R∗(−)asym are isomorphic to Leibniz
cohomology HL∗(g;−), by the main result of [LP93].

Loday and Pirashvili [LP96] initiated the study of the relationship between (co)homological algebra with
antisymmetric coefficients and with symmetric coefficients. Feldvoss and Wagemann [FW21] used this to show
that, for g a Leibniz algebra andN a gLie-module, HL0(g;Na) ∼= N andHLn(g;Na) ∼= HLn−1(g; Homk(g↓, N)s)
for n > 0, where g↓ denotes g considered as a right gLie-module.

This paper generalizes techniques pioneered by Loday and Pirashvili, placing them in a unified setting. This
uses classes

[E g
l (N)] ∈ Ext1ModLeib

g
(N s, (N ⊗ g↓)a)

[E g
r (N)] ∈ Ext1ModLeib

g
(Homk(g↓, N)s, Na)

derived from [LP96], where N is a right gLie-module.
The main result is:

Theorem 1. (Theorem 8.2.) For g a Leibniz algebra and N1, N2 right gLie-modules,

(1) there is a natural isomorphism

Ext∗ModLeib
g

(N s
1, N

s
2) ∼= Ext∗ModLie

gLie

(N1, N2)⊕ Ext∗−1
ModLeib

g
((N1 ⊗ g↓)a, N s

2)

and the inclusion Ext∗−1
ModLeib

g
((N1⊗g↓)a, N s

2) ↪→ Ext∗ModLeib
g

(N s
1, N

s
2) is the Yoneda product with [E g

l (N1)];

(2) there is a natural isomorphism

Ext∗ModLeib
g

(Na
1 , N

a
2 ) ∼= Ext∗ModLie

gLie

(N1, N2)⊕ Ext∗−1
ModLeib

g
(Na

1 ,Homk(g↓, N2)s)

and the inclusion Ext∗−1
ModLeib

g
(Na

1 ,Homk(g↓, N2)s) ↪→ Ext∗ModLeib
g

(Na
1 , N

a
2 ) is the Yoneda product with

[E g
r (N2)].

Since Leibniz cohomologyHL∗(g;M) with coefficients in a g-moduleM is isomorphic to Ext∗ModLeib
g

((U(gLie)
a,M)

by [LP93], taking N1 = U(gLie) in the second isomorphism recovers the aforementioned isomorphism for Leibniz
cohomology.
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2 GEOFFREY POWELL

Theorem 1 has the following conceptual interpretation: the extension classes [E g
l (N)] and [E g

r (N)] induce
split distinguished triangles in the derived category of right gLie-modules:

N → Lsym(Ns)→ Lsym((N ⊗ g↓)a)[1]→
R(−)asym

(
Homk(g↓, N)s

)
[−1]→ R(−)asym(Na)→ N →,

using the isomorphisms Lsym(E g
l (N)) ∼= N and R(−)asym(E g

r (N)) ∼= N given by Propositions 7.4 and 7.6
respectively.

There is an analogous result for Tor, which is defined using the fact that the category ModLeib
g is equivalent

to the category of right UL(g)-modules, where UL(g) is the enveloping algebra constructed by Loday and
Pirashvili [LP93]. Hence one can consider − ⊗UL(g) − as a bifunctor on the product of the categories of right
and left UL(g)-modules, together with its derived functors.

The functor (−)s corresponds to restriction along the morphism of algebras d1 : UL(g)→ U(gLie) introduced
in [LP93]; likewise (−)a corresponds to restriction along d0 : UL(g) → U(gLie) (this material is reviewed in
Sections 2 and 3). The following statement corresponds to taking both coefficients to be symmetric:

Theorem 2. (Theorem 9.5.) For g a Leibniz algebra, M a right gLie-module and N a left gLie-module, there
is a natural isomorphism:

TorUL(g)∗ (Md1 , d1N) ∼= TorU(gLie)
∗ (M,N)⊕ Tor

UL(g)
∗−1 ((M ⊗ g↓)d0 , d1N)

where the morphism TorUL(g)∗ (Md1 , d1N)→ Tor
UL(g)
∗−1 ((M ⊗ g↓)d0 , d1N) is induced by cap product with the class

[E g
l (M)].

The associated result for antisymmetric coefficients is deduced from Theorem 2 by using the involution

χL : UL(g)op
∼=→ UL(g) exhibited by Kurdiani [Kur99]. This induces an equivalence of categories between right

UL(g)-modules and left UL(g)-modules that exchanges the rôles of d0 and d1.
The proofs of the main results rely upon explicit models for the derived functors Lsym and R(−)asym

together with Lasym and R(−)sym. These are obtained from the Leibniz complex equipped with an explicit
gLie-action going back to the foundational work of Loday and Pirashvili [LP93]; the Kurdiani involution is used
to transport these to resolutions in ‘left modules’.

1.1. Conventions and Notation.

(1) Throughout, k is taken to be a field; all tensor products ⊗ are formed over k.
(2) For M a k-vector space, 〈x|x ∈ I〉k ⊂M denotes the subspace generated by the set of elements I ⊂M .
(3) Homological conventions are used: [1] always denotes homological suspension (so that [−1] denotes

cohomological suspension).
(4) When considered as a complex, an object of an abelian category is placed in homological degree zero.
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2. Background

This Section reviews Leibniz algebras and their modules.

2.1. Leibniz algebras and their modules. Much of the following material can be found in [LP93] and in
[Fel19], to which the reader is referred for more detail. All Leibniz algebras considered here are right Leibniz
algebras.
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Definition 2.1. A Leibniz algebra over k is a k-vector space g equipped with a product g⊗g→ g, x⊗y 7→ xy,
that satisfies the Leibniz relation:

x(yz) = (xy)z − (xz)y.

A morphism of Leibniz algebras g1 → g2 is a morphism of k-vector spaces that is compatible with the respective
products. The category of Leibniz algebras is denoted AlgLeib.

A Lie algebra is a Leibniz algebra such that the product is antisymmetric; in particular, there is a fully-
faithful inclusion AlgLie ↪→ AlgLeib of the category of Lie algebras. This has left adjoint given by g 7→ gLie, where
gLie := g/〈x2|x ∈ g〉k. The image of y ∈ g under the canonical surjection of Leibniz algebras g � gLie is written
y.

Definition 2.2. [LP93] A module over a Leibniz algebra g is a k-vector space M equipped with left and right
actions g⊗M →M , M ⊗ g→M that satisfy the following relations, ∀x, y ∈ g, m ∈M :

m(xy) = (mx)y − (my)x (MLL)
x(my) = (xm)y − (xy)m (LML)
x(ym) = (xy)m− (xm)y (LLM).

A morphism M1 → M2 of g-modules is a morphism of k-vector spaces that is compatible with the respective
left and right actions. The category of g-modules is written ModLeib

g .
A g-module M is

(1) symmetric if mx+ xm = 0 ∀(m,x) ∈M × g;
(2) antisymmetric if xm = 0 ∀(m,x) ∈M × g.

Notation 2.3. For h a Lie algebra, ModLie
h denotes the category of right h-modules.

The following is standard (see [LP93, Section 1.10] and [Fel19, Section 3], for example) and also serves to
introduce the notation (−)↓.

Proposition 2.4. Let g be a Leibniz algebra.

(1) The restriction to the right action induces an exact restriction functor (−)↓ : ModLeib
g → ModLie

gLie
.

(2) The full subcategory of antisymmetric g-modules in ModLeib
g is equivalent to ModLie

gLie
.

(3) The full subcategory of symmetric g-modules in ModLeib
g is equivalent to ModLie

gLie
.

Proof. For the first statement, it suffices to show that x2 ∈ g acts trivially on the right on any g-module M .
This follows from the relation m(x2) = (mx)x− (mx)x = 0 given by (MLL).

For the second statement, if M is a gLie-module, then equipping it with the trivial left g-action, it can be
considered as an antisymmetric g-module. This induces the equivalence of categories, with quasi-inverse given
by the restriction functor.

The symmetric case is similar, using that, if M is a symmetric module, the relation (x2)m + m(x2) = 0,
implies that (x2)m = 0, since m(x2) = 0, so that M arises from a gLie-module. �

Example 2.5. For g a Leibniz algebra, the structure morphism makes g into a g-module, the adjoint module.
Restricting to the right action, g↓ is a module over the Lie algebra gLie.

