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Visual Abstract

Gamma (�40-90 Hz) and beta
(�15-40 Hz) oscillations and their as-
sociated neuronal assemblies are
key features of neuronal sensory pro-
cessing. However, the mechanisms
involved in either their interaction
and/or the switch between these dif-
ferent regimes in most sensory sys-
tems remain misunderstood. Based

on in vivo recordings and biophysical modeling of the mammalian olfactory bulb (OB), we propose a general
scheme where OB internal dynamics can sustain two distinct dynamic states, each dominated by either a gamma
or a beta regime. The occurrence of each regime depends on the excitability level of granule cells, the main OB
interneurons. Using this model framework, we demonstrate how the balance between sensory and centrifugal
input can control the switch between the two oscillatory dynamic states. In parallel, we experimentally observed
that sensory and centrifugal inputs to the rat OB could both be modulated by the respiration of the animal (2-12
Hz) and each one phase shifted with the other. Implementing this phase shift in our model resulted in the
appearance of the alternation between gamma and beta rhythms within a single respiratory cycle, as in our
experimental results under urethane anesthesia. Our theoretical framework can also account for the oscillatory
frequency response, depending on the odor intensity, the odor valence, and the animal sniffing strategy observed
under various conditions including animal freely-moving. Importantly, the results of the present model can form

Significance Statement

Neuronal oscillations accompany the sensory perception at multiple timescales. Fast-paced activities
(gamma, �40-90 Hz; beta, �15-40 Hz) facilitate discrimination and signal cognitive response. Slower
processes (2-12 Hz) gate the time window for sensory and centrifugal inputs to ascend and descend,
respectively, relative to sensory relays. In the olfactory bulb, which is the first relay of the olfactory system,
the main local interneurons provide a major interface between ascending and descending activities. The
balance between these two pathways controls the two types of inhibition released by these interneurons on
the main relay cells and thereby the network oscillatory dynamics. Using minimalist computational simu-
lations and in vivo experiments, we proposed a general scheme intimately linked to olfactory processing.
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a basis to understand how fast rhythms could be controlled by the slower sensory and centrifugal modulations
linked to the respiration.

Visual Abstract: See Abstract

Key words: Beta oscillations; computational model; gamma oscillations; sensory processing; short-term plas-
ticity; top-down processing

Introduction
Oscillatory activity underlying neuronal assembly for-

mation is crucial in most functions, including environment
perception, adaptive motor responses, and memory for-
mation (Engel and Singer, 2001; Tallon-Baudry et al.,
2001; Varela et al., 2001). Those oscillatory mechanisms
involve fine and broader timescales (Schroeder et al.,
2010). Due to interarea connections, these mechanisms
proved to be difficult to disentangle. In this regard, the
olfactory bulb (OB) is well suited to investigate those
mechanisms because of both the ability to handle sepa-
rately the arrival of sensory inputs and centrifugal fibers
(Ravel and Pager, 1990; Boyd et al., 2012; Markopoulos
et al., 2012), and the prominence of these multiscale
temporal phenomena.

The OB expresses two fast dichotomous regimes, beta
(15-40 Hz) and gamma (40-90 Hz), which can be subdi-
vided into two bands in particular conditions (Kay, 2003;
Manabe and Mori, 2013), and a slower one (in the theta
frequency range 2-12 Hz) related to respiratory rhythm (for
review see, Kay, 2014; Martin and Ravel, 2014). On a
functional level, gamma oscillations are linked to odor
quality (Kashiwadani et al., 1999; Cenier et al., 2008), odor
intensity (Neville and Haberly, 2003; Courtiol et al.,
2011a), and odor learning (Kay, 2014; Martin and Ravel,
2014). Beta oscillations are observed in response to par-
ticular odorants (Chapman et al., 1998; Zibrowski et al.,
1998), reflecting pure sensory-processing dynamics but
also depend strongly on the experience (Martin et al.,
2004; Kay, 2014). Importantly, the occurrence pattern of
those two fast alternating oscillations are intertwined with
the respiratory slow rhythm (Buonviso et al., 2003; Lep-
ousez and Lledo, 2013; Fukunaga et al., 2014), which

provides a window for odor discrimination (Uchida et al.,
2006; Bathellier et al., 2008a; Shusterman et al., 2011).
Gamma oscillations tend to appear locked to the inspira-
tion–expiration transition (Manabe and Mori, 2013),
whereas beta oscillations can either be locked to the late
expiration (Buonviso et al., 2003; Cenier et al., 2008) or
cover multiple respiratory cycles in awake conditions.
While it is known that fast gamma and beta rhythms both
rely on the dendrodendritic interaction between excitatory
mitral cells (MCs)/tuft cells (TCs) and inhibitory granule
cells (GCs; Rall and Shepherd, 1968; Lagier et al., 2004;
Manabe and Mori, 2013; Fourcaud-Trocmé et al., 2014;
Fukunaga et al., 2014; Lepousez et al., 2014), with the
expression of beta oscillations requiring the integrity of
the relation OB-cortex (Neville and Haberly, 2003; Martin
et al., 2006), the mechanisms that control the beta–
gamma switch are not well understood. Here, we pro-
posed to test the hypothesis that the mechanistic process
underlying the beta–gamma switch (which could be clear
cut or more graded) relies on a competition between the
balanced influence of sensory and centrifugal inputs. We
approached this question through a simple biophysical
model complemented by experimental observations in
various conditions to calibrate the model outputs. This
model aims to give plausible mechanisms able to explain
(1) the generation of both gamma and beta rhythms by the
same network of excitatory and inhibitory neurons, (2)
what controls the switch between both, and (3) the phase
relationship between fast oscillations and the respiratory
cycle, as this is crucial for sensory and multisensory
integration (Deschênes et al., 2012). More precisely, the
generic mechanisms present in the model are as follows:
(1) an entrainment mechanism for the gamma oscilla-
tions (Wang, 2010); (2) a separate mechanism for the
emergence of beta oscillations based on a GC spike-
dependent PING (pyramidal-interneuron gamma) mecha-
nism (Börgers and Kopell, 2003; Brea et al., 2009;
Fourcaud-Trocmé et al., 2011); and (3) a slow respiration-
like modulation of both sensory and top-down inputs
based on known and new experimental data. The simu-
lations showed that GC activation mode (local via periph-
eral inputs vs global via centrifugal inputs) determines the
dominant frequency of the oscillatory regime (gamma or
beta, respectively). The switch to another regime depends
critically on the balance and the relative timing between
sensory and centrifugal inputs.

Based on a minimal set of experimentally well described
elements, this model provides a mechanistic basis to
understand the different dynamic states of the bulbar
network related to sensory processing and their interac-
tion during various behavioral conditions. It also sets the
dynamic framework for understanding how additional
neuronal components (Batista-Brito et al., 2008; Eyre
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et al., 2008; Fukunaga et al., 2012; Manabe and Mori,
2013; Miyamichi et al., 2013) could enrich the dynamics
that are necessary for a proper olfactory performance.

Materials and Methods
Experiments
Preparation and recordings

All animal procedures were performed in accordance
with the regulations of the authors’ institutional animal
care committee. All efforts were made to minimize animal
suffering and the number of animals used. Experiments
were performed on male adult Wistar rats (260–400 g;
Charles River Laboratories), which were maintained on a
normal diet and under a 6:00 A.M. to 6:00 P.M. lights-on
regimen.

Rats were anesthetized with urethane (1.5 mg/kg, i.p.;
with additional supplements as needed) and placed in a
stereotaxic apparatus. The dorsal region of the OB was
exposed. Bulbar activity was recorded as a broadband
signal (0.1-5 kHz) using linear 16-channel silicon probes
(NeuroNexus Technologies) with a home-made, 16-
channel DC amplifier. Electrodes on the probe were
spaced by 50 �m. The data were digitally sampled at 10
kHz and acquired on a PC using the IOTech acquisition
system (Wavebook, IOTech Inc.). Lateral olfactory tract
(LOT) electrical stimulations were performed via bipolar
stainless steel electrodes, which were stereotaxically po-
sitioned in the LOT (bregma coordinates: anteroposterior,
3.7 mm; lateral, 3.4 mm). Optimal placement was deter-
mined by the observation of field potentials evoked in the
OB by electrical stimulation (constant current square
pulses, 100 �s; amplitude range, 0.1-0.5 mA). The respi-
ration frequency was used to monitor the depth of anes-
thesia, and the injection of urethane was performed
accordingly when the frequency increased.

The respiration signal was recorded using a homemade
flowmeter based on a fast response time thermodilution
airflow sensor (bidirectional microbridge mass airflow
sensor, AWM 2000 family, Micro Switch Honeywell; de-
scribed in detail in the study by Roux et al., 2006). The
respiratory phases of the LOT-evoked potential and other
events were computed by detecting five landmarks on the
respiratory signal [the inspiration (I) maximum, the I/expi-
ration (I/E) transition, the E maximum, the E plateau (EP),
and the E/I transition)]. We then aligned landmarks of
different respiratory cycles and used a linear phase ad-
vance between two landmarks.

Odors were delivered at 9% of the saturated vapor
pressure (SVP) during 5 s through a dilution olfactometer
(440 ml/min). Odors used were 2-heptanone, ethyl-
benzoate, heptanal, and isoamyl-acetate. The odorant
stimulation does not aim to simulate natural stimuli, as
those probably activate more glomeruli at a lower con-
centration (Vincis et al., 2012), but rather to present a
simple and reliable way to elicit gamma and beta oscilla-
tions similar to those observed in natural conditions in
freely behaving animals (i.e., to have a physiological
model of fast oscillation). In anesthetized conditions, the
high concentration induces oscillation amplitudes similar
to the ones observed in awake conditions or in response

to low-concentration stimulation (Rosero and Aylwin,
2011; Lepousez et al., 2014). No aversive behavior of the
animals was observed in our group for those odorants at
that concentration (our unpublished observation). De-
pending on the experiment, rats were either freely breath-
ing or tracheotomized in order to control for the intensity
of the airflow input. In the latter case, odors were either
simply pulled continuously into the nasal cavity through
constant aspiration or were delivered using a rhythmic
nasal airflow reproducing breathing dynamics but with
different amplitudes.

CSD
Local field potentials (LFPs) in the OB were recorded

with linear 16-channel silicon probes (a1 � 16-5 mm
50-177, NeuroNexus) inserted perpendicularly into OB
layers. A one-dimensional current source density (CSD)
analysis (for review of CSD, see Mitzdorf, 1985) was
performed using the inverse CSD method (Pettersen
et al., 2006). For each recording location, the electrode
closest to the MC layer (MCL) was determined off-line by
searching for the flattest LFP response to LOT electrical
stimulation (Rall and Shepherd, 1968). Channels in the
glomerular layer (GL), external plexiform layer (EPL), and
GC layer (GCL) were identified according to their distance
to the MCL. Finally, CSD maps were averaged across
recording sessions (n � 18 animals or electrode inser-
tions; 2 animals had 2 insertions, others had only 1) after
spatial alignment on their MCL. Practically, the EPL cur-
rent source amplitude was computed as the median of the
20% highest points, from any of the three electrodes
immediately more superficial than the MCL, in the time
window of interest (10-60 ms following the peak of the
LOT-evoked LFP response). Source amplitudes from a
given recording location were normalized to a mean of 1
in order to compare changes along the respiratory cycles
in different recording sessions and locations.

Multiunit activity
Multiunit activity data was obtained by high-pass filter-

ing the OB signals �300 Hz of the three electrodes clos-
est to the MCL (for the 18 recorded session locations).
Spikes were detected as peaks larger than 7 times the SD
of the filtered signal and with a minimum interspike inter-
val of 2 ms.

Simulations
Neuron model characteristics
Mitral cell model

The MC model used was adapted from previous studies
(Wang and Buzsáki, 1996; Bathellier et al., 2006; David
et al., 2009). The model uses parameters from Bhalla and
Bower (1993) and Wang (1993). Its essential features are
(1) its spiking activity through sodium spikes, (2) its burst-
ing activity, (3) its current frequency response, (4) its
resonant properties as revealed through subthreshold os-
cillations, and (5) its phase response curve, as described
into detail in the study by David et al. (2009). An example
of the responses of the model to a range of excitatory
conductances is presented in Figure 1A. The variables
of the model are the membrane potential (Vm), the activa-
tion gating variable of the fast rectifying potassium current
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(mKf), the activation (mKs), and the inactivation (hKs) gating
variables of the slow potassium current. The Equations
1–4 fully describe its dynamic behavior, as follows:

C
dVm

dt
� �gL(Vm � EL) � gNamNa,�

3 (Vm � ENa)

� gNaPmNaP,�(Vm � ENa) � gKfmKf(Vm � EK)
� gKAm� KAh� KA(Vm � EK) � gKsmKshKs(Vm � EK)
� Isyn,I � Iinput,E

(Eq.1)

dmKf

dt
� �

mKf

�Kf
m

(Eq.2)

dmKs

dt
�

mKs,� � mKs

�Ks
m

(Eq.3)

dhKs

dt
�

hKs,� � hKs

�Ks
h

(Eq.4)

The gating variable parameters were given by the fol-
lowing:

m�,Na �
aNa

m

aNa
m � bNa

m

aNa
m � 0.32·

Vm � 50

1-exp(�
Vm � 50

4
)

bNa
m � 0.28·

Vm � 23

exp(
Vm � 23

5
) � 1

m�,Nap �
1

exp(�
Vm � 51

5
) � 1

m�,Ks �
1

1 � exp(�
Vm � 34

6.5
)

h�,Ks �
1

1 � exp(
Vm � 65

6.6
)

�Ks
h � 100 �

110

exp(�
Vm � 71.6

6.85
) � 1

�Kf
m � 2.6 ms

�Ks
m � 10 ms.

Figure 1. Synaptic connections of the network. A, MC intrinsic
responses to a range of excitatory conductances (gE). B, Net-
work properties. Excitatory connections consist of AMPA syn-
apses (red) from MC to GC. They are activated by MC
presynaptic spikes and can be subject to short-term plasticity
used later on. They generate EPSCs (red trace) specific to each
GC. EPSPs (see inset) are integrated at the GC soma and can
trigger a spike if the resting membrane potential of the GC is
depolarized enough (especially by centrifugal modulation). C,
Inhibitory connections consist of GABAA synapses, which are
activated by presynaptic GC spikes (strong inhibition). They
generate much larger IPSPs (see inset) than GC spike-
independent inhibition. D, Inhibitory connections also consist of
GABAA synapses (purple), which are activated by MC presynap-
tic spikes corresponding to local integration of the GC spines
without depending on GC spikes (weak inhibition). They generate

Figure 1. continued
IPSCs (see bottom inset) in all MCs with distinct delays. The
IPSPs (see top inset) can be followed by intrinsic subthreshold
oscillations (STOs). C, Note that a full network contains 100 MCs
and 100 GCs, MCs are all-to-all coupled via weak inhibition, and
any MC–GC pair is reciprocally connected with AMPA and
strong inhibition with a probability of 0.5.
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Each time the membrane potential reached �30 mV,
a spike was generated, Vm was reset to �65 mV, mKs

was incremented by 0.03, hKs was incremented by
0.002, and mKf was incremented by 0.4 in order to
reproduce the dynamics of the membrane potential
after each spike and to preserve the transition from
spiking to subthreshold oscillations as observed in the
studies by Desmaisons et al. (1999) and Balu et al.
(2004).

The maximal conductance of the ionic channels was
gNa � 500 S/m2; gNaP � 1.1 S/m2; gKs � 310 S/m2; gKA �
100 S/m2; gKf � 100 S/m2. The leak conductance is gL �
0.1 S/m2. The product m� KA·h� KA is approximated to 0.004.
The reverse ionic potentials are EK � �75 mV and ENa �
45 mV, and the membrane reversal potential is EL �
�66.5 mV. The membrane capacitance was set to 0.01
F/m2.

Granule cell model We used a quadratic integrate and
fire (QIF) model (Börgers and Kopell, 2003) for which
parameters were fitted to reproduce the frequency–cur-
rent relationship observed in a more detailed model of
GCs (Davison et al., 2003). Its single variable, Vm, was
described by Equation 5, as follows:

�m

dVm

dt
�

(Vm � VT)2

2�T
�

IT
gL

�
Icentrifugal,E � Isyn,E

gL

(Eq.5)

Each time the membrane potential reached the thresh-
old of 0 mV; it was reset to �70 mV. The membrane time
constant for the granule cell was set to �m � 60 ms
(Schoppa et al., 1998). The QIF threshold VT � �60 mV
was based on the spike shape observed in the detailed
GC model (Davison et al., 2003). gL �16.66 nS, �T � 0.1
mV, IT � 0.02 nA were parameters that resulted from the
fit.

Synaptic inputs at the dendrodendritic synaptic junction
All phasic synaptic currents were described by an equa-
tion (Eq.6) of the form:

Isyn,X � �gX,maxsX(V � EX) (Eq.6)

where X is the considered current, gX,max is the maximal
synaptic conductance, sX is the synaptic activation
(fraction of open channels between 0 and 1), and EX is
the synaptic reversal potential. Parameter values per
synapse are given in the following sections.

AMPA synapses The fraction of open channels of
AMPA synapses from MCs to GCs (Fig. 1B) was modeled
as a single exponential described by Equation 7, as fol-
lows:

dsE

dt
� �

sE

�E
. (Eq.7)

The decay time constant �E was set to 3 ms according
to Schoppa et al. (1998). A synaptic delay of 1 ms was set
from the spike time of the MC to the start of the EPSC
(Davison et al., 2003). Other parameters were EE � 0 mV
and gE,max � 4 nS.

GABAA synapses The GABAA synaptic current (EI �
�70 mV) received by MCs had the following three com-
ponents: (1) the tonic part, consisting of the constant
inhibitory current, received by all MCs, of conductance
gI,cst � 20 S/m2 (David et al., 2009) as it is present in most
of MCs during odor presentation (Yokoi et al., 1995; Kollo
et al., 2014); (2) GC spike-dependent GABAA synapses, a
phasic conductance sI,G gI,G,max triggered by GC spikes
(Fig. 1C), with the fraction of open channels modeled as
follows as a simple exponential described by Equation 8,
as follows:

dsI,G

dt
� �

sI,G

�I,G
(Eq.8)

The decay time constant was set to �I,G � 7 ms corre-
sponding to ranges experimentally observed for mini-
IPSC measurement (Castillo et al., 1999; Bathellier et al.,
2006; Lagier et al., 2007; Eyre et al., 2012). The maximum
conductance of a single synaptic input gI,G,max� 3 S/m2

has been estimated to be in the range of experimental
data (current amplitude, 20 pA; Schoppa et al., 1998). (3)
GC spike-independent GABAA synapses, consisting of a
phasic conductance sI gI,max corresponding to a dendro-
dendritic inhibition, independent of granule spiking, di-
rectly triggered by a mitral spike (Fig. 1D; gI,max � 0.18
S/m2). The fraction of open channels was modeled as a
double exponential described by Equations 9 and 10, as
follows:

dsI

dt
�

rI � sI

�I
(Eq.9)

drI

dt
� �

rI

�r
(Eq.10)

The rise time constant �r was set to 2 ms, and the decay
time constant was set to �I � 7 ms, adapted from esti-
mated values (Margrie and Schaefer, 2003; Schoppa,
2006). A synaptic delay was randomly chosen from a
uniform distribution between 5 and 13 ms from the spike
time of the MC to the start of the IPSC. This aimed to
account for both (1) the average relative timing seen
between MC spikes and inhibitory events (Lagier et al.,
2004) due to the two synapses MC–GC and GC–MC
being involved in this connection and (2) a less reliable
way of inhibition allowing weak coupling in the network.