2.2. The enveloping algebra of a Leibniz algebra. The category ModLeib
g is described in Proposition 2.7

using the enveloping algebra of a Leibniz algebra, as introduced by Loday and Pirashvili:

Definition 2.6. [LP93, Definition 2.2] Let UL(−) be the functor UL(−) : AlgLeib → AlguAss to the category of
unital associative algebras that is defined on a Leibniz algebra g by

UL(g) := T (gl ⊕ gr)/I

for I the two-sided ideal of the tensor algebra on gl ⊕ gr (where g ∼= gl, x 7→ lx and g ∼= gr, x 7→ rx) generated
by the relations for x, y ∈ g:

rxy = [rx, ry]

lxy = [lx, ry]

(rx + lx)ly = 0.

Proposition 2.7. [LP93, Theorem 2.3] For g a Leibniz algebra, the category ModLeib
g is equivalent to the category

ModUL(g) of right UL(g)-modules. In particular, ModLeib
g has enough projectives and enough injectives.

Kurdiani provided the following important additional information:

Proposition 2.8. [Kur99, Proposition 2.3] For g a Leibniz algebra, there is a natural involutive anti-automorphism

χL : UL(g)op
∼=→ UL(g) of associative algebras given by χL(rx) = −rx and χL(lx) = rx + lx.

Thus the category of left UL(g)-modules is naturally equivalent to ModUL(g), hence to ModLeib
g also.
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Definition 2.9. (Cf. [LP93, Proposition 2.5].) For g a Leibniz algebra, define the natural morphisms of
associative algebras

UL(g) d0 //
d1 // U(gLie)

s0vv

for x ∈ g and x is its image in gLie by:

(1) d0(lx) = 0 and d0(rx) = x;
(2) d1(lx) = −x and d1(rx) = x;
(3) s0(x) = rx.

Remark 2.10. The natural morphisms s0, d0, d1 satisfy d0s0 = IdU(gLie) = d1s0.

The importance of d0 and d1 is through their rôle in identifying the full subcategories of (anti)symmetric
modules:

Definition 2.11. For a Leibniz algebra g let

(1) (−)a : ModLie
gLie
→ ModLeib

g denote the functor induced by restriction along d0;

(2) (−)s : ModLie
gLie
→ ModLeib

g denote the functor induced by restriction along d1.

Remark 2.12. For g a Leibniz algebra and N a gLie-module, Na (respectively N s) is the associated antisymmetric
(resp. symmetric) g-module, via the embeddings of Proposition 2.4. Similarly, restriction along s0 induces the

functor (−)↓ : ModLeib
g → ModLie

gLie
.

2.3. The closed tensor structure for modules over a Lie algebra. Let h be a Lie algebra over the field
k. The following recalls the closed tensor structure on the category ModLie

h , where the tensor product and the

internal hom use the diagonal h-action. For example, for f ∈ Homk(N,X) where N,X ∈ Ob ModLie
h , and h ∈ h,

fh ∈ Homk(N,X) acts by fh(n) = f(n)h− f(nh).

Proposition 2.13. For N ∈ Ob ModLie
h , there is an adjunction

−⊗N : ModLie
h � ModLie

h : Homk(N,−),

and both the left adjoint −⊗N and the right adjoint Homk(N,−) are exact.
For X an h-module, the adjunction unit ηX : X → Homk(N,X ⊗ N) sends x to the map n 7→ x ⊗ n; the

adjunction counit εX : Homk(N,X)⊗N → X is the evaluation map.

3. Symmetric and antisymmetric modules

This Section presents the adjunctions associated to the full subcategories of symmetric (respectively anti-
symmetric) modules over a Leibniz algebra g.

3.1. Induction and coinduction.

Notation 3.1. For ϕ : A → B a morphism of associative algebras, ϕB (respectively Bϕ) denotes B considered
as a left (respectively right) A-module, where a ∈ A acts via multiplication by ϕ(a).

Definition 3.2. (Cf. [CE99, Section II.6].) For ϕ : A → B a morphism of associative, unital algebras, and
ModA, ModB the respective categories of right modules,

(1) the restriction functor ϕ! : ModB → ModA sends a B-module M to M with a ∈ A acting via ϕ(a);
(2) the induction functor is the functor −⊗ϕAB : ModA → ModB , where B acts via right multiplication on

the factor B and −⊗ϕA B := −⊗A (ϕB);
(3) the coinduction functor is the functor HomA(Bϕ,−) : ModA → ModB , where morphisms are taken with

respect to right A-modules, where the right B action on HomA(Bϕ,−) is induced by the left action on
B.

Proposition 3.3. [CE99, Section II.6] For ϕ : A → B a morphism of associative, unital algebras, induction
−⊗ϕA B is left adjoint to ϕ! and coinduction HomA(Bϕ,−) is right adjoint to ϕ!.

3.2. Adjunctions for symmetric modules. The following uses the induction, restriction and coinduction
functors of Definition 3.2 and the equivalences of categories between ModLeib

g and ModUL(g) (respectively ModLie
gLie

and ModU(gLie)):

Proposition 3.4. For g a Leibniz algebra, the functor (−)s : ModLie
gLie
→ ModLeib admits both left and right

adjoints:

ModLie
gLie

(−)s // ModLeib
g .

sym

⊥tt

(−)sym

⊥jj
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In particular, (−)s is exact, sym is right exact and preserves projectives and (−)sym is left exact and preserves
injectives.

For M a g-module,

(1) the sym a (−)s adjunction unit M � (symM)s identifies with the surjection

M �M/M0

where M0 := 〈mx+ xm | x ∈ g,m ∈M〉k is an antisymmetric g-module;
(2) the (−)s a (−)sym adjunction counit (M sym)s →M identifies with the inclusion

{m ∈M | mx+ xm = 0 ∀x ∈ g} ↪→M.

Proof. Proposition 3.3 applied to the morphism d1 : UL(g)→ U(gLie) gives the module category interpretation,
from which the explicit descriptions can be deduced. It is instructive to check these directly.

For the left adjoint, see [LP93, Section 1.10] and [Fel19, Section 3]. For the right adjoint, the key ingredient
is that {m ∈ M | mx + xm = 0 ∀x ∈ g} is a sub g-module. To show this, it suffices to check that, for any m
in this sub k-module and y ∈ g, my ∈ {m ∈ M | mx+ xm = 0 ∀x ∈ g}; the result for left multiplication then
follows since ym = −my, by the hypothesis on m. Hence the result follows from the sequence of equalities:

(my)x+ x(my) = (my)x+ ((xm)y − (xy)m)

= (my)x+ (xm)y +m(xy)

= (my)x+ (xm)y + ((mx)y − (my)x)

= 0,

where the second equality uses the hypothesis on m to give −(xy)m = m(xy) and the final one xm+mx = 0. �

Proposition 3.5. For g a Leibniz algebra, there is a natural isomorphism of right gLie-modules symUL(g) ∼=
U(gLie) and, under this isomorphism, the adjunction unit UL(g)→ (symUL(g))s identifies with the morphism
of g-modules underlying

UL(g)
d1−→ U(gLie)

s.

Proof. As in Proposition 3.4, the functor sym corresponds to the induction functor − ⊗d1UL(g) U(gLie), which

sends UL(g) to U(gLie). The induction/ restriction adjunction gives that the adjunction unit is induced by
d1. �

Corollary 3.6. For g a Leibniz algebra and M a g-module, there is a natural isomorphism:

M sym ∼= HomModLeib
g

(U(gLie)
s,M).

Proof. Since the category of g-modules is equivalent to the category of right UL(g)-modules, there is a nat-
ural isomorphism M sym ∼= HomModLeib

g
(UL(g), (M sym)s). By adjunction, the right hand side is isomorphic to

HomModLeib
g

((symUL(g))s,M) and, by Proposition 3.5, symUL(g) ∼= U(gLie). �

Proposition 3.5 together with Proposition 3.4 imply that ker d1 is an antisymmetric g-module. The structure
of UL(g) as a g-module is made explicit as follows:

Proposition 3.7. For g a Leibniz algebra, the morphism d1 induces a short exact sequence of g-modules:

0→ (g↓ ⊗ U(gLie))
a → UL(g)

d1→ U(gLie)
s → 0,

where g↓ ⊗ U(gLie) is equipped with the diagonal gLie-module structure. The monomorphism g↓ ⊗ U(gLie) ↪→
UL(g) is given by

y ⊗Θ 7→ s0(Θ)(ry + ly),

for y ∈ g and Θ ∈ U(gLie).
The morphism s0 : U(gLie)→ UL(g) induces a splitting of the short exact sequence as right U(gLie)-modules

giving UL(g) ∼= (g↓ ⊗ U(gLie))⊕ U(gLie). The extension is determined with respect to this splitting by:

s0(Θ)ly = (y ⊗Θ)−Θy

for y ∈ g and Θ ∈ U(gLie).

Proof. Since ry+ ly lies in the kernel of d1, the given linear map takes values in ker d1. Using [LP93, Proposition
2.4], it is straightforward to show that this induces an isomorphism of k-vector spaces.