In order to reflect the partial activation of the GC syn-
aptic spines, GC spike-independent GABA conductance
was weak compared with the GC spike-dependent GABA
conductance (Egger et al., 2005).

Short-term plasticity Short-term plasticity was intro-
duced to reproduce fast-adapting AMPA synapses from
MC to GC (Balu et al., 2007). The maximal conductance
decays with time according to the formalism of the fol-
lowing equations (Eqs. 11, 12) introduced by Markram
et al. (1998):

dx
dt

�
1 � x

�d
(Eq.11)
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du
dt

�
U � u

�r
(Eq.12)

The parameters were set to �d � 150 ms, �r � 1 ms, and
U � 1 in order to have a pure depressing synapse without
facilitation. Each time a presynaptic spike is emitted, this
triggers a change in the values of x and u. u takes the
value u � U(1 � u), and x takes the value x(1 � u). The
synaptic weights were modulated by the product x � u as
implemented in the Brian simulator (Goodman and Brette,
2009). When short-term plasticity was introduced (starting
at Fig. 4 and later), we used gE,max � 2.5 � gE,max,default �
1 nS.

Connectivity The 100 MCs and 100 GCs were con-
nected for all the present simulations. Due to the long
range of mitral lateral dendrites, we first assumed that any
pair of mitral cells was connected through a granule cell
(Xiong and Chen, 2002). In the model, this was accounted
for by an all-to-all coupling between MCs through GC
spike-independent inhibition. Second, we assumed that
any MC–GC pair has a 0.5 chance to form a dendroden-
dritic synapse with both an AMPA synaptic connection
from MC to GC and a GC spike-dependent GABA synap-
tic connection from GC to MC. Changes in cell numbers
or synapse density were not found to affect critically the
tendency of the results. Unless mentioned otherwise the
connectivity was randomly drawn for each simulation
each time we used groups of multiple simulations.

Sensory and centrifugal inputs
Sensory inputs modulation Sensory inputs were modeled
as an excitatory conductance (Einput,E � 0 mV) assigned to
each MC. For constant input, ginput,E values were linearly
spaced across MCs between 6.1 and 7.6 S/m2. When a
respiration-like sampling was introduced, unless other-
wise mentioned, these excitatory conductances were
modulated from a basal value common for all MCs (gin-

put,E,basal � 4 S/m2) to a maximum value ginput,E,max linearly
spaced across mitral cells between 6.6 and 8.1 S/m2. A
phase shift between each MC was introduced so as to
obtain a delay of response observed in MCs correspond-
ing to observations across several species at both the
neuroreceptor and the MC levels (Cang and Isaacson,
2003; Spors et al., 2006; Schaefer and Margrie, 2007;
Rospars et al., 2013). The variability of the delay of re-
sponse can reflect odor concentration, odor identity, or
nasal flow rate.

The general equation of the sensory modulation of MCs
is described in Equation 13, for MC i, as follows:

ginput,E,i�t� �
ginput,E,basal � ginjput,E,max,i

2
�

ginjput,E,max,i � ginput,E,basal

2 �1 � cos�2	·f·t � 
i��

(Eq.13)

where t is the time, f is the frequency of sensory modu-
lation (from 2 Hz in anesthesia to 12 Hz during sniffing), �i

is the phase shift specific for each MC (see next para-
graph for the determination of phase shift values). The

maximum of the sine wave without phase shift corre-
sponds approximately to the inspiration–expiration tran-
sition.

Odor intensity variation In this study, we chose to sim-
ulate changes in sensory input strength by a modulation
of MC locking relative to the respiratory cycle. This takes
into account the existence of (1) a normalization process
at the interglomerular level (Cleland et al., 2007) and an
all-or-nothing response at the intraglomerular level (Gire
and Schoppa, 2009), which indicate that the level of
excitability of MCs could be relatively stable with odor
intensity; (2) a general decrease of latency in the bulbar
response (Spors et al., 2006; Zhou and Belluscio, 2012;
Rospars et al., 2013; Yu et al., 2013); and (3) a better
locking of MC to the respiration with high odor intensity
(Courtiol et al., 2011a). These are only part of the many
parameters that account for the adaptation of the MC
response to the odor intensity (Yokoi et al., 1995; Chalan-
sonnet and Chaput, 1998; Yu et al., 2013; Migliore et al.,
2014; Gupta et al., 2015).

To simulate a change of odor intensity, the phase shifts
relative to the respiratory oscillation �i were drawn for
each MC from a normal distribution with an SD going from
0.2, in the case of high intensity (this ensured a good
locking of the MC population to the respiratory rhythm), to
an SD of 5 in the case of low intensity (this induced a
broad tuning of MC response relative to the odor onset (as
reported in Rospars et al., 2013) and subsequently a
broad tuning relative to the respiratory modulation. In the
latter case, MCs were not only desynchronized with the
respiratory rhythm but also relative to the respiratory
rhythm of each other.

Centrifugal input modulation Numerous centrifugal fi-
bers project to the olfactory bulb (Price, 1968; Matsutani
and Yamamoto, 2008; Rothermel and Wachowiak, 2014).
Although most of the temporally patterned activity in the
olfactory bulb is shaped by nasal airflows (Fukunaga
et al., 2012; Phillips et al., 2012; Youngstrom and Strow-
bridge, 2015; Gupta et al., 2015), it has been shown that
removing the airflow via a tracheotomy leaves a phase-
delayed, respiration-modulated activity in MC spiking dis-
charge (Ravel et al., 1987; Ravel and Pager, 1990) and in
the membrane potential of MCs and tuft cells (Phillips
et al., 2012), with the latter one being affected by a LOT
lesion (Phillips et al., 2012, their Fig. 3). In the model, we
introduced this centrifugal modulation through a sinusoi-
dal current targeting only GCs with an average shift of
phase compared with the sensory input (�	; see Results
for estimation). It is described as follows in Equation 14:

Icentrifugal,E,i(t) �
IE,base � IE,max

2
�

IE,max � IE,base

2 �1 � cos

�2	·f·t � 
i � ���� (Eq.14)

where IE,base � �4 nA and IE,max ranged from �2.5 to 0
nA, depending on centrifugal input strength. These cur-
rents are negative to prevent the granule from spiking in
response to the sole centrifugal inputs (Pressler et al.,
2007) and to account for the very low level of activity of
GC under anesthesia (Cazakoff et al., 2014). For each GC,
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a phase shift, �i, was drawn from a random normal dis-
tribution with an SD of 0.2 in simulation of anesthetized
conditions and an SD of 5 in simulation of awake condi-
tions (Cazakoff et al., 2014). Other connections of centrif-
ugal inputs arriving in the OB on other neuron types were
not included in the model, as GC inputs (except those
from MC inputs) were thought to be formed mostly by
centrifugal inputs in contrast to other modeled neurons
(MCs).

Model limitations Several mechanisms can impact the
network dynamics and have not been included in the
model. Among them we can cite the following: the distri-
bution of local processes along dendrites of MCs and
GCs, the contribution of other neuronal populations, and
a neuron-specific spatial and temporal description of
synaptic inputs received from external structures. Unfor-
tunately, those components have not been well charac-
terized experimentally, and it is thus difficult to include
them as necessary components of gamma and beta os-
cillations presented here. Rather, our aim was to demon-
strate that all basic components used in our model are
necessary for the network dynamics. The principles of the
dynamics can then be drawn and consolidated in order to
later allow the addition of supplementary components
based on new experimental evidence.

Model local field potentials
LFPs issued from network simulations were obtained by
convolving MC spike trains with an IPSC-like waveform
(same property in time and amplitude as the spike-
independent IPSC from GC to MC) and then averaging the
obtained waves across the mitral cell population. This
method was efficient as it ensured a balanced represen-
tation of MC activity at both gamma and beta frequencies
in the LFP while also taking into account the time constant
of the synaptic inhibition. We used arbitrary units (a.u.)
with the same reference scale across all the figures. To
preserve both time and frequency information, we used a
time–frequency representation that was based upon con-
tinuous wavelet transformations. The LFP signal was con-
volved by a complex Morlet’s wavelet with a time
resolution of 5 ms and a frequency resolution of 1 Hz.
Using a wavelet ridge extraction, each gamma and beta
oscillatory epoch of the LFP was extracted using an en-
ergy threshold to detect its beginning and end (Roux
et al., 2007). As it was shown to accurately represent the
experimental gamma and beta frequency ranges (Neville
and Haberly, 2003; Cenier et al., 2009; Martin and Ravel,
2014), the detection boundaries of the model were set to
15-40 and 40-90 Hz, respectively, for the beta and the
gamma (which fits well the bimodal distribution observed
in the model). This procedure allowed a reasonable esti-
mation of the phasic, temporal, and frequency features of
these oscillations. An identical threshold was used for
gamma and beta oscillations: it was set to 0.2 a.u. in the
absence of slow respiratory modulation and to 0.1 a.u. in
the presence of slow respiratory modulation in order to
facilitate the detection of transient fast oscillations.
Gamma oscillations were detected in the 40-100 Hz fre-
quency range, and beta oscillations were detected in the
15-40 Hz frequency range.

Software
Network and neuron equations were implemented under
Python version 2.7 using the Brian simulator (Goodman
and Brette, 2009). The code for the simulation is available
in the model database (https://senselab.med.yale.edu/
neurondb/). Euler integration was used with a time step of
0.05 ms.