To verify the UL(g)-module structure, since ker d1 is antisymmetric, it suffices to consider the action of
rz ∈ UL(g) for z ∈ g on an element of the image of g⊗U(gLie) in UL(g). Using the identities ryrz = ryz + rzry
and lyrz = lyz + rzly in UL(g), one has

s0(Θ)(ry + ly)rz = s0(Θ)(ryz + lyz) + s0(Θ)rz(ly + ry)

and the right hand side is the image of yz ⊗ Θ + y ⊗ Θz; this is the image of (y ⊗ Θ) under the action of z
diagonally. This identifies the module structure.
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Finally, for Θ ∈ U(gLie), one has s0(Θ)ly = s0(Θ)(ly + ry) − s0(Θ)ry in UL(g). Here s0(Θ)(ly + ry) is the
image of y ⊗Θ, giving the stated result. �

Corollary 3.8. For g a Leibniz algebra, there is a natural isomorphism of g-modules:

ker d1 ∼= gtriv ⊗ U(gLie)
a,

where gtriv is considered as a k-vector space.

Proof. Since U(gLie) is a Hopf algebra, the k-linear inclusion g ↪→ g⊗U(gLie), y 7→ y⊗1 induces an isomorphism
of right U(gLie)-modules:

gtriv ⊗ U(gLie)
∼=→ g↓ ⊗ U(gLie)

where the codomain has the diagonal action. The result then follows from Proposition 3.7 on applying the
functor (−)a. �

3.3. Adjunctions for antisymmetric modules.

Proposition 3.9. For g a Leibniz algebra, (−)a : ModLie
gLie
→ ModLeib admits both left and right adjoints:

ModLie
gLie

(−)a // ModLeib
g .

asym

⊥tt

(−)asym

⊥jj

In particular, (−)a is exact, asym is right exact and preserves projectives and (−)asym is left exact and preserves
injectives.

For M a g-module,

(1) the asym a (−)a adjunction unit M � (asymM)a identifies with the surjection

M �M/M1

where M1 = 〈xm | x ∈ g,m ∈M〉k;
(2) the (−)a a (−)asym adjunction counit (Masym)a →M identifies with the inclusion

{m ∈M | xm = 0 ∀x ∈ g} ↪→M.

Proof. The adjunctions can be constructed using induction and coinduction associated to d0 : UL(g)→ U(gLie),
using Proposition 3.3.

For the explicit description of asym, it suffices to show that M1 is a sub g-module of M . It is clearly
stable by the left action; stability under the right action follows from the relation (LML), which gives (xm)y =
x(my) + (xy)m, ∀x, y ∈ g, m ∈M . The right hand side lies in M1, whence the result.

The verification that {m ∈ M | xm = 0 ∀x ∈ g} ↪→ M is a sub g-module follows from the relations for a
g-module (see [FW21, Lemma 1.3]). �

Remark 3.10. The submodule M1 is not in general symmetric. Indeed, for x, y ∈ g, the relation (xm)y =
x(my) + (xy)m implies (xm)y + y(xm) = x(my) + (xy)m+ y(xm). Then the relation x(my) + x(ym) = 0 (cf.
the relation (ZD) of [LP93, Section 1]) gives (xm)x+ x(xm) = (x2)m on taking x = y. This is not in general
zero (see Example 3.11).

Example 3.11. Take M = g, where g is the opposite to the left Leibniz algebra of [Fel19, Example 2.3];
explicitly, g = 〈e, f〉 as k-modules, with e2 = ef = f2 = 0 and fe = f . Then (e + f)2 = f ; hence, taking
x = (e+ f) and m = e, (x2)m = f 6= 0. The kernel of the corresponding surjection M → (asymM)a is 〈f〉 ⊂ g.
The relations (e+ f)f = 0 and f(e+ f) = f show that this is not symmetric.

The following is the asymmetric counterpart of Proposition 3.12:

Proposition 3.12. For g a Leibniz algebra, there is a natural isomorphism of right gLie-modules asymUL(g) ∼=
U(gLie) and, under this isomorphism, the canonical projection UL(g) � (asymU(gLie))

a identifies with the
morphism of g-modules underlying:

UL(g)
d0→ U(gLie)

a.

Corollary 3.13. For g a Leibniz algebra and M a g-module, there are natural isomorphisms:

Masym ∼= HomModLeib
g

((asymUL(g))a,M) ∼= HomModLeib
g

(U(gLie)
a,M).

Proof. The proof is the same as that of Corollary 3.6, mutatis mutandis. �

Remark 3.14. The structure of the kernel of d0 is given by [LP93, Proposition 2.4]; from this one sees that
ker d0 is neither symmetric not antisymmetric in general. In particular, ker d0 is not determined by (ker d0)↓,
hence there is no direct analogue of Proposition 3.7 for ker d0.
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4. Duality

This Section reviews duality for modules over a Leibniz algebra g. Whilst this material is not necessary
for the proofs of the main result, there is an underlying duality relationship of inherent interest and which is
already implicit in the literature, for example in [LP96] and [MW21]. The duality functor exploits the Kurdiani
involution.

4.1. Using the Kurdiani involution. Recall that the Kurdiani involution χL of UL(g) (cf. Proposition 2.8)
induces an equivalence between the category of right UL(g)-modules and the category of left UL(g)-modules.

Notation 4.1. Let g be a Leibniz algebra.

(1) For M a g-module (considered as a right UL(g)-module), let M [ denote M considered as a left UL(g)-
module by restriction along χL : UL(g)op → UL(g).

(2) For A a left UL(g)-module, let [A denote A considered as a right UL(g)-module by restriction along
χL : UL(g)op → UL(g).

The following is clear, since χL is an involution:

Lemma 4.2. For g a Leibniz algebra, M a g-module and A a left UL(g)-module, there are natural isomorphisms:
M ∼= [(M [) of right UL(g)-modules and A ∼= ([A)[ of left UL(g)-modules.

Let χ denote the canonical involution of the Hopf algebra U(gLie); the morphisms χL and χ are compatible
via the following result, which is proved by a direct verification:

Proposition 4.3. For g a Leibniz algebra, there is a natural commutative diagram of morphisms of associative
algebras:

U(gLie)
op

sop0 //

χ ∼=
��

UL(g)op
dop1 //

χL ∼=
��

U(gLie)
op

χ∼=
��

U(gLie)
s0 // UL(g)

d0 // U(gLie).

This gives:

Corollary 4.4. For g a Leibniz algebra, the involution χ of U(gLie) induces isomorphisms

(1) (U(gLie)
d0)[

∼=−→ d1U(gLie);

(2) (U(gLie)
d1)[

∼=−→ d0U(gLie)

of left UL(g)-modules.

4.2. The duality functors. Let (−)] denote the k-vector space duality functor. For M a right UL(g)-module,
M ] is canonically a left UL(g)-module, hence one can form the associated right UL(g)-module (M ])[; this will be
denoted simply M ], by abuse of notation. Similarly, one has the duality functor (−)] for right U(gLie)-modules,
by exploiting the conjugation χ. These are compatible, by Proposition 4.3:

Proposition 4.5. For g a Leibniz algebra, duality induces exact functors:

(−)] : (ModLeib
g )op → ModLeib

g

(−)] : (ModLie
gLie

)op → ModLie
gLie

and these restrict to equivalences of categories between the full subcategories of finite-dimensional modules.
These are compatible with the functors (−)↓ : ModLeib

g → ModLie
gLie

and (−)s, (−)a : ModLie
gLie
→ ModLeib

g in the

following sense: for M ∈ Ob ModLeib
g and N ∈ Ob ModLie

gLie
, there are natural isomorphisms:

(M↓)] ∼= (M ])↓

(Na)] ∼= (N ])s

(N s)] ∼= (N ])a.

Remark 4.6. Duality switches the rôles of symmetric and antisymmetric modules.

Corollary 4.7. For M ∈ Ob ModLeib
g , there are natural isomorphisms of functors from (ModLeib

g )op to ModLie
gLie

:

(symM)] → (M ])asym

(asymM)] → (M ])sym.

Proof. The adjunction unit M → (symM)s induces ((symM)s)] →M ] on applying duality and ((symM)s)] ∼=
((symM)])a, by Proposition 4.5. The adjunction (−)a a (−)asym thus gives the first natural transformation.
To see that it is an isomorphism, use that symM is the cokernel of M ⊗ g→M defined by m⊗ x 7→ xm+mx.
On applying the duality functor one obtains the map M ] → (M ⊗ g)] ∼= Homk(g,M ]). This sends f ∈ M ] to
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x 7→ fx for x ∈ g (where fx is given by the right action of g on M ]). The kernel of this map is (M ])asym, by
Proposition 3.9.