Results
MC/GC dendrodendritic interactions were proven to be
critically involved in gamma oscillations (Desmaisons
et al., 1999; Lagier et al., 2004) and were suggested to be
involved in beta oscillations (Fourcaud-Trocmé et al.,
2014; Lepousez et al., 2014). Additionally, GCs were
shown to display two different modes of dendritic activa-
tion (Egger et al., 2003, 2005), as follows: a local mode
with a local dendritic depolarization due to MC excitation
limited to a single branch of the GC dendritic tree; and a
global mode with a full dendritic arbor depolarization
caused by GC spikes. In a first step, we hypothesized that
when GCs are functioning in the local mode, MCs con-
nected to the same dendritic branch are effectively con-
nected by a weak inhibition that is independent of the GC
spike. We showed that this local mode functioning allows
the network to oscillate in the gamma frequency range. In
a second step, we hypothesized that centrifugal sub-
threshold excitation of GCs allows them to spike in re-
sponse to MC excitation and thus to enter the global
mode. We showed that this global mode allows the net-
work to oscillate in the beta frequency range. Importantly,
while in this study the difference between these two
modes relies on the distinct extent of GC dendrite activa-
tion, we did not model the details of the GC dendrites.
Instead, we implemented the following two distinct types
of inhibition: a direct weak inhibition between MCs, ac-
counting for local GC dendrite activation, and a strong
inhibition from GC to MC that is activated by GC spikes
(Fig. 1C,D). A sketch of the modeled network and its
connections, including these two types of inhibition, is
shown in Figure 1 (for details, see Materials and Methods).
Finally, as a prominent part of the OB dynamics, we
included the respiratory slow rhythm in our model, and
studied the influence of the balance between respiratory
modulated sensory and centrifugal inputs on the compe-
tition between the two fast-oscillatory dynamics.

Local versus global GC dendritic activation mode
can account for the emergence of gamma versus
beta oscillation
Gamma oscillations can emerge from weak coupling
due to local activation of GCs
In a first set of simulations, the network received only
sensory excitation on mitral cells. This mitral input con-
sisted of a range of constant excitatory conductances,
which induced an intrinsic firing frequency of MCs ranging
between 0 and 70 Hz (for the full characteristics of the MC
model, see David et al., 2009; Fig. 1A) and bursting pat-
terns, as seen in experimental in vitro conditions (Desmai-
sons et al., 1999; Balu et al., 2004). In such conditions, the
synaptic depolarization of GCs via dendrodendritic syn-
apses was not strong enough to elicit GC spikes, and only
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the direct weak inhibition between mitral cells was
brought into play. We modeled this MC–MC interaction
using an all-to-all inhibitory coupling (Fig. 2A). Random
delays of synaptic transmission (drawn uniformly in the
5-13 ms range, independently for each MC pair) were
used to reflect the actual indirect and asynchronous na-
ture of inhibition from GCs to MCs. The weak MC cou-
pling, along with the heterogeneous input excitatory
conductances received by MCs, contributed to the het-
erogeneous characteristic observed in MC activities (for
MC Vm examples, see Fig. 2B). When considering LFP
signal, a gamma oscillation at �60 Hz in frequency
emerged after the onset and was maintained during the
stimulation (Fig. 2C, left). This oscillation is due to an
autoentrainment mechanism. Precisely, because inhibi-
tion is weak, individual MC spike patterns are only slightly
modulated by the inhibitory interactions. Each MC thus
generates an approximate oscillatory input that tends to
entrain other MCs spiking at a close firing frequency rate.
In turn, entrained MCs reinforce the global oscillation and
favor the entrainment of additional MCs. Interestingly, a
previous study of this MC model (David et al., 2009)
showed that the efficacy of such an entrainment depends
on an entrained MC firing rate and oscillation frequency.
Indeed, due to MC resonant properties, it reaches its
maximal strength when the oscillation frequency is at �60
Hz. This explains the large oscillation at �60 Hz observed
in Fig. 2C. Only a subset of cells was perfectly entrained
and discharged once every cycle or every two cycles.
Because most the cells cannot perfectly follow the LFP
oscillation (because of the difference between their intrin-
sic firing rate and the LFP oscillation frequency), this leads
to a more irregular discharge with skipped cycles or two
spikes in a cycle (for examples, see Fig. 2B). This is in
agreement with the results of a previous study (David
et al., 2009) on MC spike phase locking during gamma
oscillations in vivo in freely breathing anesthetized rats.

We next wondered whether we could experimentally
reproduce this network model behavior in urethane-
anesthetized animals, where GC excitability is known to
be highly reduced (Kato et al., 2012; Cazakoff et al., 2014).
We performed a tracheotomy and applied a continuous
odorant stimulation (using a constant aspiration) to pro-
duce a prolonged excitation on MCs, which was also
independent from the respiratory rhythm. A deafferenta-
tion of the OB was also performed by lesioning the pe-
duncle to insulate the OB from centrifugal inputs. We
observed, as predicted by our model, that in such condi-
tions, odorant stimulation induced a continuous gamma
oscillation (Fig. 2C, right, n � 2 animals, n � 22 stimula-
tions; for comparison with data published elsewhere, see
Table 1).

To better understand the network parameters used in
our model that were important to precisely control gamma
oscillation properties, we made simulations systematically
varying the network parameters one by one. As described
above, the mechanism leading to gamma oscillation is an
autoentrainment mechanism; thus, LFP frequency should
depend mainly on MC entrainment properties (David
et al., 2009) and MC firing rates. Because the weak inhi-

bition tends to modulate spike patterns with only a minor
impact on the mean firing rates (David et al., 2009), the
oscillation frequency was barely affected by synaptic pa-
rameters (density of connection; Fig. 2D), weak inhibition
amplitude (Fig. 2F), inhibition decay time constant (Fig.
2G), or the number of activated MCs (Fig. 2E). Regarding
MC entrainment properties, increasing the time constant
of the slow potassium current activation, which is respon-
sible for MC resonant properties, was previously shown to
shift the maximal efficacy of MC entrainment to lower
frequencies (David et al., 2009). This parallels the small
decrease of LFP frequency found in our network for the
larger time constant of the slow potassium current (Fig.
2H). Finally, the parameter with the most influence on LFP
frequency was the strength of mean MC excitatory con-
ductance (Fig. 2I), which was similar to what has been
reported in other OB models (Börgers and Kopell, 2003;
Brea et al., 2009; Fourcaud-Trocmé et al., 2011). Indeed,
varying the MC input conductance strongly affected the
MC firing rate. At low-input excitatory conductance, MCs
tend to discharge by small bursts with an intraburst fre-
quency of �40 Hz (Fig. 1A), which explains both why the
LFP oscillation frequency did not decrease below 40 Hz
and why some bursts of gamma oscillation occur at a
much slower frequency (�8 Hz). At high-input excitatory
conductance, faster MCs tried to entrain the whole net-
work at their intrinsic firing rate, and the resultant LFP
frequency was intermediate between the highest MC fir-
ing rate and the best entrained frequency (60 Hz, defined
by MC intrinsic properties). However, we must emphasize
that at higher LFP frequencies there was a strong de-
crease of LFP amplitude (Fig. 2I). This was due both to the
less effective MC entrainment at frequencies higher than
60 Hz, and to the weak inhibition delay and rise times,
which began to last longer than one LFP cycle. Thus,
high-frequency oscillations were strongly attenuated and
tended to disappear in LFP noise.

Overall, we showed that weak coupling between MCs
led, through an autoentrainment mechanism, to the emer-
gence of network oscillations, specifically in the gamma
frequency range.

Beta oscillations require cortical feedback and full GC
activation
The clear distinction of frequency bands covered by
gamma and beta oscillations in vivo suggests the exis-
tence of two completely different generation mechanisms
that are supported by distinct subnetworks in the mitral–
granule network (Fourcaud-Trocmé et al., 2014). How-
ever, no mechanism has convincingly explained this
clear-cut separation. We tested whether the spiking of
GCs underlies the emergence of the beta oscillations as
has recently been hypothesized (Lepousez et al., 2014).
Compared with the previous network configuration, we
added a centrifugal contribution as an excitatory input
mimicking the barrage of EPSPs from centrifugal fibers to
GCs (Figs. 1B, 3A, upward red arrow; for details, see
Materials and Methods). Although these inputs are phase
modulated by the respiratory cycle (Rothermel and Wa-
chowiak, 2014), they were first modeled as a homoge-
neous steady excitatory conductance on GCs (Fig. 3A). In
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Figure 2. Gamma oscillation emerges from weak coupling between MCs via dendrodendritic synapses. A, Scheme of activated
synaptic connections (red arrows) involved in the gamma oscillation. B, Raster images of the 100 MC population (top), examples of
MC Vm values (middle), and an example of inhibitory synaptic conductance received by MCs (bottom). C, LFP time–frequency maps
show the onset of the oscillation at the gamma frequency (�60 Hz) following a step (middle trace) of heterogeneous excitatory
conductances on MCs in the model (left) or following a constant 2-heptanone-odor (9% of the saturated vapor pressure) stimulation
(right) in a tracheotomized rat. White line shows the average time course of gamma maximal amplitude (n � 22 recordings from two
animals; dotted lines indicate 
SEM) normalized to 100% for amplitudes measured before stimulus onset (time 0). D–I, Effect of the
density of connection (D), the number of activated MCs (E), GABA synapse weight (a.u. are multiples of GABA default conductance;
F), the decay time constant of GABA conductance (G), the time constant of activation of the slow potassium conductance in MCs (H),
and the mean MC excitatory conductance (I) on the amplitudes (top rows) and frequency (bottom rows) of the detected gamma
oscillations. Average values 
 SDs are plotted for 30 repetitions of 4 s simulations. The arrow indicates the parameter value used by
default from D to I. Note that when synaptic weights go to 0 (F), the gamma amplitude goes to 0.2, which reflects the LFP noise level
in the gamma range for constant sensory inputs. Freq., Frequency; stim., stimulated.

Theory/New Concepts 9 of 24

November/December 2015, 2(6) e0018-15.2015 eNeuro.sfn.org



such conditions, GCs were able to fire action potentials
(Fig. 3B) when their total excitation (centrifugal excitation
plus MC excitation) was large enough. In turn, this GC
spiking elicited strong inhibition of MCs.