The antisymmetric case is treated similarly. �

Proposition 4.5 also gives the following:

Corollary 4.8. For g a Leibniz algebra and g-modules M,N , duality induces a natural morphism

Ext∗ModLeib
g

(M,N)→ Ext∗ModLeib
g

(N ],M ]).

Remark 4.9. The natural transformation of Corollary 4.8 is not an isomorphism in general. However, when
g is finite-dimensional over k, one can generalize the approach of Loday and Pirashvili [LP96] as extended by
Mugniery and Wagemann [MW21], replacing Ext by morphisms calculated in the appropriate derived category
of finite-dimensional modules. In this context, duality induces an isomorphism.

5. Resolutions

This Section presents the fundamental resolutions in right and left UL(g)-modules, also making explicit the
appropriate actions of gLie. This builds upon results of Loday and Pirashvili [LP93].

5.1. Resolutions in right UL(g)-modules. The following gives the Leibniz complex that leads to the explicit
definition of Leibniz (co)homology:

Theorem 5.1. [LP93, Section 3, Theorem 3.4] For g a Leibniz algebra, there is a free resolution W•(g) of
U(gLie)

a in right UL(g)-modules such that Wn(g) := g⊗n ⊗ UL(g), with differential

d(x1 ⊗ . . .⊗ xn)⊗ 1 = (x2 ⊗ . . .⊗ xn)⊗ lx1 +

n∑
i=2

(−1)i(x1 ⊗ . . .⊗ x̂i ⊗ . . .⊗ xn)⊗ rxi

+
∑

1≤i<j≤n

(−1)j+1(x1 ⊗ . . .⊗ xixj ⊗ . . .⊗ x̂j ⊗ . . .⊗ xn)⊗ 1.

Remark 5.2. The resolution W•(g) is natural with respect to g in the following sense: a morphism g → g′ of
Leibniz algebras induces a morphism of complexes W•(g) → W•(g

′) of right UL(g)-modules, where W•(g
′) is

considered as a UL(g)-module by restriction along UL(g)→ UL(g′).
Similar naturality statements hold for the other structures considered here.

Combining Theorem 5.1 with Corollary 3.8 gives:

Proposition 5.3. For g a Leibniz algebra, there is a free resolution V•(g) of U(gLie)
s in right UL(g)-modules

that occurs in the short exact sequence of complexes:

0→ UL(g)→ V•(g)→ (g⊗W•(g))[1]→ 0

that is determined by the differential V1(g) = g⊗ UL(g)→ V0(g) = UL(g), which is the composite:

g⊗ UL(g) � g⊗ U(gLie)
a ∼= ker d1 ↪→ UL(g)

induced by g→ UL(g), x 7→ rx + lx.

Proof. Corollary 3.8 gives the short exact sequence of g-modules:

0→ g⊗ U(gLie)
a → UL(g)

d1→ U(gLie)
s → 0.

The complex g⊗W•(g) is a free resolution of g⊗U(gLie)
a as a right UL(g)-module, by Theorem 5.1. The result

then follows by splicing with the short exact sequence. �

Remark 5.4. The above is implicit in the proof of [MW21, Proposition 2.2].

5.2. Resolutions in left UL(g)-modules. Using the Kurdiani involution as in Section 4.1, one has:

Lemma 5.5. For Z a k-vector space, there is a natural isomorphism of left UL(g)-modules:

(Z ⊗ UL(g))[
∼=→ UL(g)⊗ Z

z ⊗ a 7→ χL(a)⊗ z.

This allows the resolution W•(g) of U(gLie)
a in right UL(g)-modules of Theorem 5.1 to be transposed to give

a resolution of d1U(gLie) in left UL(g)-modules and likewise for the complex V•(g) of Proposition 5.3:

Theorem 5.6. Let g be a Leibniz algebra.
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(1) The complex W•(g)[ is a free resolution of d1U(gLie) in left UL(g)-modules. Explicitly, Wn(g)[ =
UL(g)⊗ g⊗n, with differential determined by

d(1⊗ 〈x1, . . . , xn〉) = lx1
⊗ 〈x2, . . . , xn〉+

∑
i≥1

(−1)i+1rxi
⊗ 〈x1, . . . x̂i, . . . , xn〉+

∑
1≤i<j

(−1)j+11⊗ 〈x1, . . . , xixj , . . . , x̂j , . . . , xn〉.

(2) The complex V•(g)[ is a free resolution of d0U(gLie) in left UL(g)-modules that fits into the short exact
sequence of complexes:

0→ UL(g)→ V•(g)[ → (W•(g)[ ⊗ g)[1]→ 0

that is determined by the differential from homological degree one to degree zero:

UL(g)⊗ g→ UL(g)

induced by g ↪→ UL(g), x 7→ lx.

5.3. The gLie-actions. This Section shows that the resolutions introduced above admit natural right gLie-
actions. This is inspired by [LP93, Proposition 3.1] (see Remark 5.14 for one crucial difference with the
definitions given there).

The following introduces the right gLie-action on the relevant objects:

Lemma 5.7. For g a Leibniz algebra and n ∈ N, UL(g)↓⊗(g↓)⊗n is a right gLie-module for the diagonal action.
This action commutes with the left UL(g)-module structure, so that UL(g)⊗ g⊗n acquires the structure of a left
UL(g)⊗ U(gLie)

op-module.

Remark 5.8. The right action of gLie on UL(g) is given by Φ ⊗ y 7→ Φry, for y ∈ gLie and Φ ∈ UL(g). This
corresponds to the right U(gLie)-module structure on UL(g) given by restriction along s0 : U(gLie)→ UL(g).

Lemma 5.9. For g a Leibniz algebra, the morphisms of left UL(g)-modules UL(g) ⊗ g ⇒ UL(g) induced
respectively by 1⊗ x 7→ lx and 1⊗ x 7→ rx, for x ∈ g, are gLie-linear with respect to the action given by Lemma
5.7.

Proof. First consider the map induced by 1⊗x 7→ lx. The gLie action by y ∈ gLie sends 1⊗x to ry⊗x+ 1⊗xy,
which maps to rylx + lxy ∈ UL(g). Correspondingly, the gLie-action on UL(g) sends lx to lxry. The identity
lxy = [lx, ry] implies that these are equal.

Similarly, consider 1 ⊗ x 7→ rx. The image of ry ⊗ x + 1 ⊗ xy under this map is ryrx + rxy, whereas the
gLie-action on UL(g) sends rx to rxry. The identity rxy = [rx, ry] implies that these are equal. �

By construction, the complexes W•(g)[ and V•(g)[ admit augmentations in the category of left UL(g)-
modules:

W•(g)[
d1→ U(gLie)

V•(g)[
d0→ U(gLie)

induced by d1 and d0 respectively. The key fact is that the natural right gLie-action on U(gLie) lifts using the
action of Lemma 5.7 to W•(g)[ and V•(g)[.

Theorem 5.10. For g a Leibniz algebra,

(1) W•(g)[ is a complex of left UL(g), right gLie-modules;
(2) V•(g)[ is a complex of left UL(g), right gLie-modules; moreover

0→ UL(g)→ V•(g)[ → (W•(g)[ ⊗ g↓)[1]→ 0(1)

is a short exact sequence of complexes of left UL(g), right gLie-modules, where gLie acts diagonally on
W•(g)[ ⊗ g↓.

There are natural isomorphisms of right gLie-modules:

H0(W•(g)[) ∼= U(gLie) ∼= H0(V•(g)[)

where U(gLie) is equipped with its canonical right gLie-module structure.

Proof. The final statement follows from the identities d0s0 = IdU(gLie) = d1s0 and the identification of the right
gLie-module structure on UL(g) given in Remark 5.8. Hence, to prove the result it suffices to show that the
respective differentials are gLie-linear.

First consider the case of W•(g)[. There are three types of term to consider in the differential:

(1) the term related to lx1
;

(2) the terms involving right multiplication by rxi
on UL(g);

(3) the terms involving the formation of the Leibniz product xixj .
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The first two contributions are treated by Lemma 5.9. The final terms are treated by reducing to establishing
the commutativity of the following diagram

(g⊗ g)⊗ gLie //

µ⊗Id
��

g⊗ g

µ

��
g⊗ gLie // g,

where the horizontal morphisms are given by the gLie-action and µ denotes the Leibniz product of g. To see
that the diagram commutes, consider the respective images of (x1 ⊗ x2) ⊗ y. Passing around the top of the
diagram corresponds to (x1 ⊗ x2) ⊗ y 7→ (x1y ⊗ x2) + (x1 ⊗ x2y) 7→ (x1y)x2 + x1(x2y). Passing around the
bottom gives (x1 ⊗ x2)⊗ y 7→ (x1x2)y. These are equal by the Leibniz relation.