In order to assess the effects of the switch of GCs from
a nonspiking to a spiking regime, we added a ramp of
excitatory current impinging on GCs, which brought them
closer to their spiking threshold (Fig. 3C). In this novel
network state, MC spikes induced GC spikes, which in
turn inhibited MCs sufficiently to transiently block their
discharge. A new cycle could start when GC inhibition
sufficiently decayed (Fig. 3B). This type of oscillation has
most of the properties of a PING mechanism (Börgers and
Kopell, 2003). As a consequence, network dynamics were
driven by the interplay between MC excitation and spike-
induced GC inhibition, while gamma oscillations were
disrupted by the now powerful inhibitory input received
from GCs. This resulted in a sudden shift in the network
oscillation from the gamma regime previously observed to
a beta regime (15-40 Hz), as illustrated in Figure 3C. Using
a constant and strong centrifugal input, the network dis-
played a beta oscillation of stable amplitude and fre-
quency (Fig. 3D, left).

In vivo experimental conditions promoting a strong cen-
trifugal input on GCs are the moments when an animal
samples an odorant while it is awake compared with
anesthetized (Lowry and Kay, 2007; Cazakoff et al., 2014)
or while the odor circuit is reinforced by learning (Cauth-
ron and Stripling, 2014; Lepousez et al., 2014). Compar-
ing our model with actual data, we noted that in such
conditions we could also get a long beta oscillation in the
bulbar network LFP (Fig. 3D, right; for comparison with
data published elsewhere, see Table 1).

Finally, we made systematic simulations of the model
by varying different parameters one by one in order to
study both beta oscillation properties and the competition
between gamma and beta oscillations. Figure 3E–H dis-
plays a summary of these simulations. We observed that
the beta oscillation frequency depended critically on both
the time constant of inhibition (Fig. 3E) and the weight of
the GABA inhibition (Fig. 3F), but less (the nonmonotonic

effect) on the weight of excitatory centrifugal inputs (Fig.
3G) or an AMPA excitatory MC–GC synapse (Fig. 3H).
However, we observed that the balance between the
amplitudes of beta versus gamma oscillations was tightly
controlled by parameters that control the GC firing (i.e.,
the centrifugal input strength on GCs; Fig. 3G) and the
AMPA conductance (Fig. 3H). Indeed, the combination of
both excitatory inputs on GCs has to be large enough to
elicit GC spiking and thus makes beta oscillations
emerge. We intentionally did not include any random
process on the temporal course of the peripheral or cen-
trifugal inputs in order to better isolate the phenomenon
described from sources of variability (Figs. 2, 3). This
yields relatively narrow bands of activity in frequency and
amplitude, and explains some of the dissimilarities with
the presented experiments on top of an overall good
concordance.

Overall, we showed that increased excitation on GCs
could lead to a GC spiking regime that made the network
oscillate in the beta frequency range. Beta oscillation
properties were mainly determined by intrinsic network
synaptic properties, while the balance between beta and
gamma oscillations was tightly controlled by both network
peripheral and centrifugal excitatory levels.

The phase shift between sensory and centrifugal
inputs explains the gamma–beta sequence over a
respiratory cycle
Having described gamma and beta oscillations in our
model, we then wanted to understand their relationships
with the slow respiratory rhythm. Our first objective was
thus to assess how the influence on this slow rhythm in
our network should be modeled. In vivo experiments have
extensively shown a respiratory slow modulation of sen-
sory input (Carey et al., 2009; Courtiol et al., 2011a;
Briffaud et al., 2012; Phillips et al., 2012; Rojas-Líbano
et al., 2014). Besides, although a centrifugal modulation of
the OB at the respiratory rhythm is debated (Ravel et al.,
1987; Sobel and Tank, 1993; Phillips et al., 2012), a
respiration-locked modulation of GCs by centrifugal in-
puts probably exists (Rothermel and Wachowiak, 2014).

Table 1: Summary of findings and associated experimental evidences

Model outputs Experimental data from the group Figure Other comparable reports

Generation of sustained gamma rhythm
by continuous odorant stimulation

Present data (n � 2) 2C Neville and Haberly, 2003

Generation of beta oscillations
by increased GC excitability

No direct evidence 3D Only indirect evidences:
Martin et al., 2006, Kay and
Beshel, 2010

Change of GC excitability
over a respiratory cycle

Present data (n � 18) 4C Only indirect evidence:
Cazakoff et al., 2014
Rothermel and Wachowiak, 2014

Gamma–beta sequence locking on
respiration under anesthesia

Buonviso et al., 2003 (n � 33)
Cenier et al., 2008 (n � 14)

4E,F

Correlation between gamma/beta
power and odor intensity

Courtiol et al., 2011a
(n � 12)

5A,C Neville and Haberly, 2003

Strong decrease of beta
oscillations after disruption of
OB centrifugal inputs

Present data (n � 6) 6A,B Neville and Haberly, 2003
Martin et al., 2006

n, number of animals.
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Moreover, some data suggest that this centrifugal respi-
ratory modulation could be phase shifted relative to the
respiratory modulation of sensory input under anesthesia

(Ravel and Pager, 1990; Phillips et al., 2012). In order to
investigate to what extent respiratory modulation could be
phase shifted between sensory and centrifugal inputs, we

Figure 3. Beta oscillations compete with gamma oscillations when GCs start spiking. A, Scheme of activated synaptic connections
(red arrows) involved in the beta oscillations. The centrifugal inputs on GC are added compared with Figure 2. B, Raster of the MC
(black dots) and GC (red dots) populations, Vm of four MCs, inhibitory synaptic conductances received by MCs, and Vm of four GCs.
C, Wavelet transform and LFP show the response of the network to a ramp of excitatory current uniformly imposed onto the GC
population (IE,GC). D, Wavelet transform and LFP during stable beta oscillations in the model (left) and in awake behaving rats after
ethyl-benzoate odor sampling associated to reward (right) as an illustrative example of common beta induction in the OB. Note that
the oscillation covers multiple respiratory cycles (Respi. signal). E–H, Effects of the decay time (E) and weight (F) of GABA
spike-dependent IPSCs from GC to MC, the amplitude of the centrifugal inputs on GC (G), and the amplitude of AMPA EPSCs from
MC to GC (H) on amplitude (top rows) and frequency (bottom rows) of detected oscillations in the gamma (black trace) and beta (red
traces) frequency ranges. The arrow indicates the parameter value used by default from E to H. Average values 
SDs are plotted for
30 repetitions of 4 s simulations. Freq., Frequency.
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proposed to measure experimentally, in freely breathing
anesthetized rats, how GC excitability changed along the
respiratory cycle. We reasoned that if GC excitability was
not constant but rhythmic during the whole respiratory
cycle, the late synaptic current response to LOT electrical
stimulation (corresponding to GC activity) should be
larger during high GC excitability phases. We thus re-
corded OB LFP in response to LOT stimulation at distinct
respiratory phases (for examples of recordings, see Fig.
4A) with a 16-channel silicon probe. We performed a CSD
analysis of the late (10-60 ms) part of the LOT-evoked
responses grouped according to their respiratory phases
(see Materials and Methods). The amplitude of this late
component in the external plexiform layer was previously
interpreted either as the inhibitory input on the MC den-
drites (Nicoll, 1972) or as a depolarization following cen-
trifugal excitation of the GCs (Nakashima et al., 1978;
Aroniadou-Anderjaska et al., 1999; Uva et al., 2006). Be-
cause these two origins could not be disentangled in our
data, we considered that they both contributed to gener-
ating the main negative component of the LOT-evoked
response.

The resultant CSD maps (Fig. 4B) displayed a strong
current source in the EPL resulting from a mix of the
opening of GC–MC inhibitory synapses and of granule cell
centrifugal excitation (for details, see Materials and Meth-
ods). Interestingly, the overall CSD pattern did not change
across respiratory phases except for its amplitude, indi-
cating that evoked recurrent inhibition and GC-evoked
centrifugal excitation were not constant at each respira-
tory phase. To quantify this change, we measured the
amplitude of the current source in the EPL as a function of
the respiratory phase. We observed a significant (mean 

SEM, 22 
 11%) modulation of the EPL current source
amplitude (Fig. 4C, top; n � 180 LOT stimulations;
Kruskal–Wallis test, p � 0.01), which peaked at the initial
part (1.1 	) of the expiration phase and dipped at the end
of expiration (E/I; 0 	, unpaired Wilcoxon test, p � 0.01;
n0	 � 18, n1.1	 � 10). In contrast, we did not find any
significant changes in the amplitude of the EPL current
sink around the peak of the LOT-evoked response (from
�2 to 10 ms; data not shown; n � 180 LOT stimulations;
Kruskal–Wallis test, p � 0.90), which reflects the amount
of evoked excitatory current from MC to GC (Nakashima
et al., 1978). We thus concluded that the slow modulation
of the LOT-evoked EPL source amplitude that we ob-
served was due mainly to a slow modulation of centrifugal
inputs onto GCs (either by increasing their excitability,
and thus promoting recurrent inhibition, or by modulating
their sensitivity to centrifugal feedback). When comparing
these data with the firing rate of MCs along the respiratory
cycle, we observed that the MC firing rate was maximal at
the I/E transition (0.74 	; Fig. 4C, bottom). Finally, based
on these measurements, we concluded that excitatory
slow modulation of MCs and GCs, sensory and centrifu-
gal, respectively, could be considered as shifted by ap-
proximately a quarter of the respiratory cycle phase.
These findings were also corroborated by data from an-
other study on MC and GC unit activity (Ravel et al., 1987),
which proved the existence of a modulation of bulbar

Figure 4. Oscillation sequence during the time window of a
respiratory cycle reproduced in the model. A, Examples of re-
cordings in the OB GCL of a freely breathing urethane-
anesthetized rat during LOT electrical stimulations at different
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activity independent of sensory inputs and phase delayed
relative to the I/E transition in the respiratory cycle.