For the complex V•(g)[, since the complex identifies with (W•(g)[ ⊗ g↓) (up to shift) in strictly positive
degrees, equipped with the diagonal gLie-action, it suffices to check that the differential between degrees 1 and
0 is gLie-linear. This is the map of left UL(g)-modules UL(g) ⊗ g → UL(g) induced by 1 ⊗ x 7→ lx, hence the
result follows from Lemma 5.9. �

The analogous result holds for the complexes of right UL(g)-modules W•(g) and V•(g). This is derived from
the previous case by using the Kurdiani involution.

Lemma 5.11. For g a Leibniz algebra and n ∈ N, (g↓)⊗n ⊗UL(g) is a left gLie-module for the diagonal action
for the left U(gLie)-module s0UL(g) and the left gLie-action associated to the right gLie-module (g↓)⊗n.

This action commutes with the right UL(g)-module structure, so that (g↓)⊗n ⊗ UL(g) acquires the structure
of a right UL(g)⊗ U(gLie)

op-module.

Remark 5.12. Explicitly, the left gLie-module structure on s0UL(g) is given by

gLie ⊗ UL(g) → UL(g)

y ⊗ Φ 7→ ryΦ,

for Φ ∈ UL(g) and y ∈ g.
The left action on g is given for x ∈ g by y ⊗ x 7→ −xy, where the sign arises from the conjugation χ.

Theorem 5.13. For g a Leibniz algebra, via the action of Lemma 5.11:

(1) W•(g) is a complex of right UL(g)⊗ U(gLie)
op-modules;

(2) V•(g) is a complex of right UL(g)⊗ U(gLie)
op-modules; moreover

0→ UL(g)→ V•(g)→ (g↓ ⊗W•(g))[1]→ 0(2)

is a short exact sequence of complexes of right UL(g) ⊗ U(gLie)
op-modules, where gLie acts diagonally

on g↓ ⊗W•(g).

There are natural isomorphisms of left gLie-modules:

H0(W•(g)) ∼= U(gLie) ∼= H0(V•(g))

where U(gLie) is equipped with the canonical left gLie-module structure.

Remark 5.14. In [LP93, Section 3], Loday and Pirashvili work with a right action. Moreover, they define the
action of y ∈ g (not gLie) on UL(g) by left multiplication by ly (as opposed to left multiplication by −ry as
above). That this is also compatible with the differential is a consequence of the relation (ry + ly)lx = 0.
However, this does not in general pass to an action of gLie, since ly depends upon y and not only upon y ∈ gLie
in general.

6. Total derived functors

The resolutions of Section 5 give models for the total left derived functors of sym, asym : ModLeib
g ⇒ ModLie

gLie

and the total right derived functors of (−)sym, (−)asym : ModLeib
g ⇒ ModLie

gLie
.

6.1. The total left derived functors. Theorems 5.6 and 5.10 established that W•(g)[ and V•(g)[ are com-
plexes of left UL(g), right gLie-modules such that, as left UL(g)-modules:

(1) W•(g)[ is a free resolution of d1U(gLie);
(2) V•(g)[ is a free resolution of d0U(gLie).

Corollary 6.1. Let g be a Leibniz algebra and M a g-module.

(1) The total left derived functor LsymM is represented by the complex of right gLie-modules

M ⊗UL(g) W•(g)[,

where the right gLie-action is provided by that on W•(g)[.
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(2) The total left derived functor LasymM is represented by the complex of right gLie-modules

M ⊗UL(g) V•(g)[,

where the right gLie-action is provided by that on V•(g)[.

Moreover, the short exact sequence of complexes (1) induces a short exact sequence of complexes in right gLie-
modules

0→M↓ →M ⊗UL(g) V•(g)[ →M ⊗UL(g) (W•(g)[ ⊗ g↓)[1]→ 0.

Proof. As in Proposition 3.4, the functor sym : ModLeib
g → ModLie

gLie
identifies with the induction functor

− ⊗UL(g) d1U(gLie), where the gLie-action is provided by the right action on U(gLie). The associated derived

functor is represented by −⊗UL(g) W•(g)[ by Theorems 5.6 and 5.10.

For the antisymmetric case, as in Proposition 3.9, the functor sym : ModLeib
g → ModLie

gLie
identifies with the

induction functor −⊗UL(g) d0U(gLie). The conclusion follows analogously.
The final statement is immediate. �

Remark 6.2. The complexes appearing in Corollary 6.1 identify explicitly as follows:

(1) (M ⊗UL(g) W•(g)[)n = M ⊗ g⊗n with differential M ⊗ g⊗n →M ⊗ g⊗n−1 given for m ∈M and xi ∈ g
by:

d(m⊗ 〈x1, . . . , xn〉) = x1m⊗ 〈x2, . . . , xn〉+
∑
i≥1

(−1)i+1mxi ⊗ 〈x1, . . . x̂i, . . . , xn〉+

∑
1≤i<j

(−1)j+1m⊗ 〈x1, . . . , xixj , . . . , x̂j , . . . , xn〉.

(2) (M ⊗UL(g) V•(g)[)n = M ⊗ g⊗n−1 ⊗ g for n > 0 and M for n = 0. For n ≥ 2, the differential

M ⊗ g⊗n−1 ⊗ g→M ⊗ g⊗n−2 ⊗ g is given for m ∈M and xi ∈ g by:

d(m⊗ 〈x1, . . . , xn−1〉 ⊗ xn) = x1m⊗ 〈x2, . . . , xn−1〉 ⊗ xn +

n−1∑
i=1

(−1)i+1mxi ⊗ 〈x1, . . . x̂i, . . . , xn−1〉 ⊗ xn +∑
1≤i<j≤n−1

(−1)j+1m⊗ 〈x1, . . . , xixj , . . . , x̂j , . . . , xn−1〉 ⊗ xn.

The differential M ⊗ g→M is given by m⊗ x 7→ xm.

Remark 6.3. The final statement of Corollary 6.1 can be interpreted in the derived category of gLie-modules as
giving the distinguished triangle:

M↓ → LasymM → (LsymM ⊗ g↓)[1]→ .

In the symmetric case, the associated derived functors identify with Leibniz homology by [LP93]:

Proposition 6.4. For g a Leibniz algebra and M a g-module, there are natural isomorphisms:

L∗symM ∼= TorUL(g)∗ (M, d1U(gLie)) ∼= HL∗(g;M [).

6.2. The total right derived functors. The consideration of the total right derived functors of (−)asym, (−)sym :

ModLeib
g ⇒ ModLie

gLie
is analogous, using the complexes W•(g) and V•(g) of right UL(g), left gLie-modules pro-

vided by Theorem 5.1, Proposition 5.3, with the gLie-action given by Theorem 5.13. In particular, as complexes
of right UL(g)-modules:

(1) W•(g) is a free resolution of U(gLie)
a;

(2) V•(g) is a free resolution of U(gLie)
s.

Corollary 6.5. Let g be a Leibniz algebra and M a g-module.

(1) The total right derived functor R(−)asymM is represented by the cochain complex of right gLie-modules:

HomUL(g)(W•(g),M),

where the right gLie-action is induced by the left action on W•(g).
(2) The total right derived functor R(−)symM is represented by the cochain complex of right gLie-modules:

HomUL(g)(V•(g),M),

where the right gLie-action is induced by the left action on V•(g).

Moreover, the short exact sequence of complexes (2) induces a short exact sequence of cochain complexes of right
gLie-modules:

0→ Homk(g↓,HomUL(g)(W•(g),M))[−1]→ HomUL(g)(V•(g),M)→M↓ → 0.
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Remark 6.6. Interpreted in the appropriate derived category, the short exact sequence of complexes induces the
distinguished triangle:

Homk(g↓,R(−)asymM)[−1]→ R(−)symM →M↓ → .

In the antisymmetric case, the associated derived functors identify with Leibniz cohomology by the main
result of [LP93]:

Proposition 6.7. For g a Leibniz algebra and M a g-module, there are natural isomorphisms:

R∗(−)asymM ∼= Ext∗UL(g)(U(gLie)
a,M) ∼= HL∗(g;M).

6.3. Duality for total derived functors. The duality isomorphisms of Corollary 4.7 extend to explicit duality
isomorphisms for the total derived functors at the level of the representing complexes:

Proposition 6.8. For g a Leibniz algebra and M a g-module, there are natural isomorphisms of cochain
complexes in right gLie-modules:

(M ⊗UL(g) W•(g)[)]
∼=→ HomUL(g)(W•(g),M ])

(M ⊗UL(g) V•(g)[)]
∼=→ HomUL(g)(V•(g),M ]).