To introduce these phase-shifted modulations in the
last network configuration, we replaced (1) the constant
sensory conductance by the sensory respiratory modula-
tion as a sine wave modulation of excitatory inputs onto
MCs and (2) the constant centrifugal conductance by a
centrifugal periodic modulation of excitatory inputs onto
GCs phase shifted by �	/2 relative to sensory input (for
details, see Materials and Methods; Fig. 4D). Note that
this centrifugal modulation remained at a subthreshold
level (i.e., did not evoke spikes) for GCs. This allowed us
(Fig. 4E) to reproduce in the model the sequence of fast
oscillations usually observed experimentally at each re-
spiratory cycle in response to odor stimulation in anes-
thetized rats (Fig. 4F). The bursts of gamma oscillations
were phase locked to the simulated I/E transition, and
beta oscillations were locked to the simulated E value. As
described in Figures 1 and 2, MCs tended to be more
active during gamma oscillations and less active during
beta oscillations (Fig. 4G). GCs had an opposite pattern
with a peak of activity during the beta oscillations. At the
unit level, the model also matched the following experi-
mental observations: (1) the majority of MCs fired at the
I/E transition were locked in phase to the gamma oscilla-
tions; and (2) MCs fired during the expiration phase were
locked to the beta oscillations.

The strong impacts of odor intensity, odor valence,
and sniffing strategy on the dynamic state of the
network are explained by the balance between
sensory and cortical inputs
Simulations from the previous section showed that our
model could accurately capture the alternation of gamma
and beta oscillations shaped by the respiratory slow mod-
ulation in a standard anesthetized animal preparation. In
the awake preparation, such alternations do not appear
so regularly, but switches between both regimes are well
described and gamma bursts are also locked to the re-
spiratory rhythm (Rojas-Líbano and Kay, 2008; Martin and
Ravel, 2014). To gain insight into the underlying mecha-
nisms of the competition between beta and gamma os-
cillations in awake animals in a more functional context,
we explored the model dynamics when the animal is
facing changes in network input parameters similar to
those that would occur in different experimental and be-
havioral conditions. In particular, we were interested in (1)
changes in sensory input intensity, which can be due to
changes in odor concentration or/and nasal flow rate; (2)
changes in centrifugal inputs, which can be affected by
learning, contextual association, or pharmacological ma-
nipulations; and finally (3) changes in sniffing frequency,
as happen when animals are actively exploring an odor
source.

Changes in the strength of afferent inputs
Experimentally, the strength of afferent input can be var-
ied by changing nasal flow rate (Fig. 5A; Courtiol et al.,
2011a) or/and odor concentration (Neville and Haberly,
2003). In both cases, it has been reported that the stron-
ger the afferent input (high flow rate or high concentra-
tion), the stronger the gamma oscillations appear.
Alternatively, the weaker the afferent input (i.e., low flow
rate or low concentration), the stronger beta oscillations
appear (Neville and Haberly, 2003; Courtiol et al., 2011a).
In order to explain such a competing mechanism able to
control the predominance of gamma or beta oscillations,
we simulated a change in input intensity (i.e., either odor
concentration or nasal airflow) by increasing the strength
of phase locking to the respiration cycle (see Materials
and Methods) of the sensory stimulations across MC
population, while keeping unchanged the temporal course
of centrifugal inputs for the different afferent input inten-
sities (Fig. 5B).

For weak afferent inputs, the MC inputs poorly locked
to each other failed to induce detectable gamma oscilla-
tions, whereas beta oscillations were robustly present at
each respiratory cycle (Fig. 5C1, left). When the strength
of the afferent inputs increased and the locking of MCs to
the respiration cycle increased, gamma oscillations ap-
peared and increased in amplitude (Fig. 5C1, middle and
right, D). This tendency for the gamma oscillations corre-
sponded well with the general tendency observed in ex-
perimental conditions (Courtiol et al., 2011a), where a
higher proportion of MCs (81%) respiration-locked for
high flow rates compared with lower flow rates (61%). For
beta oscillations, the results are less simple. In fact, when
the strength of the afferent inputs increased and the
locking of MCs to the respiration cycle increase, the

continued
respiratory phases (n � 14 traces are superimposed). Time 0 is
aligned for each trace on the time of the positive peak. Dashed
vertical lines indicate the time limits considered for the CSD
around the negative peak. B, Current source density maps
across olfactory bulb layers on the 10–60 ms interval poststimu-
lation for three distinct respiratory phases (early, 0–0.5), middle
(0.5–0.7), and late (0.7–1), respectively. Maps are averages of
LOT stimulations across different recording sessions (n � 18)
across layers, as follows: GL, EPL, MCL, and GCL. Current sink
and source amplitudes are color coded (color bar). C, Top, EPL
current source amplitude of the negative evoked potential as a
function of the respiratory phase of LOT stimulation. Vertical
dashed lines indicate the I maximum, the I/E transition, the E
maximum, the EP, and the E/I. Red asterisks indicate signifi-
cantly different bins (Wilcoxon test, p � 0.01). Bottom, MC
discharge during the respiratory cycle. The dashed red line is the
average respiratory amplitude (inspiration is downward). D,
Scheme of the sensory and cortical inputs as two sinusoids here
at 2 Hz shifted by 	/2. E, Gamma and beta sequence through
three consecutive simulated respiratory cycles. The jitter of
phases of MC is 2.5 (see Materials and Methods). F, Sequence of
gamma and beta oscillations measured experimentally in vivo in
response to heptanal odor stimulation (9% of SVP) and corre-
sponding raw LFP, and filtered (10–90 Hz) LFP over approxi-
mately three respiratory cycles. Note the locking of gamma and
beta to particular phases of the respiratory modulation. G, Raster
images of GC firing (red) and MC firing (black); LFP trace is
superimposed. Black, Seven examples of MC Vm; red, three
examples of GC Vm. The time period corresponds to the one
indicated by the gray bar in E.
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number of occurrences of beta waves initially tended to
decrease, but this proportion rose again for very high
locking levels (Fig. 5D4, red lines). This result is in appar-
ent contradiction with some experimental observations in
anesthetized rats (Neville and Haberly, 2003; Courtiol
et al., 2011a) showing that high odor concentration [in a
moderate (i.e. not at saturated vapor pressure) range of
concentration] mainly diminishes the number of beta oc-
currences (see opposite tendency for odors at saturated
vapor pressures in Lowry and Kay, 2007). This discrep-
ancy between the model and experimental results could
be explained by the fact that although the locking of MCs
to the respiratory cycle increased and generated high-
amplitude gamma oscillations, synchrony among the cells
in the MC population through the gamma cycle could
induce highly synchronous inputs to GCs, which are
strong enough to elicit occasional GC firing (not shown).
This yielded occurrences of beta oscillations concomitant
with gamma oscillations also observed in the power spec-
tra (Fig. 5E, left). To overcome this discrepancy, we
searched for a mechanism that was able to decrease the
total excitation of GCs while gamma oscillation was
strong. Consistent with experiments that reported a short-
term depression (STD) on the MC–GC AMPA synapse
(Balu et al., 2007), we added this mechanism to the model
(see Materials and Methods). The main STD effect was to
strongly decrease the amplitude of the AMPA EPSPs on
GCs when presynaptic spike intervals from MC to GC
reached values as fast as the gamma range frequencies.
As expected from results seen in Figure 3H, this decrease
in MC–GC excitation induced by the STD resulted in a
drastic decrease in the occurrence and power of beta
oscillations when the locking of MCs to the respiratory
cycle increased ( yellow lines, E, right) compared with
conditions without STD (red lines, E, left). Consequently,
STD at the level of the MC–GC synapses appears as an
additional efficient mechanism to regulate the competition
between beta and gamma oscillations.

Changes in the amplitude of centrifugal afferent inputs
Odors with high contextual meaning (strong valence) ei-
ther acquired or innate (which induce fear, for example)
are able to evoke a drastic change in dynamics from
gamma to beta oscillations (Zibrowski and Vanderwolf,
1997; Ravel et al., 2003). This behavioral and dynamic
conditioning was found to be highly dependent on cen-

trifugal fibers from the piriform cortex in awake conditions
(Martin et al., 2006) as well as in anesthetized conditions
(Neville and Haberly, 2003). As an example, in experimen-
tal conditions when centrifugal afferents from the piriform
cortex to the OB are intact, beta oscillations could emerge
under urethane anesthesia in response to some specific
odors (Fig. 6A, left, example). The lesion of these centrif-
ugal afferent fibers constrains the system to the sole
expression of gamma oscillations for the very same odor-
ant stimulation (Fig. 6A, right), an effect that has been well
described by Neville and Haberly (2003). In our model, we
assessed the effect of a change in the strength of centrif-
ugal inputs by varying the amplitude of the excitatory
conductance received by GCs (Fig. 6B, top panels), while
keeping the dispersion of phases of the sensory modula-
tion on MCs at an intermediate level. While centrifugal
inputs were increased (Fig. 6B,C, compare left, right), the
beta oscillations were enhanced and the gamma oscilla-
tions were decreased. Systematically varying the ampli-
tude of the inputs of centrifugal afferents (Fig. 6D,E)
indicated that the total time spent in beta oscillations
increased from 0 to 9.4 
 0.9% of the total simulation
time and the total time spent in gamma oscillations de-
creased, from 6.0 
 0.5% to 3.2 
 0.4% compared with
conditions where the centrifugal afferents were absent or
not sufficient to induce GC spiking (Fig. 6C, compare
right, left). The amplitude and frequency of the individual
gamma and beta oscillations were only slightly affected
by the increase of centrifugal feedback (Fig. 6D, left). This
provided evidence that the mechanisms underlying the
formation of beta oscillations can critically depend on
both centrifugal afferents and the intrinsic dynamics of the
olfactory bulb.