Proof. This is clear at the level of the underlying graded objects, by linear algebra. The verification that the
differentials correspond extends the argument used in the proof of Corollary 4.7 and is left to the reader. �

Remark 6.9. The duality isomorphisms of Proposition 6.8 can be viewed at the level of total derived functors
as:

(LsymM)] ∼= R(−)asym(M ])

(LasymM)] ∼= R(−)sym(M ]).

On passage to homology, the first isomorphism gives the duality isomorphism relating Leibniz homology and
Leibniz cohomology:

HL∗(g;M [)] ∼= HL∗(g;M ]),

by the identifications of Propositions 6.4 and 6.7.

6.4. Splitting results. Working with the explicit resolutions gives direct access to splitting results when
coefficients are taken to be (anti)symmetric, as appropriate.

Proposition 6.10. For g a Leibniz algebra and N a right gLie-module, there are natural isomorphisms of
complexes of right gLie-modules:

N s ⊗UL(g) W•(g)[ ∼= N ⊕
(
(N ⊗ g↓)a ⊗UL(g) W•(g)[

)
[1]

Na ⊗UL(g) V•(g)[ ∼= N ⊕
(
(Na ⊗UL(g) W•(g)[)⊗ g↓

)
[1].

Proof. Consider the complex N s ⊗UL(g) W•(g)[. The differential between homological degree 1 and 0 is zero,
since N s is symmetric, which gives the splitting of complexes. It remains to identify the complex of terms of
positive degree.

The respective terms of the differential made explicit in Remark 6.2 with x1m and mx1 in the first factor
sum to zero. Hence, by inspection, one has

d(m⊗ 〈x1, . . . , xn〉) = −d((m⊗ x1)⊗ 〈x2, . . . , xn〉)

where the left hand side is calculated in N s ⊗UL(g)W•(g)[ and the right hand side in (N ⊗ g↓)a ⊗UL(g)W•(g)[.
This gives the required isomorphism of complexes.

The antisymmetric case is more direct, since the short exact sequence of complexes given in Corollary 6.1
splits in this case. �

Remark 6.11. Working in the appropriate derived category of right gLie-modules, these splittings yield the
natural isomorphisms of total derived functors:

Lsym(Ns) ∼= N ⊕ Lsym((N ⊗ g↓)a)[1]

Lasym(Na) ∼= N ⊕
(
Lsym(Na)⊗ g↓

)
[1].

Example 6.12. On passage to homology, for N ∈ Ob ModLie
gLie

, one obtains the isomorphism

HL∗(g; (N s)[) ∼= N ⊕HL∗−1(g; ((N ⊗ g↓)a)[).

The following is the counterpart of Proposition 6.10 for right derived functors:



HOMOLOGICAL SPLITTING RESULTS FOR MODULES OVER LEIBNIZ ALGEBRAS 13

Proposition 6.13. For g a Leibniz algebra and N a right gLie-module, there are natural isomorphisms of
cochain complexes of right gLie-modules:

HomUL(g)(W•(g), Na) ∼= N ⊕ HomUL(g)(W•(g),Homk(g↓, N)s)[−1]

HomUL(g)(V•(g), N s) ∼= N ⊕ Homk(g↓,HomUL(g)(W•(g), N s))[−1].

Proof. The first statement is established in the proof of [FW21, Lemma 1.4(b)]. The second is an immediate
consequence of the splitting of the short exact sequence given in Corollary 6.5. �

Remark 6.14. Working in the appropriate derived category, the isomorphisms of cochain complexes given in
Proposition 6.13 induce the natural isomorphisms:

R(−)asym(Na) ∼= N ⊕ R(−)asym(Homk(g↓, N)s)[−1]

R(−)sym(N s) ∼= N ⊕ Homk(g↓,R(−)asym(N s))[−1].

Example 6.15. On passing to cohomology, for N ∈ Ob ModLie
gLie

one recovers the isomorphism

HL∗(g;Na) ∼=
{
N ∗ = 0
HL∗−1(g; Homk(g↓, N)s) ∗ > 0

of [FW21, Lemma 1.4(b)].

7. Extensions à la Loday-Pirashvili

The key to the (co)homological splitting isomorphisms is provided by universal extensions inspired from
Loday and Pirashvili’s extension [LP96, equation (1.1)].

Proposition 7.1. For g a Leibniz algebra, there are exact functors

E g
l ,E

g
r : ModLie

gLie
⇒ ModLeib

g

such that, for N ∈ Ob ModLie
gLie

:

(1) E g
r (N)↓ ∼= N ⊕ Homk(g↓, N), where Homk(g↓, N) is equipped with the diagonal structure, and there is

a natural short exact sequence

0→ Na → E g
r (N)→ Homk(g↓, N)s → 0,

where the left action g⊗E g
r (N)→ E g

r (N) is determined by the component g⊗Homk(g, N)→ N , which
is given by the evaluation map;

(2) E g
l (N)↓ ∼= (N ⊗ g↓)⊕N , where (N ⊗ g↓) is equipped with the diagonal structure, and there is a natural

short exact sequence

0→ (N ⊗ g↓)a → E g
l (N)→ N s → 0,

where the left action g⊗ E g
l (N)→ E g

l (N) is determined by the component g⊗N → (N ⊗ g), which is
given by the transposition of tensor factors.

Moreover, there is a natural duality isomorphism E g
l (N)] ∼= E g

r (N ]).

Proof. The first statement corresponds to the extension given in [LP96, Equation (1.1)]. (The reader will check
that this holds for g an arbitrary Leibniz algebra, although it is only applied to the case g = gLie in [LP96]; cf.
the second case below.) It is clear that E g

r (−) gives an exact functor, as stated.
For the second case, by construction there is a splitting of right gLie-modules E g

l (N)↓ ∼= (N ⊗ g↓) ⊕ N .
With respect to this splitting, for mi, n ∈ N and xi ∈ g, with i in a finite indexing set I , one has the element∑
i∈I (mi⊗xi)+n ∈ E g

l (N), which will be denoted in this proof by [[
∑
i∈I (mi⊗xi), n]], so as to avoid potential

confusion. In particular, n ∈ N is denoted by [[0, n]] when considered as an element of E g
l (N).

The left and right g-actions are given explicitly for y, z ∈ g by:

[[
∑
i∈I

(mi ⊗ xi), n]]y = [[
∑
i∈I

(miy ⊗ xi +mi ⊗ xiy), ny]]

z[[
∑
i∈I

(mi ⊗ xi), n]] = [[n⊗ z,−nz]].

To check that this defines a g-module structure, one reduces to considering the action on [[0, n]]. The relation
(MLL) is clear, since it only involves right multiplication. For (LML) one uses the equalities:

x([[0, n]]y) = x[[0, ny]] = [[ny ⊗ x,−(ny)x]]

(x[[0, n]])y = [[n⊗ x,−nx]]y = [[ny ⊗ x+ n⊗ xy,−(nx)y]]

(xy)[[0, n]] = [[n⊗ xy,−n(xy)]]

to check that x([[0, n]]y) = (x[[0, n]])y − (xy)[[0, n]], as required.
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Similarly, for (LLM), one has the equalities:

x(y[[0, n]]) = x[[n⊗ y,−ny]] = [[−ny ⊗ x, (ny)x]]

(xy)[[0, n]] = [[n⊗ xy,−n(xy)]]

(x[[0, n]])y = [[n⊗ x,−nx]]y = [[ny ⊗ x+ n⊗ xy,−(nx)y]]

which give x(y[[0, n]]) = (xy)[[0, n]]− (x[[0, n]])y, as required.
It is clear that E g

l (−) gives an exact functor, as stated. The duality statement relating the two extensions is
established by direct verification. �

Corollary 7.2. For g a Leibniz algebra and N ∈ Ob ModLie
gLie

, the extensions of Proposition 7.1 provide classes

[E g
l (N)] ∈ Ext1ModLeib

g
(N s, (N ⊗ g↓)a)

[E g
r (N)] ∈ Ext1ModLeib

g
(Homk(g↓, N)s, Na)

that are natural in the following sense: if f : N → N ′ is a morphism of ModLie
gLie

, then

(f ⊗ g↓)∗[E
g
l (N)] = f∗[E g

l (N ′)] ∈ Ext1ModLeib
g

(N s, ((N ′ ⊗ g↓)a)

f∗[E
g
r (N)] = (Homk(g↓, f))∗[E g

r (N ′)] ∈ Ext1ModLeib
g

(Homk(g↓, N)s, (N ′)a).

Moreover, these extensions are related by:

[E g
l (N)] = η∗N [E g

r (N ⊗ g↓)]

[E g
r (N)] = (εN )∗[E

g
l (Homk(g↓, N))]

where ηN and εN are respectively the unit and counit of the adjunction (−⊗ g↓) a Homk(g↓,−).