Changes in the frequency of sensory and cortical inputs
Awake behaving conditions are associated with different
sniffing strategies and in particular with changes in the
sniffing frequency (Youngentob et al., 1987; Courtiol et al.,
2011a, 2011b). Therefore, we wanted to know whether
our model of gamma and beta competition mostly com-
pared to well described anesthetized conditions could
also be robust in brain state changes and applied to
awake conditions because the goal of the model is to
extend its scope to the functional context. Those are
characterized by a faster respiratory modulation (Rojas-
Líbano and Kay, 2012; Rojas-Líbano et al., 2014), a

Figure 5. Degree of MC locking to the respiration reproduces the odor stimulation intensity on network oscillations. A, In
tracheotomized urethane-anesthetized rats, the variation of odor intensity (odorant used: isoamyl-acetate), using different flow rates,
controls the patterns of gamma and beta oscillations. Low intensity more likely induces beta oscillations, whereas higher intensity
more likely gradually induces gamma oscillations (middle and right). B, Scheme of modulation of sensory and cortical inputs.
Increasing odor intensity is simulated by gradually increasing the level of locking (jitter of phase) to the respiratory cycle of MCs (first
row), whereas the cortical afferent input is maintained constant (second row). C1, LFPs and their wavelet transforms, for the following
three simulated conditions: from low (left, jitter of phase � 5), intermediate (middle, jitter of phase � 1.5) to high (right, jitter of phase
� 0.5) levels of MC locking progressively favors gamma compared to beta oscillations. C2, Corresponding raster images and trace
examples are represented below each case. D, The effect of MC locking to respiration on amplitude (D1), frequency (D2), time spent
in oscillation (D3), and the number of occurrences of gamma (black) and beta (red) oscillations (D4). Data are plotted as the average

 SEM on 100 simulations of 3 s each after 1 s of stabilization. Introducing STD (dashed lines; gamma in black and beta in yellow)
at the AMPA synapse from MC to GC reduces the chances of beta oscillation for high locking of MCs to the respiratory cycle. E, Power
spectra for the full range of MCs locking to the respiratory cycle (see color code) without STD (left) and with STD (right). stim.,
Stimulation.
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Figure 6. Effects of centrifugal inputs on GCs during the respiratory cycle. A, Experimental LFP and wavelet transforms for the same
odor stimulation (2-heptanone in the OB while the peduncle is intact (left) or cut (right; n � 6 rats). For more details, see Table 1. B,
Up, Scheme of the modulation received by MC and GC for strong (left) or weak (right) centrifugal inputs in the model. Down, Wavelet
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broader tuning of GC activity relative to the respiratory
cycle, and an increase of GC activity (Cazakoff et al.,
2014). Here the respiratory modulation was set at 8 Hz
and the relative timing of individual cortical excitatory
inputs on the GC was desynchronized relative to the
respiratory cycle (see Materials and Methods). In con-
ditions of weak or absent centrifugal afferents, we ob-
served that discontinuous oscillations in the gamma
frequency range dominated the network activity (Fig.
7A). The gamma bursts were still locked to the respira-
tory modulation in a way that was similar to the locking
of gamma bursts to the theta rhythm observed in awake
conditions (Lepousez and Lledo, 2013; Manabe and
Mori, 2013). When the level of centrifugal excitatory
input on GCs was enhanced to favor GC spiking, the
network activity switched to relatively continuous beta
oscillation overlapping several respiratory cycles (Fig.
7B). This captures well the experimental observation in
awake animals where the beta oscillations expand over
several respiratory cycles (Fig. 3D, right; Martin et al.,
2004, 2006).

Overall, the proposed mechanisms unraveled by anes-
thesia can sustain the dynamics associated with more
complex physiological contexts, including a higher fre-
quency of sniffing or broader GC tuning on respiration
observed in behaving animals responding to an odor.

Discussion
In this study, we used a simple but realistic model of the
OB to study the emergence and competition of two fast
oscillatory processes identified as gamma and beta os-
cillations. Our model captured these two essential dy-
namic features relative to odor processing through the
window of a respiratory cycle. The parsimony and flexi-
bility of the model, while accurately accounting for the
main aspects of OB dynamics, make it an important step
in the way of reducing neuronal networks to their essential
computational properties. The main model hypothesis is
that both oscillations depend on the MC–GC interactions
but with a GC regime either spiking or nonspiking. In the
nonspiking regime, weak synaptic coupling inhibition al-
lows the emergence of gamma oscillations with charac-
teristics of an autoentrainment process. In contrast, in the
GC spiking regime, MCs sufficiently excite the GCs such
that the latter discharge and induce a strong inhibitory
input that silences the MC population and generate beta
oscillations (Fig. 8). We then enter a PING regime (Börgers
and Kopell, 2003), where both populations discharge al-
ternatively. We showed that the dynamics of both types of
oscillations, gamma and beta, were remarkably stable as
a function of most of the network parameters tested.
However, their occurrence depended strongly on the net-
work peripheral sensory inputs and centrifugal inputs. In

continued
transforms and LFPs for strong (3.9 nA; left) and weak (3.5 nA; right) centrifugal afferent inputs on GCs. The jitter of phase is 1.5. The
centrifugal input amplitude (dashed lines) is given relative to the basal level of centrifugal input sine wave (chosen at �4 nA). C,
Examples of raster images and Vm traces for both MCs (black) and GCs (red) for strong (left) and weak (right) cortical inputs. LFP
traces are superimposed on rasters. D, Effect of cortical input [maximum current (in nA) relative to the minimum level] on oscillation
amplitude, frequency, time spent in oscillation, and number of gamma (black) and beta (red) oscillation occurrences. Data are plotted
as the average 
 SEM on 100 simulations of 4 s each. E, Global power spectra of the LFP from low-amplitude (red) to high-amplitude
(yellow) cortical inputs. Freq., Frequency; stim., stimulation.

Figure 7. Effect of centrifugal inputs in awake-like sniffing conditions. A, Simulation for a sensory modulation frequency of 8 Hz with
cortical afferent inputs on GCs desynchronized relative the respiratory cycle (jitter of phase: for MCs � 1.5; for GCs � 5). This
condition generates mainly gamma oscillations when cortical afferent inputs are low. B, Same model generates relatively continuous
beta oscillations when centrifugal afferent inputs are increased. Here, maximal sensory input conductances ginput,E,max ranged from
6.1 to 7.6 S/m2. Freq., Frequency.
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particular, gamma oscillations required a sufficient acti-
vation of MCs, while beta oscillations required a sufficient
activation of GCs (Figs. 2, 3). Based on novel experimen-
tal data showing a phase shift between MC and GC
external stimulation (Fig. 4), we showed that the model
could account for the alternation of gamma and beta
oscillations during a respiratory cycle as observed in vivo.
Finally, our model accurately captures the competition
between gamma and beta oscillations when sensory or
centrifugal inputs are modulated, such as in different
natural conditions involving odor features and behavior
(Figs. 5–7). Overall, this model very closely approaches
OB dynamics observed in vivo, and can thus be used to
interpret present and future experiments.

Model construction: a trade-off between complexity
and necessity
The model used in the present study makes a number of
assumptions regarding the underlying biophysical mech-
anisms that need to be discussed. First, the weak inhibi-
tion independent of GC spikes and a stronger inhibition
dependent on GC spikes were dissociated. This distinc-
tion has been made based on in vitro calcium imaging
experiments (Egger et al., 2003, 2005) that showed that
GC dendrites can have a local activation with local depo-
larization spreading only to spatially close spines on the
dendrite, or a more global mode where the full GC den-
dritic arbor is activated by a GC spike. In real GCs, both
mechanisms activate overlapping sets of synapses and
are thus not additive at the MC soma level, as in our
model. However, we observed that beta dynamics were
generally overwhelming gamma dynamics that are likely
to be similar to the experimental dynamics because broad
dendritic activation should overwhelm local dendritic ac-
tivation. A more realistic description of this competition
could be made with a detailed model of GCs, but this
would require the fine tuning of many parameters that are
not well known experimentally (in particular, regarding
granule dendrite internal dynamics). An alternative solu-
tion proposed in the literature is the use of graded syn-
apses for GC–MC inhibition (David et al., 2008; Brea et al.,
2009; Fourcaud-Trocmé et al., 2011), to which our inhib-
itory synapses can be compared. Our weak inhibition
corresponds to a weakly activated graded synapse,
whereas our spike-dependent inhibition corresponds to a
saturated graded synapse. And indeed, these two modes
relate, respectively, to the gamma and beta regimes de-
scribed in the study by Fourcaud-Trocmé et al. (2011).
Finally, recent experimental evidence points toward the
activation of distinct but overlapping sets of cells or syn-
apses during gamma and beta oscillations in the OB
(Cenier et al., 2009; Fourcaud-Trocmé et al., 2014), which
supports the distinction of both mechanisms. Overall,
despite its simplicity, the distinction between a weak and
a strong inhibition mechanism accurately captures the
interaction between gamma and beta oscillatory regimes
in various experimental conditions. Additional mecha-
nisms, such as the GCs in NMDA receptors, facilitate
centrifugal inputs (Balu et al., 2007), and their interactions

may also be included for future and more comprehensive
studies of the processes regulating OB dynamics.

A second point, which deserves full attention, is the
exclusion from the model of other neuron types to explain
the generation of the oscillatory rhythms, as follows: in-
terneurons other than GCs and TCs in particular; and the
recent characterization of some of the interneurons in the
physiological context of the olfactory bulb (Kato et al.,
2013; Miyamichi et al., 2013). Similar to GCs, parvalbumin
(PV)-positive interneurons have been described as being
responsive to odors and connecting principal cells in the
external plexiform layer. Their involvement in the genera-
tion of IPSCs on MCs and on gamma oscillations (Lagier
et al., 2004) could be central if they play a key role, like
PV-positive cells of the neocortex, in gamma generation
(Cardin et al., 2009). Similarly, it is likely that other neuron
types in the glomerular layer, like short-axon cells (Aungst
et al., 2003) and periglomerular neurons (Fukunaga et al.,
2014), play a key role in synchronizing the network at the
theta frequency and would indirectly control the condi-
tions necessary for the entrainment of the network at the
gamma frequency (as the synchrony of MCs on the respi-
ratory rhythm is necessary for the gamma emergence
(Fig. 5B,C). Eventually non-GC neurons in the internal
plexiform layer, like disynaptic short-axon cells (Pressler
and Strowbridge, 2006; Eyre et al., 2008), could play a
role that was not yet explored. Second, TCs were also not
included in our model. TCs initiate the olfactory bulb
response to the sensory stimulation (Fukunaga et al.,
2012), but mostly have been hypothesized as being re-
sponsible for the high gamma oscillations (Manabe and
Mori, 2013). Our model predicts that the gamma fre-
quency depends on the average firing rate of the MC
population. Then we could expect that when TCs get
involved in the gamma rhythms, the gamma frequency
increases. Similarly, an earlier respiration locking com-
pared with MCs (Buonviso et al., 2003; Fukunaga et al.,
2012) could explain the differential timing of the high
gamma and slow gamma oscillations through the respi-
ratory cycle (Manabe and Mori, 2013).

A third point to be justified is our choice of a phase
model for the odor–concentration/odor–intensity depen-
dence of the response of mitral cells. It is a general
observation that the concentration effect on bulbar activ-
ity is complex and includes linear, but also nonlinear,
effects on the network response. Among a number of
studies, some showed a relatively proportional relation
between firing rate and odor intensity (Mair, 1982; Cang
and Isaacson, 2003) or a clear relationship between pat-
tern and intensity (Harrison and Scott, 1986; Reinken and
Schmidt, 1986; Wellis et al., 1989). Alternatively, Chalan-
sonnet and Chaput (1998) showed that increasing odor
concentration did not change the mean firing frequency of
individual cells but tended to shift the respiratory phase of
the cells. Others have reported pattern changes that can-
not be predicted from the response to a particular inten-
sity (Kauer, 1974; Meredith, 1986). We chose to simulate
variations in odor intensity by MC spike phase locking,
which seems to be one of the critical parameters varying
with intensity (Margrie and Schaefer, 2003; Courtiol et al.,
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2011a; Fukunaga et al., 2012), as it also increases the
chance of MCs and GCs to fire together during the respi-
ratory cycle. Other MC response parameters that were
shown experimentally to vary with odor intensity, such as
the firing rate or the number of activated glomeruli, as has
been reported in many studies (Meister and Bonhoeffer,
2001; Khan et al., 2010), were not directly studied here.
Although the influence of the above parameters could
explain the decrease in gamma oscillations, as reported in
Figure 2, they cannot by themselves only explain the
experimentally observed increase of the beta oscillations
because the phase dispersion of MC firing is the critical
parameter in our model for the emergence of beta oscil-
lation. Other parameters not included in this model, like
the fine balance regulating the tonic excitation and inhi-
bition (Yokoi et al., 1995), could also alleviate those limi-
tations.

Last, the crucial existence for the model of the respira-
tory phase-shifted and subthreshold centrifugal input for
the generation of a beta oscillation during the expiration is
debatable because only a few direct measurements of
those inputs to the olfactory bulb were performed. Imag-
ing techniques (Rothermel and Wachowiak, 2014) could
solve this. In our case, this phase shift is necessary to
explain the different phases of gamma and beta oscilla-
tions observed only under anesthesia, because in awake
conditions a phase shift is not required in regard to the
lack of alternation between gamma and beta oscillations
during the course of a respiratory cycle.

Overall, we presented here the necessary and sufficient
components of the network to, first, generate an entrain-
ment of MC activities based a weak inhibition from GC to
MC at the gamma frequency and, second, a synchroni-
zation of MCs based on a strong inhibition from GCs to
MCs. Whether or not our results can be fully extended to
the awake and functional conditions remains an open
question. Existing data in the awake preparation shows
that gamma oscillations are either increased (Martin et al.,
2006) or decreased (Kay, 2003) by odor in a learning
paradigm; other studies report either an enhancement
(Zibrowski and Vanderwolf, 1997) or no modification
(Beshel et al., 2007) in beta power. The only clear conclu-
sion that can be drawn from all these studies is that the
dynamics of beta and gamma oscillatory activity largely

depends on the task and the behavioral strategy. We thus
seem to have a good argument for postulating that the
activity of the OB in the anesthetized animal, such as
simulated in our model, reflects the “wiring-imposed”
dynamics. On top of these basal dynamics, variations
related to learning, attention, and/or expectation are likely
to be superimposed in the behaving animal, resulting in
variations around the classic beta/gamma alternation ob-
served in the anesthetized preparation. Thus, the frame-
work we propose in our model is likely to be recruited in
awake conditions with some modalities that remain to be
determined and could be added to the model to enrich its
panel of responses.

Competition between beta and gamma oscillations:
model specificities and olfactory functions
A prominent aspect of OB in vivo beta and gamma oscil-
lations is that they do not occur simultaneously, but alter-
natively. The mechanisms used in this model capture this
behavior in two ways. First, when strong centrifugal input
allows GCs to start spiking, the strong inhibition of MCs
prevents them from oscillating at the gamma frequency.
Second, when MCs are strongly activated by sensory
inputs, the STD of MC–GC excitatory synapses (Balu
et al., 2007) prevents MCs from activating GCs above
their spiking threshold and thus preserves the gamma
oscillation. For the latter, it is important that gamma os-
cillations can develop first, in order to trigger the STD
process, which is made possible by the phase shift be-
tween sensory and centrifugal inputs at the respiration
frequency.

Regarding gamma oscillation dynamics, our model pro-
poses that they can emerge from weak coupling due to
local activation of GCs. This result proposes an alternative
to previous studies (Bathellier et al., 2006, 2008b) and
gives further insight into the debate between coupling
(Llinás, 1988) and inhibitory feedback (Freeman, 1975;
Eeckman and Freeman, 1990) to generate gamma oscil-
lation in the olfactory bulb as here both are present and
compatible. Although the gamma frequency depends
strongly on the intensity of sensory inputs, as in previous
models, the gamma amplitude decreases strongly when it
leaves the 60–80 Hz range (Fig. 2I). The lower bound of
the gamma oscillation is linked to the minimal interspike

Figure 8. Multimodal inhibition (blue or purple) in the olfactory bulb between granule (GC, circles) and mitral (MC, triangles) cells
generates two types of inhibition (IPSPs) that can induce gamma or beta waves in response to odor stimulation.
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interval set by the intrinsic bursting activity of MCs
(namely, due to its slow potassium channel; Wang, 1993),
and the upper bound is set by synaptic inhibitory feed-
back properties of the network that cannot function above
a certain frequency. This maximum of amplitude in the
gamma range can also be linked to the optimum of the
entrainment susceptibility of MCs in the gamma fre-
quency range (David et al., 2009). Overall, these mecha-
nisms likely contribute to the gamma oscillation frequency
boundaries in the OB, as has been observed experimen-
tally (Buonviso et al., 2003; Ravel et al., 2003; Rojas-
Líbano and Kay, 2008).

Regarding beta oscillations, we proposed that they oc-
cur through a PING mechanism that is possible only when
GCs are in a state of high excitability. This high-excitability
state can be induced by a slowly modulated and broad
centrifugal excitatory input to GCs (Balu et al., 2007;
Pressler et al., 2007; Matsutani and Yamamoto, 2008).
Importantly, to stay in the PING regime, the centrifugal
drive to GCs must remain subthreshold. This is supported
by a recent experimental study (Boyd et al., 2012) that
showed in vivo that broad OB centrifugal fiber activation
did not affect OB spontaneous activity but increased
odor-evoked recurrent excitation on MCs. In contrast,
beta oscillations cease when centrifugal inputs are de-
pressed (Neville and Haberly, 2003; Martin et al., 2006).
These early studies suggested that beta oscillations could
result from a long feedback loop between OB and piriform
cortex. Instead, our model demonstrated that beta waves
could be generated in isolated OBs and did not require a
loop functioning at the beta frequency between the olfac-
tory bulb and the piriform cortex, but rather required a
slow modulation of the GC excitability by the piriform
cortex. Other factors controlling the functioning of the
GC–MC synapse, such as acetylcholine (Pressler et al.,
2007) or norepinephrine (Mouly et al., 1995), should also
have a strong impact on gamma or beta oscillation re-
gimes. Their effects remain mostly described in animal
behavioral performance (Fletcher and Chen, 2010).

Functionally, the influence of gamma and beta oscilla-
tions on discrimination and learning is still highly debated.
If gamma oscillations were shown to be critically involved
(Lepousez and Lledo, 2013), the role of beta oscillations in
learning and discrimination is still unknown despite their
strong correlation with olfactory tasks (Martin and Ravel,
2014). In mammals, the independent manipulation of
gamma and beta oscillations has not been performed in
behaving animals yet, so that their respective role remains
unclear. Modeling the competition between the two dy-
namics could not only explain why gamma and beta
oscillations can appear in various contexts and paradigms
not necessarily linked to a similar meaning or function (but
unified by a similar dynamic process), but in the future
should also be able to associate the involved mechanisms
with their role in defining the behavioral responses to
odorants.

Conclusion
Overall, our results show that the competition between
gamma and beta oscillations depends on a mix of param-

eters including the nature, intensity, and valence of the
odor, along with the sniffing strategy of the animal. Dis-
entangling the origins of the mechanisms governing the
switch would require a selective activation of the GCs to
mimic the centrifugal feedback while monitoring the os-
cillatory regime of the olfactory bulb. Functionally, relating
these mechanisms to recent studies that emphasize the
roles of gamma and beta oscillations to transmit informa-
tion in a, respectively, feedforward and feedback manner
(Roelfsema, 2006; Bastos et al., 2015) could reveal the
essential functions of these waves in the OB. In particular,
the ability of a given structure to internally produce a
specific rhythm depending on its major input can allow it
to be more sensitive to input from other structures oscil-
lating at the same frequency (Fries, 2005). Regarding the
olfactory system, this could dynamically change the func-
tional connectivity between the OB and the piriform cortex
(Franks and Isaacson, 2005, 2006; Arenkiel et al., 2007;
Oswald and Urban, 2012) or the accessory olfactory nu-
cleus (Hagiwara et al., 2012). Additional modeling studies
including such structures could be helpful to infer the
information transmission as a function of the OB dynamic
state, as well as connectivity analyses in multistructure
recording experiments with a learning paradigm where
beta oscillations increase across sessions.
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