Proof. The first part of the Corollary follows directly from the description of the functors E g
l (−) and E g

r (−) in
Proposition 7.1; in particular, this yields the naturality statement.

The compatibility relations are verified directly, using the identification of ηN and εN given in Proposition
2.13. �

Lemma 7.3. For g a Leibniz algebra, there is a natural isomorphism of g-modules:

UL(g) ∼= E g
l (U(gLie)).

Proof. By construction, E g
l (U(gLie)) occurs in an extension of the form

0→ (U(gLie)⊗ g↓)a → E g
l (U(gLie))→ U(gLie)

s → 0

which splits as right gLie-modules. That E g
l (U(gLie)) is isomorphic to UL(g) as a g-module can be checked by

comparison with Proposition 3.5 and the structure of ker d1 made explicit in the proof of Corollary 3.8. �

Propositions 7.4 and 7.6 below exhibit the key homological properties of E g
l (−) and E g

r (−) respectively.

Proposition 7.4. For N ∈ Ob ModLie
gLie

, there are natural isomorphisms:

L∗symE g
l (N) ∼=

{
N ∗ = 0
0 ∗ > 0.

Proof. First consider symE g
l (N), which is isomorphic to E g

l (N)/(E g
l (N))0, by Proposition 3.4. Now, for n ∈

N s ⊂ E g
l (N) (using the splitting as k-modules) and any x ∈ g, calculating in E g

l (N) gives

xn+ nx = n⊗ x ∈ (N ⊗ g↓)a,

by the definition of E g
l (N). One deduces that (N ⊗ g↓)a = (E g

l (N))0, giving the natural isomorphism
symE g

l (N) ∼= N induced by E g
l (N) � N s.

It remains to show the vanishing of (Lsym)∗E
g
l (N) for ∗ > 0. By Lemma 7.3, in the case N = U(gLie),

E g
l (N) is isomorphic to UL(g) as a g-module. Since this is projective, the result follows in this case.

For a general N , there exists a short exact sequence of gLie-modules of the form:

0→ K →
⊕
I
U(gLie)→ N → 0,

for some indexing set I. Applying the exact functor E g
l (−) gives the short exact sequence of g-modules:

0→ E g
l (K)→

⊕
I

E g
l (U(gLie))→ E g

l (N)→ 0.

By the above, the associated long exact sequence has tail:

0→ (Lsym)1E
g
l (N)→ K →

⊕
I
U(gLie)→ N → 0,
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which implies that (Lsym)1E
g
l (N) = 0, since K →

⊕
I U(gLie) is injective.

This holds for any gLie-module N ; a standard induction using the long exact sequence then shows vanishing
in all positive degrees. �

Remark 7.5. The result of Proposition 7.4 can be interpreted conceptually in the derived category of right gLie-

modules as the natural isomorphism Lsym(E g
l (N))

∼=→ N . The extension defining E g
l (N) gives the distinguished

triangle
E g
l (N)→ Ns → (N ⊗ g↓)a[1]→

in the derived category of g-modules, where the morphism Ns → (N ⊗g↓)a[1] corresponds to the class [E g
l (N)].

Then, applying the total derived functor Lsym gives the distinguished triangle

Lsym(E g
l (N)) ∼= N → Lsym(Ns)→ Lsym((N ⊗ g↓)a)[1]→ .

This is split by the canonical morphism Lsym(Ns) → N . This splitting should be compared with that given
in Remark 6.11. In particular, the split surjection Lsym(Ns)→ Lsym((N ⊗ g↓)a)[1] is induced by [E g

l (N)].

The result corresponding to Proposition 7.4 for E g
r (N) uses the functor (−)asym and its right derived functors.

However, the argument reverses the line of reasoning, starting from the analogue of the split distinguished
triangle in Remark 7.5.

Proposition 7.6. For N ∈ Ob ModLie
gLie

, there are natural isomorphisms

R∗(−)asymE g
r (N) ∼=

{
N ∗ = 0
0 ∗ > 0.

Proof. Using the explicit description of (−)asym given in Proposition 3.9, one checks that (E g
r (N))asym = N .

For the higher derived functors, use the identification of the total right derived functor

R(−)asymM = HomUL(g)(W•(g),M)

for M ∈ Ob ModLeib
g , given by Corollary 6.5.

The defining short exact sequence for E g
r (N) therefore gives the short exact sequence of complexes:

0 // HomUL(g)(W•(g), Na) //

∼=
��

HomUL(g)(W•(g),E g
r (N)) //

∼=
��

HomUL(g)(W•(g),Homk(g↓, N)s) //

∼=
��

0

0 // Homk(g⊗•, N) // Homk(g⊗•,E g
r (N)) // Homk(g⊗•+1, N) // 0,

where the isomorphism Homk(g⊗•,Homk(g↓, N)) ∼= Homk(g⊗•+1, N) has been used for the bottom right hand
term.

The differential of the complex Homk(g⊗•, N) takes into account that the g-module Na is antisymmetric
and the differential of HomModLeib

g
(W•(g),Homk(g↓, N)s) takes into account that this complex arose from the

symmetric coefficients Homk(g↓, N)s.
The proof of [FW21, Lemma 1.4(b)] shows that the outer complexes are isomorphic, up to the shift of degree.

More precisely, the argument shows that the connecting isomorphism in the associated long exact sequence for
cohomology is an isomorphism in positive degrees. The result follows. �

Remark 7.7. The class [E g
r (N)] is represented by a morphism Homk(g↓, N)s[−1]→ Na in the derived category

of g-modules. Proposition 7.6 shows that, on applying R(−)asym, one obtains the split inclusion in the derived
category of right gLie-modules:

R(−)asym(Homk(g↓, N)s)[−1]→ R(−)asym(Na)

corresponding to the splitting of Remark 6.14.

8. Relating Ext as g-modules and as gLie-modules

Let g be a Leibniz algebra. The symmetric and antisymmetric module functors

(−)s, (−)a : ModLie
gLie

⇒ ModLeib
g

are exact and have both left and right adjoints (see Section 3). In particular, one has the following:

Lemma 8.1. For g a Leibniz algebra and N1, N2 gLie-modules,

(1) (−)s induces a natural split monomorphism Ext∗ModLie
gLie

(N1, N2) ↪→ Ext∗ModLeib
g

(N s
1, N

s
2);

(2) (−)a induces a natural split monomorphism Ext∗ModLie
gLie

(N1, N2) ↪→ Ext∗ModLeib
g

(Na
1 , N

a
2 ).

Proof. The natural morphisms are induced by the respective exact functors (−)s and (−)a. The restriction

functor (−)↓ : ModLeib
g → ModLie

gLie
of Proposition 2.4 is exact and induces the natural retract. �
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The main result of the paper refines this by identifying the complement:

Theorem 8.2. For g a Leibniz algebra and N1, N2 gLie-modules,

(1) there is a natural isomorphism

Ext∗ModLeib
g

(N s
1, N

s
2) ∼= Ext∗ModLie

gLie

(N1, N2)⊕ Ext∗−1
ModLeib

g
((N1 ⊗ g↓)a, N s

2)

and the inclusion Ext∗−1
ModLeib

g
((N1 ⊗ g↓)a, N s

2) ↪→ Ext∗ModLeib
g

(N s
1, N

s
2) is given by Yoneda product with the

class [E g
l (N1)];

(2) there is a natural isomorphism

Ext∗ModLeib
g

(Na
1 , N

a
2 ) ∼= Ext∗ModLie

gLie

(N1, N2)⊕ Ext∗−1
ModLeib

g
(Na

1 ,Homk(g↓, N2)s)

and the inclusion Ext∗−1
ModLeib

g
(Na

1 ,Homk(g↓, N2)s) ↪→ Ext∗ModLeib
g

(Na
1 , N

a
2 ) is given by Yoneda product with

the class [E g
r (N2)].

Remark 8.3. The rôle of the extension classes [E g
l (N1)] and [E g

r (N2)] in Theorem 8.2 was inspired by the usage
of the extension E g

r (−) by Loday and Pirashvili (see [LP96, Remark 3.2]).

Theorem 8.2 is a consequence of the following, which highlights the homological rôle of the functors E g
l (−)

and E g
r (−).

Proposition 8.4. For g a Leibniz algebra and N1, N2 gLie-modules,

(1) the composite

Ext∗ModLie
gLie

(N1, N2)→ Ext∗ModLeib
g

(N s
1, N

s
2)→ Ext∗ModLeib

g
(E g
l (N1), N s

2)

is an isomorphism, where the first map is induced by the functor (−)s and the second by the canonical
surjection E g

l (N1) � N s
1;

(2) the composite

Ext∗ModLie
gLie

(N1, N2)→ Ext∗ModLeib
g

(Na
1 , N

a
2 )→ Ext∗ModLeib

g
(Na

1 ,E
g
r (N2))

is an isomorphism, where the first map is induced by the functor (−)a and the second by the canonical
inclusion Na

2 ↪→ E g
r (N2).

Proof. For g a Leibniz algebra, M a g-module and N a gLie-module, there are natural, convergent first quadrant
cohomological Grothendieck spectral sequences:

Extp
ModLie

gLie

(LqsymM,N) ⇒ Extp+q
ModLeib

g
(M,N s)

Extp
ModLie

gLie

(N,Rq(−)asymM)) ⇒ Extp+q
ModLeib

g
(Na,M).

For the first statement, take M = E g
l (N1) and N = N2. Proposition 7.4 gives that Lqsym(E g

l (N1)) = 0 for
q > 0 and is N1 for q = 0. It follows that the first spectral sequence collapses at the E2-page and the required
isomorphism is the edge isomorphism of the spectral sequence.

For the second statement, take M = E g
r (N2) and N = N1. Proposition 7.6 gives that Rq(−)asym(E g

r (N2)) = 0
for q > 0 and is N2 for q = 0. Thus the second spectral sequence collapses at the E2-page and, once again, the
required isomorphism is given by the edge isomorphism. �

Proof of Theorem 8.2. This follows from Proposition 8.4. The argument is given for the first case; the second
is proved similarly.

Consider the short exact sequence 0→ (N1⊗g↓)a → E g
l (N1)→ N s

1 → 0 in ModLeib
g . Applying Ext∗ModLeib

g
(−, N s

2)

gives

Ext∗ModLie
gLie

(N1, N2)

∼=
��uu

. . . // Ext∗−1
ModLeib

g
((N1 ⊗ g↓)a, N s

2) // Ext∗ModLeib
g

(N s
1, N

s
2) // Ext∗ModLeib

g
(E g
l (N1), N s

2) // . . .

in which the horizontal row is the associated long exact sequence and the commutative triangle is provided by
Proposition 8.4. This yields the required splitting. �

Remark 8.5. A conceptual proof of Theorem 8.2 can be given working at the level of the appropriate derived
categories, as sketched below.

For the first statement, as in Remark 7.5, applying the total derived functor Lsym to the distinguished
triangle in the derived category of ModLeib

g associated to E g
l (N1):

E g
l (N1)→ N s

1 → (N1 ⊗ g↓)a[1]→
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gives the split distinguished triangle

N1 → Lsym(N s
1)→ Lsym

(
(N1 ⊗ g↓)a

)
[1]→

in the derived category of ModLie
gLie

. Calculating morphisms [−, N2[∗]] in this derived category then gives the
result, using that Lsym is left adjoint to (−)s.

The approach to the second statement is similar, this time appealing to Remark 7.7. Namely, there is a
distinguished triangle in the derived category of ModLeib

g associated to E g
r (N2):

Homk(g↓, Ns)
s[−1]→ Na

2 → E g
r (N2)→

where the left hand morphism represents [E g
r (N2)]. Applying R(−)asym gives the distinguished triangle:

R(−)asym
(
Homk(g↓, N2)s

)
[−1]→ R(−)asym(Na

2 )→ N2 →,

since R(−)asym(E g
r (N2)) ∼= N2 in the derived category of ModLie

gLie
, by Proposition 7.6. This distinguished

triangle is split. The result follows by applying [N1,−[∗]] using that R(−)asym is right adjoint to (−)a.

8.1. Example applications. Recall that Lie algebra cohomology H∗(gLie;N) with coefficients in a gLie-module
N is naturally isomorphic to Ext∗ModLie

gLie

(k, N). Thus Theorem 8.2 implies:

Corollary 8.6. For g a Leibniz algebra and N a gLie-module, there are natural isomorphisms:

Ext∗ModLeib
g

(k, N s) ∼= H∗(gLie;N)⊕ Ext∗−1
ModLeib

g
((g↓)a, N s)

Ext∗ModLeib
g

(N s,k) ∼= H∗(gLie;N
])⊕ Ext∗−1

ModLeib
g

((N ⊗ g↓)a,k)

Ext∗ModLeib
g

(k, Na) ∼= H∗(gLie;N)⊕ Ext∗−1
ModLeib

g
(k,Homk(g↓, N)s)

Ext∗ModLeib
g

(Na,k) ∼= H∗(gLie;N
])⊕ Ext∗−1

ModLeib
g

(Na, ((g↓)])s),

where k is the trivial g-module.
Hence there are natural isomorphisms:

Ext∗ModLeib
g

(N s,k) ∼= H∗(gLie;N
])⊕H∗−1(gLie; (N ⊗ g↓)])⊕ Ext∗−2

ModLeib
g

((N ⊗ g↓)a, ((g↓)])s)

Ext∗ModLeib
g

(k, Na) ∼= H∗(gLie;N)⊕H∗−1(gLie; Homk(g↓, N))⊕ Ext∗−2
ModLeib

g
((g↓)a,Homk(g↓, N)s).

Remark 8.7. There are duality relations between the above statements (cf. Corollary 4.8). Moreover, there are
related duality isomorphisms when g is finite-dimensional and one restricts to working in the derived category
of finite-dimensional modules (cf. Remark 4.9).

Example 8.8. Let g be a Leibniz algebra over a field of characteristic zero such that gLie is semisimple; thus
Whitehead’s lemmas imply that H1(gLie;N) = H2(gLie;N) = 0 for any finite-dimensional gLie-module N .
Moreover, Weyl’s theorem implies that the category of finite-dimensional gLie-modules is semisimple.

Thus, in cohomological dimension ≤ 2, Theorem 8.2 and its Corollary 8.6 give generalizations of the results
in [LP96] and [MW21].

9. The case of Tor

This Section explains the counterparts of the splitting results of Section 8 for Tor. Throughout, M will be
taken to be a right gLie-module and N a left gLie-module. Adapting Notation 4.1 to U(gLie)-modules using the
conjugation χ, one has the associated left gLie-module M [ and the right gLie-module [N .

The analogue of considering both coefficients to be symmetric or both coefficients to be antisymmetric is
given by the following bifunctors of M and N :

Md1 ⊗UL(g) d1N
Md0 ⊗UL(g) d0N

together with their derived functors, which give the homological analogues of those considered in Theorem 8.2.
In this context, the Kurdiani involution allows reduction to the first case, as established below by Proposition
9.3.

This relies upon the following Lemma, which is closely related to Corollary 4.4 and is proved using Proposition
4.3:

Lemma 9.1. For N a left gLie-module, there are natural isomorphisms of right UL(g)-modules:

[(d1N) ∼= ([N)d0

[(d0N) ∼= ([N)d1 .
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Remark 9.2. As in Section 3, the right UL(g)-module Md1 identifies with M s. By Lemma 9.1, there is a natural
isomorphism

d1N ∼=
(
([N)a

)[
.

When working with both left and right UL(g)-modules, the notation (−)d1 and d1(−) is more appropriate.

Proposition 9.3. The Kurdiani involution induces natural isomorphisms

Md1 ⊗UL(g) d1N ∼= ([N)d0 ⊗UL(g) d0(M [)

TorUL(g)∗ (Md1 , d1N) ∼= TorUL(g)∗ (([N)d0 , d0(M [)).

Proof. The first isomorphism is a consequence of Lemma 9.1 and the second follows on passage to derived
functors. �

Remark 9.4. Proposition 9.3 does not have an immediate counterpart when considering Ext. In the latter
context one has to use the duality functor (−)] in place of the equivalence of categories arising from the Kurdiani
involution. This is not an (anti)equivalence of categories and the induced morphism on Ext (cf. Corollary 4.8)
is not in general an isomorphism.

To avoid this issue, one can restrict to working with the subcategory of finite-dimensional modules, as in
[MW21], for example.

Theorem 9.5. For g a Leibniz algebra, M a right gLie-module and N a left gLie-module, there is a natural
isomorphism:

TorUL(g)∗ (Md1 , d1N) ∼= TorU(gLie)
∗ (M,N)⊕ Tor

UL(g)
∗−1 ((M ⊗ g↓)d0 , d1N)

where the morphism TorUL(g)∗ (Md1 , d1N)→ Tor
UL(g)
∗−1 ((M ⊗ g↓)d0 , d1N) is induced by cap product with the class

[E g
l (M)].

Proof. The proof is analogous to that of Theorem 8.2, mutatis mutandis. �

Remark 9.6. Theorem 9.5 gives a generalization of Example 6.12 to Tor in the same way that Theorem 8.2
generalizes Example 6.15 to Ext.
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